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1. Introduction

Plane projective geometry treats properties of geometric figures that are in-
variant under certain transformations, the ”projectivities”. The classical the-
orems often deal with incidences of points and lines. On the contrary, metrical
concepts, such as distance and area, have less natural sites in projective geom-
etry. One well known exception is the cross-ratio, relating distances between
colinear points. In this paper similar relations will be derived for the areas of
certain plane figures. Analogous results will also be obtained for intervals on
the line and volumes in higher dimensional spaces.

The plan is as follows. In Chapter 2 the very concepts of area and invari-
ance are discussed. We start in Chapter 3 with the projective line, to illustrate
the geometrical ideas and the relation to the cross-ratio. The projective plane
is treated in Chapter 4. Chapter 5 is devoted to the general n-dimensional
case. In Chapter 6, finally, we consider area-invariants for conical sections in
the plane. As our main results we consider the theorems of Chapters 4 and
6, dealing with the projective plane. (This is also the reason for choosing the
word ”area” in the title.)

The present work has its origin in image analysis. There the scene is pro-
jected through a camera lens to form an image. The problem is to recognize
objects in the scene by measurements in the image. Our goal is to find certain
classes of objects suited for recognition by computer vision. These objects can
be used as sign posts or marking symbols in the applications. For reasons
of error robustness and existing hardware, area measurements are preferable.
The regions of interest must be identified in the image before the area measure-
ments can be done. Different identification methods are available, but they
are all more successful in images with high contrast. Especially well suited are
marking symbols composed by regions with non-intersecting boundaries. (In
particular such symbols may be colored by means of black and white only.)

Figure 1.1 An example of a feasible object and a possible image of it

Figure 1.1 shows one feasible object and a possible image of it. This sym-
bol, composed by inscribed triangles, and also symbols composed by inscribed
rectangles, were studied first in Nielsen [N] and later in Nielsen-Sparr [N-S].
There the formulas in Lemma 4.1 (ii) and Theorem 4.2 were derived for per-
spectivities. A forthcoming article will concentrate on the application of the
present results.



In the growth of this article a particular role has been played by the
symbolic manipulation program Macsyma. It was especially useful in the first
discovery of area-invariants in [N], and has also been used for experimental
purposes thereafter.



2. Areas and Invariants

2.1 Preliminaries

The n-dimensional projective space IP™ is defined as (R™! \ {0})/ ~, where
t~ys z=90y,0# p € R. (In other words IP™ consists of all non-zero
(n+1)-tuples of real numbers, identifying proportional ones.) This will be the
fundamental set for this work. The n-dimensional affine space A" is obtained
from IP™ by deletion of one specific hyperplane £% a;z; = 0. What remains of
IP™ may then be represented by e.g. the hyperplane 7, : Tloyz; = 1in R,
This set thus serves as one possible model for A™. On the contrary, an affine
space Ty : 2% a;z; = 1in R™!, augmented with the lines through the origin in
the hyperplane £§ o;z; = 0, makes a model of P™. Here the latter hyperplane
is called "the plane at infinity”. Introducing in A™ a concept of orthogonality,
one obtains the Fuclidean space IE™. Here it is possible to compare segments
on different lines.

Given a set S and a group G of bijections on $, by a geometry is meant,
loosely speaking, the collection of all properties involving elements of S which
are preserved under all transformations of G. In projective geometry the set
S is IP™ while the group of transformations G is PGL(n) = GL(n + 1)/ ~,
where A ~ B & A = 0B,0 # o € R. (In other words, PGL(n) consists
of all square non-singular (n 4 1)-matrices, identifying proportional ones.)
Elements of PG L(n) are called projectivities. In affine geometry S is A™ while
G is the subgroup of PG L(n) consisting of transformations leaving the plane
at infinity invariant. ‘These are called affinities. In Euclidean geometry the set
S is IE™ while G is the subgroup of the affinities whose elements are distance-
preserving. These are called isometries.

By definition, distance between points is thus a property dealt with in
Euclidean geometry. On the contrary, in affine geometry it is not possible
to compare distances between points, unless they all lie on the same line. In
projective geometry even the concept of distance remains to be defined.

It is somewhat remarkable that the concept of area (the term area will
also sometimes be used for volumes in higher dimensions) makes sense in affine
geometry, despite the fact that in elementary geometry it is usually defined
in terms of distances. This is so because, once coordinates are introduced,
the definition of area is a purely analytical matter of measure and integra-
tion theory. In particular the frequent use of rectangular coordinates, and
rectangular areas, in the definition of the integral is immaterial. Under affine
transformations areas are changed by a factor equal to the determinant of
the transformation matrix only. Hence it is a ”relative invariant” in affine
geometry.

For projective geometry the question arises to what extent the concept of
area in an affine space can be transferred to a projective space, claiming the
existence of area-relations that are invariant under projectivities. For n = 1
the cross-ratio makes an example. Analogous expressions were also studied for
triangles and tetrahedrons in Méobius [M] ”Der barycentrische Calcul” (1829).
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Else, although a natural problem, it seems to have been little studied. An
effort is made in this paper.

2.2 Areas

We start with an example.

ExampPLE 2.1
Let Ag, A1, Ay be three points in a plane 7 in the Euclidean space IE3. The
points are represented by their coordinates. Suppose that the origin O g .
Then
det(Ao, A1, A2) = the volume, with signs depending on the orientation, of
the parallelepiped spanned by the vectors OAg,OA;,04; =
6-(the volume of the tetrahedron with vertices in (O, Ao, A1, A3))=

3-(the area of the triangle with vertices (Ao, A1, A2)) - (the distance be-
tween O and 7).

In other words, apart from a factor of proportionality, det(Ap, A1, A2) mea-
sures the area of the triangle in 7, having vertices in Ag, A;, 4,. O

The same argument in a general Euclidean space IE"*! shows that, given
n+1 points Ao,..., Ay in 7, then det(Ay, ..., A,) measures the volume (with
signs) of the polyhedron in 7 with vertices Aqg,...,A,. A calculation of this
volume by integration would of course lead to the same formula. However, as
was pointed out above, the rules for integrals do not depend on the Euclidean
structure, and thus will give the same result in affine spaces. This observation
allows us to think of det(Ay,...,A,) as the signed volume of a polyhedron,
even in the affine case.

Under affine transformations of r all volumes are changed by a com-
mon factor, the determinant of the transformation matrix. One thus arrives
at the first invariancy result: For any two (n + 1)-tuples (Ao,... ,Ap) and
(Bo,...,By) in 7, the quotient

det(Ao,...,An)/ det(Bo,...,B,)

is invariant under affine transformations on 7. An equivalent statement is that
the quotient of the volumes of two given polyhedrons is independent of their
coordinate representations.

We now turn to projective spaces, where the notion of area/volume has
no a priori meaning. A definition will be made, inspired by the above affine
considerations in the case 7 : X¢ ; = 1. This plane augmented with the plane
at infinity % 2; = 0, will then serve as a model for IP".

For X = (zo,...,2,) € R, put

n

o(X) = wy (2.1)

0

Further, for X, ..., X, € R", put

det(Xo,....Xn) -
2ot x,,) if 9(Xo)...0(X,) # 0

§(Xo,...,Xn) =<0 if det(Xo,...,Xn) =0 (2.2)
00 if det(Xo,...,X,) #0,
o(Xo)...0(X,) =0



Here one notices that, by homogeneity, § is in fact a function on IP" x . .. x
IP™ (n+1 times). This fact alone does not qualify it to be a meaningful object
in projective geometry. For this also some sort of projectivity invariance is
needed. Clearly é standing for itself does not have such a property. However,
there are equations involving several §-expressions which have (cf. e.g. The-
orems 2.1 and 5.1). Thus, when appearing together with others in such an
equation, § gets a projective meaning. Here it can in fact also be interpreted
in terms of affine volumes. To see this, denote by A; the representative in
for A; € IP™, not a point at infinity, s = 0,...,n. Then § has the following
interpretation

the signed volume of the polyhedron
with vertices Ao,..., A, if
0(Ao,...,A,) = no A is a point at infinity.
0 if the (n + 1)-tuple is degenerate
oo if some Ay is a point at infinity

The particular choice of 7 : 3 0 2; = 1 may seem somewhat arbitrary at
first sight. However, the discussion above may also be formulated in terms
of coordinate changes instead of mappings. (Both operations correspond to
premultiplication by a matrix.) In the new coordinate system the role played
by = will be played by another plane. (In particular, premultiplication by a
diagonal matrix will correspond to a perspectivity between the two planes.)
The invariance equations mentioned above will relate, in the old and new
planes, the volumes associated to a given set of (n + 1)-tuples. When dealing
with invariancy, it is thus no restriction to consider the particular plane =
only.

