LUND UNIVERSITY

Knowledge Representation in Systems Modelling

Denham, Michael J.

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Denham, M. J. (1987). Knowledge Representation in Systems Modelling. (Technical Reports TFRT-7365).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/3cf3f44a-3256-4768-a874-512386018e04

CODEN: LUTFD2/(TFRT-7365)/1-022/(1987)

Knowledge Representation
in Systems Modelling

M.J. Denham

Department of Automatic Control
Lund Institute of Technology
August 1987

P.O. Box 118

Department of Automatic Control
Lund Institute of Technology

S-221 00 Lund Sweden

Document name

Report

Date of issue

1987-08-20

Document Number

CODEN:LUTFD2/(TFRT-7365)/1-022/(1987)

Author(s)
M.J. Denham

Supervisor

Sponsoring organisation
The National Swedish Board of Technical
Development (STU contract 86-4047)

Title and subtitle

Knowledge Representation in Systems Modelling

Abstract

This report discusses a knowledge based approach to Computer Aided Control Engineering (CACE). The
functionality of a language for communicating system engineering concepts between the user and the knowledge
base is discussed. Such a language must have both the flexibility of natural languages and the exactness of
formal languages. The importance of modularity is pointed out, and for that reason the knowledge base is
divided into three parts: structural knowledge, behaviour knowledge and functional knowledge. A frame based
representation of the knowledge base is considered and some experiments using KEE (Knowledge Engineering
Environment, trademark of Intellicorp) is reported. Finally, a rulebased approach to how behaviour of an
interconnected system structure can be derived from the behaviour of the components is sugested.

Key words

Computer Aided Control Engineering; Computer Aided Control System Design; Software; System Represen-
tations; Knowledge Engineering

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language
English

Number of pages
22

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Knowledge Representation in Systems Modelling

1 In 1ction

. In this report, some ideas are explored concerning the use of knowledge-based methods in

the computer-based modelling of dynamic systems. Systems modelling is regarded as the
process of creating and reasoning about a computer-based model of a real-world system.
The creation of such a model requires the existence of a language for expressing the objects
and relationships from which the model is composed. The process of reasoning about the
model requires that the objects and relationships in the model are expressed in a form in
which some deductive reasoning process is possible, e.g. logic. Therefore statements in
the modelling language must be used to create a knowledge base (or bases) which contains
the knowledge which is required for the reasoning process. Development of a systems
modelling language and an associated knowledge base is part of an overall requirement to
build a computer aided control engineering system, the components of which support the
total engineering process, including system modelling, stmulation, analysis, design and
implementation. These activities are closely integrated and therefore the systems
modelling language, viewed as a tool for the modelling activity, must be closely integrated
with the other tools which are to be developed, or already exist, to support the total
engineering process [1]. In the view of many control system engineers, however, the
modelling activity is seen as the most time-consuming and difficult task and the one in
which user interaction is at its most intense. It is also the means by which the engineer
forms the foundation for the other tasks of simulation, analysis, etc, and the main method
of communication of the results of these activities with other participants in the engineering
process, eg the customer.

It can therefore be strongly argued that a major part of the time in designing a new
computer aided control engineering system should be devoted to the design of the systems
modelling language and the associated knowledge base. In this report we will not be
directly concerned with the form that this language takes, but with a specification of its
functionality. Its implementation, e.g. as a graphical-based language using windows,
icons, €tc, is an issue which is not discussed here, although in specifying the language we
are essentially describing the user interface in an abstract way and therefore the functional
specification of the language is driven by our understanding and view of how the user goes
about the process of creating and reasoning about a system model.

Knowl requirements for ms modellin

We assume tht the user of system modelling language has knowledge about, or the means
of acquiring knowledge about, a system and requires a language in which to express this
knowledge and a knowledge base in which to store it. The knowledge about a system can
be decomposed into three typoes of knowledge which are closely related:

* structural knowledge
* behavioural knowledge
* functional knowledge

Structural knowledge is concerned with how the system is made up from its various
components and subsystems and the way in which these are interconnected, e.g. a table has
a top and a number of legs, the legs being connected to the top in a variety of ways, but
generally obeying certain rules, such as all the legs are connected to only one side of the
table top. In some. cases, geometrical or spatial knowledge can affect the way in which the

components or subsystems interact, €.g. a robot moving parts between machines, the legs
of a table being connected to the top in each corner, the sensors in a system being
geographically distributed.

~Behavioural knowledge describes how the system will behave, in an undisturbed situation,

and how it will respoomd to external stimulus. The knowledge may be explicit, in the case
of components, or implicit, in the case of subsystems and systems built up of components.
Here the behavioour is in general inferred from the behaviour of the components and their
intercconnections. Thus behavioural knowledge depends on structural knowledge. For
example, in the case of a table, we may explicitly state the behaviour of the table top and
legs as solid bodies subject to gravitational forces, with a certain rigidity, etc. The
behaviour of the table, 1.e. its action on being placed on the floor, is determined from the
behavioural properties of the components, knowledge about their interconnections and
about the connection of the system to the external world, in this case the floor, This
behaviour could be inferred and expressed qualitatively, i.e. "the table rests on its legs in
stable equilibrium with the table top horizontal", or it might be expressed quantitatively, in
terms of forces, positions, angles, etc.

