LUND UNIVERSITY

Documentation of MacEQ2\TeX, DVILW, and Hcopy2PS

Martensson, Bengt

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Martensson, B. (1987). Documentation of MacEQ2\TeX, DVILW, and Hcopy2PS. (Technical Reports TFRT-
7352). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/139e9a0d-7dda-4908-90ae-37698db7b085

CODEN: LUTFD2/(TFRT-7352)/1-050/(1987)

Documentation of

MacEQ2TEX, DVILW, and Hcopy2PS

Bengt Martensson

Department of Automatic Control
Lund Institute of Technology
March 1987

Document name

Department of Automatic Control Report
Lund Institute of Technology Date of issue
P.O. Box 118 March 23, 1987
5-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT—7352)/1—050/(1987)
Author(s) Supervisor

Bengt Martensson (appendix by Trevor Darell)

Sponsoring organisation

Title and subtitle
Documentation of MacEQ2TEX, DVILW, and Heopy2P$S

Abstract

This report documents the programs MacEQ2TEX, DVILW, and Hcopy2PS. The report consists of five dif-
ferent parts:

1. MacEQ2TEX. This is a program that translates a Macsyma, log file containing typesetting code for the
Unix typesetting program Troff/ EQN into TEX-code.

2. DVILW. This program translates a TEX DVI-file into PostScript, for printing e.g. on an Apple Laser Writer.
This paper is a general users guide.

3. DVILW—Wizards guide. More specialized information on DVILW is collected here.

4. Hcopy2PS. This program translates Hcopy-meta hardcopies, generated e.g. from Simnon, into PostScript,
that can be printed on e.g. an Apple LaserWriter, or included in TEX-documents processed by DVILW.

5. “Incorporating PostScript and Macintosh figures in TEX”. This paper, written by Trevor Darell, is
included as an appendix. It documents the macro package psfig/ TgX, which facilitates inclusion of PostScript
figures in TRX. This macro package has been adapted to DVILW.

This report supercedes and replaces the reports TFRT-7334 (first half), and TFRT-7335.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 50

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

MacEQ2TEX

Macsyma log file to TEX filter

Bengt Martensson, October 15, 1986
Last Revised March 1, 1987

This paper documents the program MacEQ2TEX that translates a Macsyma log file,
containing typeset commands for the Unix typesetting program Troff/EQN, into TEX
code.

1. Introduction

Macsyma can generate typesetting code for the Unix typesetting program Troff/EQN
by setting the global variable typeset to true. In this case, the d-lines will be output to
the screen and to the log file as EQN-code. MacEQ2TEX is a program for translating
a Macsyma log file, containing these typesetting commands, into TpXcode. It will
turn alpha into @, alfa into alfa™, do correct square roots, fractions, and matrices,
and recognize function such as “sin” to be typeset in roman. An example is given in
Section 4. For the format chosen by the present macros, the reader is referred to this
example.

It is believed that the program should be possible to use without any knowledge of TgX,
except for how to call the program and print out the DVI-file. However, the reader is
assumed to have an elementary knowledge of Macsyma and TEX.

Both the Troff/EQN code and the generated TEX code are to be considered as “dumb”,
i.e. might contain not to smart line-breaks, layout etc, etc. Therefore, there are two in
principle completely different ways of using this program: It can be used to make your
log file more beautiful and easy to read; and secondly, it can be used as a decent first
iteration for high-quality typesetting. The second iteration you do yourself with your
favorite text editor and TEX. To automatically generate “smart” type-setting code for
mathematical formulas I consider a task for a smaller expert system. The purpose with
this program is to generate “dumb” code (the /index and /subscript qualifiers are an
exception from this principle, though). Therefore requests to incorporate new features
will most likely be treated cold-hearted. Furthermore, “smartification” is probably
better done in using super-editor, such as GNU Emacs.

This paper is compatible with the version of MacEQ2TEX that is dated March 1, 1987.
The program consists of approximately 1000 lines of Pascal, and runs under VAX/VMS
version 4.X.

By default, MacEQ2TEX generates Plain TEX code. If the /regler qualifier is selected,
MacEQ2TEX generates TEX-code according to the standard used at the Department

* Note that this is text italics, not math italics.

il

of Automatic Control, namely where the escape-character of TEX is replaced by the
exclamation point “!”. Furthermore, begin-group and end-group (“{” and “}” in Plain
TEX) are replaced by “<” and “>”.

2. Function

Basic Operation

The program is run by the command maceq2tex[/{options)] file_name where file_name
is the name of the Macsyma log file. Default file-type is log. The file name can
also be omitted, in which case the default file name is macsyma.log. By default,
MacEQ2TEX creates a TgXfile with the name file_name.tex. If the tex-option is
selected, the command “tex file_name” is given after completion.

If the macrofile or tex qualifier is given, MacEQ2TEX will insert a macro definition file,
by default tex$inputs:macsymac.tex in the output file. It contains macro definitions
necessary for TEX to understand the commands generated by MacEQ2TgX.

Qualifiers
Next the different qualifiers will be described. They can be abbreviated as long as the
abbreviations are unique.

/plain (Default) /regler

These qualifier determine if PlainTpX-code will be generated, or if the escape character
and the begin- and endgroup symbols will be replaced according to the convention
above.

/include (Default) /noinclude /tex

The include qualifier will include the macro file tex$inputs:macsymac.tex into the
TrXfile as described above. Also the TEX command “\bye” will we written at the
end of the file. The /noinclude qualifier will inhibit this, which is more suitable for
generating files for inclusion in documents. The tex qualifier will send the generated
TEX-file to TEX after completion. The /tex qualifier will imply the /include qualifier.

/macrofile=file_name
This makes MacEQ2TEX insert another macro file than the default.

/index

This qualifier will convert al0 to ajo etc. The precise rule is as follows: If a variable
consists of letters, followed by a digit and possibly some extra characters, the conversion
will take place. Also parameters with names such as “%r1” will be converted.

/subscript
This qualifier will convert ki to k; etc. If a variable consists of exactly two letters, the
conversion will take place. This might be desirable in some situations.

/outfile=file_name
This directs the output to the file file_name, instead of the default file, described above.
The default file type is tex.

Conflicting options are allowed, in which case the rightmost of the conflicting qualifier
takes effect. E.g. /noinclude/include is equivalent to /include. This makes it possi-
ble for you to change defaults by defining e.g. mactex == "’’maceq2tex/noinclude’".

Qualifiers Not to be Used by Normal Users
There are also some qualifiers that are not to be used by the normal user. They exist
for debugging purposes or historical reasons, and might disappear in coming versions.

/debug

The debug qualifiers will open a log file with the name debug.log and will write in
it, first the complete conversion list it knows of, then the outcome of every call to
ReadToken and TransformToken. (This behavior might change in the future.)

3. Hints, Discussion, Bugs, Problems, and Possible Improvements

As described in the introduction, there are in principle two different uses of this pro-
gram. Essentially only the latter one, namely to produce high-quality type-set formulas
will be discussed here.

The EQN code looks faily weird on the screen when you are running Macsyma. inter-
actively. Therefore, it might be a good idea to first run Macsyma the usual way, then
to open the log file, turn on the typesetting and then “playback”.

The general idea is to in the generated TgX-file write some general macro call, which
the user can (re-) define according to his or her needs or tastes. “Standard” macros are
given in Section 5, which will serve as a guide for writing new.

Fairly often, Macsyma’s EQN-code generation fails to break an expression (see the
example in the next section), and asks you to try to break it yourself with a text
editor. Most often, this is simpler to do before MacEQ2TgX, in the EQN-code, than in
the TEX-code. The reason for this is that MacEQ2TEX will balance occurrences of all
left- and right parentheses, braces etc. by inserting the corresponding “\left.” and
“Nright.”. To introduce a breakpoint, simply write

.EN

.EQ

on two separate lines of the log file at the place of the desired break.

A particularly “dumb” feature of the generated code is that it uses “$$” between all
displayed lines in the d-lines. This will make them to widely spaced apart if there is
more than on line of display in a d-line. High-quality type-setting code should instead
use the TgX-command \displaylines (or equivalent).

MacEQ2TEX typesets names longer than one letter in italics, not math italics. This
is done with the TEX macro call \name, which is included in the macro file. It also
puts a thinspace on both sides of the name. This macro can be redefined according to
personal taste.

4. An Example

The following example was run with the /index and /subscript qualifiers. Note in
particular the failure of breaking the long list on line (d7), the overfull hbox’es, and the

3

awfully bad breaks in line (d9). Cf. the comments made above.

(c3) ataataaa;

(d3) aaa + a, + a

(c4) x"2+al*x+a?2;

(d4) z? + a1 + as
(c5) solve(%,x);

(d5) _ V(af —4az)+ay V(@ = 4az) — ay

r = —)‘7"_ 2

2

(cB) x"3+a*x"2+b*x+c;

(d6) z® +az® 4+ bz + ¢

(c7) solve(%,x);
Breakup of expression failed.
You may try to break it yourself

(a7)

1

.o (ﬁu l) (\/(27cz+(4a3 — 18ab) ¢ + 4b* — a?b?) 270—-9ab+2(53>§+
(

2 2 6v3 54 Ners

(c8) part(1,%);
(c9) part(d7,1);

3k 1 V/(27c? + (4a® — 18ab) ¢ + 40° — a21?)
d9 =

27¢ — 9ab + 2a®
54 ’

4

(c10)

(d10)

(c11)

(d11)

(c12)

(d12)

(c13)

(d13)

(F-1) @ -)

g [V@TET(a-18ab)ct 8°=a®P)) _ 97c-9abi2a 3
6v3 54

|

a

3

a:matrix([cos(phi),-sin(phi),0], [sin(phi),cos(phi),0],[0,0,1]1);

sin(p) cos(p) O

licos(tp) —sin(yp) ‘0:|
0 0 1

c:subst(psi,phi,%);

sin(¢p) cos(y) O
0

|:cos (¢) —sin(yp) 0
0 1

b:matrix([1,0,0],[0,cos(theta),-sin(theta)], [0,sin(theta),cos(theta)]) H |

1 0 0
I:O cos(d) —sin(0)]
0 sin(f) cos(6)

cos () cos (¥) —sin(p) sin () cos (§) —sin(p)cos (1)) cos (6) — cos () sin(y) sin(p)sin (6)
cos () sin () cos (8) + sin (p) cos () cos(¢) cos () cos () — sin(p)sin () — cos (¢)sin (¢

sin (1) sin (0) cos (¢) sin (6) cos (6)

5. MACSYMAC.TEX

This is the file macsymac.tex:

% MACSYMAC --- macros for MacEq2TeX
% Bengt Martensson 86-10-06
% LastEditDate: "Sun Mar 1 12:11:39 1987"
{\obeyspaces\gdef {\ }}
\def\beginMACSYMAlog
{\begingroup
hhh \def\\{{\char"21\relax}}
\def\"{{\char"5E\relax}}
\def\"{{\char"7E\relax}}
\def\abs{\mathop{\rm abs}\nolimits}
\let\epsilon=\varepsilon
\let\rho=\varrho
\let\phi=\varphi
\def\csc{\mathop{\rm csc}\nolimits}
\def\laplace{{\cal L}}
\def\bold ##1 {\hbox{ {\bf ##1} }}
\let\oldsqrt=\sqrt
\def\sqrt ##1 {\oldsqrt{##1}}
\def\sup ##1 {~{##1}}
\def\sub ##1 {_{##1}}
\def\name ##1{\,\hbox{{\it ##1}}\,}
\begingroup
\parskip=0Opt\parindent=0pt
\obeylines\obeyspaces}
\tt}
\def\endMACSYMAlog {\endgroup\endgroup}
\def\beginMacsymaEQ #1%
{\endgroup
\bgroup
\def\dotheequationnumber{\leqno{\rm #1}}
$$3
\def\endMacsymaEQ
{\dotheequationnumber
$$
\egroup
\begingroup
\parskip=0Opt\parindent=0pt
\obeylines\obeyspaces,
\tt}

6. Revision History

October 20, BM

Vocabulary increased by cdot and abs. Fixed bug occuring when a double quote (")
1s not preceded by a space.