Compared to the affine case, there are some problems to describe the
regions in IP™ having the points Ay, ..., A, as vertices (”sense-classes”, cf. [V-
Y] vol II, Ch IX). To avoid these considerations, we will argue in terms of the
points themselves. In concrete cases, for n = 1,2, there will be no difficulty to
make the region interpretation (cf. Remark 4 after Theorem 4.1).

We have now motivated the following two definitions. (Strictly speaking,
the terminology of the second one will not be fully justified until the end of
this paper. The postfix "ad” in the first one is borrowed from Veblen-Young.)

DEFINITION 2.1 By a polyad in IP™ is meant a non-degenerate ordered (n+1)-
tuple of points in IP™

A= (4o,...,A45).
If n=1,2,3 also the terms dyad, triad, and tetrad will be used. O

DEFINITION 2.2 The volume of the polyad is defined by egs. (2.1) and (2.2).
For dyads and triads the terms length and area will also be used. O

Our first theorem on area-invariance will be formulated in terms of the
following concept, cf. [V-Y] vol I p. 55 or [M] p. 266 ff.

DEFINITION 2.3  For given points X,Y and a polyad A in IP", the following
collection of cross-ratios is formed for 4,5 = 0,...,n, i # j,

kij = kij(X,Y;A) = kij(X,Y; Ao, ..., An) =

_8(Aoye. s Xy s An) J8(Aoy.. Y. A) (2.3)
8(A0s--1 Xy 1 An)/ (Ao, Y, An)
M) J




In particular, if n = 1, we write CR for ko i.e.

6(Ao, X) /6(Ao,Y)
0(X, A1)/ 8(Y,4A)
The cases when the values 0 or co appear somewhere are treated by the natural
limit conventions. O

Remark. 1If n = 1, by the discussion above, all the §:s can be interpreted as
lengths on a line. In particular, we recognize CR as the familiar concept of
cross-ratio on IP1. a

CR(X, Y; Ao,A1) = k‘10 = (2.4)

THEOREM 2.1 The cross-ratios k;; are invariant under projectivities. 0

Proof: To fix the ideas let » = 2 and consider k2. Let T € PGL(2) and
X,Y, Ao, A1, Az € IP2. Suppose at first that no three of the points are colinear
and that none of them or their images under T is a point at infinity. Fixing
representatives of the points and the projectivity, one has

klg(TX, TY, TA(), TAl, TA2) =

_ 8(TA0, TX,TA3) | 6(TAo, TY,TAs)

~ 8(TAo,TA1,TX)/ 6(TAo,TAy,TY)
det T'det( Ag, X, A2 det T det( Ag,Y, Az

det T’ det(Ag.A1 ,X) det T det(Ag,4;,Y
a(TAp)o(TA;)e(TX) a(TAp)e(T Ar)o

_ det(Ao,X, Ag) det(Ao, Y, Ag)
 det(Ag, A1, X)/ det(Aq, 41,Y)
The last expression also equals ky2(X,Y;40,41,42), which is shown in the

same way. This proves the theorem under the imposed extra assumptions. By
limit considerations the result is proved for general projectivities. O

EXAMPLE 2.2
Let n = 2. Consider the two figures in Figure 2.1.

Figure 2.1 Objects that have an area-invariant k1. However, the regions have
intersecting boundaries

There we have
. 8(Ao, X, A2) /6(Ao,Y, A3)
- 6(/101 AlaX) 6(1403/‘11:},)

where each factor can be interpreted as sums of areas of shaded or dotted
regions in the figure. The same value of k15 will be obtained after any projec-
tive, and in particular any perspective, mapping of the points. O
This could be utilized for our purposes, described in the introduction.
However, a marking symbol relying on this example does not fulfil the par-
ticular claims we posed there. Instead we proceed by studying regions with
nonintersecting boundaries (where it is possible to use two colours only).

12
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2.3 Invariants and elimination theory

The word ”invariant” has many meanings in mathematics. E.g. in classical
algebraic invariant theory, given a subgroup G' of GL(n), the term is used for
polynomials p such that

p(gz) = kep(z), z € R™ g€G.

Although we too deal with polynomial invariants under a group of transfor-
mations, our concept does not adhere to the one above. In this section we
precise what we mean, and at the same time give an abstract setting for our
construction of invariants.

To every point P and hyperplane p of IP™ we assign a one-parameter
subgroup of projectivities

My = (Ih,i0# t € R)
(homologies, cf. Definition 4.1 below). A group action on the set of all polyads
is defined by
H}t:’pA = A;, where A= (Ao,...,Ap),
A= (Hby Ao, Hb AL

We will show (cf. Lemma 4.1) that the "orbits” A;, ¢ € IR, are constrained by
certain polynomial equations

R(Xt1/6(A))=0 (2.5)
where
Ae Rt = (tg,...,t,) € R™H!
1/6(Ay) = (1/6(Ag),---,1/6(As,)) € R™FE

Here A, the ”configuration coefficients”, depend on P,p, A. In forming 6, the
choice of affine basis in 7 may depend on .A.

Now fix P,p and A. Let T € PGL(n) with TP = P, Tp = §, TA = A,
and let X be the configuration coefficients associated to P, p, .A. Along with
(2.5) holds

R (%51/6(4)) =0 (2.6)
where § is assigned to A. Since § and § measure volumes in two different affine
bases for 7, they are proportional. It will turn out that R is homogeneous in

1/6. Hence § may be replaced by & in (2.6).
Suppose that Hp, and 'H}s'ﬁ are conjugate and that, more precisely,

THp,T™' = HL
(cf. Lemma 4.3 below). Then
Ar=Hp . TA=THp, A=TA
Suppose further that A = A\. Then (2.6) says that

R(\t;1/6(TAy)) = 0 (2.7)



This then holds independently of T'.

To sum up, given P,p, A and ¢, i.e. keeping fixed the first two groups
of variables in (2.5), we have a polynomial equation in the remaining ones
1/6(As). By eq (2.7) this equation (2.5) is unaltered by projectivities. In
other words we have constructed an algebraic manifold to which 1/6(T.A;)
will belong for every T € PGL(n). This manifold will be our invariant.

For particular values of A, the polynomial R will in fact be linear in 1 /6.
The number m + 1 of t-variables will equal n + 2 in the situation above.
Replacing A by other configurations it is sometimes possible to carry out the
same construction. For n = 2, this will be done below in two cases, cf. Section
4.3 and Chapter 6.

We may also describe, in general terms, the procedure for finding R. First,
for t € IR we express 1/8§(TA;) as a polynomial in some parameters describing
T. Combining a set of such equations, corresponding to different t:s, one gets
a system of homogeneous polynomial equations in the T-parameters. The fact
that this system has a nontrivial solution imposes conditions on the coefficients
of the polynomials. These conditions will serve as the invariants searched for.
To determine them, we will trust on a tool from classical algebra, namely
”elimination theory”, cf. van der Waerden [vdW] Ch XI or Hogde-Pedoe [H-
P] Ch IV. (For the first reference, this chapter is only to be found in the three
first editions, before 1955.) For the sake of reference, we formulate

Elimination lemma: Consider a general system of n homogeneous polynomial
equations

fi(z)=0,...,fa(z) =0 (%)

where = (21,...,%,). Then there exists an irreducible polynomial R with
integer coeflicients and the coefficients of fi,..., f, as variables such that

(*) has a non-trivial solution < R(coeff. of(¥)) =0

If deg(f;) =n, ¢ =1,...,n, then R is homogeneous of degree n(n — 1) in the
coefficients of f;, i = 1,...,n. R is called the resultant of (*). O

If all f;:s are linear, then the resultant coincides with the determinant of
the system. If n = 2 then R may always be expressed as a certain determinant
in the coefficients (cf. the proof of Lemma 3.1 below). The computation of
R for n > 2 is in general a formidable task, cf. the remark after Lemma, 4.1.