Knowledge about behaviour might also be expressed in either a declarative form, i.e. as a
set of axioms which the system must always satisfy, or in a procedural form, i.e. as a set
of algorithms from which the behaviour can be computed. In the first case, we might refer
to the set of axioms, and the entities and operations refered to within the axioms, as a
theory of behaviour. A model is then regarded as_satisfying a theory when we create a
mapping between entities and operations in the model and those in the theory, and assert
that the axioms hold. We will explore this concept further at a later stage.

Functional knowledge is the means by which we will relate the model to the real world
system which it describes. For example, when we talk of a table, we naturally have
knowledge of what such an object is in the real world. But if we were presented with a
model of a table, i.e. a description, perhaps in the form a photograph, drawing or miniature
cardboard model, we would not necessarily be able to determine that it described a table. It
might be a stool, or a device for punching holes, for instance. We only relate it to the class
of objects we call tables when we have knowledge of the function of the system described
by the model. By function we mean its purpose, as expressed by its relationship with the
environment in which it exists, i.e. other objects, situations, etc. Hence, we know our
model is a model of a real world object from the class of tables when we are told that its
purpose is for standing cups, plates and other eating utensils on, for example. Of course, a
table might also be used for sitting on, in which case we must dlstlngulsh between primary
or normal behaviour, and secondary or abnormal behaviour. Also in order to use the
functional knowledge it must refer to other systems of which we already have knowledge.
It is no use knowing that a table is for standing a cup on if we have knowledge of what a

cup is.

In some cases, we will be able to verify the consistency between the functional knowledge
about a model and its behavioural knowledge. For example, if we know about a cup in
terms of its function and behaviour, e.g. that its purpose is to hold liquid and that the liquid
remains in the cup only if the latter is within a given angle from the vertical, then we can
determine whether the behaviour of our table, e.g. in maintaining a horizontal top, is
consistent with its function of having a cup standmg on it.

4

We see therefore that knowledge about structure, behaviour and function are closely
related. The purpose of separating the knowledge into these three categories is not only to
make it easier for the user to express knowledge about the model and the real world system
which it describes, but also to allow the knowledge in one category to be changed without
. altering the knowledge in another, This is particularly important in the process of creating a
system model, during which we often have only partial or estimated knowledge about
structure, behaviour or function. As our knowledge becomes greater we may wish to
update any of these categories, eg the behaviour of a component, without altering its other
characteristics, eg its structure. In separating our knowledge into these categories, we

therefore hope to achieve knowledge modularity.

The relationships between the three categories of knowledge which are established during
the modelling proces, can however be used to test for consistency betwen knowledge in
each category, so that changes, e.g. in structure, which contradict other knowledge about
the system, e.g. behaviour, can be detected and reported. The knowledge base creation
process must therefore ensure that the relationships between the knowledge categories are
stated explicitly or inferred automatically. The latter implies that the modelling process
must be based on some fundamental stored knowledge about such relationships, e.g. the
procedureto compute the behaviour of two components of a model according to their
individual behaviours and their structural interconnections.

Languag lirements for ms modellin
The major requirements for a systems modelling language are that it should be:
* capable of expressing knowledge about the system, i.e. structural, behavioural and
functional knowledge and the relationships between these categories, in a way which is

natural to the user, i.e. by referring to entities and operations which are the naturally
occuring objects in the vocabulary of the user,

*

capable of modifying and adding to existing knowledge, by being able to refer to such
knowledge and to new knowledge and carry out such operations as deletion,
replacement. addition, combination, etc.

* able to be used for reasoning about the model, including the derivation of properties of
the model, consistency checking, etc, for speculating about the model, i.e. adding
speculative knowledge and then reasoning about its relationship with existing
knowledge, with the ability to return easily to the original state.

*

capable of being realized in an executable form, i.e. the model should be capable of
being animated and thus reproducing or simulating the characteristics and behaviour of
the system which it models.

From these requirements, it can be seen that a system modelling language must have some
of the characteristics of both ordinary (natural) language, in relation to its expressive
power, and computer programming language, in relation to the need to formally reason,
using a precisely defined syntax and semantics, about knowledge expressed in the language
and to permit a realization in an executable form. In the former, we accept the possibility of
ambigious interpretation and the consequent need for an extensive knowledge of the world
and situation in which the language statements are made, in recognition of the ability of the
language to express a rich variety of entities and relationships. In the latter, we achieve
precision and formality, and require only limited domain knowledge, at the expense of
descriptive power. In ordinary language we are able to refer to real world objects and
situations based on the possession of a consistent and adequate knowledge base by the

recipient of statement, and to describe structure, behaviour and function in this world. In a
computer language, we can refer only to the limited set of objects and relations which can
be interpreted in the context of an abstract, computational machine, and describe only the
structure and behaviour of objects in this machine, in general under the assumption that we
are able to exactly measure the state of the machine at any moment of time.

