LUND UNIVERSITY

Implementation of PID Regulators

Astrém, Karl Johan

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Astrom, K. J. (1987). Implementation of PID Regulators. (Technical Reports TFRT-7344). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/f9e42c32-e561-4b38-a895-e80b7ad988b6

CODEN: LUTT'D2/(TFRT-7344/1-28/(1987)

Implementation of

PID Regulators

Karl Johan Astrom

Department of Automatic Control
Lund Institute of Technology
May 1987

Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name

Report

Date of issue

May 1987

Document Number

CODEN: LUTFD2/(TFRT-7344)/1-28/(1987)

Author(s)
Karl Johan Astrom

Supervisor

Sponsoring organisation

Title and subtitle
Implementation of PID Regulators

Abstract

This report treats different issues in the implementation of PID regulators. Both continuous time and discrete
time regulators are discussed. A general purpose algorithm which can be used as a building block is proposed.

Key words

Classification system and for index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 22

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Implementation of PID Regulators

K J Astréom

Abstract

This report treats different issues in the implementation of PID regulators.
Both continuous time and discrete time regulators are discussed. A general
purpose algorithm which can be used as a building block is proposed.

Introduction

The PID Algorithm
Windup

Manual Control

Some Regulator Modules

S O N

. Digital Implementation
Appendix A

Department of Automatic Control
Lund Institute of Technology
Revised May 1987

1. Introduction

The purpose of this report is to discuss some practical aspects of PID control
in order to arrive at suitable regulator modules which can be used for computer
control.

The basic PID algorithm is discussed in Section 2. This section also treats
modifications of the proportional and derivative parts to obtain good response
to command signals. Different forms of the algorithms, like series parallel and
. incremental forms are also discussed as well as discretization of the algorithm.

The problem of integrator windup.is treated in Section 3. Different ways
to avoid windup is treated. The section ends with a proposal for a flexible
regulator module that can be used in many different ways.

In Section 4 we discuss different ways to introduce manual control. Par-
ticular attention is given to the problem of avoiding transients when switching
from manual to automatic mode. A module which is suitable for manual
control is introduced.

The results are summarized in Section 5. A few additional modules which
can be combined with the PID module and the manual control module are
also introduced.

Some special issues associated with digital implementation are discussed
in Section 6.

2. The PID Algorithm

The basic PID algorithm can be expressed as follows

u(t) =k | e(t) + %/e(s)ds + Ty % (2.1)

where u is the control variable and e is the control error e = r — y which
is the difference between the set point r and the measured value y. The
control variable is thus the sum of three terms called proportional, integral
and derivative action.

In practical regulators the algorithm (2.1) is often modified.

Proportional Action

It is advantageous to modify the proportional term to
P =k(br —y) (2.2)

where b is a constant. This modification can be used to reduce the overshoot
to step changes in the command signal.

Derivative Action

The derivative action is often modified to

Ty

= -k — 2.3
1+ pTyN Y (2:3)

where p = d/dt is the differential operator. This means that the derivation
action operates on the output y and not on the command signal. The other
modification is that the derivative action only operates on low frequency com-
ponents. At high frequencies the derivative gain is limited to k.

Series Form

The algorithm (2.1) is called the parallel form because it can be viewed as a
parallel connection of proportional, integral and derivative action. An alter-
native form is

G(s) = k(1 + 31?)(1 +TY) (2.4)

This is called the series form because it can be interpreted as a series connec-
tion of a PD part with a PI part. The regulator (2.4) can always be represented
in the form (2.1) with the coefficients

T + 13
Q"I_!
Ti=T{+T; (2.5)

_ _TTy
=TT

k=K

A - u

Figure 2.1 Block dia:éram of a PID regulator on series form.

The parallel form (2.1) can be transformed to the series form only if
T: > 4Ty

The parameters are then given by

(D
(1 /i “T—d) (26)

Ty)

The parallel form is thus more general than the series form. There is, however,
a very simple implementation of the series form which is used in many systems.
This implementation is shown in Figure 2.1. The advantages are that it is easy
to avoid windup and bumps at mode changes.

- Eo
|

&3 5|
Il |
ST o BT e B

TS
|
— —
I

5 for | I

Discretization

To implement a continuous time control law like a PID regulator on a digital
computer it is necessary to approximate the derivative and the integral which
appear in the control law. A few different ways to do this will now be discussed.