A possible procedure, built upon the elimination of one variable at a time, is
outlined in [H-P] p 159 fF.



3. The Projective Line

In this chapter we derive certain projectivity invariant relations between the
lengths of certain intervals on the line. Relying on a geometric picture, we
treat perspectivities by themselves. Parts of our results, namely those for
translated intervals, will in fact be valid in that case only.

3.1 Perspectivities

Let £, £’ be two lines and O & £ U £ a point in the affine plane, cf. Figure
3.1. Augmented with points at infinity, the lines may be thought of as models
for P!, Let P, A’, B', with A’ # B’ be three points on #. P’ may coincide
with A’ or B’. Under the perspectivity with center O the points P’,A’,B’ are
mapped on P,A,B respectively. Let p be the point on £ corresponding to the
point at infinity on £, i.e. such that Op is parallel to £'.

Figure 3.1

Our construction of invariants will be carried out by means of two types of
homothetic transformations on ¢/, dilations (the main case) and translations.
( [C] and [H] serve as general references on these and other transformations
appearing later, where [H] emphasizes the group theoretic point of view.)

Dilations

By a dilation on ¢ with center P’ and scale t is meant a mapping
Hpi: X' — X, where P'X|=1tP'X' (3.1)
This can also be expressed as OX[ = (1 — t)OP’ + tOX'. In particular
OA, = (1-t)OP + tOA
OBl =(1-1)0P'+t0B’

Then e.g. Ay = P/, A} = A'. Let A;, B; be the corresponding points on £.
Our aim is to derive, for a set of values of ¢, certain relations between the
lengths of the dyads (A, B:), cf. Figure 3.2. These relations shall be valid for
any perspective image of £



Figure 3.2

On £/, let OP" = M\OA"+ pOB’, A+ p = 1. Then

(1-t)A+t)0A"+ (1 - t)uO B’

OAL = (
OB =(1-t)A\0A + ((1 - t)p+1)OB

Now fix a coordinate system O, 04 = %OA’, OB = %OB’, in the plane, cf.
Figure 3.1. The line £ then has the equation # + y = 1. In the corresponding
homogeneous coordinates holds

At = (1= t)Aa + ta, (1 - t)uf)
Bi = (1= t)Ae, (1 - t)pup + 18)

Application of § (Definition 2.2) yields

1
(1 =t)(Aa+ pf) + ta)((1 - t)(Ae + pB) + t0)
(1-1t)Aa+ ta (1=t
(I-us  (1-t)ub+1tp
Here the unit 6( Ay, By) is included for homogeneity reasons. To achieve ho-

mogeneity in ¢ also, we replace Ay, By with A4, By, and substitute ¢/t for ¢.
An algebraic computation gives

(5(At, Bt) =

0(A1,B1)

((to = 1)287 + #(to — )S151 + 1283) - 6(As, By) = Satto - 6( Ay, By,) (3.2)

where 5
Si=a+p8, 8= af, S1=la+ upo (33)

Equivalently we may write
(ata2 + bta,@ + Ctﬂz) . (5(At, Bt) = ttoaﬁ - (5(At0, Bto) (3.4)

where a; = At — t)((to — A + 1)
by = 2(to — £)?Ap + thg (3.5)
¢t = p(to — )((to — ) + 1)

LEMMA 3.1 With the notation introduced above, for any perspective image
of ¢’ hold the relations:

10



(i) fA=1,p=0(ie. P=A= A, t € R), then

to(t —ta) | ti(ta —t0) | talto—t1)

=0 3.6
(5(A7Bt0) 6(A>Bt1) 6(‘4’3‘?) ( )
ii) If A= pu=1/2, then
7
o —1) (B -1%)  t@@-1%) _ 0 (3.7)

6(/130‘3#0) 6(A!th,1) 5(A12a-8'£2) -
iii) For general A, p holds, using the nbtation o¢, = 0( Ay, By,),
g M t t t

ay by [61y — tot1 /84, | | bsy [0ty — tot1 /8y, ey,
at, biy /by, — tota/by, | | bs, /b4y — tota/81, e,
. = (3.8)

. =0
62,

atl Ctl

at2 Cty

O

Proof: The proof relies on (3.2) or equivalently (3.4). We follow the path

outlined in Section 2.3. Since the perspectivity is uniquely determined by the

non-zero numbers « and B, “invariants under perspectives” must be indepen-
dent of a, 5.
Writing

mi = 6(At7Bt)/6(Ato, Bto) (3'9)

the basic formula (3.2) becomes
(to — t)28% + #(to — )51 51 + t(t — ;—0)52 =0 (3.10)
t

Although (i) and (ii) are special cases of (iii), we prefer to treat them sepa-
rately.

(i) If A= 1,4 = 0, then (3.10) simplifies into
1

(to—t)a+t(l——)B=0 (3.11)
mye

Putting together two such equations, corresponding to t = t; and ¢ = t,, one
gets a homogeneous system of linear equations in the unknowns o and 8. This
system is known to have a nontrivial solution, determined by the geometrical
construction above. Hence the determinant of the system is zero, i.e.

to—t t(l— L

TI’Ltl _ 0
to—t2 to(l -

mtz
Expansion of the determinant directly gives (3.6).
(ii) If A = p = 1/2 then Sy = $1/2 which simplifies (3.10) into
t
(13— 12)52 + 4t(t — m—°)s2 =0 (3.12)
t

By the same argument as above, combination of two such equations yields

1
2 -2 4t1(t1—afl— 0

) =
td—12 dta(ts — 7

11



Expansion of the determinant gives (3.7).

(iii) Combination of two equations (3.4), corresponding to t; and t2, gives a
system of two homogeneous polynomial equations of second order in o, 8. This
system is known to have a non-trivial solution. By the Elimination lemma (cf.
Section 2.3) this happens if and only if the resultant of the system vanishes.
But here, in the case of two variables, the resultant can be written down
explicitely as (cf. [vdW] Ch XI)

Gty bt1 - totl 6,50/6731 Cty 0
0 as, bey = tot1bse /b e | _ (3.13)
at, bi, — tot2dy, /bty Cta 0
0 ay, btg - t0t26to/5tz Cip
This determinant is easily rewritten as (3.8). O

Remark 1. The case (i) is in fact the ordinary cross-ratio relation for CR
(cf. Definition 2.3 and Theorem 2.1). To see this, note that the sum of the
nominators in (3.5) is zero. Hence

1 1 1 1
N 5E By " 5By T G By T i By

t1(t2 —

or, equivalently (cf. Figure 3.3)

J(PaBio) — 6(P:Biz)/6(PaBio) — 6(P:Bt1) — to — t2/t0 !
5(P, By,) 5(P, By,) | &

(3.14)

But here (5(P, Bto) —6(P, Bt1) = 6(Bt1 ) Bto)7 5(P, Bto) —6(P, Bt2) = 6(Bt2, Bto)
by the geometric interpretation of . The left hand side in (3.14) is thus the
cross-ratio (2.4), and we have reproved that it is invariant under perspectivi-
ties. (The possibility of expressing the invariance of cross-ratios by a formula
like (3.6) was known already by Mébius [M], ”Von der metrischen Relationen

im Gebiete der Lineal-Geometrie” (1829).) O
\ ‘O _tO _fl -t g
P
B8
t
0
Figure 3.3

Remark 2. The case (ii) relates the lengths of perspective images of dyads
with a common center. For reasons that will be apparent in the next chapter
(cf. the remark after Theorem 4.1), we will call this the polar case.