Since we require some of the properties of both forms of language, it is appropriate to
study the relevant concepts and methods which have been considered in the areas of both
ordinary language understanding and computer language design. For example, there have
been several recent developments in ordinary language understanding based on the study of
situation theory and situation semantics {2]. This theoretical basis is also being used to
study computer language semantics [3], and there is also a considerable amount of work in
progress on the design of system description languages, e.g. [4], [5]. The concepts on
which the design of this latter class of languages is based has much in common with those
underlying our notion of a system modelling language. In most cases, however, the
systems at which these languages are being directed display discrete-event behaviour,
whereas we are concerned also with continuous and discrete-time behaviour. In the
discrete-event case, for example, the main design issues relating to the behaviour of
intercconnected components and subsystems include those of synchronization, fair access
to shared resources and the absence of blocking or deadlock conditions. In the continuous
or discrete time case we are more concerned with stability, time and frequency response,
disturbance attenuation, regulation, etc, and the semantics of the behavioural description of
the system must allow us to reason about such basic properties. However at a certain
abstract level the distinction is not so marked and much could be learnt from studying the
design of the wide range of system description languages currently being developed. The
close relationship between a systems modelling language and an ordinary language or a
computer language raises the common issue of coping with complexity. In the study of
ordinary language understanding, in order to cope with the complexity of the underlying
knowledge domain required, methods have been developed for dividing this knowledge
into "chunks" of an acceptable size. The frame method of knowledge representation is a
good example of this [6]. Here knowledge about a particular object or class of objects in
the real'world is gathered together into a single unit or frame. The items of knowledge to
be stored in the frame are allocated slots, the value of each item being either known or
unknown. The process of understanding then involves creating new units of knowledge or
new slots in existing units, or simply giving values to previously unfilled slots.

Similarily in computer languages, complexity is handled by the notion of modularity. A
module is in general a well defined operation or set of closely related operations which
might be realized as a single function or procedure. The design of a program is then
principally a process of specifying the constituent modules and their interfaces and
interconnections in terms of control of execution and of data flow. Efficiency and
productivity issues have also created the requirement for reuseable modules, i.e. modules
which can be kept for future use in putting together other programs. In general, such
modules have a set of parameters which can be used to fit the module to a specialized
situation. A more recent innovation in this context is the notion of object-orientated
languages, in which the modules contain not just procedures but also the data variables on
which the procedures operate. At this point the notions of object-oriented languages and
frame based languages largely coincide, if we consider a frame to contain both declarative
knowledge (with explicit values) and procedural knowledge (which describes how to
compute the value).

A system modelling language must have a similar capability of coping with the complexity
of describing real world systems. It must therefore be able to create and manipulate well-
defined units of knowledge about the system. Such units might be the components and

subsystems of the system, their interfaces, their interconnections, their behaviours and their
function. We can therefore regard a systems modelling language as a mean of operating on
such units, including:

* creating units which define structural, behavioural and functional knowledge about the
system,

* combining such units of knowledge by creating relationships between them, and
conversely, decomposing such combinations into their constituent units,

* enriching such units of knowledge by adding to the existing stored knowledge or
specializing it in some way, and conversely, simplifying such enriched knowledge to a
more basic or general form.

Each of these opérations involve the use of certain types of relations. In creating units of
knowledge, we assume that the real world systems and the objects from which they are
composed will have existing structural, behaviour and functional relationships, e.g. a
dining table is a kind of table, a pressure release valve is a kind of valve, which can be used
in their creation. That is, attributes of existing knowledge units can be inherited from units
to which they are related by the is-a-kind-of relation. In combining units, we create a
variety of relations depending on the form of combination and type of units being
combined. For example, in a combination of subsystems to create a new subsystem or
system, we might be creating both is-a-part-of and_is-connected-to types of relations. The
operation of enrichment is clearly defining an_is-a-specialization-of relation. This is very
similar to an is-a-kind-of relation, and we can probably regard them as identical without
loss of functionality in the language. The frame method of knowledge representation
directly supports the is-a-kind-of relation. However, other types of relations must be
constructed explicitly by the inclusion of attributes which embody such relational
knowledge.

The relations considered above are concerned mainly with objects within the same
knowledge base, i.e. the structural, behavioural or functional knowledge bases. The
language must also be capable of creating relations between units in different knowledge
bases. These are primarily of the has-behaviour or is-for types, e.g. "a car has behaviour
X", "a table is for putting a cup on". In a frame-based system, these relations between
knowledge bases will also have to be handled explicitly as attributes.

For uniformity in the use of the language, it should be possible for the operations which the
language defines to be used on any unit of knowledge in any of the three knowledge bases,
e.g. behaviour X is a part of behaviour Y. We will need to investigate the semantics of
these relations.

4 Knowl 1 1ctur

We have defined structural knowledge as being about how the system is made up from its
various components and subsystems. We will assume here that the most natural form for
defining structure is a hierarchical nesting of subsystems. The top level object is called the
system. A system can contain any number of interconnected subsystems, Each subsystem
can in turn contain any number of further interconnected subsystems . A subsystem (or
system) which containes no further subsystems is called a component. As we shall see
later, a component must have an explicitly defined behaviour. Recursion is not allowed,
i.e. a subsystem is not allowed to contain itself, although it may contain a copy of itself,
regarded as a distinct entity.

Each system, subsystem or component has a number of local variables. Some of these
variables are defined as terminal variables and some as parameter variables. Terminal
variables have the property of being able to be connected to terminal variables of other
subsystems or components. Parameter variables havethe property of being able to be
connected to objects called settings and to parameter variables of other systems or
subsystems. Any number of parameter variables, from more than one subsystem, can be
connected to the same setting. A parameter cannot be connected to more than one setting.
Any variable can be connected to an object called a gauge. A variable can be connected to
more than one gauge and multiple variables can be connected to a single gauge. Like all
other objects, settings and gauges will have behaviours which define the relationship
between their internal variables and the subsystem variables to which they are connected,
but their primary purpose is to create an interface with the user of the modelling language
which will allow the values of parameter variables to be set and observed respectively.