Proportional Action

The proportional term is
P = k(br - y)

This term is implemented simply by replacing the continuous variables by their
sampled versions. Hence

P(tx) = k(te) (0r(te) — y(tk)) (2.7)

where {t;} denote the sampling instants, i.e. the times when the computer
reads the analog input.

Integral Action

The integral term is given by

I(t) = %/ e(s)ds

It thus follows that
dl &k

@& T
Approximating the derivative by a difference we get
I(t — I(t k
(k+1)h (L) = 'I_fe(tk)

where the sampling period h = t441 — #) is assumed constant. This leads to
the following recursive equation for the integral term

Htiwn) = I(t) + 5 e(t) (28)

For the implementation it is crucial that the wordlength used is sufficiently
large so that the term khe(ty)/T; is not rounded off when added to I(%;). This
condition is most critical when h is small and T; is large.

Derivative Action

The derivative term is given by (2.3) i.e.

Ty dD dy

There are several ways of approximating the derivative.
Forward Differences
Approximating the derivative by a forward difference gives the equation

Ty D(tx41) — D(1) Y(tkt1) — y(t)

N % + D(t;) = —kTy "
This can be rewritten as

hN
D(tg41) = |1~ T D(tx) = kN (y(te41) — y(tx)) (2.10)

The approximation is stable only if Ty > 2NhA.

Backward Differences

If the derivatives in (2.9) are approximated by backward differences we get

Ty D(tx) — D(tx—1) + D(t) = —kT} y(tk) — y(tk-1)

N h h
This can be rewritten as
T, LT(;
3 1 i
D(t) = T T VR = D(tk-1) - T L Nk (y(tk) — y(tk-1)) (2.11)

The approximation is stable for all positive T}.

T;
y 1
——>{ k(1+sTy) s = —

Figure 2.2 Block diagram of an incremental PID algorithm.

Tustin’s Approximation

There is yet another approximation proposed by Tustin which is commonly
used. This approximation is

9Ty~ hN UNT,
D(tx) = mD(tk—l) - m(y(tk) - yY(tk-1)) (2.12)

Notice that all approximations have the same form i.e.

D(tk) = aiD(tk-1) = b: (y(te) — y(ts-1)) (2.13)

but with different values of the parameters a; and ;. The approximation
(2.12) is stable if Ty > 0. The value of a; is, however, negative if T; < Nh/2.
This is undesirable because the approximation will then exhibit ringing. This
effect can be very significant if Ty < Nh. Hence only the approximation (2.11)
gives good results for all values of 7T}.

Incremental Form

The algorithms described so far are called positional algorithms because they
give the output of the regulator directly. In digital implementations an incre-
mental form of the algorithms is also used. This form is obtained by computing
the time differences of the regulator output and adding the increments. In a
continuous time version the time derivative of the output is computed and the
derivative is then integrated. A block diagram of an incremental algorithm is
shown in Figure 2.2. This form is particularly useful when the actuator is a
stepping motor because the motor can then be used as the summing device.
One advantage with the incremental algorithm is that most of the com-
putations are done using increments only. Short wordlength calculations can
often be used. It is only in the final stage where the increments are added
that precision is needed. Another advantage with the incremental algorithm
is that the regulator output is driven directly from an integrator. This makes
it very easy to deal with windup and manual control. A problem with the
incremental algorithm is that it can not be used directly for regulators with P
or PD action only. Such a regulator cannot keep a proper stcuady state because
the output of the regulator depends on the initial state of the regulator. See

5

Figure 2.3 An incremental form for a proportional regulator which does not
work.

Figure 2.4 An incremental form of a proportional regulator which works.

>

B

1

a

G-

Figure 2.5 Block diagram of a PID regulator on incremental form. The switch
B is open and switch A is closed when there is integral action. The switch A is
open and B is closed when there is no integral action.

Figure 2.3. The problem can be avoided with the regulator shown in Figure
2.4 which contains a feedback that resets the integrator to a proper value. A
PID regulator on incremental form can be obtained by combining the systems
in Figure 2.2 and 2.4 as shown in Figure 2.5.