November 6, BM

Fixed minor bugs. Increased maximum token length to 35. Increased vocabulary with
standard mathematical functions. Fixed bug when “}” is not preceded by a space.
Proper handling of bold. Changed the handling of names longer than one letter to be
typeset in italics, not math italics. Stops gracefully on defect MACSYMA files. \sqrt
changed.

December 10, BM

Increased vocabulary by ... (transformed to \cdots). Changed sup, sub, from, to.
Macsymac: Definition of \sup and \sub, \let\epsilon=\varepsilon etc. Breaks
non-typeset lines after position 70 and after spaces, tabs or commas. Handles spurious
eqn/troff commands without quitting.

February 18, 1987

Rewrote token handling. Introduced the qualifiers /plain, /leif (later renamed to
/regler), and /macrofile. Changed breaking of long, non-typeset lines from column
70 to column 90. Some minor errors corrected. Clean-up.

March 1, 1987
Changed “/1eif” to “/regler”. Converted this document to Plain TEX.

Acknowledgement

The command decoding is stolen from Leif Andersson. I am very thankful for being
able to use this.

DVILW

DVI to PostScript filter adapted to LaserWriter

Bengt Martensson, 860903
Last revised 870312 (BM)

This paper documents the program DVILW that translates a TEX DVI-file to the page-
description language PostScript, adapted to the Apple LaserWriter, and optionally
prints it. The handling of TEX’s \special-command is fully documented. This paper
is compatible with the version of DVILW which is dated March 12, 1987.

1. Introduction

DVILW is a program for translating TEX DVI-iles to the page description language
PostScript, adapted to the Apple LaserWriter, and optionally prints it. It is a fairly
powerful postprocesser. It allows full access to all fonts resident in the LaserWriter.
There are several options for altering the output. The implementation of the \special-
command in TEX allows full access to PostScript, as well as inclusion of illustrations
etc. DVILW asks the user interactively for replacements of missing fonts and \special
files in the same way as TEX does.

There is an accompanying document “DVILW—Wizard’s guide” not meant for ordinary
users. It describes installation, font handling, and a more technical description of the
PostScript code generated, in particular the \special-command.

The ancestor of DVILW was the program DVILGP. The development of DVILW from
DVILGP was done by Leif Andersson and Bengt Martensson. It is approximately 2000
lines of Pascal, and runs under VAX/VMS version 4.x.

2. Function

Basic Operation

The program is run by the command dvilw[/(options)] file_name where file_name is the
name of the DVI-file. Default file-type is dvi. By default, DVILW creates a PostScript
file with the name file_name.ps. If the print-option is selected (which is default), the
file is printed on the LaserWriter.

Qualifiers

Next the different qualifiers will be described. They can be abbreviated as long as
the abbreviations are unique. Conflicting options are allowed, in which case the right-
most of the conflicting qualifier takes effect. E.g. /noprint/print is equivalent to
/print. This makes it possible for you to change defaults by defining e.g. dvips ==
"2’dvilw’ /noprint".

/print (Default) /noprint
The /print option prints and deletes the PostScript file after completion.

1

/portrait (Default) /landscape
This selects portrait/landscape orientation of the page.

/inquire (Default) /noinquire /nospecial

These qualifiers govern the treatment of the \special-command. The /nospecial
qualifier makes DVILW ignore the \special-command. The /inquire qualifier makes
DVILW inquire for a new file name when a requested special file is not found. An
empty file name (i.e. just return) will make DVILW ignore the file. If the /noinquire
qualifier is given DVILW will ignore not found special-files. (E.g. for running DVILW
in batch mode.) The exact handling of the \special-command is documented in the
next section.

/bottomspecial (Default) /topspecial
Determines the alignment of inserts with \special. See the next section.

/manualfeed
This qualifier turns on the manual feeding on the LaserWriter. This can be used e.g
for feeding letter-head paper, cardboard, and transparancies.

/copies=number_of_copies

This makes every page be printed number_of_copies number of times. The job will come
out unordered, but this is much faster than sending multiple jobs. Requests to make
less than one copy are ignored.

/xoffset=z_offset /[yoffset=y_offset

These qualifiers allows the user to specify the z- and y-offset of the page. Unit is mm.
The offsets specified with this command are added to any \hoffset or \voffset values
that may have been given in TEX. If all these offsets equal 0, then the distances between
the upper left corner of the document and the edges of the paper are both 25 mm. The
qualifiers work in the same way both in portrait- and landscape mode. Needless to say,
physical limitations restrict the meaningful values.

/rmagnification=magnification /amagnification=magnification

These qualifiers modify the magnification of the document. /amagnification overrides
the magnification, while /rmagnification multiplies it. The parameter is divided by
1000, e.g. amagnification=1200 means a magnification by a factor 1.2. /amagni-
fication and /rmagnification are considered as conflicting in the sense described
above, i.e. the last specified overrides the previous one(s).

/psmagnification=magnification

These qualifiers modify the magnification of the document by specifying a different
scale in the Current Transformation Matrix (CTM) in PostScript. The parameter is
divided by 1000, e.g. /psmagnification=1200 means a magnification by a factor 1.2.
If the document contains pixel-fonts, this will most likely not give satisfactory results.

/terse (Default) /quiet /verbose

Determines how much is written on the screen. /terse writes a short message for each
page successfully processed, /quiet writes error messages only, and /verbose writes
page numbers and also the names of the referenced font files.

2

/outfile=file_name

This directs the output to the file file_name, instead of the default file, described
above. The default file type is ps. Note that the command dvilw/outfile=a some-
one_elses_dvifile will give a possibility for printing a DVI-file residing on a directory on
which you do not have write privileges.

/pages=page_range_specs

This option will produce only the pages in the page_range_specs. A page_range_specs
consists of one or several page-ranges, separated by commas. A page-range is either
a number or two numbers separated by colon (:). Examples are: a) 5 b) ~7:0 ¢)
-8:-5,1:5,15,-1:0. The page-numbers are the actual page numbers printed on the
pages by TEX, not the consecutive number in the file. These are not necessarily the
same. Note that negative page numbers are allowed. (These will be printed as lower
case roman numerals by the PlainTgX-command \folio.)

3. Handling of \special
The \special{file_name} command in TEX makes DVILW include the file file_name

in the output file. Several file names can be given, separated by commas, spaces, or
pluses. Default file type is pro. If file_name is not found, then ps$inputs: file_name is
sought for. (Note that ps$inputs can be a search list.) Also user-supplied file names
(by the /inquire qualifier) are sought for in this fashion.

Strings of PostScript code can be inserted by enclosing them in double quotes ("). Some
simple examples are given in the next subsection. Note that the argument of \special
is expanded. TEX recognizes the comment sign (%) in the argument, but not e.g. dollar
signs ($).

The options /bottomspecial and /topspecial determine the alignment. By default
(/bottomspecial) the lower left corner of the inserted page is placed where the dot
presently is located. /topspecial exists mainly for compatibility with older versions
of DVILW and it is recommended that it should not be used for new documents. The
alignment for /topspecial is done so that (roughly) the upper left corner of the inserted
“page” is placed where the dot presently is located.

More details are given in the accompanying document “DVILW—Wizard’s guide”.

psfig/TEX

There is a very nice public domain TEX macro package “psfig/ TEX” by Trevor Darell.
It facilitates the inclusion of arbitrary PostScript figures in TEX documents. Figures
are automatically scaled and positioned on the page, and the proper amount of space
reserved. For a full description, see [Darell]. It has been adapted to DVILW by this
author. Everything described in [Darell] has been successfully converted. There is no
need for “\psfiginit” described in [Darell]. More details are given in “DVILW——
Wizards guide”.

Translation, Scaling, and Rotation of PostScript Figures

The possibility to include PostScript code within the argument to the \special state-
ment allows access to all the powerful facilities of PostScript. Next some simple ex-
amples are given, intended to introduce the reader to simple translations, scalings and
rotations.

The line

\special{"0.5 0.5 scale",figure.ps}
P g P

will insert the PostScript illustration in the file figure.ps scaled by a factor of 0.5.
The line

\special{"0.5 1.5 scale",figure.ps}
P g p

will insert the PostScript illustration in the file figure.ps scaled by a factor of 0.5 in
the z-direction and 1.5 in the y-direction. The line

\special{"100 -20 translate",figure.ps}
p g p

command will insert the PostScript figure translated 100 units in the z-direction and
—20 units in the y-direction. The units are by default bigpoints. (It holds that 1 inch
= 25.4 mm = 72 bigpoints.) By the line

\special{"-90 rotate",figure.ps}

the figure will be inserted after rotating —90° (in the counter-clockwise direction)
around the current point. For the final, slightly more advanced example,

\special{"10 20 translate -1 2 scale 45 rotate",figl.ps,fig2.ps}
P gl.p g2.p

The command will first translate 10 bigpoints in the z-direction and 20 in the y-
direction, then scale the z-direction by —1 and the y-direction by 2 (i.e. the picture will
come out with the z-axis reversed). Then, after rotating 45°, the figures in figl.ps
and fig2.ps are inserted. (Just a reminder: translations, scalings, and rotations do
not commute.)

More details are given in “DVILW—Wizard’ Guide”. For a full description of the
language PostScript, see [Adobe]. A short introduction is given in [Darell].

4. Handling of Fonts

The LaserWriter Plus contains the fonts listed in Figure 1. The fonts marked with (*)
are present also in the LaserWriter without “Plus”. Your LaserWriter may have more
(or less) fonts.

The names listed are the PostScript names. (The case of the letters are significant in
PostScript.) The TEXname is formed from these by replacing all letters by lower case
and deleting all hyphens (“-”). DVILW recognizes the TEXname for these fonts and
creates the appropriate PostScript code.

The following example describes the use:

\font\Palatino=palatinoroman scaled 1234
\Palatino

When you see this, you can possibly figure out why Knuth
dedicated his MetaFont book to H.\ Z.

4

AvantGarde-Book Helvetica-Narrow-Oblique

AvantGarde-BookOblique Helvetica-Oblique (*)
AvantGarde-Demi NewCenturySchlbk-Bold
AvantGarde-DemiOblique NewCenturySchlbk-BoldItalic
Bookman-Demi NewCenturySchlbk-Italic
Bookman-DemiItalic NewCenturySchlbk-Roman
Bookman~-Light Palatino-Bold
Bookman-LightItalic Palatino-BoldItalic
Courier (*) Palatino-Italic
Courier-Bold (*) Palatino-Roman
Courier-BoldOblique (*) Symbol (%)
Courier-Oblique (*) Times-Bold (*)

Helvetica (%) Times-BoldItalic (%)
Helvetica-Bold (*) Times-Italic (%)
Helvetica-BoldOblique (*) Times-Roman (*)
Helvetica-Narrow ZapfChancery-MediumItalic
Helvetica-Narrow-Bold ZapfDingbats

Helvetica-Narrow-BoldOblique

Figure 1. List of PostScript names for LaserWriter Fonts.

will typeset the sentence in 12.34 point Palatino-Roman. Note that all sizes are avail-
able, not just a predefined set.