The polar case (ii) and the cross-ratio case (i) are not as independent as
they may seem. In fact (i) can be derived from (ii) as a limit case P — A,
p — A. Likewise (ii) can be derived from (i).

We prove the latter statement using a process that also works in certain
cases in higher dimensions, cf. Section 4.3. On ¢ in Figure 3.4, change the
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notation B’, B] into B'*, B/t  and introduce corresponding points B'~, B’
symmetrically spaced around A’. With obvious notations on £, the equation
(3.11) may be written (it suffices to consider the case ¢y = 1)

§(A, B} _ aftt
6(A,B*)  (1-ta+16+
§(A,BY) af~t

6(A,B-)  (1-t)a+tp8-

B” By A B’t“ 8t ,
\ '~ B, ; Ak £

Figure 3.4
The fact that §(A’, B't) = —§(A’, B'") yields
afté(A,BY) = -afB6(A,B7)
BT +87 =20
Denoting the common value of the members of the first equation by ¢ we get

6(Bt_7B?-) = 6(A7B?-) - 6(A7B;) =

- ((1—t)a+tﬂ+ + (1-t)a+ sﬁ—) -
451t

T M- ®)82 1 425,

with §; = g+ +6~, 8, = 3. Insertionof t = 1 gives ¢ = §26(B~,B1)/ 51,
which in turn gives eq (3.12). m|
Remark 3. The cases (i) and (ii) are the only situations where (iii) reduces
to a linear relation in 1/6;. This happens if and only if completion of squares
in (3.8), as a quadratic form in 1/6;, gives only two quadratic expressions of
different signs. This in turn happens if and only if either the first term in (3.8)
is a square in itself of the second cancels. In both cases the condition is that

a, Cy -0
Ay, Ciy
for all ;,%;. We obtain A=0or u =0 or A = p. O

Remark 4. Two points A, B divide the projective line into two ”intervals”.
One of these, the one that not contains the point at infinity, may be called
the ”finite” one. Under a perspectivity a finite interval may be mapped onto
a non-finite one. This situation is reflected by a change of signs in 8, but does
not alter the validity of the lemma. It is in order to avoid such considerations,
irrelevant for the invariants, that we talk about dyads instead of intervals.
These aspects are still more accentuated in higher dimensions. O
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Translations

Now consider dyads on £’ obtained from each others by translations. Thus let
the points A'", B'™ be defined by

ATAT = 7AB’, BB" = 1A

(The vector A’B’ thus serves as unit.) Let A”, B™ be the corresponding points
on £. The relation between §(A”, B™) and 6(4, B) can be derived either di-
rectly or as a limit case of Lemma 3.1. We do it in the latter way. From
OP" = NOA' 4+ uOB’, A + p = 1, follows that A7P’ = pA'B’. Consider
dilations with center P’. Choose ¢ so that A, = A", i.e.

t = PTATPTAT = (WA" + PAN/PA =1—1/p.
By (3.2) holds, with tq =1,

(/w53 + (1= /u)(7/w)$151 + (1 — 7/p)?S2) - 6(Ay, By)

= S(—r/p)-64,8) O

Now let u — co. Then the 7-translation is obtained as a limit of the dilations
above. In particular A; = A", B, — B". Moreover

Si/p=((1-wa+pB)/p — f-a
Equation (3.15) yields, in the limit,
X8 — @)’ + 7(B* — a®) + aB(1 - §(A, B)/6(AT,BT)) = 0
or equivalently
o?(r* = 1)+ BA(r? + 1) + af(1 — 2r% - §(A, B)/6(AT, B7)) = 0. (3.16)

Put
a"=71*-7, b"=1-2r% =747
6" =6(A",B"), é=6(A,B)

Combining two expressions (3.16), for 7; and 72, exactly as in Lemma 3.1, case
(iii), we obtain
LEMMA 3.2  With the notations introduced above, for any perspective images
of translated intervals on ¢' hold the relation

a™ bM/6—1/6m

a™ b2[/§—-1/6m

b7 /6 —1/6m em
b2 /6~ 1/6m
1/ [ e (3.17)

-5 =0

aT] CT]_

a T2 c T2
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3.2 Projectivities. Homologies

We are now going to study projectivities on £, considered as a model for IPL.
We will prove that the formulas of Lemma 3.1 remain true when a projectivity
is applied to all appearing points Ay, B;. (Concerning Lemma 3.2, cf. the
remark ending this section.) In formulating such a result, no reference must
be made to £’ or the specific perspectivity used.

In Lemma 3.1, as we have seen in Section 2.2, the §:s describe intrinsic
properties of the line £ itself. (Note that a change of reference points on £ will
change the values of all § by a common factor, which not affects the validity
of the formulas.) However, the other ingredients, A, u,t; of the lemma refer to
¢" and the perspectivity of ¢ onto £. To get rid of this dependence, note that

t = CR(A}, A", P',00") = CR(B}, B'; P',00")

where 0o’ denotes the point at infinity on #/. Taking into account the invariance
of the cross-ratio under the perspectivity ¢ — £, the following concept seems
adequate to describe the situation on £.

DEeFINITION 3.1 By a homology with center P, axis p, scale t, is meant the
mapping

P—P
p—p
where X; is the unique point determined by

CR(X:, X;P,p)=1

X—-X; fX#Pand X #0p
Hp -

By convention, let X; = p correspond to ¢t = co. For a given dyad (A, B),
the set of all dyads (A, By) is called the homological range of (A, B) and is
denoted Hp (A, B). i

Holding P, p,t fixed, H} p 18 in fact a projectivity on £. This follows from
the fact that it is the composite of a perspectivity £ — £ and a dilation (ie. a
projectivity) on £. By definition HP has two fixed points P, p. Hence it is a
hyperbolic projectivity. However, to obtam uniformity with the next chapter,
we have preferred the terminology "homology” and its associates ” center,axis”.

On £, the fact that P’ = (), u) with respect to the points of reference
A’, B’, may also be expressed as

A=CR(A',P';0',B"), pu=CR(P',B;A"
The invariance of the cross-ratio under perspectivities leads to

DEFINITION 3.2 By the configuration coefficients of (P, p; A, B) are meant
A=CR(A,P;p,B), p=CR(P,B;A,p)

O
The following lemma is a direct consequence of the invariance of the cross-
ratio under projectivities (Theorem 2.1).

LEMMA 3.3 Let T : £ — £ be a projectivity, P = TP, = Tp. Then the
following diagram is commutative

x 5

|men |,
T ~

Xy — X
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If TA = A, TB = B, it follows that (P,p; A, B) and (P, p; A, B) have the
same configuration coefficients and that

T:Hpy(A,B) = Hp (A, B), T:(A,Bs)— (Ay,By) (3.18)

(|

Summing up, Lemma 3.1 gives relations, homogeneous in 1/§, between

the lengths of dyads belonging to a particular homological range Hp,(4, B)

on £, with configuration coefficients A, u. Lemma 3.3 says that projectivities

on £ transfer homological ranges onto homological ranges, without altering ¢

and A, p. We have thus arrived at the situation described in Section 2.3, and
conclude

THEOREM 3.1 Let (A, By,) € Hpy(A,B), i = 0,1,2, and let A\, u be the
configuration coefficients of (P,p; A, B). Then the cases (i), (ii), and (iii) of
Lemma 3.1 describe invariants under projectivities (i.e. the equations remain
valid when applying a projectivity to all points involved). 0
Remark. In Section 3.1 we also considered translations, corresponding to
P’ = 0. By a perspectivity £ — £, every translation on £’ is transferred to
a projectivity on £. This projectivity has a single fixed point and is thus a
parabolic projectivity. It is also associated to the elations in the plane case. By
means of a suitable limit process every such elation may be parameterized by
the same 7 as was used on £'. However, since the analogue of Lemma 3.3 does
not hold for the full group of projectivities (but only for a group of elations),
we do not develop this case any further. O
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4. 'The Projective Plane

This chapter is devoted to projectivity invariant relations between the areas of
certain triangles in the plane. In Section 4.3 we also consider other polygons.
As in Chapter 3, we start with perspectivities.