3. Windup

Although many aspects of a control system can be understood based on linear
theory there are some nonlinear effects that must be accounted for. All actua-
tors have limitations, a motor has limited speed, a valve cannot be more than
fully open or fully closed etc. When a control system operates over a wide
range of operating conditions it may happen that the control variable reaches
the actuator limits. When this happens the feedback loop is effectively bro-
ken because the actuator may remain at its limit independently of the process
output. If a regulator with integrating action is used, the error may continue
to be integrated. This means that the integral term may become very large or
colloquially that it ”winds up”. The consequence is that any regulator with
integral action may give large transients when the actuator saturates.

An Example

The windup phenomena is illustrated in Figure 3.1 which shows control of a
process with a PI regulator. The initial set-point change is so large that the
actuator saturates at the high limit. The integrator increases initially because
the error is positive and it reaches its largest value at time ¢ = 10 when the
error goes through zero. The output remains saturated at this point because
of the large value of the integral. It does not leave the saturation limit until
the error has been negative for sufficiently long time to let the integral part
come down to a small level. The net effect is a large overshoot which is clearly
noticeable in the figure.

1 22T
e
)
1 T] 1
0 10 20 30 40
0.1
0
-0.1 .
T T 1
0 10 20 30 40
1.
0.5
~
ol
: Pl , —
0 10 20 30 40

Figure 3.1 Illustration of integral windup.

Y ——
y des
Actuator
= k >} .
X |1 |
T; s
S
T'.I'

-y = kT s

Actuator model Actuator

e k Z"_/_“ Ti—
K 1 _;®.L
i s

[+]
s

Y
-3
|

Figure 3.2 Regulator with anti-windup. A system where the actuator output
is measured is shown in A and a system where the actuator output is estimated
from a mathematical model is shown in B.

How to Avoid it

There are several ways to avoid integral windup. A convenient way is shown in
Figure 3.2. An extra feedback path is provided in the regulator by measuring
the actual actuator output and forming an error signal e, as the difference
between the output of the regulator v and the actuator output . The signal
es is fed to the input of the integrator through a gain 1/7,. The signal e, is
zero when there is no saturation. It will thus not have any effect on the normal
operation when the actuator does not saturate. When the actuator saturates
the feedback signal will, however, drive the error e, to zero. This means that
it drives the integrator to a value such that the regulator output is exactly at
the saturation limit. This will clearly prevent the integrator from winding up.
The rate at which the regulator output is reset is governed by the feedback
gain 1/T,, where T, can be interpreted as the time constant which determines
how quickly the integral is reset.

It frequently happens that the actuator output cannot be measured. The
anti-windup scheme just described can be applied by incorporating a mathe-
matical model of the saturating actuator as is illustrated in Figure 3.2.

Figure 3.3 shows what happens when a regulator with anti-windup is
applied to the system simulated in Figure 3.1. Notice that the output of the
integrator is quickly reset to a value such that the regulator output is at the
saturation limit and that the integral has a negative value during the initial
phase when the actuator is saturated. This behavior is drastically different
from that in Figure 3.1 where the integral has a positive value during the initial

8

0 10 20 30 40
A

0 10 20 30 40

-0.

-0.8
¥ T T T 1

0 10 20 30 40/

Figure 3.3 Regulator with anti-windup applied to the system in Figure 3.1.

1 AN
0.5
0 T T T 1
0 10 20 30 40
0.1
0]
3.1
T T i 1
10 20 30 40 7

Figure 3.4 The step response of the system in Figure 3.3 for different values of
the reset time constant 7.

transient. Also notice the drastic improvement in performance compared to
the ordinary PI regulator used in Figure 3.1.

The effect of different values of the time constant 7} is illustrated in Figure
3.4. It may thus seem advantageous to always choose a very small value of
the time constant T because the integrator is then reset quickly. Some care
must, however, be exercised when introducing anti-windup in systems with
derivative action. If the time constant 7, is chosen too small it may happen
that spurious errors cause saturation of the output due to a large derivative
term, and this may accidentally reset the integrators to a strange value. A
practical rule is to make 7} proportional to the integration time T.

1 +5sT;

I Fa g

Actuator or actuator modcl

Figure 3.5 How to provide anti-windup in a regulator where integral action is
generated as automatic reset.

