LUND UNIVERSITY

State Feedback Control and Data Logging with Modula-2

Wallenborg, Anders

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Wallenborg, A. (1987). State Feedback Control and Data Logging with Modula-2. (Technical Reports TFRT-
7360). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/6efd562a-f976-4eac-98dd-36089d2c1e3c

CODEN: LUTFD2/(TFRT-7360)/1-32/(1987)

State Feedback Control and
Data Logging with Modula-2

Anders Wallenborg

Department of Automatic Control
Lund Institute of Technology
May 1987

Document name

Department of Automatic Control

Report
Lund Institute of Technology Date of issue
P.O. Box 118 May 1987
S5-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-7360)/1-32/(1987)
Author(s) Supervisor

Anders Wallenborg

Sponsoring organisation

Title and subtitle
State Feedback Control and Data Logging with Modula-2.

Abstract

This report describes two real time programs for IBM PC/AT or compatible MS-DOS computers. The
programs are written in Modula-2, and use the real time kernel and the graphics module developed at the
Department of Automatic Control, LTH.

The first program, DSF, implements a digital state feedback regulator and observer. One major feature of
the program is the facility to read regulator parameters from a text file with a format compatible with the
parameters files in SIMNON. It is demonstrated how such parameter files can be generated automatically
with PC-MATLAB. DSF also includes a screen plot of the measured signals and the control output, and a
facility to log the data plotted on the screen. The minimum sampling interval is 30 ms. This limit is set by
the time required to plot data on the screen.

The second program, LOG, is an off-spring of the DSF program. It is a program for data logging written
to enable sampling intervals down to 10 ms (this is a hard limit set by the current version of the real time
kernel). The logged data can be plotted on the screen in real time. Sampling intervals smaller than 20 ms
can only be achieved with the screen plot off. A special feature in LOG is the use of the programmable gain
facility in the A/D converter boards RT-800 and RT-802 from Analog Devices. Thereby quantization errors
can be reduced for low level signals without the use of external amplifiers.

Key words
Real Time Program, Modula-2, State Feedback Control, Data Logging

Classification system and for index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 32

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 101 0,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

STATE FEEDBACK CONTROL AND

DATA LOGGING WITH MODULA-2

ANDERS WALLENBORG

Department of Automatic Control
Lund Institute of Technology
May 1987

CONTENTS

1. INTRODUCTION iz i sass i6 Moliess 83 aamies 4% 58 e 44 vavies & 3
2. DSF - DIGITAL STATE FEEDBACK CONTROLcioviiuvnnnnnns 4
2.1 Software architectureccevineornnseinisnansnanennas 4
2.2 Control algorithm ittt iinneennrenarrosaranensns 6
2.3 Operator communicationcuieeecneenncarensanansnsas 8
2.4 Parameter filesiiiiiiiiiiinnuensnenennsnonananannnses 8
3. LOG - DATA LOGGING00iiinnerinnrnaneaneronsssnnssassnnss 9
3.1 Software architecturecc0niaunn Sl i WeEeEE B SRS & 9
3.2 A/D conversion with programmable gain 10
3.3 Operator communicationiveeetvnnenerernennorsonnnns 11
4. REFERENCES . 5 coaiin e b sfes i is s mem et Ve viooes 66 vuieiss deamm o s 12
5. ACKNOWLEDGEMENTS v s waman i smasie i wasia §% 6% sielsfaieais o o5 @ o 12
APPENDICES

A. Excerpts from the DSF source codeciiiiiiinnnnnnnnns 13
B. A PC-MatLab parameter file procedurecivvivncunnn 24

C. Excerpts from the LOG source codeccivviiiinennnn. 26

1. INTRODUCTION

This report describes two real time programs for IBM PC/AT or compatible
MS-DOS computers. The programs are written in Modula-2 [Wirth, 1985],
[Logitech, 1985], and they use the real time kernel and the graphics module
developed by Leif Andersson at the Department of Automatic Contrel, LTH.

The first program, DSF, implements a digital state feedback regulator and
observer. Originally it was written to implement a controller for a flexible servo
system [Wallenborg, 1987]. The program has a general structure, however, and
can be used to implement a state feedback controller and observer for any
process. One major feature of the program is the facility to read regulator
parameters from a text file with a format compatible with the parameter files in
SIMNON [Elmqvist, Astrém and Schénthal, 1986]. Such parameter files can be
generated automatically with PC-MATLAB [MathWorks Inc., 1986] and Ctrl-C
[Systems Control Technology Inc., 1986]. See Section 2.4 for further details.

This approach enables the control design process to be completely automated.
First the state feedback controller is designed with a control analysis and design
package, for example PC-MATLAB, and a parameter file is generated. This file can
then be loaded into SIMNON to simulate the regulator performance, possibly with
a nonlinear process model. Finally the regulator parameters are loaded into the
DSF program and the design is tested experimentally. All this can be done without
manual input of regulator parameters, which minmizes the risk for fatal
parameter input errors etc. DSF also includes a screen plot of the measured
signals and the control output, and a facility to log the data plotted on the screen.
The lower limit for the sampling interval (h = 30 ms) is set by the time required
to plot data on the screen.

The second program, LOG, is an off-spring of the DSF program. It is a program
for data logging written to enable sampling intervals down to 10 ms (this is a
hard limit set by the current version of the real time kernel). The logged data
can be plotted on the screen in real time. In the LCG program the log and plot
functions have been completely separated, since a 10 ms sampling interval can
only be achieved with the screen plot off. A special feature in LOG is the use of
the programmable gain facility in the A/D converter boards RT-800 and RT-802
from Analog Devices. Thereby quantization errors can be reduced for low leve!
signals without the use of external amplifiers. As a consequence of this, the LOG
program requires a computer equipped with one of these boards. See Section 3.2
for further details.

2. DSF - DIGITAL STATE FEEDBACK CONTROL

DSF implements a digital state feedback regulator and an observer which estimates
the state vector. The program includes facilities for real time control, plotting of
sighals on the screen and data logging. Logged data can be written to a text file.
This file can then be converted offline to a binary data file and plotted with
IDPAC or SIMNON. The regulator parameters are read from a text file, which has
a format compatible with the parameter files in SIMNON. The operator
communication is very simple. It is based on a screen menu, where the operator
selects the desired command by clicking a mouse button inside one of the menu
rectangles.

2.1 SOFTWARE ARCHITECTURE

The program is divided into three process modules and three monitor modules.
There is also an additional module calied Graphuti, which contains some utility
procedures for graphics. Each module is separately compiled.

Monitor modules:

RegData Regulator data and parameters.
PlotBuff Plot data buffer.

LogBuff Log data buffer.