A more detailed description, including implementation details, how to make .tfm files,
creating new fonts etc. is given in “DVILW—Wizard’s guide”.

Missing Fonts

When loading a font that is not resident in the LaserWriter, DVILW searches for the
largest size equal to or less than the desired size. If there is a discrepancy of more
than 1%, a warning will be issued on the terminal.

When a font is not found, the user is inquired interactively for a replacement.

6. Problems and Hints

Inclusion of Macintosh Documents

Inclusion of Macintosh documents are possible. First generate PostScript code describ-
ing the document by the following procedure: Start just as if printing the document
on the LaserWriter. Then, immediately after clicking “OK”, hold the key cloverleaf-
F pressed until the text “Generating PostScript file” is echoed. The Macintosh now
generates a text-file named “PostScript” on the present system disk. (There are no
provisions for giving it another name, so it will overwrite a previous file with the same
name.) Then transfer the PostScript file to the host.

When printing the document containing the Macintosh illustration, the LaserWriter
must have the Macintosh dictionary downloaded. The simplest way of achieving this is
to make sure that a Macintosh job has been sent to the LaserWriter the ordinary way
since last power up.

The alignment of the inclusion is done so that the lower left corner of the page corre-

sponds to the TEX point. Inserting a MacDraw illustration should look like \special{"MacDraw" .|
file_name}, and correspondingly for MacDraft and MacWrite. (This will only affect
alignment.)

It should be noticed that this is a use of the Macintosh that is not supported by Apple.
The official dictionary at the time of this writing has version number 40, corresponding
to LaserPrep 3.1, and there is no reason to believe that it will survive to the end of
time.

DVILW works fine with Macintosh PostScript files created for this prolog. The use
of older files is strictly disencouraged. Some more comments are given in “DVILW—

Wizards Guide”.

Large Pages

Pages larger than the usual printing area can be output by printing them repeatedly
with different values of /xoffset and/or /yoffset, and then cut and glued together
afterwards. Example: To produce a 300 mm long page you just write it in TEX as if
you could print 300 mm long pages. Then print it with the commands dvilw file and
dvilw/yoffset=-100 file. Cut and glue it afterwards.

The LaserWriter Barfs

The major problem presently is not the program, it is the LaserWriter. The size of
its virtual memory is simply not adequate for printing complex TEX-document with
down-loaded fonts. I have frequently exhausted the virtual memory only by 2-3 pages!
Hopefully, there will soon be available more virtual memory. Until then, you have to
process the files just a few pages a time. The amount is dependent on the number of
fonts you use, and how large they are. Note that if no Macintosh job has been sent to
the LaserWriter since power up, the available virtual memory will increase.

References

ADOBE SYSTEMS INCORPORATED (1985): PostScript Language Reference Manual,
Addison-Wesley, Reading, MA.

DARELL, TREVOR (1987) Incorporating PostScript and Macintosh figures in TEX.

KNUTH, D. E. (1984): The TgXbook, Addison-Wesley, Reading, MA.

DVILW—W,izard’s Guide

Bengt Martensson, March 12, 1987

Introduction

This paper supplements the documentation of the program DVILW. More specialized
information is collected here.

Installation

Installation of DVILW: All users should have the following definitions (apart from the
usual TEX defintions).

$ dvilw == "$[directoryldvilw"

$ lwprint == Q[directory]l lwprint

$ define tex$afm directory

$ define ps$inputs directory

$ define laser_writer terminal

To install the program: Modify the command procedure lwprint.com appropriately.
$ pascal dvilw
$ link dvilw
$ macro newldriver
$ link newldriver

(Or possibly use an existing .exe file.) Copy all .tfm-files to tex$fonts. Copy
all .afm-files to tex$afm. Copy tex.pro, texencodefont.pro, dvilw_fonts.dat to
ps$inputs.

These files are described on other places in this document.

New tfm and afm files can be generated from DOPL. This program contains its own
instructions. (For wizards only.)

More on Some Qualifiers

There are also some qualifiers that are not to be used by the normal user. They exist
for debugging purposes or historical reasons, and might disappear in coming versions.

/errorsonly /terse (Default) /verbose /debug

These qualifiers govern how much debugging information is written on the screen.
/errorsonly is synonymous with quiet. The use of this is less than with other dvi-
interpreting programs, since the PostScript file is a human readable text file, which can
be read and modified using any text editor.

For unknown reasons, the /landscape mode does not handle the pixel fonts satis-
factorily. The raster does not exactly fit in. As a quick “fix” to this /landscape
forces psmagnification to be 998. As usual, this can be overridden by another
/psmagnification specification later on the command line. These qualifier does not
exactly commute...

The Generated PostScript Code

The generated PostScript code is roughly “conforming”, see [Adobe, Appendix C]. Le.
1t contains machine readable comments a printing program can use. For the PostScript
interpreter to understand the code generated by DVILW the code has to be preceeded by
a prolog-file. This should be present under the name ps$inputs:tex.pro. It is based
on, but not identical to the prolog file used by DVI2PS. The PostScript definitions
necessary for psfig/TgX, [Darell] has been included in the prolog,

Inclusion in Other Documents
In order to allow inclusion in other documents, global changes such as scaling, transla-
tion and rotation, there must not be any PostScript command in the file that forces any
changes of the graphical state in terms of absolute quantities, only by modifying the
old state. Due to what I consider a flaw in PostScript, (no named graphic savesets, and
the implicit grestore performed by restore) this has requirement has been fulfilled
only “almost”. There are only two PostScript command in the generated PostScript
code that is not compatible with this requirement: initgraphics and showpage, so
only these have to be redefined in order to allow inclusion or global changes. Example:
writing

{

\catcode‘{=12\catcode‘}=12

\special{@"/oldinitgraphics { initgraphics } bind def

/initgraphics { oldinitgraphics 15 rotate } def"}
}

in the last page of your document will make the entire document, including all \spe-
cial’s, come out rotated 15 degrees counter-clockwise.

special-stuff

The alignment of /topspecial is done so that (roughly) the upper left corner of the
inserted “page” is placed where the dot presently is located. More precisely, the point
where the dot is located corresponds exactly to the point with coordinates (0,820) in
the default PostScript coordinate system.

The PostScript operators showpage and erasepage are disabled (e.g. redefined to do
nothing) in a \special. Therefore, plots etc which print by itself should be possible
to use without modification.

Ordinarily, the current PostScript status is restored after the execution of the \special
command. However, if the first character in the argument to special is ’@’, then this
1s not done, and the global changes can be done. The primary use of this is to include
prologue-files needed for several inserts. Example: \special{@plotdict} will insert
(ps$inputs:)plotdict.pro so that all subsequent \special files will have access to
the definitions in plotdict. (Note, however, that the pages are sent to the LaserWriter
in opposite order. Therefore, a global insert will have effect on previous pages, but not
on the following.)

A \special command is either local or global (i.e. starting with a leading “@”). Local
and global effects are not allowed in the same \special.

2

Next a detailed description of the implementation is given. The reader is assumed to
be familiar with PostScript. When \special is encountered, first a saveset is created.
After pushing the coordinates of the current points on the stack, initgraphics is
performed, which restores the graphics state to default. If landscape-mode is in effect,
the coordinates are rotated and translated accordingly. Then the old coordinates of
the current point are used in order to translate the coordinate system according to the
description above. Then the file and/or the PostScript code is inserted. After this, the
saveset 1s used in order to restore the graphics state as it was before \special was

handled.

For global \special’s—i.e. when the argument starts with “@”, as described above—
the file and/or Postscript code is not embedded in save/restore pairs. Thus it will
impact futute save-sets. No initgraphics is performed, and no redefinition of print-
page and erasepage takes place.

Macintosh-generated PostScript

If you are using Macintosh generated for older Macintosh prologs than the present
one, with version number 40 (this is the /av 40 def line), you are asking for trouble.
The author only has experience of version 13, and has seen version 36. The most
important difference is that the command cp (mnemonic for “close page”) handles the
stack differently. For printing Macintosh figures with version 13, one of two methods
can be used: Either include the Macintosh prolog in the same \special as the figure
that is going to use it, or use a global \special, and modify tex.pro by removing the
line

/cp { pop pop pm restore } bind def % Remove if using version 13

When printing the file on the LaserWriter, it is necessary make sure that no Macintosh
job have been sent to the LaserWriter since power-up.

You have to do this to print page 4 of [Darell].

Handling of Fonts

DVILW handles the usual TpXfonts as px1-files. These are supposed to have file names
such as tex$pxl: [cmr10]cmri10.1500px1. There is no provision for alternative pixel
areas in the present version.

The LaserWriter Plus contains the fonts listed in Figure 1 in the user’s guide for DVILW.
The fonts marked with (*) are present also in the LaserWriter without “Plus”. The
names listed are the PostScript names. Note that the case of the letters are significant
in PostScript. The list has been obtained by inquiring the LaserWriter directly, so it
is guaranteed free of typos. The TgXname is formed from this by replacing all letters
by lower case and deleting all hyphens (“-”). DVILW recognizes the TeXname for
these fonts and creates the appropriate PostScript code. The necessary information
for this is read from a file with the name ps$inputs:dvilw_fonts.dat. A line in
this file has the following format: It starts with the (PostScript) name of the font.
Then the description follows of what is required to define the font, e.g. dictionaries
and PostScript code. This should define a font with the same name as the TEX name
(except that case is not significant in the TEX names). See the examples below. The
description is in exactly the same format as the one used in the special command. In

3

this way, more esoteric fonts, such as reencoded, outlined, underlined, shaded, etc...
can be created without recompilation. See below. Also note that all information has
to be on one line only, and no line-continuation is allowed. The program keeps track of
the loaded dictionaries, so that no dictionary will be loaded more than once.

Reencoding of Fonts
This subsection will describe the reencoding of the fonts. This is stricly speaking not a
part of DVILW but concerns its use, and the use of the resident fonts from TpX.

The encoding scheme used by Plain TgX, described in The TgXbook, Appendix F,
differs substantially from the Ascii code. (Ever wrote “<” outside of math mode?)
The PostScript operators described below, together with the accompanying program
DOPL, which creates tfm-files, tries to get as close to this as possible. See Figure
1. The selection of the encoding was done by this author. The goal was to get as
close to the PlainTEX coding, and the original coding, where the first goal was given
total priority over the second. Therefore, there are duplications, i.e. the same character
sometimes appears on more than one place in the table.

More precisely (octal notation will be used, even though I am hexadecimal person
normally): Positions 000-012, which in Plain TgX are filled by uppercase Greek letters,
are empty. Of the ligatures, of which the Plain TEX knows of “f”, “f”, “f”, “fR”, and
“fl” on positions 013-017, only “f” and “fl” are present. Fixed pitch fonts, such as
Courier, does not have ligatures. (Note that this does not present any problem at all
for TEX, since it reads the ligature information from the tfm-file.) “”, the dotless “j”
in position 021, is not existent in the PostScript fonts, and replaced by “j”. (Is the
dotless “j” really used for anything? There is not a single example in the TRXbook
e.g...) On position 040 Plain TEX has a weird little bar, which as far as I am aware
of, only is used to construct “t” and “L”. This has (of course?) no counterpart in the
PostScript fonts. I have put the PostScript character for “¥” at position 040 instead.
All the rest of the positions up to 177 are the same as for Plain TgX.