4.1 Perspectivities

Let m, 7’ be two distinct planes and O € mUx’ a point in the three-dimensional
affine space, cf. Figure 4.1. Augmented with lines at infinity, the planes may
be thought of as models for IP2. Let P’, A’, B’,C’, be four points in 7’ with
A’, B',C' non-colinear. Under the perspectivity from =’ to # with center O,
the points P’, A’, B',C’ are mapped on P, A, B,C respectively. Let p denote
the line in 7 such that Op is parallel to 7’. It thus corresponds to the line at
infinity in 7'

Figure 4.1

Our construction of invariants will be based on the same ideas as in Chap-
ter 3. In particular we use the two types of homothetic transformations on 7/,
dilations (the main case) and translations.

Dilations

A dilation on 7' with center P’ and scale ¢ is defined by the same formula as
in Section 3.1:

Hp : X' - X; where P'X]=tP'X’ (4.1)
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It follows that, cf. Figure 4.2,
OA, = (1-t)OP+ 104’
OB{=(1-1t)OP"+tOB’
OC{=(1-1t)OP"+t0OC’

Figure 4.2

On 7/, there exist A, p, v (barycentric coordinates) such that

OP"= )OA’'+ pOB'+vOC", Ad4u+rv=1 (4.2)
Then

OAL = (1= t)A+ ) OA" + (1 — )uOB' + (1 — t)wOC
OB{=(1-1)A0A"+ (1= t)u+ 1) OB’ + (1 — t)vOC’
OCl=(1-t)A0DA+ (1 - YO B + ((1 - t)v + t)OC"

Let Ay, B:,C; be the points in 7 corresponding to A}, B},C} in 7'. Fix the
coordinate system

0, OA=o#4, 0B-=iom oc-loc
o B Y

for the space. The plane m then has the equation 2 + y+ 2 = 1. In the
corresponding homogeneous coordinates holds

Ae= (1= O+ 1) 0y (1 = ), (1 - )
By = (1~ )Aa, (1~ )+ 1) B, (1 - t)y)
Co = ((1— Dy, (1 - Oy, ((1 - t)w + 1) 7)

Application of § and introduction of tg and § (A¢,, By, C4,) yields, in the same
way as in Section 3.1,

((to — 8)353 + t(to — £)25251 + 13(to — £)5182 + 1353) - 6(Aq¢, By, Cy) =

. (4.3)
t tOS36(Ato7 Bto ’ Cto)

where

S1=a+B+7,5 = e+ pB+vy,52 = af + By + 7o, S5 = afy

In the following lemma a number of special cases for A, u, v, single out
naturally. Introduce first the notation

ha(t1,t2,t3) = 1185 — 1385 + 1263 — 342 + 1363 — 1342
= (t1 — t2)(t2 — t3)(t3 — t1)(tats + tats + t3t1)

18



(Here the subscript 3 refers to triads, cf. 4-points in Section 4.3.)

LeEMMA 4.1 - With the notation introduced above, for any perspective image
of the configuration in 7' hold the relations (cf. Figure 4.3):

(i) fA=1,p=v=0 (ie. P=A= A;, t € R), then

1t ~ ta)(ta ~ t3)(ts — 1) #3(t2 — t5)(t3 — to)(to — t2) |

6(A’Bto7cto) 6(A7Bt1act1) | (4 4)
13(ts — to)(to — t1)(t1 — t3)  15(t0 — t1)(t1 — t2)(t2 — to) o
6(A7 Btzy Ctz) 6(A, Bt37 Cts)
(ii)) A= p=v=1/3 (ie. P' = the center of A', B',C") then
toha(t,t2,t3)  t3ha(ta, ts, t0) |
= T
6(Ato’Bto,Cto) 5(At17Bt1’Ct1) (4 5)
t3hs(ts,t0,11) B t&ha(to, t1,t2) — 0
6(At2’Bt2aCtz) 6(AfasBia1 Cf-a)
(iii) For general \, p, v holds B B
R(NE,1/8) =0 (4.6)

with
A= (Mpv), T=(to,tita,ts), 1/8=(1/64,1/6,1/6:,,1/6:,)

where R is the resultant of the system of three equations (4.3) corresponding

to t1,12,t3. R is homogeneous of degree 6 in 1/8. O
oy ¢
Pi
A'; P’ -B' A B’
Figure 4.3
Proof: Put
my = 6(A't7Bt,Ct)/6(‘A't07Bto,Cto) (47)

Introduced in (4.3) it yields
. - ” i
((to = t)382 + t(to — £)25281 + 12(to — 1)51.5 + 2(t — m—°)53 =0 (4.8)
) t

For the general case (iii), cf. the Elimination lemma of Chapter 2. The proofs
of the special cases (i) and (ii) are similar to the proof of Lemma 3.1, and will
only be indicated here.

(i) If A=1,p = v = 0, equation (4.8) becomes

(to — t)%a® + t(to ~ )a(B + 7) + 2(1 — %—t)ﬂv =0
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Three such equations, corresponding to t = #y,1,, 3, give

(to—t)? ti(to—t1) (1~ m

(to . t2)2 tz(to - tg) t%(l — ml—tz =0
(to—t3)* ta(to—ta) 31— L

mts

Expansion of the determinant gives (4.4).
(ii) If A= p = v = 1/3 then $1 = $1/3. This simplifies (4.8) into

(to — t)*(to + 2t)S7 + 9t2(to — 1) 818 + 2712(¢ — ;—0)53 =0
t

By the same argument as above, combination of three such equations yields

(to—t1)*(to+2t1) (to—t) Bty — -
(to — t2)%(to + 2t2) 12(to — ty) t3(t2 — FtI?; =0
(to — t3)*(to + 2t3)  15(t0 — t3) 13(1a — ;22-)

'm;a

Expansion of the determinant gives (4.5). O

Remark. One alternative to obtain a more explicit expression for the resul-
tant condition R(X,7,1/6) = 0 is the following.

Consider
Si=a+8+7y (1)
Se=af+pBy+ya  (2)
S3 = afy (3)

Si=Xa+puB+vy  (4)

Here the relation between roots and coefficients gives
a3—51a2+52a—53=0

Suppose we are not in case (ii) and that (without restriction) u # v. Using
(1) and (4) to solve for 3,7, and then substituting into (2) one obtains:

a’(1-30)+ a(S1(30 — 14 22 — ) + §1(1— 3\))+
52(/1, - I/)2 + (#Sl — 5‘1)(1/.5'1 - gl) =0

where we have used A+ p+v = 1 and the notation ¢ = Ap+ pv + vX. The re-
sultant between these two polynomials in e is the invariant searched for. It can
be written as a fifth order determinant, having the same structure as (3.13).
(However, for the explicit computation of resultants, especially of higher or-
ders, there exist better methods than the evaluation of such determinants, cf.
[H-P] Ch IV.)

A system of three equations (4.8) corresponding to t;, 2,3 can be used to
solve for 51, Sy, and S3 expressed in S§y,to, ty, 2, 3. When S1, 52, and S3 are
introduced in the resultant then $; will (by homogeneity) become a common
factor that can be omitted. (These calculations have been carried out by
means of computer algebra. The result fills too much space to be included
here.) a
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Translations

Now consider the images of triads obtained from each other by a translation
on 7'. By this is meant a mapping

X' — X' where X'X" = 1(AC'A" + poC'B)

(The vector AgC"A’ + poC"B’ thus serves as unit). As usual, let X € 7 be the
perspective image of X'.