The interconnection between subsystems and between subsystems and settings/gauges is
by means of objects called connectors. A connector contains a list of lists of variables,
these lists being called connections. A connection has a behaviour which defines the
relation between listed variables. The default behaviour of a connection is to make the
elements of the connection list equal. Variables are defined in a list by both their
subsystems name and their variable name. Simple relationships (behaviours) can also be
expressed directly in the connection list using the primitive operations of plus, minus,
times, and, not, or. For example, to say that variable x from subsystem sl is equal to the
sum of variables y and z from subsystem s2, we would write the list defining this
connection as

(sl.x plus(s2.y s2.z)).

A system unit contains knowledge of its subsystems, terminal variables, parameter
variables and connectors. _A _subsytem unit contains knowledge of its parent system ("is-a-
part-of" relation), subsystems and connectors. A component unit is identical except that it
has no subsystems or connectors. A connector unit has knowledge of its parent system or
subsystem and its connections.

S Knowledge about behaviour

Behavioural knowledge has been defined as knowledge abut how the system is expected to
behave, expressed either as a procedure for computing the values of variables which
describe the behaviour or as a theory of behaviour, i.e. a declared set of variables,
operators and axioms, which the system is said to satisfy. A procedure or a theory may be
expressed either quantitatively or qualitatively.

There are very many possible types of behaviour and the essential feature of the behaviour
knowledge base is that the modelling language operations of creation, combination and
enrichment should act on the existing units of the knowledge base in order to create new
types of behaviour, expressed as new units within the knowledge base. For example, a
behaviour which is expressed in a purely symbolic form, e.g. a transfer function, could be
enriched or specialized by assigning values to some or all of the symbolic variables
(parameters).

A behaviour has a set of sorts, a set of functions and a set of relations which hold between
the sorts and functions. A system is said to have a specific behaviour when variables local
to the systems are associated with the sorts of the behaviour. In general, there will be a set
of pre-defined functions stored in behaviour knoweldge base, but the user will be able to

specify new functions, for example, as specializations of existing functions. Therefore a
behaviour might be defined in the following way:

sorts: UXY
functions: f: XU)>X
g X>Y
D: X->X
relations: D(x) = f(x u)
y = g(x)

Here f and g are user defined functions and D is a pre-defined operation. We say therefore
that a behaviour is parameterized by a set of sorts and a set of functions. For behaviour to
be_valid for a component of the system, the functions must be defined for the variables after
the association of the sorts with variables.

The operations which are user defined in a behaviour unit are stored as values of slots in
that unit, for example as LISP functions, in the behaviour knowledge base. The relations
are also stored as values of a slot and the functions are referenced by these relations, Thus
the definition of an function can be changed without changing the relations which refer to
it. Similarily, the relations can be changed without changing the definition of the functions.

The sorts of the behaviour consists of all those entities, other than function symbols, which
are referred to in the definition of the functions and relations. Not all of these sorts will
required in forming the association with a set of component variables. Therefore we define
two distinguished subsets of the sorts, one called terminal sorts which must be associated
with component_terminal variables, and another called_parameter sorts, which must be

associated with component parameter variables. The remaining subset of sorts is known as
internal sorts.

An experiment in KEE

To investigate the ideas and proposals described in the preceeding sections, we have
initiated the development of a knowledge base within the KEE system. KEE is a knowlege
engineering environment which uses the frame based method of knowledge representation,
as described in section 3 above. The interactive interface to the system allows the user to
define units of the knowledge base, the contents of slots and facets (values of slots) and the
membership and subclass structure between units. The KEE system generates LISP code
which describes the knowledge base and allows reasoning operations to be carried out

using either a simple query language or a rule-based system, provided as a part of the KEE
system. Procedural knowledge in a slot is known as a method, and is written as a LISP
lambda expression. Inheritance of methods between units is according to fairly rigid rules,
but there is a wide range of KEE system-defined functions which permit methods to be
written to access any component, eg unit, slot, etc. of any knowledge base present in the
system. This provides the flexibility necessary to carry out operations on the knowledge
base which involve both structural knowledge and behavioural knowledge, e.g.
consistency analysis, whilst still maintaining independence of these two categories of
knowledge.

At the present time, only the structural knowledge base has been constructed . The form of
this is shown in Figure 1. The unit SYSTEMS has declarative slots: connectors,
parameter-variables, subsystems, terminal-variables, and procedural slots (methods):

show. all.subsystems and show.all. connectors. The latter access items in the knowledge
base to determine the subsystem interfaces of a given system as required. The unit

SUBSYSTEMS inherits the above slots and has the additional declarative slot part-of,

which contains the name of the system or subsystem of which it forms a part. We have not
included the notion of an indivisable part of a system, i.e. a component, in the knowledge
base at this point in time.

The unit CONNECTORS has two declarative slots: connections and part-of. The former
lists the connections between subsystems as a list of lists of variables which satisfy a
simple equality relationship, e.g. if we have three subsystems P, Q and R, with terminal
variables W, Y, Z in each subsystem respectively, we write the connection of these
variables as the list (P.X Q.Y R.Z). The_part of slot names the subsystem of which the
connector is a part.