Process modules:

Regulate The regulator process.

Plot The plot process.

OpCom Operator communicatiomn.
RegData

RegData implements a monitor in which the regulator parameters are stored in a
record of type RegDataType (see Appendix A). The parameters can be accessed
by two monitor entry procedures, GetRegData and PutRegdata. This provides
mutual exclusion. The RegData module also contains a procedure ReadParFile,
which reads regulator parameters from a disk file. ReadParFile is no monitor
entry procedure, i.e. it does not put the read parameters into the RegData
monitor. This must be done with PutRegData. The file operations have been
implemented with procedures from the standard module FileSystem [Logitech,
1985]. Another standard module for formatted input/output is InOut. This module
is easier to use, but it cannot be used together with the Graphics module.

PlotBuff

PlotBuff implements a ring buffer monitor with 25 elements. Each element in the
buffer is a record containing the data to be plotted, the sampling interval, and the
least significant part of the absolute time variable. (See PlotBuff.Def in Appendix
A and the type declaration 'Time' in the Kernel module for details). The purpose
of this buffer is to buffer plot data while the screen plot area is refreshed. DSF
has primarily been used with a sampling interval h = 40 ms. A buffer with 25
elements then corresopnds to a time interval of one second. This is sufficient to
allow refreshing of the screen after the plot has reached the right end of the
screen plot area.

Chapter 2 DSF - Digital State Feedback Control

There are five monitor entry procedures: PutPlotBuffer, GetPlotBuffer, EnablePlot,
DisablePlot and PlotEnabled. PutPlotBuffer is used to put a new plot data element
in the buffer, and GetPlotBuffer reads the oldest data element in the buffer. When
the buffer is full, the oldest data element is overwritten by PutPlotBuffer. If the
buffer is empty, GetPlotBuffer will wait until data are available, i.e. until
PutPlotBuffer has been executed. EnablePlot and DisablePlot set the plot enable flag
to true and false, respectively. If the plot enable flag is false, GetPlotBuffer will
wait until the flag becomes true. PlotEnabled returns the current state of the plot
enable flag (true/false).

LogBuff

LogBuff implements a ring buffer monitor with 500 elements. Each element in the
buffer is a record containing the log data and the least significant part of the
absolute time variable. (See LogBuff.Def in Appendix A and the type 'Time' in the
Kernel module for details). The purpose of this buffer is to log data plotted on
the screen. With a sampling interval of h = 40 ms, 500 elements correspond to a
time interval of 20 seconds which is the length of the time axis on the screen
plot. The buffer length is defined as a constant in the implementation module, and
can be changed easily.

There are three monitor entry procedures: PutLogBuffer, GetlLogBuffer and
WriteLogBuffer. PutLogBuffer is used to put a new log data element in the buffer,
and GetLogBuffer reads the oldest data element in the buffer. When the buffer is
full the oldest data element is overwritten by PutLogBuffer. If the buffer is empty,
GetLogBuffer will wait until data are available, i.e. until PutLogBuffer has been
executed. WriteLogBuffer enters the log buffer monitor, copies the current
content of the complete log buffer to a local data array, leaves the buffer
monitor, and finally writes the copy of the log buffer on an ASCII text file.

The file operations have been implemented with procedures from the standard
module FileSysiem. See Appendix A for details. Writing data on the disk in real
time is a time consuming operation, and so is plotting curves on the screen.
Therefore it is recommended to disable the plot process while writing log data on
a disk file.

Regulate

The module Regulate contains the regulator process. It calculates a new control
output signal based on the current parameters in RegData, and sends plot data to
the plot process via the plot buffer PlotBuff. The details of the conirol algorithm
are given in Section 2.2.

Plot

The Plot module contains the plot process. It reads plot data from PlotBuff, plots
the data on the screen and sends the plotted data to LogBuff. The plot is frozen
by a call to DisablePlot from OpComProcess (cf. PlotBuff above and OpCom
below). This means that the plot process will be halted when calling GetPlotBuff.
When the plot precess is waiting, the log buffer is not updated. Thus the log
buffer will only contain the data plotted on the screen. This function was chosen
beacuse it provides a way of obtaining hard copies of the curves plotted on the
screen by writing the content of the log buffer on a disk file. The plot is
restarted by a call to EnablePlot. For each plotied point the current horizental
(time) coordinate is incremented with the current sampling interval. When the
right end of the screen is reached, the screen is refreshed and the horizontal
coordinate is reset to zero. Hence the screen plot does not use the absolute time
in the plot data record. The absoluie time is sent to the log buffer, however. If
the plot has been frozen this can be detected by a a jump in the absolute time
values of the log data.

[]

Chapter 2 DSF - Digital State Feedback Control

OpCom

The OpCom module is divided into two processes, OpComProcess and IOProcess.
OpComProcess is a high priority process which handles the command decoding
and initiates the selected action. Commands are entered by clicking with the
mouse in one of the command menu rectangles on the screen. ICProcess has low
priority and handles file I/O operations and operator dialog.

Priorities and sampling intervals

The processes have the following priorities (high numbers indicate low priority):

Regulate 10
OpComProcess 15
Plot 20
" IOProcess 30

Regulate has the highest priority to ensure that the control algorithm is executed
on time. The time consuming IOProcess must have the lowest priority. In
particular it must have lower priority than Plot, otherwise the Regulate process
may be halted. The reason is that Regulate must enter the PlotBuff monitor via
PutPlotBuffer each sampling interval, to send plot data to the plot process. If Plot
is interrupted by I0Process while executing GetPlotBuffer, i.e. while Plot is inside
the RegData monitor, then Regulate will be halted.

OpComProcess is normally in a wait state, waiting for a mouse click. It has been
given a high priority to ensure fast response to operator commands.
OpComProcess may therefore interrupt Plot while inside the PlotBuff monitor, and
thus halt the execution of Regulate (cf. above). This can be accepted, however,
since the command decoding and execution are very fast operations. One might
also consider to give OpComProcess maximum priority. This would guarantee that
the program always reacts to operator commands, but it would cause more
frequent interrupts of the regulator process.

The minimum sampling interval with the plot process running is between 20 and
30 ms. Note that the current implementation of the Kernel gives a clock interrupt
once every 10 ms. Therefore it only makes sense to use sampling intervals which
are multiples of 10 ms.

2.2 CONTROL ALGORITHM

The control law implemented in DSF is a standard state feedback regulator. The
state vector is estimated with an observer which uses the latest available
measured process output. For futher details, see Chapters 9 and 15 in [Astrém
and Wittenmark, 1984]. The regulator equations are:

x(k|k) = %(k|k-1) + K(y(k)-Cx(k|k-1))

u(k) = 1y (k) - Lx (k|k) (2.1)
{ x(k+1|k) = ®x(k|k) + Tu(k)

The notation x(k|k-1) indicates that the estimate at time k is based on data
available at time k-1. The observer structure in (2.1} is sometimes called a
"current observer" [Franklin and Powell, 1980], since it uses the latest {current)
measurement value.