The accented characters not encoded in the standard PostScript encoding, I have en-
coded in positions 200-237, 321-340, 344-347, and 354-357. The characters which in
the original PostScript encoding resided in a place where something else has been put,
have been encoded to the positions 360, 362-364, 366-367, and 374-377. All positions
mentioned in this paragraph are left undefined in the original PostScript encoding.

In the generated pl and afm files, I have defined the character on position 240 to be an
invisible character, named void. This gives the possiblity to write that character just

to get the position defined, without writing anything on the paper. See the subsection
on TEX interface.

As opposed to the standard PostScript encoding, all characters in a font are encoded
in the encoding described above. (Can this possibly slow down the execution speed?
The LaserWriter is not exactly known for its speed...)

The PostScript Operators

The PostScript dictionary file texencodefont . pro is normally, but not necessarily, used
to define a new font. It contains definitions of the PostScript operators TeX-Encode-
Font, Scale-Encode-Font, and Outline-Encode-Font. A call to TeX-Encode-Font

4

should look like

Helvetica texencodefont,"/Helvetica /$Helvetica TeX-Encode-Font"

000
010

020
030
040
050
060
070
’100
’110
’120
’130
’140
’150
’160
170
200
210
220
230
240
250
260
270 |
’300
’310
’320
330
’340
’350
’360
370 |t

<|Eh
j=r]

’
»
<
I

°

ot

RN| B
s

w|+ 3|8
«s

N %

2| 3| Of— | &~
)| < Z || | -
J=ZlolQl <N~ .

“N'.Um@ ||~ =]~

<= o] (| Pl (2] = o | O[] O~ —]| -

(oW
]

a—

m|F|o|—|»lRlO]--
=B lo =l ufw

1< B
(g0

(IR les I =NER LN ¥y

|| 2| O | |
S E AN [- (@ e |
x| | Qx|

=a|h(=s || OO

e o] oy BN = =] o | N B || -

o]

o [wor|Ot| O |COrf T

|
++

\.
g
J
]
¥
N
8
o~

’
Y
>
l
|

C

°
R
<

Lot o M

= r‘ﬁg/ (::/
&?B&mb—l\b—i\
8|A| B
>l [|2 [
Ne N[e |

—/Slzl’-" Pt ?
N [Pt UKW‘:\(:\

-~

Figure 1. Font table for reencoded font (Times-Roman).

where Helvetica is the PostScript name of the original font and $Helvetica becomes
the PostScript name of the reencoded font. The PostScript name of a reencoded font
is always the same as the TEXname of that font preceeded by a “$”, except that the
TEXnames are case-insensitive.

A call to Scale-Encode-Font looks like
LeftPalatino texencodefont,"/Palatino-Roman /$LeftPalatino
1 0 -2 3 Scale-Encode-Font"

This command will define a font with the PostScript name $LeftPalatino derived by
reencoding Palatino-Roman and the applying the linear transformation—remember
that computer graphics people for reasons unknown to this author prefers to write a
linear transformation on IR? as multiplying a row vector from the right—given by

CEETCEY Y

(Since you are reading a wizard’s guide you can surely figure out why it is called
“LeftPalatino”, right?)

Finally, there is the PostScript operator Outline-Encode-Font which will generate an
outlined font. Example:

OutHelvetica texencodefont,'"/Helvetica-BoldOblique /$0utHelvetica
1 00 2.5 20 Dutline-Encode-Font"
This generates an outlined font with the PostScript name $0utHelvetica scaled by

the matrix
[]

The thickness of the lines will be 20 in the characters coordinate system which “always”
means that the k-height is set to 1000. (Since it was an italic font and we rescaled
the z-direction by 1 and the y-direction by 2.5, it will come out very lightly slanted,
approximately 5°.)

The width of the fonts described in dvilw_fonts are read from afm-files residing on
the directory tex$afm.

To generate new tfm-files requires the program DOPL, described below, and the pro-
gram TFtoPL, which is distributed together with TgX. DOPL is a program for gen-
erating .pl-files (for TgX) and new .afm-files (for DVILW) corresponding to reencoded
Laser Writer fonts. The reencoding is done for maximal compatibility with PlainTgX.

The program DOPL is written just to do its job with the afm-files its creator know
of for the moment. However, it should be easy to modify. (It is increadibly slow to
run—more than 2 CPU minutes for a font.)

When entering an old font name, say helvetica, DOPL reads the AFM file
adobe$afm:helvetica.afm. It is possible to give the generated files a new name,
say newhelvetica. DOPL assumes a design size of 10bpt for the font, unless given a
non-trivial scaling matrix T'. The matrix T rescales the font as described above. Also
compare the PostScript reference manual Chapter 5. The matrix is entered as four
real numbers. Example: [1 0 0.5 2] will rescale the z-direction by 1, the y-direction
by 2, and give the font an italic angle of arctan(0.5/2) (provided that its original italic
angle was 0.) DOPL presently does not know what to do when the (1,2)-element of
the matix is nonzero.

Kerning information in the file dopl$kerning:newhelvetica.kern will be inserted
verbatim in the pl-file. No error occurs if this file is not found. The file should be in pl-
format, with designunits = 1. (This is the format TFtoPL generates.) Warning: This
possibly overrides some previous entries in the ligature table. Observe the warnings

from PLtoTF!

When DOPL is finished with its work it issues the command, (in the example) @doplcom
newhelvetica. This is intended to run a command procedure. Probably you would
like this to run PLtoTF, move things around, etc...

TEX Interface to the Characters

As indicated before, the intention was to achieve maximal compatibility with Plain
TEX, not to show that my decisions are better than everyone else’s. There are just two
things you can do with CMR10 (say) but not (without modification in the TEX macros
that is) with the LaserWriter’s resident fonts, and that is the Polish suppressed “I”’s
(\1 and \L, which prints as “¥’ and “L” respectively), and the dotless-j \j i.e. e
However, there are many things that can be made better than in Plain TEX together
with the Computer Modern fonts, in particular the accented characters.

Appendix B presents a TEX macro that defines TEX names for these accented characters.
Everywhere when it does not conflict with a macro name in Plain TgX, the PostScript
names have been used. In the few cases that there have been a conflict, “PS” have
been prepended to the TEX name. It is of course still possible to write \"a to get “4”,
but \adieresis will most likely give a better result, since in the latter case the font
designer decided where the dots should go on that particular character, not a simple
algorithm designed to work decently with all fonts.*

The file will also redefine some Plain TEX macros in order to better take advantage of
this. It also redefines \1 and \L. For the sake of completeness, all characters are given
a name.

Finally, the feature/bug of Plain TEX, namely that it does not necessarily update the
position before inserting the \special code, is fixed by a redefinition of \special,
which makes TEX print the character 240 (octal) in the Times-Roman font before
inserting the \special code. This character is invisible, has height, width and depth
all equal to 0, so it will only result in the point being defined. (This “trick” can of
course also be used for other purposes.) The file in Appendix B also contain some
additional comments.

Printing of the PostScript File on the LaserWriter

When this paper and the accompanying user’s guide say that DVILW “prints the
PostScript file”, this really means that it issues the command @lwprint file /delete.
This calls the command procedure lwprint.com which sends the file to the LaserWriter
and deletes it afterwards. It is also possible for the user to call @1wprint the usual way

Knuth writes on page 54 in The TEXbook: “Plain TgX works well enough when accents
are infrequent, but the conventions of this chapter are by no means recommended for
large-scale applications of TEX to other languages.”

7

from VMS. In that case, the file will be deleted if and only if the /delete qualifier is
present.

Hints, Tips, and Problems

Proof Mode

A simple proof mode, where DVILW checks that it can handle all referenced fonts is
obtained by running DVILW with the qualifier /page=12345 (where 12345 represents
a page number you are absolutely sure is not present in the file). Then DVILW just
reads the preamble and opens all font files in the document. A small garbage file is
created. If this file is sent to the LaserWriter, no pages will be printed.

What is the Best Implementation of \special?

In [Knuth] the command \special is defined only to include its arguments in the DVI-
file as information to the DVI-handling program. There is also the requirement that
the DVI-handler is not allowed to modify the position of the dot during handling of the
\special command.

Other Future Improvements

The bad behavior in landscape-mode is surely an implementation bug in the LaserWriter
and not a bug in DVILW, but anyhow it would be nice to circumvent it. Can it be that
the LaserWriter makes a small error when it computes sine and cosine of 270°??

It would be nice to allow several input files. Possibly several pixel-areas?

The program should read the parameters for the PostScript fonts from tfm-files instead
of from afm-files. This should reduce the number of files you have to have resident on
the system. Also, this should eliminate the risk of the information in these files being
inconsistent.

Some optimization will reduce the size of the generated PostScript file by 50-20%.
;¢ Transfer some Huffman-coded variant instead?? (The generated PostScriptfile con-
sists to = 30% of spaces.) Possibly some improvement of the execution speed is pos-
sible, especially since the program DVILGP runs considerably faster. Possibility to
force global \special inserts to the beginning of the file?? Provisions for reading pk-
files. Possibly this information should be transferrred to the LaserWriter instead of the
bit-patters corresponding to px1-files.

Appendix. Revision History
86-09-07 (BM) Treatment of special changed to allow multiple files and quoted Post-
Script strings.

86-09-13 (BM) Changed the initial coordinate transformation. The old one forced
absolute numbers into the current transformation matrix (CTM) in PostScript, thereby
making it impossible to relocate, scale, rotate, or translate a document in its entirety.
Special-handling defined in terms of PostScript coordinates (0,820).

86-10-02 (LA) Corrected error in setRule and setChar.
86-10-02 (BM) Cleaned up PostScript coordinate transformations. Allowed global

\special’s. Disabling of showpage and erasepage in handling of special. Search

8

for \special-files on ps$inputs. The /inquire qualifier introduced. Changed the
old name of /special to /noinquire. Introduced warning for substituting pixel-sizes.
Allowed use of resident fonts, except for loading of parameters from .tfm-files. Re-
placement of not found pxlfonts. Handling of multiple page ranges improved. / amag-
nification and /rmagnification implemented. The prologue modified.

86-10-12 (BM) Small bug in CopyTheString corrected.
86-11-17 (LA) Reads the pxl-files from the logical name tex$pxl instead.

86-12-10 (BM) Change in initialization and in prolog in order to allow insertion of
Macintosh generated PostScript, from LaserPrep 3.1. @MacSetUp included in pro-
log, stripping ctrl-d from special files (in Includespecial), Including QMacSetUp in
@beginspecial.

87-01-06 (BM) Fully implemented the handling of the PostScript fonts by reading the
afm-files, and the file dvilw_fonts. Introduced /psmagnification.

87-02-06 (BM) Inquire for missing fonts, case insensitive fontnames, only one PostScript
definition per resident font.

87-02-04 (LA) Changed meaning and default of z- and y-offset.

87-02-11 (BM/LA) Introduced /topspecial and /bottomspecial. Fix (but still not
satisfactory) for /landscape (alters psmagnification).

87-02-28 (BM) Small change of the echoing on the screen: “!special” replaced by
\special, and “Outputting PostScript file” only when verbose or debug.