The unit TERMINALS has four declarative slots: description, which is a textual
specification of the real-world entity to which the variable refers, e.g. voltage; part-of, the
name of the subsystem containing the terminal; range, the set of values which the terminal
can take; and type, which specifies the terminal as being either an input, an output or a two-
way terminal.

The creation of a structural knowledge base for a specific system is carried out by first
copying the fundamental units SYSTEMS, SUBSYTEMS, CONNECTORS and
TERMINALS to the knowledge base. The constituent parts of the system to be modelled
are then created as subclass units of one of these fundamental units, as in Figure 2. Each
subclass unit is named and each of the inherited slots, e.g. subsystems, part-of is given a
value. The slots terminal-variables and_connectors in the units SYSTEMS and
SUBSYTEMS have so-called active values connected to them. These are methods which
are initiated whenever the slot is accessed in order to insert a new value. The function of
these methods is to enter values into the units TERMINALS and CONNECTORS by
requesting from the user the necessary values for the slots in these units. Thus the
necessary knowledge for these parts of the knowledge base is elicited from the user as soon
as any structural interconnection component in a subystem, i.e. a terminal variable or a
connector, is created. The active values SETUP.TERMINALS and
SETUP.CONNECTORS appear as units in the structural knowledge base (Figure 1). The
simple system shown in Figure 3 is used as an example for the creation of a system specific
structural knowledge base (see also Figure 2). The LISP listing describing the knowledge
base is given in Appendix 1. The knowledge contained therein allow queries to be made
about the structure, e.g. the subystem hierarchy, by accessing the methods contained in the
units of the knowledge base, e.g. show.all.subystems. Additional methods could easily be
created to provide further knowledge about the structure of the modelled system as
required.

The results of the experiment so far show:

(a) that KEE is a suitable environment in which to construct a simple knowledge based
modelling tool. It is fast and easy to use, once the initial learning phase is over. To
construct the same tool in LISP would take considerably longer.

(b) that the knowledge based approach using frames provides a useful tool for
representing and accessing information about the structure of a system. It would be a
simple matter to extend the present version to include methods to_modify the system
structure, e.g. by creating subsystems of existing subsystems, by altering
connections, etc, and to reason about the system structure, e.g. test for consistency of
types in connections, determine feedback loops, etc.

Further development of the experimental tool in the short term might include the addition of
a graphical interface for creating the structural knowledge base, i.e. a block diagram

10

manipulation interface. This would however be reasonably straightforward and, whilst
improving the user interface, would not add to the functionality of the tool. A more
important extension would be to add the second component of the modelling knowledge
base, the behaviour knowledge base. Some tentative proposals on how this could be done
are given in the following section.

Extension of the experiment to inclu havioural knowl

The relationship which we want to create between the structural knowledge and the
behavioural knowledge is one of a_has-behaviour type. This implies that

(a) the behavioural knowledge base contains units which represent the behaviour of
systems, either in a_procedural from or as a theory of behaviour, as discussed in
section 5.

(b) these units can be related by specialization, i.e. an is-a-kind-of relation, which allows
simple behavioural knowledge to be enriched during the modelling process.

(c) the units can be combined, according to the structure of the system, so that the
behaviour of interconnected subsystems can be inferred from the behaviour of the
subsystems themselves, as specified by the has-behaviour relationship value in the
structural knowledge base units for the subsystems.

The has-behaviour relation must include a binding of the variables in the structural
description of a subsystem to the variables, or sorts (see section 5), in the behaviour
description. The operation of combination, through interconnection, of subsystems then
implies a combination of behaviours. This is achieved by the addition of relationships
between sorts in the individual behaviours, according to the interconnection relationships.
For example, consider subsystems P and Q, each of which have terminal variables x and y,
representing input and output respectively for each subsystem and parameter variable g.
Assume that there exists a behaviour called CONSTANT-GAIN which has sorts A, B and
K, function f: A->B and relations b=f(a), f(a)=k*a. A and B are designated terminal sorts
and k a parameter sort The _has-behaviour relation value for both P and Q specifies
CONSTANT-GAIN as the behaviour and makes the bindings x to A, yto B and g to K in
each case. Assume now that subsystems P and Q are connected,with a connection in
which P.y=Q.x. This will have the effect of producing a combined behaviour for the pair
of interconnected subsystems which has

sorts: A, B, K A, B, K
functions: f: A->B

f: A'->B
relations: f(a) =k*a

b =f(a)

b =a

f(a) =k* a

b = f@@)

This is the simple combination of the two constituent behaviours, together with the
additional relation, b=a, imposed by the interconnection equation P.y = Q.x.

11

Clearly, such a combined behaviour does not have to be explicitly constructed but can be
inferred from the knowledge of the behaviours of the individual subsystems and their
structural interconnections. In order to reason about the combined behaviour, we must
have knowledge of the individual behaviours, of the additional relationships imposed by
the interconnections, and of a set of rules for combining behaviours in more complex ways
than in the example given below. This latter aspect is very important, and implies that the
behavioural knowledge base must possess a fundamental component wihch consists of a
set of rules and a set of methods, which together constitute a theory of combined
subsystem behaviour. To combine behaviours, it will be necessary to access the rule base
to determine whether the combination can be create, and the methods to create the necessary
new sets of sorts, functions and relations for the combined behaviour.