Chapter 2 DSF - Digital State Feedback Control

Windup protection

In order to avoid estimator windup it is important to feed the observer with the
actual output control signal. Therefore the regulater is implemented as

[%(k|k) = x(k|k-1) + K(y(k)-Cx(k]|k-1))

v(k) = 1y (k) - Lx (k|k)
(2.2)

IF RegulatorOn THEN u(k)=Sat{v(k),u) ELSE u(k)=0

,u .
max min

| x(k+1|k) = @x(k|k) + Tu(k)

where
u ;o u<u .,
min min
Sat(u,u ,u .) =1 u i u. <u<u
max’ min min max
u ;oou>u
max max

and u(k) is the control output that is sent io the D/A converter. The boolean
variable RegulatorOn is used to turn the regulaior on and off. Note that the
observer equations are updated each sampling interval even when the regulator
is off. This means that the estimated state values will be correct when the
regulator is turned on again, and thus undesired transientis are avoided. This
way of disabling the regulator is better than the more primitive method of just
stopping the regulator process in the program. The drawback is that the major
part of the regulator computations have to be done also when the regulator is
off.

Also note that the control output is set to zero explicitly when the regulator is
off. If this is not done, the D/A converter will hold the last output control signal.
It is of particular importance that the D/A output is reset to zero before stopping
the program execution. Otherwise disastrous transienis may occur if a new
process is connected to the Df/A output. In DSF, the D/A output is reset
automatically before terminating the program (cf. the command EXIT in Section
2.3, Operator Communication).

Parameter changes

An important feature with the state feedback structure is that the states often
have a physical interpretation like speed, position, pressure, temperature etc. This
enables us to make (almost) bumpless parameter changes without any special
precautions. A change of observer gains (K), process model (®, I'}) or sampling
interval will not have any immediate effect on the estimated state values, and
hence no transients appear in the control signal. The only parameters that have
an immediate effect on the control output are the feedback gains (L). A change of
feedback gains may therefore give a step in the control signal. If the parameter
change is done at steady state operating conditions, this step is normally small.

Chapter 2 DSF - Digital State Feedback Control

2.3 OPERATOR COMMUNICATION

The operator communication has been kept as simple as possible to avoid an
excessive amount of graphics code. It is based on a command menu on the
screen. The operator selects the desired command by clicking a mouse bufton
inside one of the menu rectangles. The regulator reference value is entered by
clicking a mouse button at the appropriate level in the plot area. The referernce
value change is limited to avoid excessive reference step amplitudes. The current
reference change limit is 1.

Command menu:

EXIT Terminate program execution and return to MS53-DOS. The regulator is
first turned off. Then the program waits three sampling intervals, to
ensure that the regulator has been turned off, before it terminates.
Thus the D/A output will always be reset to zero before termination of
the program.

REG Regulator on/off. In the OFF state, indicated by a red REG rectangle,
the D/A output is reset to zero. The ON state is indicated by a green
REG rectangle.

PLOT Screen plot on/off. On is indicated by a green PLOT rectangle and CFF
by a red rectangle. The log buffer is only updated when the plot is
ON.

PAR Enter new regulator parameters from disk file. The program prompts

for parameter file name and regulator order. The file name should
have the structure 'filename.ext'. No default names or extensions are
used. The current maximum regulator order is 3. After succesful
reading of the new parameters, the user is prompted to confirm that
they should be entered in the RegData monitor. If this is not done, the
new parameters are discarded.

LOG Write current content of the log buffer on a disk file. The program
prompts for log file name {(default = LOG.T).

Plotted signals:

Black Reference signal

White Measured process output (Analog Input 0)
Red Auxiliary input signal (Analog Input 1)
Green Control signal (Analog Cutput 0)

The number of plotted signals can easily be increased. This also increases the
computational load, however.

2.4 PARAMETER FILES

The parameter file in DSF contains the sampling interval h [ms], the state space
model matrices ®, I', and C, the controller gain vectors L and K and the reference
signal gain 1_. Parameter files can be generated with a PC-MatLab function called
DSFP (see Abpendix B). The DSF command PAR (cf. Section 2.3) is used to read a
new parameter file. The format of the parameter file is compatible with the
parameter files in SIMNON. Therefore the parameter files can also be used in
SIMNON where they are read with the command GET. Parameter files can also be
generated with Ctrl-C. Only minor modifications are necessary in the PC-Matlab
function DSFP to convert it to a Ctri-C function.

3. LOG - DATA LOGGING

The LOG program includes facilities for data logging and plotting of measured
signals on the screen. Logged data can be written to a text file. The text file
format is chosen so that it can be converted off line to a binary data file and
plotted with IDPAC or SIMNON. A special feature is the possibility to change the
A/D converter gain. By selecting a suitable gain the quantization error can be
reduced for low level signals without the use of external amplifiers. The operator
communication is very simple. It is based on a screen menu, where the operator
selects the desired command by clicking a mouse button inside one of the menu
rectangles.

3.1 SOFTWARE ARCHITECTURE

The program is divided into three process modules and three monitor modules.
LOG also uses the graphics utility procedures in the GraphUti module, and a
special version of the AnaloglO module which includes the programmable A/D
converter gain facility. Each module is separately compiled.

Monitor modules:

LogPar Log parameters and global data.

LogBuff Log data buffer.

PlotBuff Plot data buffer.

Process modules:

Scan Scans the A/D inputs and sends data to LogBuff and PlotBuff.
Plot Plots measured data on the screen.

OpCom Cperator communication.

LogPar

The LogPar module implements a menitor which protects global log parameters.
The log parameters are stored in a record of type LogParType (see Appendix C).
The parameters can be accessed with two monitor entry proceduras, GetLogPar
and PutLogPar, which provide mutual exclusion.

LogBuff

The LogBuff module implements a ring buffer monitor with 1000 elements. It is
similar to the LogBuff module in the DSF program (cf. Section 2.1j.

PlotBuff

The PlotBuff module implements a ring buffer monitor with 25 elements. It is
similar to the PlotBuff module in the DSF program {cf. Section 2.1).