87-03-09 (BM) Modified the prolog (@bop0 and @end). Included the psfig/TEX stuff in
the prolog.

87-03-09 (LA) Changed the command to print the PostScript file.

87-03-12 (BM) Modified prolog: added MacDraw etc, changed some def’s to bind def
for execution speed. Fixed bug when the position is not properly updated before a
\special command.

Appendix B. The Macro File LWDEFS

%%4% LWDEFS

W%

%4% Some definitions which will better take advantage of
%4% the (reencoded) LaserWriter’s fonts.

IAAA

%4% Bengt Martensson March 1, 1987

A4

%A% LastEditDate "Wed Mar 11 21:06:49 1987"

IAAA

\def\LWdefs

{%%% Redefinitions from Plain

17

%

\chardef\AA="204 % On these, we can do better
\chardef\aa=’224 % than Plain
\chardef\L=’350

\chardef\1=’370

%

\chardef\dag=’262 % Plain gets all of these
\chardef\ddag=’263 % from the math character set.
\chardef\S=’247 % We can do better.
\chardef\P=’262

[}

%

%% Readymade accented letters (use e.g. \Adieresis instead of \"A)
\chardef\Aacute=’200
\chardef\Acircumflex=’201
\chardef\Adieresis=’202
\chardef\Agrave=’203
\chardef\Aring=’204
\chardef\Atilde=’205
\chardef\Ccedilla=’206
\chardef\Eacute=’207
\chardef\Ecircumflex=’210
\chardef\Edieresis=’211
\chardef\Egrave=’212
\chardef\Dacute=’213
\chardef\Ocircumflex=’214
\chardef\Odieresis=’216
\chardef\Ograve=’216
\chardef\Otilde=’217
\chardef\aacute=’220
\chardef\acircumflex=’221
\chardef\adieresis=’222
\chardef\agrave=’223
\chardef\aring=’224
\chardef\atilde=’225
\chardef\ccedilla=’226
\chardef\eacute=’227
\chardef\ecircumflex=’230
\chardef\edieresis=’231
\chardef\egrave=’232
\chardef\oacute=’233
\chardef\ocircumflex=’234
\chardef\odieresis=’235
\chardef\ograve=’236
\chardef\otilde=’237
\chardef\Iacute=’321
\chardef\Icircumflex=’322
\chardef\Idieresis=’323
\chardef\Igrave=’324
\chardef\Uacute=’325
\chardef\Ucircumflex=’326
\chardef\Udieresis=’327
\chardef\Ugrave=’330
\chardef\iacute=’331
\chardef\icircumflex=’332
\chardef\idieresis=’333
\chardef\igrave=’334
\chardef\uacute=’335
\chardef\ucircumflex=’336
\chardef\udieresis=’337
\chardef\ugrave=’340
\chardef\Ntilde=’344
\chardef\Scaron=’345
\chardef\Ydieresis=’346
\chardef\Zcaron='’347
\chardef\ntilde=’354
\chardef\scaron=’355
\chardef\ydieresis=’356
\chardef\zcaron=’357

10

%

%h% More characters, first some

\chardef\quotedbl=’360
\chardef\less="’362
\chardef\greater=’363
\chardef\PSbackslash=’364
\chardef\asciicircum=’366
\chardef\underscore=’367
\chardef\PSbar=’374
\chardef\braceright=’375
\chardef\asciitilde=’376
\chardef\braceleft=’377

YANA

\chardef\void=’240

0,

%

\chardef\cent=’242
\chardef\sterling=’243
\chardef\fraction=’244
\chardef\yen=’245
\chardef\florin=’246
\chardef\currency=’250
\chardef\quotesingle=’251
\chardef\guillemotleft=’253
\chardef\guilsinglleft=’254
\chardef\guilsinglright=’255
\chardef\guillemotleft="2563
\chardef\periodcentered=’264
\chardef\PSbullet=’267
\chardef\quotesinglbase=’270
\chardef\quotedblbase=’271
\chardef\guillemotright=’273
\chardef\ellipsis=’274
\chardef\perthousand=’275

}

11

standard ASCII characters

% Called ‘backslash’ in PostScipt

% Called ‘bar’ in PostScript

% Void character, prints nothing

% Called ‘bullet’ in PostScript

Hcopy2PS

Hcopy Meta to PostScript filter

Bengt Martensson, March 11, 1987

This paper documents the program Hcopy2P$S that translates a Hcopy meta file to the
page-description language PostScript, for printing e.g. on the Apple LaserWriter. A
CTRL-C version named CC2PS is also presented.

1. Introduction

Hcopy meta is a simple device independent format for describing hard-copy from plot-
ting programs. It was defined by Tomas Schonthal at the Department of Automatic
Control, Lund Institute of Technology, for the programs Simnon, Idpac, Synpac etc.
Hcopy2PS is a program for translating hcopy meta files to the page description language
PostScript [Adobe], to be printed on a PostScript device such as the Apple LaserWriter,
or to be included in other documents. It is a powerful program, not just a “dumb post-
processor”. It contains several options for altering the plot by changing the appearance
of the lines, the size, the characters etc. Of course, all these effects can be obtained
by modifying PostScript code with a standard text editor. However, this program will
make it much simpler, and possible for the user not familiar with PostScript (the refer-
ence manual is over 300 pages). It can also be used as “dumb postprocessor”, requiring
no particular knowledge of the user, but the program is intended to be able to produce
figures of the finest quality with lots of knobs to turn in order to satisfy special require-
ments. The author believes that it is a good idea to implement the Hcopy meta format
in new programs, thereby allowing manipulation with the full power of Heopy2PS.

The present paper is a reference manual, not a primer. It is not a hard program to
handle, even though this paper seems frightenly long.

In the next section, the use of the program and the different options and qualifiers are
presented. Note that in order to describe all qualifiers there, the text necessarily has to
contain a few forward references. Section 3 presents two examples. Section 4 describes
in detail customizing and modifying the plots in order to satisfy special requirements
and tastes. Some hints etc. are collected in Section 5. In the last section, a CTRL-C
version named CC2PS is presented. (CTRL-C is a program for matrix computation etc.
[CTRL-C]). CC2PS acts on CTRL-C’s pen files. Appendix A presents the standard
dictionary. Appendix B contains the definition of the Hcopy Meta format. Permanently
down-loading PostScript dictionaries is discussed in Appendix C.

This paper is compatible with the version of Hcopy2P$S and CC2PS that is dated March
11, 1987. It is my intention that this paper should be updated when the programs

are updated. They are approximately 800 lines long Pascal programs, and run under
VAX/VMS version 4.x.

2. Function

Basic Operation

The program is run by the command hcopy2ps[/{options)] file_name where file_name
is the name of the hcopy meta file. Default file-type is p. The file name can also be
omitted, in which case the default file name is meta.p. By default, Hcopy2P$ creates
a PostScript file with the name file_name.plo. If the print-option is selected (which is
default), the file is printed.

Qualifiers
Next the different qualifiers will be described. They can be abbreviated as long as the
abbreviations are unique.

/print (Default) /noprint
The /print option prints the PostScript file.

/portrait (Default) /landscape
This selects portrait or landscape orientation of the page.

/manualfeed

This qualifier turns on the manual feeding on the Apple LaserWriter. This can be used
e.g for feeding letter-head paper, cardboard, and transparencies. This is, in contrast
to the rest ot the commands, device dependent for the LaserWriter, and will probably
not be meaningful on other PostScript devices.

/xoffset=z_offset /[yoffset=y_offset

These qualifiers allows the user to specify the z- and y-offset of the page, i.e. the
distance between the lower left hand corner and the edges of the paper. (Really, the
translation of the default origin for the device.) Unit is mm. Default is 20 mm for both
z- and y-offset. The qualifiers work in the same way both in portrait- and landscape
mode. Needless to say, physical limitations restrict the meaningful values. Note that
if a paper format other than A4 is used, the z- and y-offset will probably be off by a
constant value in landscape mode.

/magnification=magnification /[height=height

These qualifiers modify the magnification of the document. magnification is divided
by 1000, e.g. magnification=1200 means a magnification by a factor 1.2. height is
the height of the whole plot-able area on paper, corresponding to the whole span of y-
coordinates. These commands modify all dimensions in the image evenly, including line
widths, text, and digits. These two qualifiers are just two different ways of expressing
exactly the same thing. magnification = 1000 (which is default) corresponds to height
= 124 (mm).

/xstretch=z_stretch /ystretch=y_stretch
These qualifiers “stretches” the z- and the y-dimensions respectively. As above, z_stretch
and y_stretch are diveded by 1000. Line widths and font sizes are not affected.

/outfile=file_name
This directs the output to the file file_name, instead of the default output file, described

2

above. The default file type is plo. Note that the command hcopy2ps/outfile=a
someone_elses_hcopy metafile will give a possibility for printing a hcopy meta-file resid-
ing on a directory on which you do not have write privileges.

/dvilw

This qualifier is equivalent to /xoffset=10/yoffset=10/magnification=800/noprint.
It is believed to be reasonable when including the plot in TEX using the DVI-handling
program DVILW [Martensson 1986b] (which was used for this report).

/noprolog /prolog=other_prolog_file

The /noprolog qualifier inhibits the prolog file to be included in the PostScript file.
The /prolog qualifier allows you to use another prolog than the standard one, if you
for example want a non-standard pen-pattern. See Section 4.

/parameters (Default) /noparameters

If /parameters is given, Hcopy2PS$ writes all its computed parameters, determined by
the options described in this section, after the prolog-file. Therefore, if the prolog file
assigns values to these parameters, they will be overridden by the parameters Hecopy2PS
writes. /noparameters will inhibit this, which requires the prolog to contain definitions
of all these. See Section 4.

/alone (Default) /include

The /alone qualifier will make the file to print by itself by calling the PostScript
operator /showpage at the end of the file. include prohibits this, and is meant for plots
intended for inclusion in other documents. (Note, however, that the TEX DVI-handling
program DVILW [Martensson 1986b] disables showpage in the special command and
therefore makes it harmless to have a showpage too much in the file.)

/convertexps
This qualifier makes Hcopy2P$S convert expressions such as 3.E6 to 3 - 10°.

/horizontalfont="font_spec" /verticalfont="font_spec" /digitfont="font_spec"

These qualifiers allows the user to use other fonts for the horizontal and vertical text,
and for the digits. Note that the double quotes (") are mandatory. font_spec is of the
form font_name:font_size, where font_name is the name of any font for the moment
known to the PostScript device. A font_size of 0 is allowed, which will suppress all
text in that font. This makes a very convenient way of getting rid of the sometimes
annoying date and “hcopy meta” line by defining “horizontalfont="a:0"".

The LaserWriter Plus contains the resident fonts listed in Figure 1. The fonts marked
with (%) are present also in the LaserWriter without “Plus”. Note that the case of the
letters is significant. (The list has been obtained by inquiring the LaserWriter directly,
so 1t is guaranteed to be free of typos.)

foni_size is a size of the font measured in bigpoints (bpt). It holds that 1 bpt = 1/72
inch. The defaults fonts are 12 point Helvetica for horizontal- and vertical font, and
12 point Symbol for digit-font. When the plot is rescaled by /magnification= or
(equivalently) /height=, the defaults are rescaled accordingly.