The first steps therefore in the extension of the experimental modelling tool will be to create
a set of simple behaviours, a rule base for determining possible combinations and a set of
methods for creating the combinations. A set of analysis requirements must be specified to
determine the kind of reasoning which will be needed about the behaviour of the
interconnected subsystems. This will determine how the rules and methods are to be
accessed and therefore how they should be stored in the knowledge base. One possibility
might be to create a behavioural simulation using qualitative behaviours for subsystems and
setting up a rule base and set of methods which permit the qualitiative behaviour of
interconnected subsystems to be inferred from their individual behaviours, i.e. a qualitative
theory of feedback control [7].

nclusion

In this report, a knowledge based approach to system modelling has been described.
Modelling is the most time-consuming, complex and costly of control systems engineering
tasks and effective tools to support the activity are required. During the modelling process,
knowledge about the system is often gained incrementally and thus any tool must support
this form of knowledge acquisition. Also the problem of complexity must be overcome by
allowing the model to be created as a set of components with precisely specified interfaces
and by providing operations to combine such components , and by implication, knowledge
about their properties, e.g. behaviour and function. The approach proposed in this report
envisages three knowledge bases concerned with structural, behavioural and functional
knowledge respectively, with the ability to create relationships between them, e.g. system
X has-behaviour Y. This allows these three categories of knowledge about a system to be
incrementally developed (or enriched) independently, whilst maintaining the required
relationships.

A simple experimental tool has been developed using the KEE knowledge engineering
system. At present, this contains only knowledge about system structure. Further
development is required to introduce behavioural knowledge, but some initial work is
required here to develop a rule base (and possibly a set of methods) which will allow
behaviours of interconnections of subsystems to be inferred from individual subsystem
behaviour. The means of storing and accessing the rule base needs to be studied, together
with the way in which the combined behaviour should be represented and, if required,
stored in the knowledge base. A way of representing behaviour, based on specifying sets
of sorts, functions and relations has been proposed, which is aimed at meeting the need to
provide a general framework for representing many different kinds of knowledge about
behaviour, both procedural and axiomatic, quantitative and qualitative, e.g. theories about
stable behaviour. '

12

References

1 Denham, M J, "Design issues for CACSD systems",
Proc IEEE, December 1984

2 Barwise, J and Perry, J, "Situations and Attitudes",
MIT Press, 1983

3 Goguen, J, Unpublished report in the newsletter of the Center for the Study of
Language and Information, Stanford, 1986

4 Yeh, K, "Constructing and analyzing specifications of real world systems", Rep
STAN-CS-86-1090, Department of Computer Science, Stanford University, 1986

5 Winograd, T, "Aleph, a system specification language" ,Stanford technical report, in
preparation.

6 Minsky, M, "A framework for representing knowledge", in Winston (ed), The
Psychology of Computer Vision, McGraw-Hill, 1975

7 Kuipers, B , "Commonsense reasoning about causality; deriving behaviour from
structure”, Journal of Artificial Intelligence, vol.24,1984,

13

SYSTEMS --------- SUBSYSTEMS
CONNECTORS

TERMINALS

SETUP.TERMINALS
SETUP.CONNECTORS

igure 1. Th ral knowl

14

SYSTEMS SUBSYSTEMS ———— R
SYS P
S
CONNECTORS A
} B
C
D

TERMINALS ——— P.U
P.Y
R.F
R.Y
‘R.R

e/

'S.U

/

S.Y

Figure 2, Th 1ctural knowlede se for th stem of Figure

IA

SYS

N

F:'('\ut'a_ % . Ve ek‘.amp\?_ yaten
N J

16

i35 ~*- Mode:LISP; Package:KEE: Rase:i0. -#-

(STRUCTURE

("* "29-Nov-1984 11:38:52" "MIKE" “5-Dec-1986 11:24:27™)

NIL

(KNOWLEDGEERASES)

NTL

0

((KBSIZE 23)
(KEE.DEVELOFMENT.VERSION.NUMBER 0)
(KEE.MAJOR.VERSION.NUMBER 2)
(KEE.MINOR.VERSION.NUMEER 1)
(KEE.PATCH.VERSION.NUMBER 44.1)
(KEEVERSION KEEZ2.1)))

(CONNECTORS
("" "29-Nov-1986 11:44:55" "" "29-Nov-1986 11:45:43")
((ENTITIES GENERICUNITS))
({CLASSES GENERICUNITS))
NIL
((CONNECTIONS NIL NIL NIL NIL NIL)
(PART-0F NIL NIL NIL NIL NIL))
(1)

(P

("" "29-Nov-1986 11:44:24" "MIKE" "5-Dec-1986 11:12:38")
{SUBSYSTEMS)

({CLASSES GENERICUNITS))

NIL

((CONNECTORS (NONE))
(FARAMETER-VARIABLES (NONE})
(PART-0OF (5Y5))
{(SUBSYSTEMS (NODNE))
{TERMINAL-VARIABLES (U Y)))
(1)

{(#:P.U
("MIKE" "3-Dec-1986 11:11:39" "MIKE" "S5-Dec-1986 11:12:11")
(TERMINALS)
((CLASSES GENERICUNITS))
NIL
((DESCRIPTION (CURRENT))
(PART-0F (#Unit (P STRUCTURE)))
(RANGE ((0 10)))
(TYPE (INFUT)))
()