Scan

The Scan module contains a process which reads the A/D input channels. The
sampling interval, A/D gain and a boolean variable 'LogOn' are read from the
LogPar monitor. The measured data are sent to the plot process via the plot
buffer PlotBuff. When LogOn is TRUE, the scan process also sends the measured
data to the log buffer. The log function is therefore enabled and disabled from the
scan process. This is different from the DSF program, where the plot process
sends log data to the log buffer, and hence controls the updating of the leg. In
LOG, however, this mechanism cannot be used because the log and plot functions
must be separated. This, in turn, depends on the fact that a 10 ms sampling

Chapter 3 LOG - Data lLogging

interval can only be achieved with the screen plot disabled. Another reason is
that when the log is turned on, we do not want the iog buffer to be filled with old
data from the plot buffer. That is what happens if the log data are sent to the log
buffer from the plot process, and the log is stopped by freezing the plot. In DSF
this can be accepted, however, since there the intended use of the log function is
to save plotted data.

Plot

The Plot module contains the plot process. It reads plot data from PlotBuff and
plots the data on the screen. The plot process is completely separated from the
log buffer, and the screen plot can be frozen while the log is still active. The plot
is frozen in the same way as in DSF by halting the plot process with the plot
enable flag in PlotBuffer.

OpCom

The OpCom mecdule is divided into two processes, OpComProcess with high
priority and IOProcess with low priority. This module is similar to the OpCom
module in DSF with some obvious changes in the command menu and the
operator dialogue.

Priorities and sampling rate

The processes have the following priorities (high numbers indicate low priority):

Scan 10
OpComProcess 15
Plot 20
IOProcess 30

The priority considerations in LCG are the same as in DSF. Scan has the highest
priority to guarantee that the A/D inputs are read at correct times. The time
consuming IOProcess must have the lowest priority for the same reason as in the
DSF program to avoid blocking the Scan process.

The minimum sampling interval is approximateily 20 ms with the plot process
running, and 10 ms with the plot process stopped.

3.2 A/D CONVERSION WITH PROGRAMMABLE GAIN

The Analog Devices RTI-800 and RTI-802 bcards have A/D converters with
programmable gain. This feature is not used in the ADIn procedure of the
standard AnalogiO module, which has a fixed gain correspeonding to a full scale
input range of +10 V. With a 12 bit converter, the corresponding guantization
interval is 5 mV. This may be unacceptable when measuring low level signals.
Therefore a modified version of the AnaloglO module has been written, where the
ADIn procedure has an extended parameter list including the A/D converter gain.
The new procedure heading is

PROCEDURE ADIn(Channel: CARDINAL; Gain: INTEGER) : REAL;

See Appendix C for further details. As in the standard version, this procedure
returns a value in the interval (-1 .. 1) from the channel number ‘Channel'. The
returned value is calculated as

output = inputxGain/10
Allowed gain values are 1, 10 100 and 500. The maximum gain value corresponds

to a full scale input range of 220 mV. This sheuld be sufficient for most
applications. For example, it enables direct conneciion of thermoccouples to the

10

Chapter 3 LOG - Data Logging

A/D converter input. When working with such low signal levels, the wiring and
grounding on the back plane must be made with great care to avecid disturbances.
The A/D converter gain can be changed on line and has the default value
Gain = 1 when the program is started.

3.3 OPERATOR COMMUNICATION

The operator communication is similar to DSF. The desired command is selected
by clicking a mouse button inside one of the menu rectangles. When necessary
the program prompts for further infoermation from the keyboard.

Command menu:

EXIT Terminate program execution and return to MS-DOS.

LOG Log on/off. The OFF state is indicated by a red LOG rectangle, and the
ON state is indicated by a green rectangle.

PLOT Screen plot on/off. On is indicated by a green PLOT rectangle and OFF
by a red rectangle.

PAR Enter new log parameters. Current gain and sampling interval [h]
values are displayed, and the program prompts for new values. Enter
RETURN if the current value is ok.

SAVE Write current content of the log buffer on a disk file. The program
prompts for log file name (default = LOG.T}. The file name should have
the structure 'filename.ext'. After succesful writing of the log file, the
user receives the message 'Done’. In other cases, an error message is
displayed.

Plotted signals:

Blue Analog Input 0
Red Analog Input 1
Black Analog Input 3

The number of plotted signals can be increased easily. When three signals are
plotted, the minimum samplig interval for the LOG program is h = 20 ms. In
order to log data with a sampling interval of 10 ms, the plot must be disabled.

11

4. REFERENCES

Elmquist, H., Astrém, K.J., and Schénthal, T.S. (1986): "SIMNON - User's Guide
for MS-DOS Computers”. Dept. of Automatic Control, Lund Institute of
Technology.

Franklin, G.F. and Powell, J.D. (1980): "Digital Control of Dynamic Systems".
Addison-Wesley, Reading, Mass., USA.,

Logitech, Inc. (1985): "Modula-2/86 User's Manual. Release 2.00". Redwood City,
CA, USA, December 1985.

MathWorks, Inc. (1986): "PC-MATLAB for MS-DOS Personal Computers. User's
Guide". Sherborn, MA, USA.

Systems Control Technology, Inc. (1686): "Ctrlc-C User's Guide". Palo Alio, CA,
USA.

Astrom, K.J. and Wittenmark, B. (1984): "Computer Controlled Systems - Theory
and design". Prentice-Hall, Englewood Cliffs, N.J., USA.

Wallenborg, A. (1887): "Control of Flexible Servo Systems". Licentiate thesis,
Dept. of Automatic Control, Lund Institute of Technology. CODEN:LUTFD2/
(TFRT-3188)/1-94/(1887).

Wirth, N. (1985): "Programming in MODULA-2". Third edition. Springer-Verlag,
New York.

5. ACKNOWLEDGEMENTS

Two essential prerequisites for the DSF and LOG pregrams are the modules
Kernel and Graphics, written by Leif Andersson. Kernel provides the necessary
real time primitives, and it is a convenient tool for real time programming in
Modula-2 on the IBM PC/AT. Many of the ideas about the software architecture
have come from Kjell Gustafsson, and | have also had interesting and fruitful
discussions with Ola Dahl and Per Hagander. Their contributions are gratefully
acknowledged.

12

Appendix A

Excerpts from the DSF source code.

CONTENTS:

DSF.MCD
GRAPHUTIL.DEF
LOGBUFF.DEF
OPCOM.DEF
PLOT.DEF
PLOTBUFF.DEF
REGDATA.DEF
REGULATE.DEF
LOGBUFF.MOD
REGULATE.MOD

Main program module

Graphics utility definition module

Log buffer definition module

Operator communication definition module
Plot process definition module

Plot buffer definition module

Regulator data monitor definition module
Regulator process definition module

Log buffer implementation module
Regulator process implementation module

13

Appendix A

MODULE Dsf;
(*
Main program for digital state feedback control.
Controller parameters are read from a SIMNON parameter file.
The screen plot is continuously logged in a log buffer.
Log buffer contents can be saved on a disk file.