= b k E
y] ksTy D

I+s‘!‘le
r—sf sp
1
oo = L — y—{Mv em v
w—-> TR

%

Figure 3.6 Block diagram and simplified representation of PID regulator with
tracking signal.

Series Implementation

A similar device for avoiding windup can be applied to the regulator in Figure
2.1 by incorporating a model of the saturation as is shown in Figure 3.5.
Notice that in this implementation the reset time constant 7} is the same as
the integration time Tj.

A Regulator Module

The systems shown in Figure 3.2 can be conveniently represented if we intro-
duce the module shown in Figure 3.6. The module has three inputs, the set
point, the measured output and a tracking signal. The new input TR is called
a tracking signal because it follows from Figure 3.6 that the regulator output
v tries to track this signal. Using such a model the systems shown in Figure
3.2 can be presented as shown in Figure 3.7. The parameters are the PID
parameter (k,T;,Tq,b and N) and the reset time constant 7.

Systems with Selectors

A selector is a device with several inputs and one output. The output is at
each time the smallest of the inputs for a minimum selector or the largest input
for a maximum selector. Selectors are used to make sure that constraints are
satisfied.

When selectors are used to choose among the outputs of several regulators
with integral action it is crucial that anti-windup is considered. This is easily

10

—> SP
—» MV PID Actuator
TR
Actuator Model
=== SP v u
—s MV PID _/— Actuator
TR

Figure 3.7 Representation of the regulators with anti-windup in Figure 3.2 using
the basic control module with tracking shown in Figure 2.6.

—» SP
— MV Rl

TR M

A
—> MV R2 >

TR

Figure 3.8 How to avoid windup in circuits with selectors.

handled using the regulator module with a tracking input. Figure 3.8 shows
how the regulators can be connected. When v; < v, the output is v = 1.
The output u is thus controlled by regulator R;. The regulator R, will track
u since vy # u. A simulation of such a scheme is shown in Figure 3.9.

Cascade Control

Avoiding windup in cascade control poses special problems. Windup for the
secondary regulator can be handled in the usual manner. To avoid windup
in the primary regulator it is, however, necessary to know that tlic secondary
regulator saturates. One strategy is to put the primary regulator into manual
control when the secondary regulator saturates.

11

Figure 3.9 Simulation of a system with selectors.

12

»

4. Manual Control

Most control systems need a facility to be run under manual control. To
achieve this it is necessary to have a convenient way to switch off the automatic
control action and to change the control variable of the process directly. The
manual control is often done using two buttons. The control variable increases
when pushing one, it decreases when the other one is pushed. The control
variable remains constant if neither button is pushed. A facility of this type
is provided even in the most simple regulators. There is typically a mode
switch for manual and automatic and increase/decrease buttons. It is of course
also necessary to have a smooth transfer between the manual mode and the
automatic mode. Since the command buttons only give the changes in the
control variables it is necessary to have an internal state which represents
the sum of the changes. To ensure a smooth transfer between the manual
and automatic modes it is necessary to ensure that the state associated with
manual control is updated properly when the regulator is in automatic mode
and vice versa.

Incremental Algorithms

A bumpless switch between automatic and manual is particularly easy to do in
incremental algorithms when the control variable is driven directly by an inte-
grator. The integrator is provided with a switch so that either the increments
from the manual control input or the increments from the PID algorithms are
sent to the integrator. See Figure 4.1.

Absolute Algorithm with Series Implementation

A similar mechanism can be used in the series implementation of a PID con-
troller shown in Figure 2.1. See Figure 4.2. In this case there will be a
switching transient if the output of the PD part is not zero at the switching
instant. Notice that it is necessary to have two switches.

Parallel Implementation

For regulators with parallel implementation the integrator of the PID regulator
can be used to add up the changes in manual mode. The regulator shown in
Figure 4.3 is such a system. This system gives a smooth transition between
manual and automatic mode provided that the switch is made when output of
the PD block is zero. If this is not the case there will be a switching transient.

m
l M
[—p
SPID 0<—o

y —» A)

Figure 4.1 How to introduce manual control in a regulator with incremental
output.

13

M
o
———-!Pl)‘o—bo—@
A

Figure 4.2 How to introduce manual control in a PID regulator with a special
series implementation.