As in Section 3.2, translations are treated as limits of dilations. Thus let
P’ be defined by C"P" = z(ACA" + poC"B"). Choose t so that the images of
C under the translation above and a dilation with center P’ coincide, i.e. so
that C] = C'". This means that

t=PCT[PC'=(P'C'+C'C")/P'C"=1~-1/z
Put vg = —Xo — po. By (4.2) holds, with ¢y = 1,

((r/2)’83 + (1 — 7/a)(r/2)* 5281 + (1 — 7/2)*(7 /)81 S+
+(1 — 7/2)%53)8( Ay, By, Cy) = (2 — 7/2)?836(A, B, C)

(4.9)
Now let £ — oo. Then the dilation approaches a translation and, in particular,
Al A", Bl BT, Cl=C"

Moreover
51/ = (eXoa + zpoB + (1 — 2v0)7)/z — Aoa + pof + vov = 51
where the last equality defines §;. In the limit (4.9) becomes

(7357 + 728251 + 75152 + S3) § (A, B",C”) = S36(A, B,C) (4.10)

Elimination of a, 3,7 within three such equations gives, exactly as in Lemma,
4.1 (iii) (cf. also the remark above):

LEMMA 4.2 With the notations introduced above, for any perspective images
of translated triangles in «' holds the relation

R(N,7,1/8) =0
with
A= (o, pi0s0), T=(0,71,72,73), 1/8 = (1/80,1/6,,,1/6,,,1/6:,)
Here R is the resultant of the system of three equations (4.3) corresponding
to 71,72, 73. R is homogeneous of degree 6 in 1/6. O
4.2 Projectivities. Homologies

About the projective plane an analogous remark to the one in the beginning
of Section 3.2 can be made. In this case we note that the &:s in Lemma 4.1
represent dignities (certain areas) of the plane 7 itself, inherited from its affine
structure, without reference to the particular perspectivity used in the proof.
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It remains to characterize also the parameters ¢ and A, y, v appearing in the
nominators by means of intrinsic properties of 7 only.

We recapitulate some notions from plane projective geometry. As a model
for IP? we use the augmented plane 7 in the three-dimensional affine space.
A subclass of the projectivities will play a particular role in the sequel. Thus,
let P be a point and p a line in 7. By a perspective collineation with center P
and azis p is meant a projectivity leaving fixed every point on p and every line
on (=through) P. In particular, if P ¢ p the collineation is called a homology,
and if P € p an elation.

It is well-known that a homology is uniquely determined by its center P
and axis p, together with one point  and its image Q, cf. [C] p 53. For later
reference we repeat the proof, beginning with the uniqueness. Here and in the
sequel we denote the intersection of the lines @ and b by a - b.

For any Y, by the invariance of the lines on P, the image ¥ lies on the
line PY, cf. Figure 4.4. On the other hand, if Y ¢ Q@ then by the invariance
of Y, = QY - p, the line QY = Y,Y is mapped onto the line Y, Q It follows
that Y = PY .Y, Q, uniquely. The case Y € QQ is treated by repeated use
of this argument, first using the known property Q — Q to construct a pair
Z — 7 with Z Z QQ, then using the property Z — Z to construct Y — Y.

Figure 4.4

The existence of such a homology, and a bit more, can be proved by means
of a perspect1v1ty m — m’. Choose O and 7’ so that p corresponds to the line
at infinity in 7/. Let Q and Q in = correspond to Q' and Q' in /. Then it is
possible to find a value of ¢ such that, cf. (4.1),

Hp: Q' — Q'

Letting "persp” stand for ”perspectivity with center 0”, a mapping X — X;
in 7 is defined by the diagram

persp persp

—

—

Since the dilation H}, on 7’/ may be described as a homology with center P’
and with the line at infinity as axis, the composite map in the diagram is a
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homology with center P and axis p. Moreover it maps Q onto ). Hence the
existence of a homology with the stated properties is established.

The proof also indicates the possibility to parameterize the set of homolo-
gies with a given center and axis. In fact, letting oo’ denote the line at infinity
in 7/, H}, is characterized by

CR(X{,X";P' 00" - P'X") =t
The invariance of cross-ratios under perspectives then legitimates the following
alternate definition of homologies.

DEFINITION 4.1 By the homology in = with center P, azxis p, scale t, is meant
the mapping
H}D’p X — Xt

where X; is the unique point on PX determined by
CR(Xy,X;P,p-PX)=1

For a given triad (4, B, C) the set of all triads (A, By, Cy) is called the homo-
logical range of (A, B,C') and is denoted by Hp,(4, B,C). O

Given A', B',C' in 7', the barycentric coordinates of P’ are obtained by
solving (4.2) for A, p,v. Cramer’s rule gives

_ det(P', B',C")
~ det(A', B',C7)

_ det(A', P',C")
 det(A’, B',C")

_ det(A', B, P")
~ dei(A', B,C7)

In terms of the cross-ratios of Definition 2.1 and by the conventions for treating
points at infinity, one checks that

A= k(P A" A'P' . ', B!, C")
u=kiy(P',B'; A", B'P' . o0',C")
v = kyo(P',C; A", B',C'P' - 0")

(cf. the proof of Theorem 2.1). The invariance of cross-ratios under perspec-
tivities leads to

DEFINITION 4.2 By the configuration coefficients of (P,p; A, B, C) are meant
A =ko(P,A; AP -p,B,C)
= k12(P, B; A, BP - p,c)
v = kao(P,C; A, B,CP - p)

O

(Note that, contrary to 7/, in 7 the configuration coefficients have no

interpretation as barycentric coordinates.) By means of the uniqueness of
homologies (stated above) and another reference to Theorem 2.1, we obtain
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LEMMA 4.3 Let T be a projectivity on m with P =TP, p = Tp. Then the
following diagram is commutative

x 5 x
|
x, L X,

If TA=A,TB = B, TC = C it follows that (P, p; A, B,C) and (P, ; A, B,C)
have the same configuration coefficients and that

e HP,p(A7B7C) — Hﬁ’ﬁ(Aa B,é)’ T: (AtaBt, Ct) - (AtaB'h C't)

O

Summing up, Lemma 3.1 gives homogeneous relations between the areas

of triads belonging to a particular homological range Hp (A, B,C) on 7, with

configuration coefficients A, u,v. Lemma 4.3 says that projectivities on w

transfer homological ranges onto homological ranges, without altering ¢ and
A, i, v. We have thus proved (cf. Section 2.3)

THEOREM 4.1 Let (Ay,By,Cy) € Hpo(A,B,C), 1 = 0,1,2,3, and let
A, i, v be the configuration coefficients of (P,p; A, B,C). Then the cases (i),
(ii), and (iii) of Lemma 4.1 describe invariants under projectivities. O

Remark. The case (ii) A = g = v = 1/3 has some special features. Let P
be a point and (4, B, C) a triangle in a plane . A new triangle (A, B1,C4)
is defined by A; = PA-BC, By = PB-CA, C; = PC - AB. The triangles
(A, B,C) and (A4, By, C1) are then perspective from P. By Desargue’s theo-
rem this happens if and only if they also are perspective from a line p. (This
means that the points of intersection AB - A1 By, BC - B1C7 and CA - C1 41
all lie on p.) The situation is described by saying that P and p are pole and
polar with respect to (4, B,C), cf. Figure 4.5 and [C] p 29.

Figure 4.5

The corresponding A, u,v are found by means of the invariance of the
pole/polar property under perspectivities. The perspectivity @ — =’ maps
the polar p onto the line at infinity, P — P’, (4,B,C) — (A4',B’,C’), and
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A C,' B?'
Figure 4.6

(A1, B1,Cy) — (A}, B{,C)), (cf. Figure 4.6). Hence P’ is pole and the line at
infinity is polar with respect to the triangle (4’, B’,C’). By means of similar
triangles and medians one finds that P’ is the center of the triangle (4, B,C)
i.e. OP' = (OA"+ OB’ +0C")/3. This shows that A = p = v = 1/3. For this
reason we refer to (ii) as the polar case. a

4.3 Simple k-points

Generally speaking, by a simple k-point in IP™ is meant an ordered k-tuple of
points in IP". If k = n+ 1 it is a polyad, and if £ < n 41 it may be considered
as a polyad in a k-dimensional projective subspace of IP”. Since polyads are
treated in the main line of this work, only the case £ > n + 1 remains to be
studied. We restrict ourselves to the case n = 2. By means of Definition 2.2,
in a natural way one associates an "area” to every simple k-point in IP? by

A()(1’ ey Xk) = 6(-X17X27X3) + 6(X17 X3, X4) + ...+ é‘(‘ley*)(k—la)(k)

(cf. [V-Y] vol IL, p 104 for the affine case). For polyads k = 3 we know from
Theorem 4.1 that there exist area-invariants. The natural question arises
whether this is true for & > 3.