Monitor modules:

RegData Regulator data and parameters
PlotBuff Plot data buffer
LogBuff Log data buffer

Process modules:

Regulate Gets parameters from RegData, calculates a new
control signal and sends plot data to PlotBuffer.

Plot Gets plot data from PlotBuffer and plots them on the
screen. Puts plot data in LogBuff.

OpCom Operator communication. OpCom is divided into two

processes. One (with high priority) waits for a

mouse click in one of the menu rectangles and initiates
the selected action.

The second process has low priority and handles file
oriented I/0 operations.

The reference value for the regulator is changed by
pointing at the corresponding level in the plot and
clicking the mouse button.

Author: Anders Wallenborg

*)
IMPORT RTMouse, PlotBuff, LogBuff, RegData, Regulate, Plot, OpCom;

BEGIN
RTMouse.Init;

RegData.Init; (¥ initialize monitors x)
PlotBuff.Init;
LogBuff.Init;

Regulate.Start; (+ start processes)
Plot.Start;
OpCom.Start;

OpCom.HaitForExit;
END Dsf.

14

Appendix

DEFINITION MODULE GraphUtility;

(*
A collection of routines to make life easier for the graphics
programmer .

*)

FROM Graphics IMPORT
handle, point, color;

EXPORT QUALIFIED
SetPoint, PlotLine, PlotStair, PromptAndRead;

PROCEDURE SetPoint{VAR p: point; x,y: REAL);
PROCEDURE PlotLine(pl,p2: point; h:handle; linecolor:color);
PROCEDURE PlotStair(pl,p2: point; h:handle; linecolor:color);

PROCEDURE PromptAndRead (h: handle; p:point; promptstr: ARRAY OF CHAR;
VAR str: ARRAY OF CHAR);

END GraphUtility.

DEFINITION MODULE LogBuff;
(*
This module implements a ring buffer containing items of type
'LogDataType’.
*)
EXPORT QUALIFIED
LogDataType, nlog, Init, PutLogBuffer, GetLogBuffer, WriteLogBuffer;

CONST
nlog = 4;

TYPE
LogDataType = RECORD
data : ARRAY[1..nlog] OF REAL;
time : CARDINAL;
END;

PROCEDURE Init;

PROCEDURE PutLogBuffer (Item: LogDataType);
(*

Put an item in the log buffer. If the buffer is full the oldest
item will be overwritten.

*)

PROCEDURE GetLogBuffer (VAR Item: LogDataType);

(*
Get an item from the log buffer. If the buffer is empty,
'GetLogBuffer' will wait until data are available, i.e.

A

15

Appendix

until 'PutLogBuffer' has been executed.

%)

PROCEDURE WriteLogBuffer (filename: ARRAY OF CHAR; VAR error: CARDINAL);
(*
Write log buffer contents on disk file.
The string 'filename' should have the structure 'DK:name.ext’
No file name check is done.
error = 0 : Log written succesfully on file
Log buffer empty
File open error
Rrite error
File close error

B WwN -

*)

END LogBuff.

DEFINITION MODULE OpCom;

(*
This module contains the operator communication.
It is started by calling 'Start’.
'WaitForExit' is a procedure which blocks the calling process
until the operator selects a command which terminates program
execution.

)

EXPORT QUALIFIED Start, WaitForExit;

PROCEDURE Start;
PROCEDURE WaitForExit;

END OpCom.

DEFINITION MODULE Plot;

(*
This module contains the plot process.
It is started by calling 'Start’.

*)

EXPORT QUALIFIED Start;

PROCEDURE Start;

END Plot.

DEFINITION MODULE PlotBuff;

(*
This module implements a ring buffer containing items of type
'PlotDataType’.

*)

EXPORT QUALIFIED

A

16

Appendix

PlotDataType, Init, PutPlotBuffer, GetPlotBuffer,
EnablePlot, DisablePlot, PlotEnabled;

TYPE
PlotDataType = RECORD
yref, y1, v2, u : REAL;
time, h : CARDINAL;
END;

PROCEDURE Init;

PROCEDURE PutPlotBuffer (Item : PlotDataType);
(*

Put an item in the buffer. If the buffer is full,
then the oldest item in the buffer will be overwritten.

*)

PROCEDURE GetPlotBuffer (VAR Item : PlotDataType);

(*
Get an item from the buffer. If the buffer is empty 'GetPlotBuffer’
will wait until data are available, i.e. until 'PutPlotBuffer’

has been executed.

*)

PROCEDURE EnablePlot;
(*

Set the plot enable flag. If this flag is false, calls to
'GetPlotBuffer' will wait until it becomes true.

*)
PROCEDURE DisablePlot;

(%
Reset the plot enable flag.

*)
PROCEDURE PlotEnabled (): BOOLEAN;

(*
Returns the current value of the plot enable flag.

*)
END PlotBuff.

DEFINITION MODULE RegData;

(*
This module defines a monitor for the regulator parameters of a
state feedback control algorithm with observer.
Author: Anders Wallenborg

*)
FROM FileSystem IMPORT File;

EXPORT QUALIFIED
RegDataType, nmax, Init, PutRegData, GetRegData, ReadParFile;

A

17

Appendix A

CONST nmax = 3; (* maximum system order =)

TYPE
RegDataType = RECORD
RegulatorOn : BOOLEAN;

yref : REAL;

h : CARDINAL; (+ sampling interval x)
n : CARDINAL; (* system order x)

F : ARRAY [1..nmax],[1..nmax] OF REAL;

G : ARRAY [1..nmax] OF REAL;

C : ARRAY [1..nmax] OF REAL;

K : ARRAY [1..nmax] OF REAL;

L : ARRAY [1..nmax] OF REAL;

1r : REAL;

END;

PROCEDURE Init;
PROCEDURE PutRegData(Item: RegDataType);

(*
Put regulator data in monitor

*)
PROCEDURE GetRegData (VAR Item: RegDataType);

(*
Get regulator data from monitor
*)
PROCEDURE ReadParFile(filename: ARRAY OF CHAR; order: CARDINAL;
VAR Item: RegDataType; VAR error: CARDINAL);
(*

Read regulator parameters from SIMNON parameter file.
The string 'filename' should have the structure 'DK:name.ext’
No file name check is done.
order = system (regulator) order
error = 0 : Parameter file read succesfully
1 : File open error
2 : Data conversion error
3 : File close error

+)

END RegData.

DEFINITION MODULE Regulate;

(*
This module contains the regulator process.
It is started by calling 'Start’'.

x)

EXPORT QUALIFIED Start;
PROCEDURE Start;

END Regulate.