(#:P. Y
("MIKE" "S5-Dec-198a 11:12:38" "MIKE" "S-Dec-1984 11:13:07")
{TERMINALS)
{(CLASSES GENERICUNITS))
NIL
({DESCRIPTION (TEMF))
(PART-OF (#Unit (P STRUCTURE)))
(RANGE ((0 100))))
(TYPE (OUTPUT)))

. 17

()

(R

("" "29-Nov-1986 11:44:24" "MIKE" "5-Dec~-1986 11:15:21")
(SUBSYSTEMS)

((CLASSES GENERICUNITS))

NIL

({CONNECTORS (NONE}))
(PARAMETER-VARIABLES (NONE))
(PART-0F (5YS5))
{SUBSYSTEMS (NONE))
(TERMINAL-VARIABLES (R F Y)))
0))

(#:R.F
("MIKE" "5-Dec-1986 11:14:49" "MIKE" "5-Dec-1986 11:15:05")
(TERMINALS)
({CLASSES GENERICUNITS))
NIL
({DESCRIPTION (VOLTAGE))
(PART-OF (#Unit (R STRUCTURE)))
(RANGE ((0 1)))
(TYFE (INPUT)))
(N

(#:R.R
("MIKE" "G-Dec-1986 11:13:30" "MIKE" "S5~Dec-1984 11:14:28")
(TERMINALS)
{(CLASSES GENERICUNITS))
NIL
((DESCRIFTION (VOLTAGE))
(PART-0F {#Unit (R STRUCTURE}))
(RANGE ({0 1)) ’
(TYPE (INFUT)))
(1

(#:R.Y
("MIKE" "5-Dec-1986 11:15:21" "MIKE" "5-Dec-198646 11:15:34")
(TERMINALS)
((CLASSES GENERICUMITS))
NIL
({DESCRIFTION (CURRENT))
(PART-0OF (#Unit (R STRUCTURE)))
(RANGE ((0 10)))
(TYPE (DUTPUT)I))
)

(S
("" "29-Nov-1984 11:44:24" "MIKE" "5-Dec-1986 11:16:44")
(SUBSYSTEMS)
{(CLASSES GENERICUNWITS))
NIL
((CONNECTORS (NONE))
(PARAMETER-VARIABLES (NONE))
(PART-0F (SYS))

18

(SUESYSTEMS (NONE))
(TERMINAL-YARIABLES (U Y)))
())

(#:5.U
("MIKE" "5-Dec-1986 11:14:18" "MIKE" "5-Dec-1984 11:14:34")
(TERMINALS)
((CLASSES GEMERICUNITS))
NIL
((DESCRIPTION (TEMF))
{PART-DF (#Unit (5 STRUCTURE)))
(RANGE ({0 100)))
(TYFE (INFUT)))
N

(#:5.Y
("MIKE" "5-Dec-1986 11:14:44" "MIKE" "S5-Dec-1986 11:17:02")
(TERMINALS)
({CLASSES GENERICUNITS))
NIL
((DESCRIPTION (VOLTAGE))
{(PART~O0F (#Unit (5 STRUCTURE)))
(RANGE ({0 1)))
(TYFE (QUTFUT)))
(1)

(SETUF.CONNECTOR
("MIKE" "5-Dec-198& 10:32:58" "MIKE" "S-Dec-1986 11:00:39")
((ENTITIES GENERICUNITS))
((ACTIVEVALUE ACTIVEVALUES) (CLASSES GENERICUNITS))
NIL
{)
((AVPUT (LAMEDA (SELF SLOT NEWYALUE CLDVALUE UNIT SLOTTYFE)
(COND ¢(> (LENGTH NEWVALUE) (LENGTH OLDVALUE))
(LET ({CNAME (MAKE-SYMEOL (STRING-APPEND (UNIT.NAME UNIT)
(CAR (LAST NEWVALUE)) M)
(UNITCREATE CNAME °CONNECTORS NIL NIL NIL NIL)
(ADD.VALUE CNAME “PART-OF UNIT)
(FRINC "Enter simple connector (a list of terminals): ")
(ADD.VALUE CNAME °"CONMECTIONS (READ)))})
NEWVALUE)
NIL
NIL
MNIL
((FIRE.DN.KELOAD NIL . UNIQUE})}))

(SETUP.TERMINALS
("MIKE" "3-Dec-1984 16:10:14" "MIKE" "5-Dec-1986 10:26:14")
NIL
({ACTIVEVALUE ACTIVEVALUES))
NIL
()
((AVPUT (LAMBEDA (SELF SLOT NEWVALUE OLDVALUE UNIT SLOTTYFE)
(COND ({> (LENGTH NEWVALUE) (LENGTH OLDVALUE))
(LET ({TNAME (MAKE-SYMBOL (STRING-AFPFEND (UNIT.NAME UNIT)

. 19

(CAR (LAST NEWVALUE))))))
(UNITCREATE TNAME °TERMINALS NIL NIL NIL NIL)
(ADD.VALUE TNAME *FART-0F UNIT)
(PRINC "Terminal type (input,output,2-wayl): ")
(ADD.VALUE TNAME °TYPE (READ))
(FRINC "Terminal description (any symboll: ")
(ADD.VALUE THAME "DESCRIRTION (READ))
(PRINC "Value range (1o high): ™)
(ADD.VALUE THNAME °RANGE (LIST (READ) (READ))})))
NEWVALUE)