We will consider the case k = 4 in a particular situation, reminding of
the polar case (ii) in Theorem 4.1. Starting as usual in an affine plane 7/, let
A", B',C", D’ be a parallelogram and let P’ be the intersection of its diagonals

(cf. Figure 4.7).
=
A’ *

B .
Figure 4.7

By a dilation with center P’, scale t, the points A}, B}, C}, D, are con-
structed. After a perspectivity 7’ — 7 one obtains the situation of Figure
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Figure 4.8

4.8. Let Ay, By, Cy, Dy be the images of A}, B}, C!, D}, and let the line p in 7
correspond to the line at infinity in 7’.

By considering the homological ranges Hpy(A,B,C) and Hp,y(A,D,C)
separately, the whole 4-point may be treated. In both cases the configuration
coeflicients are (1/2,0,1/2). Let

04d='ox4, 0B--0m oCc-
o b+

Put
ST =apty, S3=afy

Then
A(At, By, Ct, Dy) = §(At, By, Cy) — 6( A4, Dy, Cy)

Computation of §, as in (4.3), gives

*576(A,B,C)  #2878(A,D,0)
o(A)o(B)a(Cr)  o(Ar)a(Dy)o(Cy)

A(At, Bt7 Ct7 Dt) =

The facts that §(A’, B',C") = —6(A',D’,C") and that P’ is the midpoint
of A’/C” and B'D’ yield
S+6(A,B,C) = -836(A,D,0)
aty=pgt+p”

Denote by ¢ the common value of the members of the first equation. Let s; be
the common value of the second. Put s, = ay+ BYB~, 84 = ayBtp~. Then

1 3 1 )
cr(At)agBt)a(C’t) o(Ai)o(Dy)a(Cy)
ct 81

- U(At)cr[Bt)a(Ct)a(Dt)

A(A¢, By, Cy, Dy) = ct?(

Insertion of t = 1 gives
c81 = S4A(A,B,C,D)
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After a straightforward calculation we obtain the analogue of (4.3):
(1= £2)2si + 48°(1 — ¢%)s}sy + 16t%s4) A(Ay, By, Cy, Dy) =
= 16t°s4A(4, B,C, D)

In analogy with h3 above we define

ha(ti,te,t3) = 11t — t12 + 1525 — 1322 + 24} — 1543
2 42342 _ $2\(42 _ 42
= (17 — 3)(t3 — £3)(¢5 - t)
By a now familiar argument we obtain

LEMMA 4.4  For any perspective image of the configuration in n' holds the
relation

toha(t1, t2,13) t%hrx(tz,ts,to)_l_

A A
2n fo o (4.11)
2ha(ts,to,t1)  t3ha(to, t1,12) —0
At2 Ata
(]

This is in fact an invariant under general projectivities. To prove this, one
needs some invariant configuration property, replacing the configuration coef-
ficients in Lemma 4.3. To this end one notices that P is a vertex and p the op-
posite side of the diagonal triangle P, Q, R of the complete quadrangle defined
by A, B,C, D (cf. [C] Ch 2). Let us in this case say that (P, p; A,B,C,D)isa
diagonal configuration. This property is preserved under projectivities. Defin-
ing in a natural way the homological range Hp, (4, B,C, D), an analogue of
Lemma 4.3 holds true in this particular case. We obtain

THEOREM 4.2 Suppose that (P,p;A,B,C,D) is a diagonal configuration.
Let (Ay;, By, Cy;, Dy) € Hpy(A,B,C,D), i = 0,1,2,3. Then the equation
(4.11) is invariant uder projectivities. O
Remark. Comparing (4.5) and (4.11), where in both cases the center of the
figure was used as the center of the homology, one notes at least two common
features. First, the number of figures needed were in both cases four, and
second, the coefficients hs and hy in the invariant formula have the same
structure. The problem arises whether this can be generalized to general k-
points. The answer is no, at least in the sense that the number of figures
needed depends on k. This number is highly dependent on the symmetry
properties of the figure. Calculations with a symbolic manipulation program
have showed that for regular pentagons, & = 5, one needs nine and for regular
hexagons, k = 6, six t-values (i.e. homological images of the reference k-point).

O
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5. The Projective n-Space

Above we have treated the projective line and the projective plane, empha-
sizing the geometric point of view. Here we will derive corresponding results
for general projective spaces IP™, using algebraic arguments mainly. As will
be seen, these work as well for complex spaces. With the background given in
the preceding chapters, we permit ourselves to be somewhat brief.

Let A = (4o,...,A,) be a polyad in IP". Let P be a point and p an n-
dimensional hyperplane in IP”. The definitions of homology H }’.p with center
P, axis p, scale t as well as of homological range Hp,(A), are taken over word
by word from Definition 4.1. In analogy with Definition 4.2 we define the
configuration coefficients of (P, p; A) by

A = ki,i+1(P,Ai;Ao,...,AiP-p,...,An), t=0,1,...,n

where, by convention, ky ny1 = kn,o-

THEOREM 5.1 Let A; € Hpy(A),i=0,1,...,n, and let X be the configura-
tion coefficients of (P, p, A). Then the following formulas are invariant under
projectivities.

(i) fxi=1/(n+1),i=0,1,...,n, then

o1(to,t1)  o2(to,t1) ... On+1(20, 1)/ 8ty — ot} /by,
01(to, t2)
- = 0
o1 (tO) tn+1) e e Qn+1(t07 t’n+1)/6to - t0t2+1/5tn+1
(5.1)
where
6t = 6(.At)
01(to,t) = (to + nt)(to — )" (5.2)
ox(to,t) = tF(to— )" % k=2, . n+1
(ii) Generally there exists a polynomial R such that
RO 61/6(A) = 0
where
AeRMH te R
1/8(As) = (1/8(Aw), .- .,1/6(A,,,)) € R™F2
R is homogeneous of degree n(n + 1) in 1/8(A;). m]

Proof: By the fundamental theorem of projective geometry there exists a
(unique) projectivity on IP™, mapping p onto the hyperplane e @ = 0,
and Ao, A1,..., A, onto (1,0,...,0),(0,1,...,0),...,(0,0,...,1) respectively.
It thus suffices to prove the theorem for those particular choices of A;,7 =
0,...,n, and p. As usual we choose the augmented hyperplane 7 : > 5 z; = 1
as a model for IP",
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Now let T' = (To,...,T,) be a representative of a projectivity, where T;
stands for the i:th column, i = 0,...,n. First suppose that o(T;) = a; # 0,i =
0,...,n. Then we have the factorization

T = (To/ao...Tn/ay)diag(ag,. .., o)

Here all column sums in the first matrix are equal to 1. Hence it defines an
affinity on the affine plane 7. It changes all é:s by a common factor only,
while the homology scale ¢ and configuration coefficients are left unchanged.
An equation (i) or (ii) valid before application of this matrix is thus valid
afterwards too. Hence, to verify the theorem for projectivities with non-zero
column sums, it suffices to consider the second factor in the Tepresentation
above. After this is done below, by a limit argument one sees that also the
case of general projectivities is settled.