18

IMPLEMENTATION MODULE LogBuff;

FROM ConvReal IMPORT

RealToString;

FROM FileSystem IMPORT

Appendix A

File, Response, Lookup, Delete, Close, WriteChar;

FROM Kernel IMPORT

Semaphore, Event, Signal, Wait, Cause, Await, InitSem, InitEvent;

FROM NumberConversion IMPORT

CardToString;

CONST

BufferLength = 500;

TYPE

Index = [0..BufferLength-1];

VAR

mutex : Semaphore;

nonempty : Event;

buffer : ARRAY Index OF LogDataTvpe;
writepos : Index;

readpos : Index;

count : [0..BufferLength];

log : ARRAY Index OF LogDataType;

(* entry x) PROCEDURE Init;

BEGIN

InitSem(mutex,1);
InitEvent (nonempty,mutex);
writepos := 0;

readpos : = 0;
count := 0;

END Init;

buffer data vector x)
next write position %)
next read position x)

output data vector)

(¥ entry x) PROCEDURE PutLogBuffer{Item: LogDataType);

BEGIN

Wait(mutex);
buffer[writepos] := Item;

writepos := (writepos+1) MOD BufferLength;

IF count=Bufferlength THEN

readpos := (readpos+1) MOD Bufferlength;

ELSE

count := count + 1;
END;
Cause (nonempty);
Signal (mutex);

END PutLogBuffer;

(* data lost x)

(* entry) PROCEDURE GetLogBuffer (VAR Item: LogDataType);

BEGIN

Wait (mutex);
WHILE count=0 DO Await(nonempty);

19

Appendix A

Item : = buffer[readpos];

readpos := (readpos+1i) MOD BufferLength;
count := count - 1;

Signal (mutex);

END GetLogBuffer;

PROCEDURE HriteString(s: ARRAY OF CHAR; VAR f:File; VAR ok: BOCLEAN);

CONST

nul = 00C;

VAR

i : CARDINAL;

BEGIN
i:=0;

ok : = TRUE;

LOOP
IF (s[i]=nul) OR (i>HIGH(s)) THEN EXIT; END;
WriteChar(f,s[i]);
IF f.res # done THEN ok := FALSE; EXIT; END;
i:= 1i+1;

END;

END HWriteString;

(x entry x) PROCEDURE HWriteLogBuffer (filename: ARRAY OF CHAR;
VAR error: CARDINAL);

nul =
cwidth

6; (¥ cardinal string width x)
rwidth = 7

; (¥ real string width)

VAR

logfile : File;

i, rp : Index; (* rp = local read position variable x)
n : [0..Bufferlength];

k : [1..nlog];

str : ARRAY [0..79] OF CHAR;

ok : BOOLEAN;
BEGIN

error := 0;

i:=0;

Hait (mutex);
IF count = O THEN
error := 1; (* logbuffer empty *)
ELSE (% copy buffer to log vector x)
n = count;
rp : = readpos;
FOR i: =0 TO n-1 DO
log[i] := buffer[rp];
rp := (rp+1) MOD BufferLength;
END;
END;
Signal (mutex);
Delete(filename,logfile);
Lookup(logfile,filename,TRUE);
IF (logfile.res # done) AND (error=0) THEN error := 2; END;

20

Appendix A

i:=0;
LOOP
IF (error # 0) THEN EXIT; END;
CardToString (log[i].time,str,cwidth);
WriteString(str,logfile,ok);
IF NOT ok THEN error := 3; EXIT;, END;
WriteChar (logfile,' ');
IF logfile.res # done THEN error := 3; EXIT; END;
FOR k := 1 TO nlog DO
RealToString(log[i].data[k],str,rwidth);
WriteString(str,logfile,ok);
IF NOT ok THEN error := 3; EXIT; END;
firiteChar (logfile,' '});
IF logfile.res # done THEN error := 3; EXIT; END;
END;
WriteChar (logfile,eol);
IF logfile.res # done THEN error := 3; EXIT; END;
IF i >= n-1 THEN EXIT; END;
i= i+1;
END; (* loop #)
Close(logfile);
IF (logfile.res # done) AND (error=0) THEN
error :@= 4;
END;
END WriteLogBuffer;

END LogBuff.

IMPLEMENTATION MODULE Regulate;
(%
This module contains the regulator process 'Process', which
implements a digital state feedback controller and an observer
which uses the latest measured value in the state estimates.
The regulator process is started by calling 'Start’.
Regulator data are stored in the monitor 'Regdata’.
The regulator process sends plot data to the plot buffer 'PlotBuffer’.
Author: Anders Wallenborg
)
FROM AnalogIO IMPORT
ADIn, DAOut;
FROM Kernel IMPORT
Time, GetTime, IncTime, WaitUntil,
SetPriority, CreateProcess;
FROM PlotBuff IMPORT
PlotDataType, PutPlotBuffer;
FROM RegData IMPORT
RegDataType, nmax, GetRegData, PutRegData;

CONST
regpriority = 10;
umax = 1.0;
umin = -1.0;

21

(* Process %) PROCEDURE Process;

VAR

plotdata :
a:
v, V2, U :

regdat

tsamp :
x : ARRAY [1..nmax] OF REAL; (*

xe :
ye :
i,j:

BEGIN

PlotDataType;
RegDataType;
REAL;
Time;

ARRAY [1..nmax] OF REAL; (*
REAL; (

»*

CARDINAL;

SetPriority(regpriority);

ye

:=0.0;

GetRegData(regdata);

FOR i:=1 TO regdata.n DO xe[i] :=

GetTime(tsamp);

LOOP

GetRegData(regdata);
WITH regdata DO
y := ADIn(0);
y2 := ADIn(1);
FOR i:=1 TO n DO
x[1] := xe[i] +.K[i]* (y-ve);
ND;

IF RegulatorOn THEN

u

:= lrxyref;

FOR i:=1 TO n DO

u:=

u - L[i]«x[i];

END;
IF u > umax THEN

u : = umax;
ELSIF u < umin THEN
u := umin;
END;
ELSE
u:= 0.0;
END;
DAOut (0,u);

FOR i:=1 TO n DO

ye

FOR i:
ye :

xe[i]

1= G[i]*u;

FOR j:=1 TO n DO

xe[i1] := xe[i] + F[i,j]*x[j];

END;
END;

:= 0.0;

1 TO n DO
yve + C[i]*xe[i];

END;

END;

(* with %)

plotdata.yref := regdata.yref;

plotdata.yl

BV

plotdata.y2 : = y2;

plotdata.u :
plotdata.time

= u;
:= tsamp.lo;

plotdata.h : = regdata.h;

xest[k|k]
xest[k|k-1]
yest[k|k-1]

Appendix A

0.0; END;

(* x = xe + Ks(y-ye)

*)

(#* u=1lrxyr - Lxx)

—
*

xe[k+1] = Fx[k] + Gu[k] *)

(* ve[k+1] = Cxe[k+1] %)

22

PutPlotBuffer (plotdata);
IncTime(tsamp,regdata.h);
RaitUntil (tsamp);
END; (* loop *)
END Process;

PROCEDURE Start;
BEGIN

CreateProcess (Process,10000);
END Start;

END Regulate.