PD
A
[o]
M
A
C u
i D+
/’ 5
m—-<C
M
3 -

Figure 4.3 A PID regulator where one integrator is used both to obtain integral
action in automatic mode and to sum the incremental commands in manual mode.

This will almost always be the case when the PD action is given by

P+D=k(br—y-Tdd—y)
dt
with b # 1.

It is also possible to use a separate integrator to add the incremental
changes from the manual control device. To avoid switching transients in
such a system it is necessary to make sure that the integrator in the PID
regulator is reset to a proper value when the regulator is in manual mode.
Similarly the integrator associated with manual control must be reset to a
proper value when the regulator is in automatic mode. This can be realized
with the circuit shown in Figure 4.4. With this system the switch between
manual and automatic is smooth even if the control error or its derivative is
different from zero at the switching instant. When the regulator operates in
manual mode as is shown in Figure 4.4 the feedback from the output v of the
PID regulator tracks the output w. With efficient tracking the signal v will
thus be close to u at all times. There is a similar tracking mechanism which
ensures that the integrator in the manual control circuit tracks the regulator
output in manual mode.

To build large automation systems it is useful to have suitable modules.
Figure 4.5 shows the block diagram for the manual control module. It has two
inputs, a tracking input and an input for the manual control commands. The

14

1
.-r_r i @—:
- & 4
r 1 1
— -;r—' ———
il S
¥
—
r D
—
M
3 1 1 _/_
— T —— .__Q._I._
; s
1 A
- +
LI
T,

Figure 4.4 PID regulator with parallel implementation which switches smoothly

between manual and automatic control.

As components

A

1
Track | '
. +(x) :
‘ \lj :
] L]
i i
i 1]
H i H .
: T ; TR
F '
; : —n M
: i
Manual ! 1 ‘
—_— = |— e
1‘m 3 '
'

Figure 4.5 Manual control module.

system has two parameters, the time constant T,,, for the manual control input
and the reset time constant 7,. In digital implementations it is convenient to
add a feature so that the command signal accelerates as long as one of the

buttons increase-decrease buttons are pushed.

Using the module for PID control, introduced in Figure 3.6, and the man-
ual control module in Figure 4.5 it is straightforward to construct a complete
regulator. Figure 4.6 shows a PID regulator with internal or external setpoints
via increase/decrease buttons and manual automatic mode. Notice that the

system only has two switches.

15

=

M
Manual Input o——{(M
L TR
) M
Manual sct point 0———-— M
sExtemnal set point © 0 © SP Mo
Measured value © MV PID ©

-

>0

/

Figure 4.6 A reasonably complete PID regulator with anti-windup, automatic-

manual mode, and manual and external setpoint.

16

5. Some Additional Modules

We have thus arrived at two modules which are useful for building control
systems, a manual control module and a PID module. Both modules have
internal states and a tracking input. To design complete systems it is also
useful to add modules for selection of maximum and minimum. To model
actuators we also need a module for saturating a signal. It is sometimes
needed to make sure that command signals do not change too rapidly. This
can be ensured by using a jump- and rate module. See Figure 5.1. The module
has one input and one output and four parameters.

The properties of the jump and rate circuit are illustrated in Figure 5.2.
Summarizing we have the following modules.

o{ /-
= |)
e :

Figure 5.1 Block diagram of a jump- and rate circuit.

0) T T —
0 5 10 15 20

Figure 5.2 Input and outputs for the jump and rate.

17

PID

Manual
Saturation
Min selector
Max selector
Jump and rate

A detailed specification of these modules is given in Appendix A which
also contains Simnon programs. Using these modules we can now construct
large automation systems.

18

6. Digital Implementation

The diagrams shown so far are analog realizations where all operations are
executed in parallel. When the control algorithms are implemented on a digital
computer the parallel operations have to be realized sequentially. To do this
there are especially two problems that must be taken into account, namely
simultaneity and time delays.

Generic Control Law

To discuss the issues a generic form of the control law is first given. A general
linear control law can be written as follows

u(k) = Cz(k) + Dy(k) + D r(k)
z(k+ 1) = Fz(k) + Gy(k) + G.r(k)

where r is the command signal, y the measured signal and u the control
variable.

Computational Delay

The control program can then be written as
1 AMdinyr
2 u:=Ckx+D*y+Dckr
3 x:=F*x+Gxy+Gekr
4 Daout u
Listing 6.1 Improved regulator code.