Thus let T = diag(a) with a; # 0,4 = 0,...,n. Since p : 20 T =0
the homologies H}  are in fact dilations on  : 3§ 2; = 1. If P has the
barycentric coordinates A = (Ao, ..., ;) with respect to Ag, ..., A,, then the
images under H It:",p of these points are

Aot = ((1 - t))‘O +1, (1 - t))‘b o -7(1 - t))‘n)
Ay = ((1 - t)>‘07(1 - t)Al +4t..., (1 - t))‘n)

At = (1= )0y (1= A1y ..., (1= DAn + 8)
Put ) ) ) )
TAit = A‘it, At e (AOt) v 7A'n.t)7 -At = (AOt, v 7Ant)

Here the A;; are obtained by insertion of factors ay,...,a, in the coordinates
of A;;. Application of the definition of § to A, gives, after introduction of ¢,
as in Chapters 3 and 4

p(a; A tot)6(As) = ag.. . - antot™8(As,)
where 5
p(o; Ajto, t) = Moo (As) (5.3)

Here p is homogeneous of degree n + 1 in the variables a. Using n + 1 such
equations, for ¢ = ty,..., 2,41, the Elimination lemma yields (ii).

As usual it is possible to be more explicit in the case \; = 1/(n+1),i=
0,...,n. Introduce the symmetric functions

Si=ap+... 4o,

S2 = Z o

i

Sp=0ap- ... ay

Then B
o(Ai) = (to—t)S1/(n+ )+ tey, i=0,...,n
A calculation of the polynomial p gives

n+1
plasto,t) = Y (to — tyHIkikgntl=hg, j(p 4 1)mH1-k
k=0
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Hence n + 1 equations (5.3), corresponding to ¢t = t1,...,ty41, may be consid-
ered as a system of linear equations in the unknowns S{“"l, STS2, ..oy Snt1-
This system is known to have a non-trivial solution. With the notation (5.2),
after simplification, the determinant criterion gives (5.1). ]

30



6. Conical Area-invariants

In this chapter we derive two-dimensional area-relations for regions enclosed by
ellipses and, after suitable interpretation, general conic sections. We restrict
ourselves to the analogue of the ”polar case” in Section 4.2, i.e. when the center
and axis of the homological range are pole and polar of the configurations
considered.

6.1 The Fundamental Form

We consider quadratic functions
q(z) = %mTQm +afz +b, zeR2Q symmetric
If @ is non-singular, let z* be defined as the solution of
Qr*+a=0

Then

g(z) = %(a: - 7Q(z - 2*) - %m*TQx* +b

= %(x - w*)TQ(:v —z%)— %aTQ_la +b

Suppose for a moment that @ is positive definite with eigenvalues A1, Ay, Di-

agonalization of the quadratic form (z — 2*)TQ(z — 2*) then yields that the
area of the region g(z) < 0 in the Euclidean plane is

T—l_(b
7|_a:t':,? a—2

v :{l j(2

provided that the nominator is positive. (Otherwise the region is empty).
Taking into account that Ay Ay = det Q, we are led to the following definition.

DEFINITION 6.1 By the fundamental form of ¢ is meant

a”Q1a—2b . . .
a(q) = { “ﬁﬁ if  is nonsingular

00 otherwise

O
(The terminology stems from the theory of the space of spheres, cf. [B] vol 5
p. 129, where a similar expression appears.)

Remark. Above ¢ was expressed in non-homogeneous coordinates z € IR2.
Using instead homogeneous coordinates z = (1, z5, z3) € R? (where the non-
homogeneous ones are obtained by letting z3 = 1), then ¢ may be expressed
as 2T Az, with
1 a
a=1[@ ]

2 laT 2
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An alternate formula for the fundamental form is then

det A

a(q) = _4W

O

We have shown how a(g), apart from a factor 7, can be interpreted as

an area if @) is positive definite. This also holds in the affine plane, cf. the

discussion in the beginning of Section 2.2. For @ indefinite, a(q) is purely

imaginary. (Since in the sequel it always appears squared, this will cause no

unambiguity). If one wishes, in the theorem below it can be given the following
interpretation:

The area assigned to a hyperbola with half-axes a,b =

_1{ (the area assigned to an ellipse with half-axes a,b).

About a(q) a similar remark as the one for é, preceding Definition 2.2 must be
made. Thus a itself changes in an irregular way under projectivities. However,
when grouping together a number of a:s in a particular equation, we will see
that each of them allows a projectively meaningful interpretation as an area.

6.2 Perspectivities

Now consider a non-degenerate cone in the three-dimensional space. Let O be
its vertex and let w, 7’ be two planes with O g rU ', # n'. Let L =7 N x'.
Two conics C' and C’ are defined by the intersections of the cone with = and
7' respectively. Suppose that C’ is an ellipse.

Figure 6.1
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Referring to Figure 4.1, let P’ be the center of C’. Let & be the conjugate
direction of £ with respect to C' (i.e. the direction determined by the locus
of all midpoints of chords of C’ parallel to £). Choose the length of & so that
it can be represented by a directed segment connecting £ and P’/. Then by
classical theory of conics it is possible to choose f'//£ so that, for some ¢,

C'iz" 4 y? =42 (6.1)

Choosing the third axis as §¢' = OP’ and using O as origin, the equation of 7
is 2/ = 1 and the equation of the cone is

$,2 + y12 _ t2z12 - 0
To treat m a new basis

=

e=e-og, f=f, 9=3

is introduced, where g is so chosen that &//m. The change of coordinates
z' = Sz is then described by the matrix

1 00

S=10 10

-0 0 1

In the coordinate system O, &, f, g, the equation of 7 is z = 1 —p. The equation

of the cone is
g2+ 92 — 3 (—px +2)2 =0

Now consider C, i.e. the intersection of 7 with the cone. In the coordinate
system P, €, f of 7, its equation is

w(z,y) =2’ + 9y —t*(-or +1-0°=0 & (6.2)

a(2,y) = (1 - 2*)a® + y* + 2%0(1 — @)z — 2(1 - )2 = 0 '

Computation of the fundamental form gives

2(1 - p)?
a(Qt)_( T%'?,ﬁ

Here g is a parameter, describing the perspectivity. Putting together two such
expressions, corresponding to to and ¢ respectively, one obtains

o(qr) ( — 50 =%y
o(qo) 31 — t302

G i i
(=2 - (G

By means of two expressions, for to, 71 and to,?; respectively, p may be elimi-
nated. Simplification yields

or equivalently

LEMMA 6.1 With the notation introduced above, for any perspectivity holds
-4 -1 2 — 12

(‘%%21)2/3 + (ﬂtsle)zfa + (ﬂé&l)wa -

(6.3)
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Remark. At first sight this lemma only gives an analytical relation between
the fundamental forms of three particular quadratic functions ¢;,4 = 0,1,2.
However, since a(g;) has an interpretation as the area connected with C; :
q:(z) = 0, it changes only by a proportionality factor under affine coordinate
transformations on 7. Because of the homogeneity of (6.3), one may thus
choose for ¢; the polynomials defining C;, in any affine basis for . O

6.3 Projectivities

Projectivities map conics onto conics. If C' has the equation g(z) = 0, then
the image under T has the equation (7'¢)(z) = 0, where

(Tq)(z) = q(T'x)

Here it is preferable to work with homogeneous coordinates, since then the
calculation of T'q can be done by means of matrix operations.

Equation (6.1) describes a family of conical sections, obtained from each
other by dilations with center P’. After a perspectivity, the situation in = is
described by homologies H& Pp» Where P,p are the images of P’ and the line
at infinity, respectively. The homologzcal range Hp,,(C') of conical sections is
defined as for polyads.

The concepts of pole and polar are central in projective geometry, cf. e.g.
[C] Ch. 8. In 7’ the center P’ of C’ and the line at infinity are pole and polar
with respect to C’. These properties are preserved under perspectivities, i.e.
P and p are pole and polar with respect to C. The situation is unaltered after
any projectivity on w. For this particular pole-polar configuration it is thus
possible to formulate an analogue of Lemma 4.3. Together with Lemma 6.1,
cf. also the remark above, it yields:

THEOREM 6.1 Let Cy, € Hpyp(C), i = 0,1,2, where P and p are pole and
polar with respect to C'. Let Cy have the equation ¢;(z) = 0. Then the
formula in Lemma 6.1 is an invariant under projectivities (i.e. when replacing
q; by Tqi). O
Remark. It is noteworthy that the number of terms in (6.3) is three, while

it earlier in the plane has been at least four (cf. the remark after Theorem
4.2). O
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