Appendix A

23

Appendix B

This appendix contains a PC-MATLAB procedure cailed DSFP which can be used
to generate parameter files for DSF and SIMNON. A sample parameter file is also
included.

function [] = dsfp(F,G,C,K,L,1r ,h,syst);
% function [] = dsfp(F.G,C,K,L,1r,syst);

% Conversion of discrete time state feedback controller parameters to a
% SIMNON parameter file with the system name 'syst'.

F = Fi matrix

G = Gamma matrix

C = C matrix

K = observer gain vector

L = state feedback gain vector
1lr= reference signal gain

h = sampling interval [sec]

syst = SIMNON system name (should be entered within single quotes)

Output file name: DSFPAR.T
Maximum system order = 5

Author: Anders Wallenborg

RMRNRVRRRNRRNRaRR2RaWaR 2Rk 2R

[m,n] = size(F);
%

syst=["[',syst,']'];

Fstr=['F11:'; 'F12: '; 'F13: '; 'F14: '; 'F15: ';
'F21:'; 'F22: '; 'F23: '; 'F24: '; 'F25: 7,
'F31: '; 'F32: '; '"F33: '; 'F34: '; 'F35: ’;
'F41: '; 'F42: '; 'F43: '; 'F44: '; 'F45: ';
'F51: '; 'F52: '; 'F563: '; 'F54: '; 'F65: '];
Fstr = [Fstr(1:n,:);
Fstr(6: 5+n,:);
Fstr(11: 10+n,:);
Fstr(16: 15+n,:);
Fstr(21:20+n,:)}];
Gstr = ['Gl: ';'G2: ';'G3: ';'G4: ';'G5: '];
Cstr = ['C1: ';'C2: ';'C3: ';'C4: ';'C5: '];
Kstr = ['K1: ';'K2: ';'K3: ';'K4: ';'K5: '];
Lstr = ['L1: ';'L2: ';'L3: ';'L4: ';'L5: '];

lrstr = 'Ir: ';

for i=1:n
s = sprintf('%g',G(i));
gpar(i,1:length(s)) = s;
s = sprintf('%g’',C(i));
cpar(i,1:length(s)) = s;
s = sprintf('%g',K(i));

24

kpar(i,1:length(s)) = s;

S

= sprint

f('%'.L(i));

lpar(i,1:length(s)) = s;

f

e
end
lrpa

or j=1:n

s = sprintf('%g'.F(i,j));
fpar((i-1)*n+j,1: length(s)) = s;

nd

r = sprin

tf("%g . 1r);

hpar = num2str(h);

diary dsfpar.t ;

disp(syst);
disp([hstr,hpar]);
disp([Fstr(1:n#n,:), fpar]);
disp([Gstr(1:n,:), gpar]);
disp([Cstr(1:n,:), cpar]);
disp([Kstr(1:n,:), kpar]);
disp([Lstr(1:n,:), lpar]);
disp([1lrstr, lrpar]);

diary off;

Sample parameter file generated with DSFP:

[reg
h: 0.
Fi1:
F12:
F13:
F21:
F22:
F23:
F31:
F32:
F33:
G1:
G2:
G3:
C1:
C2:
C3:
K1:
K2:
K3:
L1i:
L2:
L3:
1r:

]
0400

0.897191
0.085234
4.181328
0.012501
0.984771
-0.618110
-0.038329
0.038632
0.902112
43.746512
0.191013
-0.888648
.100000
.000000
.000000
.186183
.154608
.055569
.016797
.037445
~-0.086916
0.554039

OQORL WOOOO

Appendix B

25

Appendix C

Excerpts from the LOG source code. Only modules which are
different from the DSF program have been included.

CONTENTS:

LOG.MOD
ANALOGIO.DEF
LOGPAR.DEF
SCAN.DEF
ANALOGIO.MOD
SCAN.MOD

Main program

Analog input/output definition module

Log parameter monitor definition module
Scan process definition module

Analog input/output implementation module
Scan process implementation module

significantly

26

Appendix C

MODULE Log;
(*

Main log program.

Monitor modules:

LogPar Log parameters and global data
LogBuff Log data buffer

PlotBuff Plot data buffer

Process modules:

Scan Scans AD inputs. Sends data to LogBuff and PlotBuff.

Plot Gets plot data from PlotBuff and plots them on the
screen.

OpCom Operator communication. OpCom is divided into two

processes. One (with high priority) waits for a

mouse click in one of the menu rectangles and initiates
the selected action.

The seccnd process has low priority and handles file and
keyboard oriented I/O operations.

Author: Anders Wallenborg

*)
IMPORT RTMouse, PlotBuff, LogBuff, LogPar, Scan, Plot, OpCom;

BEGIN
RTMouse.Init;

LogPar.Init; (* initialize monitors x)
PlotBuff.Init;
LogBuff.Init;

Scan.Start; (*+ start processes %)
Plot.Start;
OpCom.Start;

OpCom.WaitForExit;
END Log.

27

Appendix C

DEFINITION MODULE AnaloglO;
(*
Analog input/output. This version of AnaloglO is for the Analog Devices
RTI-800 and RTI-802 boards. User programmable A/D converter gain included.
*)
EXPORT QUALIFIED ADIn, DAOut;

PROCEDURE ADIn(Channel : CARDINAL; Gain : INTEGER) : REAL;

(*
Returns a value in the interval [-1.0..1.0], corresponding to inputxGain/10,
from channel number Channel. Allowed channel numbers are 0 through 3.
Allowed gain values are 1, 10, 100 and 500.

*)

PROCEDURE DAOut (Channel : CARDINAL; Value : REAL);

(*
Outputs a value in the interval [-1.0..1.0], corresponding to [-10.0 V..10.0 V],
to channel number Channel. Allowed channel numbers are 0 and 1.

*)

END AnaloglO.

DEFINITION MODULE LogPar;

(*
This module defines a monitor for the logger parameters.
Author: Anders Wallenborg

*)

EXPORT QUALIFIED
LogParType, Init, PutlogPar, GetLogPar;

TYPE
LogParType = RECORD
LogOn : BOOLEAN;

h : CARDINAL; (* sampling interval x)
gain : INTEGER; (# AD converter gain x)
END;

PROCEDURE Init;
PROCEDURE PutLogPar (par: LogParType);

(*
Put log parameters in monitor
*)
PROCEDURE GetLogPar (VAR par: LogParType);

(*

:,\'}

Get log parameters from monitor

END LogPar.