It is desirable to make the computational delay as small as possible. Notice
that the DA conversion can be made after the second statement since the
control signal u is then available. Also notice that the product C * z can be
precomputed. The code then becomes

1 Adin y r

2 u:=ul+D*y+Dc*r

3 ShapeOutput

4 Daout u

5 x:=Fxx+G*y+Gekr

6 ul:=Cxx

Listing 6.2 Improved regulator code.

Notice that an extra state variable u, has been introduced to save com-
puting C'*z in the first statement. Also notice that a procedure ShapeOutput
which saturates the output, make a min selector etc. is added.

The code shown above can be generalized as follows

i1 AMdinyr

2 Computelutput

3 ShapeOutput

4 Daout

5 UpdateState

Listing 6.3 Generalized regulator code.

19

It would be appealing to make a procedure for each one of the boxes PID,
Manual etc. in the Figures 3.7, 3.8, 4.5 and 4.6. This cannot be done because
of the sequential character of the calculations.

In the analog implementation the signals v and u will change simulta-
neously. This is essential for the antiwindup signal to function properly. In
a digital implementation there will always be a delay between u and v. If
the PID regulator and the actuator are implemented as separate blocks there
is no way to avoid this delay. The tracking signal v will then differ from v
and the antiwindup coupling will give an undesired contribution. Although
this contribution will be small if the delay is small it is always present. This
undesirable effect can be avoided if the code is restructured.

There is also another problem if the blocks in Figure 3.7 are represented
as separate subroutines. If the antiwindup scheme should work properly it is
essential that simultaneous values of the tracking signal ¢, and the regulator
output v are used. This will not be the case if the regulator code is executed
first and the actuator model afterwords.

It is thus essential that the computational scheme shown in Listing 6.3
is used in digital implementations. To obtain the appropriate structure the
algorithms for the discrete time PID regulator will be rewritten appropriately.

The regulator output is given by

w(tr) = P(tx) + I(tk) + D(tx) (6.1)

where P, T and D are given by the equations (2.7), (2.8) and (2.9) respectively.
It follows from (2.7) that the proportional part cannot be precomputed. Equa-
tion (2.8) shows that the integral term can be precomputed. For this purpose
we introduce I as a state variable. It follows from equation (2.13) that part
of the derivative term can be precomputed. A state variable z is introduced
to account for those terms. This state variable is defined as

(1) = a;iD(tk—1) — b;y(tk—1) (6.2)
The derivative term then becomes
D(tk) = a:(tk) — b;y(tk) (6.3)

It follows from (6.2) and (6.3) that the state variable z is updated as follows
o(tet1) = ai[w(t) — biy(te)] — biy(t)

= aia(te) ~ bi(1 + au(t) 0
Equation (6.1) can now be written as
u(ty) = bkr(te) = [k + bl y(te) + I(te) + =(tk) (6.5)

= fo’r'(tk) - Zy(tk) + ul(tk)
and the equations for updating the states becomes
kh
I(teg) = I(t) + - [() — (%))
(trs1) = aie(te) — bi(1+ ai)y(tx) (6.6)

u1(tet1) = L(tke1) + 2(et1)

The procedure ComputeOutput in Listing 6.3 is then an implementation of
(6.4) and the procedure UpdateState is a procedure which performs the cal-
culations given by (6.6).

20

Appendix A

Simnon Programs for the Figures

MACRO fig31
"Simulation of integrator windup
SYST int pid conn

PAR N:0

PAR Ti:1

PAR b:1

PAR ulow:-1

PAR uhigh:1

AXES h 0 40 v 0 1.5

PLOT y[proc] r

STORE y[proc] ulproc]l r i up
SIMU 0 40

SPLIT 3 1

ASHOW y T

AXES V -0.11 0.11

SHOW up

ASHOW i

END

CONTINUOUS SYSTEM proc
"Integrator with saturation
"File called int

INPUT u
OUTPUT y
STATE x
DER dx

=X

up=if u<ul then ul else if u<uh then u else uh

dx=up

ul:-0.1
uh:0.1

END

21

CONTINUQUS SYSTEM reg

"PID regulator module. File called pid

INPUT r y v
OUTPUT u
STATEi «x
DER di dx
"Dutput
u=P+I+D

"Proportional action
P=k* (b*r-y)