3

Hcopy2PS considers a string of horizontal text as a digit string if it starts with a digit
and the rest consists only of digits and the characters “.” and “E”. This is to allow
both hyphens (“-”) and minus-signs (“—") in the same plot. The only font resident in
the LaserWriter that contains proper minus-signs instead of hyphens is “Symbol”.

AvantGarde-Book Helvetica-Narrow-Oblique
AvantGarde-BookOblique Helvetica-Oblique (*)
AvantGarde-Demi NewCenturySchlbk-Bold
AvantGarde-DemiOblique NewCenturySchlbk-BoldItalic
Bookman-Demi NewCenturySchlbk-Italic
Bookman-DemiItalic NewCenturySchlbk-Roman
Bookman-Light Palatino-Bold
Bookman-LightItalic Palatino-BoldItalic
Courier (%) Palatino-Italic
Courier-Bold (*) Palatino-Roman
Courier-BoldOblique (*) Symbol (*)
Courier-Oblique (*) Times-Bold (*)

Helvetica (%) Times-BoldItalic (%)
Helvetica-Bold (%) Times-Italic (*)
Helvetica-BoldOblique (%) Times-Roman (*)
Helvetica-Narrow ZapfChancery-MediumItalic
Helvetica-Narrow-Bold ZapfDingbats

Helvetica-Narrow-BoldOblique

Figure 1. List of PostScript names for LaserWriter Fonts.

Conflicting options are allowed, in which case the rightmost of the conflicting qualifier
takes effect. E.g. /noprint/print is equivalent to /print. This makes it possible for
you to change defaults by defining e.g. metaps == "’’hcopy2ps/noprint’".

3. Examples

The installation here of the very nice public-domain program GNUPLOT has a Hcopy

Meta driver, written by this author. Hcopy2PS has generated Figure 2 from one such
file.

As a further example we show the Simnon plot on page 17 in [Astrbm]. This has been
produced by the command

hcopy2ps/horizontal="ZapfChancery-MediumItalic:15"
/ver="AvantGarde-Book:12"/dvilw vdpol

(The different scaling chosen on the axes is due to changes in the Simnon version.)

4. Prolog Files and Customizing

The PostScript file is a human readable text file, allowing inspection and modification
with a standard text editor. It is “conforming”, e.g. containing machine readable
comments as described in [Adobe, Appendix C].

4

'"ocodboodoo
b

_____________________ 0<X<13 nc=2"
-02<y<18inc=0.2

1 1 L

702 20 -

0p_,f meta v

State variable y

|
Ll

Figure 2. A figure by GNUPLOT.

7 nr: 1

~&tate variable x 2

Figure 3.

The figure on page 17 in [Astrém].

For the PostScript interpreter (e.g. in the LaserWriter) to understand the commands
in the plot-file, the plot has to be preceded by a short prolog file, containing defini-
tions of the commands used by the plot. Unless told otherwise by different qualifiers
(described in Section 2) the prolog file ps$inputs:plotdict.pro will be prepended to
the PostScript file.

The qualified user can use his own prolog with the /prolog= qualifier, or by specifying
/noprolog and then insert another prolog file, e.g. when the plot is included in an-
other document. By specifying /noparameters, Hcopy2P$S does not include any of its
parameters in the generated file; therefore the prolog file must in this case contain a
specification of them.

The Prolog

Next we describe the standard prolog, listed in Appendix B. To fully understand the
description, working knowledge of PostScript is of course required, but hopefully not
in order to e.g. modify the line widths. Standard stack-manipulation notation will be
used for describing the call of the operators.

The first two non-comment lines defines a new dictionary and starts to use it. Then
the two parameters digit-x-offset and digit-y-offset are defined. These are two
constants, in the plot’s coordinate system, which will offset everything that is typeset
with the digit-font. These parameters allow fiddling with the position of all the digits
simultaneously.

Then the array pen-width-array of 8 elements is defined. The uppermost entry is the
width (in bigpoints) of pen number 1 and so on. The array pen-cap-array follows
next. This affects the line caps, i.e. how the lines end. Every entry is either 1, 2, or 3.
“0” represents a “butt cap”: the stroke is squared off at the endpoint of the path; there
is no projection beyond the end of the path. “1” stands for a round cap: a semicircular
arc with diameter equal to the line width is drawn around the endpoint and filled in.
Finally, “3” is a “projecting square cap”: the stroke continues beyond the endpoint of
the path for a distance equal to the half of the line width an is squared off.

pen-dash-array is declared next. The declaration in Appendix B means the following:
For pen 1, make it solid. For pen 2, first draw 100 units “black”, then 25 units “white”.
Then repeat. For pen 3, first draw 100 units “black”, then 25 units “white”, then 50
units “black”, then 25 units “white”. Then repeat. And so on. The units are the plot’s
original coordinates.

Then follows the definition of the operator set-pen (pen —), implementing the “pen”-
shift. This assigns values to the linewidth, the dashing pattern, and the line cap
according to the arrays described above. The line-join (see [Adobe, p. 218]) is set to 1,
meaning “round join”, which seems to be the only reasonable when drawing e.g. graphs
of smooth functions.

The operator hcopy-end (—) follows next. It calls the operator showpage if the variable
print-page-when-done is true.

hcopy-initialize () sets up the basic graphics state, and defines the coordinate
system. This is done so that all plotting will be in the plot’s native coordinate system.

6

For this, the prolog uses the two variables scaling and default-scaling. Hcopy2PS
computes scaling to be the size of one unit in the plot’s coordinate system, expressed
in bigpoints (= 1/72 Inch). default-scaling is given the value scaling would have
if the plot is not rescaled by /magnification or (equivalently) /height. true-h-
font () is defined to be an operator that when called sets up the appropriate font,
appropriately scaled, for horizontal text. Also true-v-font (—) and true-d-font (—)
are defined for vertical text and for digit-string respectively. true-d-exp-font (—) is
defined as the same font as for writing the digits, but 70% of the size. This is meant
for exponents.

The operator d (string z y —) is defined to print the string string, which is assumed to
be a string describing a number, at position (z+digit-x-offset, y-+digit-y-offset).

The operator d-exp (string ezp-stringz y —) is similar to d, but differs since exp-string
is treated as an exponent, meant for printing numbers as 3 - 10%. The latter is achieved
by the call (3) (6) x y d-exp. The line (\32710) show prints “-10” in Symbol, and
(probably) “10” with another font.

The operator h (string xy) is defined to print the string string as horizontal text,
starting at the position (z,y).

The operator v (stringxy) is defined to print the string string as vertical text,
starting at the position (z, y).

The operator s (pen) calls set-pen and stokes the current path.

Finally, 1 (zy), m (zy), and n (—) are defined as abbreviations for lineto,
moveto, and newpath respectively.

Parameters in prolog file
In order to be run with the /noparameters qualifier, the prolog has to contain defini-
tions of the 12 parameters Hcopy2PS ordinarily writes to the file. This can look like

/x-offset 10 def

/y-offset 10 def

/scaling 0.0899 def
/default-scaling 0.1127 def
/h-font /ZapfChancery-MediumItalic def
/h-font-size 15 def

/v-font /AvantGarde-Book def
/v-font-size 12 def

/d-font /Symbol def
/d-font-size 12 def
/print-page-when-done true def
/landscape false def

(The parameters are exactly the ones used for Figure 3.) These have all either been
described abover, or are obvious.

5. Hints, Tips, Discussion, and Problems

The PostScript file is a human readable text file, allowing inspection and modification

7

with a standard text editor. This gives a vast freedom in editing the plots. It is e.g.
very simple to locate and remove unwanted text (such as the date and the “hcopy” on
the plot), change the scales, etc. A common problem in Simnon is that lines a priori
know to be vertical comes out slanted in the plot. These can simply be “straightened
up” in the PostScript file.

Scaling

The digits marking the scaling on the axis do not always occur in the right position.
The hcopy meta file includes information about how wide etc. it considers its digit to be
(see Appendix B). This information is presently discarded, since the plotting routines
never was done with high-quality typesetting in mind anyhow. Manual paste-up with a
text editor is of course possible, and recommended for high-quality applications. (This
was done in [Martensson, 1986a).)

Different Pens

Hcopy2PS knows of eight different pens that the hcopy plots might include. These eight
different pens all have their own parameters for linewidth, dashing patterns, line-ends
etc. These are not accessible as qualifiers in Hecopy2PS, but the prolog file can be edited
in order to satisfy special needs or tastes.

The programs Simnon etc. draws with several pens in a fairly disoriented fashion—first
1t draws a little bit with one pen, then changes and draws a little with another pen,
then changes back ... Hcopy2PS orders these paths so it only draws one single time
with each connected curve drawn with the same pen. This makes dashed lines of high
quality possible. However, due to an implementation limit in the LaserWriter, no path
is allowed to consist of more than 1500 line segments. Therefore, Hcopy2P$ will insert
a break after 1400 line segments, which will occasionally disturb a dashed line.

6. CC2PS—CTRL-C to PostScript Filter

CC2PS is a version of Hecopy2PS that produces PostScript code from CTRL-C’s pen
files. This is a program derived from Hcopy2PS by just some minor modifications. The
operation and the qualifiers are all the same as for Hcopy2P$S, even though some are
meaningless, such as e.g. the font-selecting qualifiers.

(Actually, it is the same text file, where the CC2PS specific parts normally are com-
mented out. A GNU Emacs function removes all that is Hcopy2PS specific, and un-
comments the CC2PS specific parts.)

Acknowledgements

CC2PS was created by using a template written by Mats Lilja. The command decoding
part of the program has been stolen from Leif Andersson.

References
ADOBE SYSTEMS INCORPORATED (1985): PostScript Language Reference Manual, Addison-Wesley,
Reading, Massachusetts.

AsTROM (1985): “A Simnon Tutorial,” Report CODEN: LUTFD2/(TFRT-3176)/1-87/(1985), Dept.
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

CTRL-C (1983): CTRL-C User’s Guide., Systems Control Technology, Inc. Palo Alto, California,
USA.

MARTENSSON, B. (1986a): “Adaptive Stabilization,” Ph.D. thesis CODEN: LUTFD2/(TFRT-1028)/
1-122/(1986), Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden.

MARTENSSON, B. (1986b): “DVILW—DVI to PostScript filter adapted for the LaserWriter,” Dept. of
Automatic Control, Lund Institute of Technology, Lund, Sweden, To appear.

Appendix A. The dictionary PLOTDICT.PRO

This is the PostScript dictionary plotdict.pro.