28

Appendix C

DEFINITION MODULE Scan;

(*
This module contains the AD input scan process.
The process is started by calling 'Start’'.

*)
EXPORT QUALIFIED Start;
PROCEDURE Start;

END Scan.

IMPLEMENTATION MODULE AnaloglO;

(*
This version of AnaloglIO is for the Analog Devices RTI-800
and RTI 802 boards.
Author (original version): Leif Andersson

Revised 1987-04-15 by Anders HWallenborg:
The ADIN procedure parameter list has been extended and includes the
parameter 'Gain' to enable user selected A/D converter gain.

‘)

FROM SYSTEM IMPORT INBYTE, OUTBYTE;

FROM MathLib IMPORT round, float;
(*$R-—x) (x$S—x) (*$T-x)

PROCEDURE ADIn(Channel: CARDINAL; Gain: INTEGER) : REAL;
(*
Returns a value in the interval [-1.0..1.0] from channel number Channel.
Allowed channel numbers are O through 15.
The returned value is inputxGain/10.
Allowed gain values are 1, 10, 100 and 500.

*)

CONST
ADmax = 15; (* Maximum channel number #)
ADBASE = G300H;
ADSTATUS = ADBASE; (* Analog in status register x)

ADCHAN = ADBASE + 1; (¥ Channel/gain register)
ADCONV = ADBASE + 2; (x Convert command x)

ADINLOW = ADBASE + 3; (* Converted value, low byte x)
ADINHIGH = ADBASE + 4; (x Converted value, high byte x)

VAR
DLO, DHI, (* Low and high bytes of input value #)
i, j, (* Dummy variables for busy wait loop #)
status: CARDINAL; (* Used for checking that A/D conversion is complete %)
(
(

*

RealInValue : REAL; (% Value returned x)
InValue: INTEGER; * Input value converted to 2 bytes #)

BEGIN
IF Channel > ADmax THEN ERROR END;

29

Appendix C

(+ Set appropriate gain bits in channel/gain register *)
IF Gain = 1 THEN
Channel := Channel + O;
ELSIF Gain = 10 THEN
Channel := Channel + 32;
ELSIF Gain = 100 THEN
Channel : = Channel + 64;
ELSIF Gain = 500 THEN
Channel := Channel + 96;
ELSE
ERROR
END;
OUTBYTE (ADCHAN,Channel);

(» Start conversion and wait for Busy State bit to equal O x)
OUTBYTE (ADCONV ,0) ;

status := O;

REPEAT INBYTE (ADSTATUS,status) UNTIL {6 IN BITSET(status));

(* Read data x)

INBYTE (ADINLOW,DLO); INBYTE(ADINHIGH,DHI);
InValue := INTEGER(DHI*256 + DLO);
RealInValue: =float(InValue)/2048.0;

RETURN ReallnValue;

END ADIn;

PROCEDURE DAOut (Channel : CARDINAL; Value : REAL);
(*
Outputs a value in the interval [-1.0..1.0] to channel number Channel.
Allowed channel numbers are O and 1.
)
CONST
DACSELECT = 0310H; (% DAC select register &)
DACLOW = DACSELECT + 1; (* Output value, low byte x)
DACHIGH = DACSELECT + 2; (* Output value, high byte #)
DAmax = 7; (* Maximum output channel number #)

VAR

DLO, DHI, (* Low and high bytes of output value &)

OutValue : CARDINAL; (* Output value converted to 2 bytes #)
BEGIN

(* Set the channel x)

IF Channel > DAmax THEN ERROR END;

OUTBYTE (DACSELECT ,Channel);

(*+ Convert Value and output the result x)

IF Value > 1.0 THEN Value := 1.0 END;

IF Value < -1.0 THEN Value := -1.0 END;

OutValue : = round(2047.0 x Value});

DLO := OutValue MOD 256;

DHI := OutValue DIV 256;

OUTBYTE (DACLORW,DLO); OUTBYTE(DACHIGH,DHI);
END DAOut;

PROCEDURE ERROR;

30

Appendix C

This error procedure is used to terminate program execution.

It forces the program to crash by using an array index cutside

the index range.

The program crash gives the error message 'Range Error ...
*)

VAR v : ARRAY[1..2] OF INTEGER;
dummy : INTEGER;
BEGIN
dummy := -1;
v[dummy] := 1;
END ERROR;

END AnaloglO.

IMPLEMENTATION MODULE Scan;
(*
This medule contains a process 'Process', which scans the analog
input channels. The process is started by calling 'Start'.
Global data are stored in the monitor 'LogPar'.
The process sends nlog data to the log buffer 'LogBuff’.
The process sends nplot data to the plot process via the plet buffer
'PlotBuff’.
Note: It is assumed that nlcog >= nplot.

Author: Anders Rallenborg

*)

FROM AnalogIO IMPORT
ADIn;
FROM Kernel IMPORT
Time, GetTime, IncTime, WaitUntil,
SetPricority, CreateProcess;
FROM LogBuff IMPORT
LogDataType. nlog, PutLogBuffer;
FROM LogPar IMPORT
LogParType, GetLogPar;
FRCM PlotBuff IMPORT
PlotDataType, nplot, PutPlotBuffer;

CONST
regpriority = 10;

(* Process %) PROCEDURE Process;

VAR
y : ARRAY [1..nlog] OF REAL;
logpar : LogParType;
logdata : LogDataType;
plotdata : PlotDataType;
tsamp : Time;
k : CARDINAL;

BEGIN

3

SetPriority(regpriority);
GetTime(tsamp);
FOR k := 1 TO nlog DO y[k] := 0.0;
LOOP
GetLogPar (logpar};
FOR k := 1 TO nlog DO
v[k] : = ADIn(k-1,logpar.gain);
D;

IF logpar.LogOn THEN
FOR k := 1 TO nlog DO
logdata.data[k] : = y[k];
END;
logdata.time := tsamp.lo;
PutLogBuffer (logdata);
END;
FOR k := 1 TO nplot DO
plotdata.y[k] := y[k];
END;
plotdata.time := tsamp.lo;
plotdata.h : = legpar.h;
PutPlotBuffer (plotdata);
IncTime (tsamp,logpar.h);
WaitUntil (tsamp);
END; (x loop x)
END Process;

PROCEDURE Start;

BEGIN
CreateProcess(Process, 1000);

END Start;

END Scan.

Appendix C

32