"Derivative action

dx=(y-x)*N/Td

di=k*N*(x-y)

D=if di<dlow then dlow else if di<dhigh then di else dhigh

"Integral action
dI=k/Ti*(r-y)+(v-u)/Tt

"Parameters
k:1

N:10

Ti: 4
Tt:0.05
Td:1

b:0
dlow:-1e3
dhigh:1e3

END

CONNECTING SYSTEM conn

TIME t

rlregl=1

ylregl=y[proc]

v[regl=ul

ui=if u[regl<ulow then ulow else if u[regl<uhigh then ulreg] else uhigh
u[proc]=ui

ulow:1

uvhigh:1

END

22

MACRO fig33
"Simulation of the same system as in Fig31
"with regulator with anti-windup scheme

SYST int pid conn
PAR N:O

PAR Ti:1

PAR b:1

PAR ulow:-0.1

PAR uhigh:0.1

SPLIT 1 1

AXES h 0 40 v 0 1.5
PLOT y[proc]l r
STORE y[proc] ulproc] r i
PAR Tt:0.02

SIMU 0 40

SPLIT 3 1

AXES V 0 1.3

SHOW y r

AXES V -0.11 0.11
SHOW u

ASHOW i

END

MACRO fig34
"Simulation of system in Fig33 with different
"values of the reset time constant Tt

SYST int pid conn
PAR N:0

PAR b:1

PAR Ti:1

PAR ulow:-0.1

PAR uhigh:0.1

AXES h 0 40 v 0 1.5
PLOT y[proc]l r
STORE y[proc] ulproc] r
SIMU 0 40/c5

PAR Tt:1

SIMU/c4

PAR Tt:2

SIMU/c3

PAR Tt:3

SIMU/c2

PAR Tt:4

SIMU/c1

SPLIT 2 1

23

ASHOW y r/cil
SHOW y/c2
SHOW y/c3
SHOW y/c4
SHOW y/c5
AXES V -0.11 0.11
SHOW u/ci
SHOW u/c2
SHOW u/c3
SHOW u/c4
SHOW u/c5

END

MACRO fig52
"Simulation of jump and rate circuit

SYST jar conjar
AXES HO 20V 05
PLOT ul[jar] y[jar]
PAR jlow:-0.5

PAR rlow:-0.5
STORE y[jar] u[jar]
SIMU 0 20

END

CONTINUQUS SYSTEM jar
"Jump and rate circuit

INPUT u
OUTPUT y
STATE x
DER dx

e=u-x
yi=if e<jlow then jlow else if e<jhigh then e else jhigh
y2=if e<rlow then rlow else if e<rhigh then e else rhigh
dx=y2

y=yl+x

jlow:-1
jhigh:1
rlow:-1
rhigh:1

END

24

CONNECTING SYSTEM conjar

TIME t

u[jar]=if t<t1 then ul else if t<t2 then u2 else if t<t3 then u3 else ué
t1:7

ul:4

t2:15

u2:1

t3:18

u3:3

u4:2

END

MACRO fig39

SYST select

STORE x1 x2 u vl v2
SPLIT 1 1

AXES h 0 40 v -0.5 1.5
PLOT x1 x2 u

SIMU O 40

SPLIT 2 1

ASHOW x1 x2

ASHOW u v1 v2

END

CONTINUQUS SYSTEM select
“"Simulation of system with selector

TIME t
STATE x1 x2 i1 i2
DER dx1 dx2 dil di2

el=r-xi

vi=kix(bl*r-x1)+il

e2=x2max-x2

v2=k2*e2+i2

v=min(vi,v2)

u=if v<ulow then ulow else if v<uhigh then v else uhigh
d=if t<t10 then 0 else d0

dii=ki%el/Ti1+(u-v1)/Tt1
di2=k2%e2/Ti2+(u-v2)/Tt2
dx1=x2+d
dx2=u-x2

ki:1
b1:0.5
Ti1:2.5

25

Tt1=Ti1/5
k2:9
Ti2=9/25
Tt2=Ti2/5
x2max:0.2
ulow:-0.4
uhigh:0.4
r:1
d0:-0.15
£10:25

END

26