%!PS-Adobe-1.0

%ATitle: plotdict

%/CreationDate February 12, 1987
/hcopy-dictionary 32 dict def
hcopy-dictionary begin
/digit-x-offset 0 def
/digit-y-offset -25 def

/pen-width-array
0.

cococooocoo
P N SRR N S

8
array
astore
def

/pen-cap-array

O RO

8
array
astore
def

/pen-dash-array
01

[100 25]

[100 25 50 25]
[100 26 26 25]
[150 25 50 25]
[160 25 25 25]
[150 25 100 25]
[200 25 25 25]

8
array
astore
def

/set-pen

i

}

1 sub

dup dup
pen-width-array
exch

get
default-scaling div
setlinewidth
pen-cap-array
exch

get

setlinecap
pen-dash-array
exch

get

0

setdash

1 setlinejoin
bind def

/hcopy-end

{
}

print-page-when-done {showpage} if
bind def

/hcopy-initialize

{

X

landscape {270 rotate -840 10 translate} if
x-offset 25.4 div 72 mul
y-offset 26.4 div 72 mul translate
scaling dup scale
/true-h-font

h-font findfont

h-font-size default-scaling div scalefont
def
/true-v-font

v-font findfont

v-font-size default-scaling div scalefont
def
/true-d-font

d-font findfont

d-font-size default-scaling div scalefont
def
/true~d-exp-font

d-font findfont

d-font-size default-scaling div 0.7 mul scalefont
def
bind def

/d

{

}

set-pen

moveto

digit-x-offset digit-y-offset rmoveto
true-d-font setfont

show

bind def

/d-exp

{

set-pen

moveto

digit-x-offset digit-y-offset rmoveto
exch

true-d-font setfont

show

10

(\32710) show
0 (0) stringwidth pop rmoveto
true-d-exp-font setfont
show
} bind def

/h

{ set-pen
moveto
true-h-font setfont
show

} bind def

/v

{ set-pen
moveto gsave currentpoint translate 90 rotate
true-v-font setfont
show grestore

} bind def

/s

{ set-pen
stroke

} bind def

/1 { lineto } bind def
/m { moveto } bind def
/n { newpath } bind def
end

Appendix B. The HCOPY META format

This appendix documents the Hcopy meta format. The “7”-record is an addition by this author. The
appendix is based on text written by Tomas Schonthal.

The meta file is a sequential, variable record length text file. It contains plot primitives, which are
stored as one type record, followed by zero, one or two parameter records.

Initialization Record:

6
ixmin,ixmax,iymin,iymax,nxch,nych,idxch,idych,minpen,maxpen
Fortran format: (11/14,9(1X,14))

ixmin — Smallest possible x-coordinate
ixmax — Largest possible x-coordinate

iymin — Smallest possible y-coordinate
iymax — Largest possible y-coordinate

nxch — Character width

nych — Character height

idxch — Horizontal character spacing

idych — Vertical character spacing

minpen — Smallest possible pen (color) number
maxpen — Largest possible pen (color) number
Note:

— (ixmin,iymin) corresponds to the lowest left corner of the display

— The size of a character cell is (nxch+idxch)*(nych+idych) points

— Hcopy2PS requires the first record to be an initialization record. Only one initialization record
permitted by Hcopy2PS.

Pen Shift Record:

5

Fortran format: (I11/12)
ipen — Pen (color) number

Horizontal Text Record:

11

1

buff(i), i=1, .., nch

Fortran format: (I11/12/80A1)

nch —Effective length of string

buff —String, declared as character buff(80)

Line Record:

2

ix,iy

Fortran format: (I11/14,1X,14)

ix, iy — Destination coordinate pair

Move Record:

3

ix,iy

See LINE

Vertical Text Record:
4

buff(i), i=1, .., nch
See HTXT

End of Page Record:
7
Marks the end of a page description and (possibly) the start of a new page in the same file.

Appendix C. Down-loading plotdict

plotdict can either be loaded once for every plot sent to the LaserWriter printer, or it can be per-
manently down-loaded. (Also note the possibility of “global” specials in DVILW [Mértensson 1986b].)
The following PostScript file will permanently (i.e. until power-off) down-load plotdict.

0000

/#1 where

{pop pop(#1 in place - not loaded again\n)print flush stop}

{dup serverdict begin statusdict begin checkpassword

{(#1 downloaded.\n)print flush exitserver}

{pop(Bad Password on loading #i1\n)print flush stopl}ifelse
}ifelse
L YA A AN S NN S YA NS Y AN S YA SN S A AR A Y AN YA AR AN R AN A AR YN A A AN
% Here comes the dictionary
AN YA NS AN A AR NN NSNS AN A S AN SN AR AN AN AR RSN N AN YA AR A AN R A AR S
(Finished downloading #1\n)print flush stop

Note that the new features in DVILW [Martensson 1986b] turns TEX into a powerful preprocessor for
PostScript code, very suitable for creating files such as the one above.

12

1

The TEX typesetting system is a powerful tool in the preparation of the written
word, yet when the time comes to add figures or pictures to a document, one
traditionally had to resort to tedious manual paste-up. With the advent of the
PostScript page description language, which allows the ‘nesting’ of environments
and is rapidly becoming a de facto standard, it is now possible to merge graphics
directly into a document. psfig provides the facility for the nested inclusion of

Incorporating PostScript and Macintosh
figures in TEpX

Trevor Darrell

January 9, 1987

Abstract

psfig/ TrEX is a new macro package for TEX that facilitates the inclusion
of arbitrary PostScript figures into TEX documents. Figures are automat-
ically scaled and positioned on the page, and the proper amount of space
is reserved. For example:

Tty

_ StarLines

N

Custom characters such as ‘@ and ‘@ may be created and used freely
throughout a document. Since the Macintosh drawing applications pro-
duce PostScript, they can be used to create figures.

Introduction

a PostScript figure in a TgX document.

2 Including a figure

To include a PostScript figure with psfig, simply load the psfig macros at the
beginning of your document with

\input{psfig}
then invoke the macro
\psfig{figure=input}

where input is the name of a PostScript file. psfig will automatically position
the figure at the current place on the page, and reserve the proper amount of
space in TEX so that it doesn’t conflict with any other objects.

For example, if we have a file called ‘piechart.ps’ which contains the PostScript
code to draw the chart in the abstract, and it was the first figure in our non-page
reversed document, we would use the commands

\input psfig
\centerline{\psfig{figure=piechart.ps}}

Since no mention of size was made in the above example, psfig draws the figure
at its natural size (as if it was printed directly on a PostScript printer.) The
pie’s natural size is several inches across, which is a little large; the pie in the
abstract was produced with:

\centerline{\psfig{figure=piechart.ps,height=1.5in}}

The height option specifies how tall the figure should be on the page. Since
no width was specified, the figure was scaled equally in both dimensions. By
listing both a height and a width, figures can be scaled disproportionatly, with
interesting results.

For example:

was produced with:

\centerline{\hbox{
\psfig{figure=rosette.ps,height=.8in,width=.15in}
\psfig{figure=rosette.ps,height=.8in,width=.35in}
\psfig{figure=rosette.ps,height=.8in}

SO 1, \éﬂV AOO%
<

s
RN &

(o))
? foel miserable Il foel V@

]

Figure 1. a PostScript figure

\psfig{figure=rosette.ps,height=.8in,width=1.2in}
\psfig{figure=rosette.ps,height=.8in,width=1.5in}}}

2.1 Caveats

For psfig to find the natural size of a figure, the figure must have a proper
bounding box comment; see section 5 below. Draft mode (also detailed below)
should be used liberally to speed throughput. Also, some versions of INTRX will
fail to properly center a lone figure in a centering environment; a good work-
around is to precede the figure with a hard space. On very large documents with
many figures, the printer memory allocated to dvips may have to be limited.
Finally, the \psfig macro will be confused by extra white space or newlines in
its argument.

3 Generating PostScript

Before you can include a figure, however, you must create the PostScript file that
describes it. The most common methods for creating a PostScript figure are to
use either a drawing application such as MacDraw, an image-to-ps or textronix-
to-ps translator, or to directly code PostScript by hand. A brief PostScript
tutorial is included as an appendix.

Grasp Lab

FTT T
Figure 2a & 2b: Macintosh figures.

3.1 Macintosh files

Using a Macintosh (or any other system that supports mouse-based drawing
utilities that use PostScript) is one of the easiest ways of creating a figure
(figure 2a.) MacDraw is the recommended tool, since it produces code that is
independent of scaling (as opposed to MacPaint, which produces a bitmap of the
figure.) There are several known methods of capturing a MacDraw/MacWrite
figure in PostScript form and transferring to the TEX host; most involve some
mucking about with tricky control sequences, one is detailed in the appendix.

MacDraw creates a output file in the form of ‘QuickDraw’ calls, which are
interpreted as a set of PostScript procedures. These procedures are defined in
what is called the ‘macintosh prolog’, which must be prepended to any macintosh
file to be sent to the printer. There is a prolog option in the psfig macro to
specify a file that should be prepended to the figure. The name of the prolog
is, of course, site dependent; we have used ‘/usr/lib/ps/mac.pro’. For example,
if you had a file ‘frog.mac’ that contained the macintosh code to draw kermit
(figure 2b), he could be included with:

\psfig{figure=frog.mac,prolog=/usr/1ib/ps/mac.pro}}

If there are many such figures, it is probable that the repeated inclusion of the
mac.pro file will cause a significant increase in file size and transmission time.
An alternative method is to load the mac.pro file once globally, so that it will be
available throughout the rest of the document. Use \psglobal{\usr\lib\ps\mac.pro}
at the beginning of your document to achieve this effect. For this to work prop-
erly, the \psglobal must be before any Macintosh figures, and the final output

[figs]fancyimage.ps [figs]psfig.ps.1

Figure 3: A bitmap image. Figure 4: Troff in TEX
must not be page reversed. !

3.2 Images (ph), plot, and other sources

Any program that produces PostScript as output can be used for psfig figures.
For instance, the ph program will convert a bitmap image to PostScript form
and thus can be used to include an image in a document (figure 3.)

There are similar utilities that can convert files from unix plot(5) or Tex-
tronix 4014 format into PostScript. The Unix text processor troff produces
PostScript, so one can slice a page out of a Troff document and include it in a
TEX paper (figure 4.) Note that the troff page was processed by the troff coun-
terpart to psfig, and itself contains two images and several PostScript tricks.

4 Draft figures

Certain PostScript figures (such as large bitmap images being transmitted at
9600 baud) can tie up a slower PostScript device such as an Apple LaserWriter

1Tt is possible to use psglobal in page reversed document; place it just before the last figure
in your document. This is living dangerously, and you do so at your own risk.

for quite some time. To circumvent this, a figure may be printed in draft mode,
which will occupy the same space on the page as far as TgX is concerened, but
it will just print the name of the file from which the figure is derived, and will
not actually include it. The macro \psdraft will switch into draft mode, and
all subsequent psfig macros will produce draft figures. The macro \psfull will
switch out of draft mode.

5 Bounding boxes

To properly translate and scale a figure psfig must know its ‘natural’ position
on the page; this information is present in what is called the bounding boz of a
PostScript program. The bounding box is a outer limit to the marks created
by a program, and is specified as four coordinates of a rectangle: the lower-
left = coordinate (bbllx), the lower-left y coordinate (bblly), the upper-right
z coordinate (bburx), and the upper-right y coordinate (bbury). Adobe has
defined a convention whereby the bounding box of a program is contained in a
‘bounding box comment’. 2 This comment, which must be present in any file
to be used as a psfig figure, is a line of the form

%hBoundingBox: bbllz bblly bburz bbury

All values are in PostScript points, relative to the defaulf transformation matrix.
The only mandatory PostScript convention is that the first line of the file should
begin with the characters ‘4" (a ‘4’ begins a comment in PostScript.) A good
place for the bounding box comment is as the second line of the file.

There is a bbfig utility on systems to aid in calculating the bounding box,
refer to the bbfig(1) manual page for further information.

6 Advanced topics

6.1 psfig internal structure

In including a figure, the \psfig macro performs the following operations: First,
if bounding box information (see below) is omitted from the list of arguments,
the file containing the figure is searched and the information recovered from
the bounding box comment. Then, if both height and width are missing they
are computed to be the height and width of the bounding box. If only one is

2See ‘Appendix J: PostScript File Structuring Conventions’ in The PostScript Language
Reference Manual

missing, it is set to be the appropriate value such that there is no distorted
scaling. If rheight or rwidth (see below) is missing it is presumed to be the same
as the height and width.