NIL

NIL

NIL

((FIRE.ON.KELDAD NIL . UNIRUE}))))

{SUBSYSTEMS
("" "29-Nov-1986 11:42:44" "" "29-Nov-19846 11:51:04")
(SYSTEMS)
((CLASSES GEMERICUMITS))
NIL
({FART-OF NIL NIL NIL NIL NIL))
())

(SYS

("hov29-Nov-1984 11:43:20" "MIKE" "5-Dec-1984 11:23:47")

(SYSTEMS)

{({CLASSES GENERICUNITS))

NIL

({(COMNECTORS (A B C D) NIL NIL NIL ((AVUNITS (#Unit (SETUF,CONNECTOR STRUCTURE}))))
(PARAMETER-VARIABLES (NONE))
(SURSYSTEMS (R P 5))

(TERHINAL-VARIABLES (U Y)))
()} 2

(#:5Y5.A
("MIKE" "S-Dec-1986 11:¢21:39" "MIKE" "3-Dec-1986 11:21:39")
{CONNECTORS)
{(CLASSES GENERICUNITS))
NIL
((CONNECTIONS ((5Y5.U R.R)}))
(PART-0F (#Unit (S5YS STRUCTURE}))))
()

(#:5Y5.B
("MIKE" "5-Dec-198a 11:22:38" "MIKE" "5-Dec-1986 11:22:32")
(CONNECTORS)
((CLASSES GENERICUNITS))
NIL
((CONNECTIONS. ((R.Y P.U)})
(PART-O0F (#Unit (SYS STRUCTURE))))
()

{(#:5Y5.C
("MIKE" "5-Dec-1986 11:23:05" "MIKE" "5-Dec-1984 11:23:28")

‘ 20

(CONNECTORS)

((CLASSES GENERICUNITS))

NIL

({CONNECTIONS ((SYS.Y P.Y §.U)))
(FART-0F (#Unit (SYS STRUCTURE))))

{))

(#:5Y5.D
("MIKE" "S5-Dec-1986 11:23:47" "MIKE" "S5-Dec-1986 11:24:03")
(CONNECTORS)
{{CLASSES GENERICUNITS))
MIL
((CONNECTIONS ((5.Y R.F)))
{(FART-OF (#Unit (5Y5 STRUCTURE))))
()

(#:8Y5.U
("MIKE" "5-Dec-1986 1!1:17:43" "MIKE" "S-Dec-198é6 11:18:03")
(TERMINALS)
((CLASSES GENERICUNITS))
NIL
({DESCRIFTION (VOLTAGE))
(PART-0OF (#Unit (5YS STRUCTURE)))
(RANGE (0 1)))
(TYPE (INFUT)))
0))

(#:5YE.Y
("MIKE" "5-Dec-1986 11:20:36" "FIKE" "5-Dec-1986 11:20:52")
(TERMINALS)
({CLASSES GENERICUMITS))
NIL
((DESCRIPTION, (TEMF))
(PART-0F (#Unit (8YS STRUCTURE))!
(RANGE ((0 100)))
(TYPE (OUTPUTI)
()

(SYSTEMS
("" "29-Nov-1984 11:39:15" "HIKE" "3-Dec-1984 16:32:12")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL
((CONNECTDRS NIL NIL NIL NIL NIL)
(PARAMETER-VARTABLES NIL NIL NIL NIL NIL)
(SHOW.ALL.CONNECTORS (LAMBDA (SELF)
(PRINT (UWIT.NAME SELF)}
(PRINC "1:1)
(LET ({X (GET.VALUES SELF "SUBSYSTEMS)))
{(PRINT (GET.VALUES SELF *CONNECTORS))
(COND ((NOT (EQUAL 7 (NONE) X))
(DO Y X (CDR Y) (NULL Y)
(UNITHEG (CAR Y) "SHOW.ALL.CONNECTORS))))))
METHGQD
(METHOD))
(SHOW.ALL.SUBSYSTEMS (LAMBDA (SELF)

21

(PRINT (UNIT.MAME SELF))
(PRINC *1:1)
(LET ((X (GET.VALUES SELF ‘SBUESYSTEMS)))
(COND ((EQUAL 7 (NONE) X)
(FRINT X)
(TERPRI))
(1
(PRINT X)
{TERPRI)
(DG Y X (CDR Y) (NULL Y)
(UNITMEG (CAR Y) °BHOW.ALL.SUBSYSTEMS))))))
METHOD
(METHOD))
(SUBSYSTEMS NIL NIL NIL NIL NIL)
(TERMINAL-VARIABELES NIL NIL NIL NIL ((AVUNITS (#Unit (SETUP.TERMINALS STRUCTURE)}))))
()

(TERMINALS
("MIKE" "3-Dec-19846 15:51:42" "MIKE" "3-Dec-1984 14:02:51")
((ENTITIES GENERICUNITS))
((CLASSES GEMERICUNITS))
NIL
((DESCRIPTION NIL MIL NIL NIL NIL)
(PART-0F NIL NIL ((SUBCLASS.0F SYSTEMS)))
(RANGE NIL NIL NIL NIL NIL)
(TYPE NIL NIL ((ONE.OF INPUT DUTPUT 2-WAY)) NIL NIL))
(M

¥BEnd