The \psfig{figure=input} macro uses a vbox in TEX to reserve the space.
The actual inclusion of files is preformed with a \special command to the
dvips postprocessor. Presently, dvips is the only supported post-processor, but
it shouldn’t be to difficult to port psfig to a different postprocessor, presum-
ing similar capabilities and/or access to source code. psfig depends on certain
PostScript function calls; these are downloaded with the \psfiginit macro. Do
not use page-reversing on your output if you are manually initializing psfig with
\psfiginit, or are using \psglobal. It is possible to include these definitions
mto the standard dvips (or whatever) header file; this has been done on our
systems and users need not do a \psfiginit.

6.2 Reserved size

6.3 Clipping

Normally a PostScript program can be expected to not mark the page outside
its bounding box. If this is not the case, or if you want to use the bounding
box to isolate part of a larger figure, there is an option that sets the PostScript
clip path so that no marks will show up outside the declared bounding box.
Currently this is invoked by adding a clause of the form “clip=". Here a slice
has been taken out of the pie chart in the example by specifying a smaller
bounding box and adding the clip option.

Some PostScript programs use the clipping path to position their output on
the page; if a figure is being drawn at its natural size and position despite psfig
commands to the contrary, it may need the clip option.

6.4 PostScript environment

The PostScript environment within psfig is fairly robust. All of the usual
PostScript operators will operate as desired; in particular the operators ‘show-
page’, ‘initgraphics’, and ‘defaultmatrix’ will all behave consistently inside a
figure, except that ‘showpage’ will only do an ‘initgraphics’ and will not print
or erase the current page.

It is very possible, however, for a PostScript program to bypass the psfig
environment and disrupt a document. These cases are infrequent, and a ‘work-
around’ solution can usually be found.

7 Acknowledgements

Ned Batchelder co-developed the original troff version of this program with the
author, and was responsible for much of the overall design. Greg Hager provided
an initial TpX implementation. Figure 1 and the three broken out figures in
the abstract were taken from examples in The PostScript Language Tutorial
and Cookbook. The image in figure 3 was designed by Kamran Manoochehri,
rendered with CARICATURE, by Cary Phillips.

Appendix A: PostScript Overview

Coding PostScript by hand gives you the most control possible over the shape
and appearance of the figure; for example, few conventional document prepara-
tion packages could produce the graphic in figure PostScript is a stack-oriented
language, very similar to Forth and RPN in the way that arguments are han-
dled, yet it features strong typing and higher level control structures. It has
an advanced imaging primatives, based on a stencil and paint imaging model.
Objects are rendered on the page by applying paint, which can be any color or
sampled image, through a stencil, a closed geometric path that limits where the
paint should go. For example, a line can be described as applying black paint
through a long thin stencil. This generality is preserved throughout PostScript,
including in its treatment of fonts, but that does not prevent PostScript imple-
mentations from taking advantage of special cases for efficiency considerations.
Rarely would an actual PostScript interpreter draw a line by creating a thin
rectangle and performing a fill operation; what is important is that its behavior
can be perfectly characterised as if it had.

PostScript has a full complement of data types, operators, and control struc-
tures. In general, arguments are pushed on an operand stack, then popped off
and acted on by an operator or procedure. When PostScript encounters an
object it can’t execute immediately (such as a number or a string), it is pushed
onto the operand stack. Thus, to provide parameters to an operator, simply list
them before the operator name. Thus PostScript (like forth), is a prefix lan-
guage. All expressions are thus unambiguous, and the syntax is very efficient
to interpret.

For instance, arithmetic is easy:
2 2 add

would leave a ‘4’ on the operand stack. Similarly, to add ;_‘_—'%+ 13%9, you would
type

1 2 add 2 3 add div 13 9 mul add

In addition to numbers and operators there are several different types of
objects that PostScript supports. A string, for instance, is denoted by text
enclosed in parenthesis. An array of objects is denoted by brackets, and a pro-
cedure by braces. An identifier that is not a number, string, or composite object
is a name object. There are two types of name objects, ezecutable, meaning the
value or procedure associated with the object will be evaluated immediately,
and literal, which is not evaluated. A literal name has a ¢/ prepended to it, and
is pushed directly on the operand stack, while an executable name is looked up

on the dictionary stack, and its associated value placed on the operand stack.
A dictionary is a data structure that associates key - value pairs. All operators,
variables, and procedures are referenced through the dictionary stack, which
essentially establishes the hierarchical naming environment in PostScript.

There are always at least two entries on the dictionary stack: the system
dictionary and the user dictionary. The system dictionary contains all the bind-
ings for the built-in operators, while the user dictionary holds user variables and
procedures. A PostScript program is free to modify the user dictionary (and to
add new entries on the stack), but can not write to the system dictionary.

Assigment is with the def operator, which takes a literal name and value
and stores it in the topmost dictionary; to initialize 7 you could say

/pi 3.14 detf

After this def, typing the executable name pi will cause PostScript to look up
that name in the dictionary stack and place 3.14 on the operand stack. 3 For
instance,

Pi r 2 exp mul

would evaluate 7nr? (of course, if r had not been defined, an error would have
been generated).

The PostScript language has a rich collection of operators, including the
usual stack operators (pop, dup, exch, ...), arithmetic operators (add, mul, sin,
...), and control operators (if, loop, for ...), as well as more advanced operators
for manipulating dictionaries, arrays, strings, and files.

While PostScript has all the capabilities of a general purpose language, it is
first and foremost a page description language, and as such has a whole range
of operators that manipulate the graphics state and place marks on the page.
All values given to graphic primitives in PostScript are transformed through the
currenl transformation matriz (CTM) before any marks are made on the page.
Thus the CTM establishes the scale and orientation of the coordinate system in
which a program will run. The default PostScript CTM produces a coordinate
system in PostScript points (PostScript points are the same as ‘big points’ (bp)
in TEX- 72 to the inch) with the origin in the lower left hand corner of the page.
The CTM can be scaled, rotated, or translated dynamically by a PostScript
program.

3The value need not be numeric; it may be a string, array, or procedure, among other
things.

10

newpath

50 50 moveto

150 50 lineto -
100 150 lineto

closepath stroke

showpage

/\

Figure 5: a sample PostScript program.

An important object in the graphics environment is the current path, an
internal PostScript data structure that keeps track of geometric shapes. The
current path is composed of an arbitrary number of connected or disjoint line
segments, curves, and Bezier cubics.

"The newpath operator clears the current path, and the moveto operator will
move the current point to an arbitrary location. Moveto takes two arguments,
an x and y location on the page, so to move to (307,397) you would say 307 397
moveto. Exactly where (307,397) is on the page depends on the CTM; with the
default matrix, it is roughly at the center of the page.

From the current point, an x y lineto will add a line segment to (z,y) on
the current path, or a closepath will add a segment back to the first point
in the path. To create arcs and circles, a x y r angl ang2 arc will add a
counterclockwise segment from angl to ang?2 of a circle of radius r whose center
is at (z,y). Note that none of these commands actually mark the page; they just
build up the path structure. Two operators which will mark the page according
to the current path are: stroke, which will draw a line along the current path,
and £i11, which will paint the region enclosed by the current path. Figure one
depicts a sample PostScript program and its result.

Text can be equally as simple; first, you must set up the current font.

/Times-Roman findfont 10 scalefont setfont

11

would set the current font to be ten point roman. A string can be printed at
the current point using the show operator. In PostScript strings are delimited
by parenthesis.

When a PostScript program has completed putting all useful marks onto a
page, it should execute the showpage operator, which causes the printer to print
and eject the current page. '

Thus, to label the vertices in our triangle, we could modify our program as
follows

newpath

50 50 moveto

150 50 lineto

100 150 lineto
closepath stroke
/Times-Roman findfont 10 scalefont setfont
45 55 moveto (a) show
155 B5 moveto (b) show
96 55 moveto (c) show
60 35 moveto

(The Triangle ABC) show
showpage

which would produce:

The Triangle ABC

This overview was only meant to give a flavor of the PostScript language,
and therefore has only touched on the simplest of it’s commands. For a more
thorough introduction, consult the PostScript Language Tutorial and Cookbook
and PostScript Language Reference Manual from Adobe Systems.

12

Appendix B: Capturing PostScript files from a
Macintosh

In general, a PostScript file can be transferred from a Macintosh to another host
using any of the popular terminal emulators and a serial line. We have used
MacTerminal and Kermit without any problems.

Slightly trickier is getting the PostScript into a file on the Macintosh. For
MacDraw and MacWord (and perhaps others), there is an undocumented “fea-
ture” whereby the PostScript code can be diverted into a file rather than being
sent to a printer. Immediately after clicking ‘ok’ from the print menu, hit
clover-F; the code will be placed in a file with the name “PostScript” (there is
no known way to change this). Clover-K will capture the file and the lengthy
prolog mentioned above.

13

NAME
psfigTeX — PostScript figures in TeX

SYNTAX
\input psfig
DESCRIPTION
psfigTeX is a package that allows easy inclusion of arbitrary PostScript code into a TeX document. Fig-

ures are automatically scaled and translated, and the correct amount of space is reserved so nothing

contflicts with other text on the page. The dvips postprocessor must be used to create the final PostScript
output.

USAGE
To include a postscript file, invoke the psfig macro ““psfig{figure=fig.ps}’’, where ‘‘fig.ps’’ is the name
of a PostScript file. Options may be specified in the form ‘“\psfig {figure=fig.ps,opt=val,opt=val...}"";
recognized options include height, width, prolog, and postlog. If a height but not a width is given or
vice-versa, the figure will be scaled equally in both dimensions; if niether is given, the figure’s
“‘natural’’ size will be used.

For psfig to properly scale and move a figure, it must be able to tell what it’s natural size and position on
the page are. This is usually specified by the bounding box comment in the PostScript file. Unfor-
tunately, some applications (including MacDraw) do not provide this information. If your figure doesn’t
have a bounding box comment (a line starting with %%BoundingBox:), it cannot be used by psfigtex.
The bbfig utility can calculate the bounding box of a file (so can a ruler). See the bbfig(l) manual page
for information on the correct format of the comment. Usually the bounding box comment is the second
line of the file.

MACINTOSH FIGURES
Macintosh figures require a prolog file to be downloaded containing PostScript procedure definitions.
Use the option ‘‘prolog=/usr/lib/ps/mac.pro’’ to achieve this. See the psfigtex paper for more detailed
information, especially if there are many mac figures.

DRAFT MODE
If a figure is very expensive to print (say a 100K image) it can be set in draft mode, printing just the
name of the file. The macro \psdraft switches into draft mode and \psfull returns to full mode. Use of
draft mode is highly encouraged.

BUGS
The ““\psfig{...}’* command must be entirely on one input line, and no extra spaces may appear in the
option list,

When a *“\psfig’* command is used alone in a centering enviornment, it must be preceded by a hard
space ‘‘\ **. This may be a LaTeX bug.

On very large documents, the laserwriter has been known to run out of memory and only print a portion

of the document. Use the printer memorysize command to dvips to limit the amount of memory dvips
thinks it can use.

AUTHOR
Trevor Darrell
SEE ALSO
TeX(1), dvips(1), LaTeX(1)
DVILASER user’s manual
T. Darrell, Incorporating PostScript and Macintosh figures in TeX

0-1

