LUND UNIVERSITY

lllustrations in TEX documents

Rundqwist, Lars

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Rundqwist, L. (1987). lllustrations in TEX documents. (Technical Reports TFRT-7372). Department of Automatic
Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/b70a60e2-9670-4f1e-bdb9-f13603272cf5

CODEN: LUTFD2/(TFRT-7372)/1-15/(1987)

[llustrations in TEX documents

Lars Rundqwist

300.

200. +

100. |

-100. |

-200. +

-300, : : . .
-300. -200. -100. 0.00 100. 200. 300.

Department of Automatic Control
Lund Institute of Technology
October 1987

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S5-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

October 1987

Document Number

CODEN: LUTFD2/(TFRT-7372)/1-15/(1987)

Author(s)
Lars Rundqwist

Supervisor

Sponsoring organisation

Title and subtitle
Ilustrations in TgX documents

Abstract

ments.

This document is a department manual about inclusion of illustrations (from PostScript files) in TEX docu-

Key words
TEX, PostScript

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 15

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

This document is intended as a department manual about inclusion of illustra-
tions in TEX documents. It covers ’all’ known ways of generating PostScript
files from other programs like MacDraft, Simnon etc, which are to be inserted
in a TEX document and printed on a PostScript device, e.g. an Apple Laser-
Writer.

The first sections describe step by step, for each application program, how
a PostScript file is generated. The file is inserted in the TEX document by the
macro PSFIG. A short PSFIG manual and a number of examples are given.

Macintosh programs supported are MacDraft, MacDraw and Adobe Illus-
trator. Adobe files are stored as PostScript files, while MacDraft and MacDraw
both generate PostScript files on request. The PostScript files are then trans-
ferred to the Vax, and processed by MDBBOX in order to insert a proper
BoundingBox comment. For MacDraw and MacDraft PostScript files the user
must manually measure the BoundingBox (in mm) and enter the values to
MDBBOX.

Vax programs supported are Simnon (and other departemental programs),
Control-C, GNUPLOT, and PRO-MATLAB. These programs output a meta
coordinate file on request. With the exception of PRO-MATLAB, the files are
to be processed by either HCOPY2PS or CC2PS, generating a PostScript file
with a BoundingBox. PRO-MATLAB has an own postprocessor, GPP, which
outputs PostScript on request, but these files don’t contain BoundingBoxes.
If the PostScript file is to be inserted in a TEX document, use RGPP instead,
which will include a BoundingBox.

Note however that this way of inserting illustrations does not always give
the desired result. E.g. spacings between figure and text is sometimes small
and other times large. and the figure may seem “uncentered” due to an un-
centered BoundingBox. The remedy is manual work (in the TgX file) in cases
of high quality requirements. In other cases just leave the result as it is.

Leif Andersson is acknowledged for valuable discussions on how to stream-
line the use of PostScript files in TpX documents. Further, I stole parts of
HCOPY2PS (written by Bengt Martensson) during creation of MDBBOX,
and I have used some figures created by Ms Britt-Marie Carlsson. Tomas
Schontal quickly received message from John Little at the MathWorks Inc.,
which resulted in proper handling of PRO-MATLAB PostScript files.

2. MacDraft figures

MacDraft figures are easily inserted in TEX documents using the PSFIG-
macro. The figures can be either upright (portrait) or tilted (landscape),
see Figure 1. After drawing the figure, a PostScript file is generated. This file
is then transferred to the Vax. The PSFIG macro requires a %%BoundingBox
comment in the PostScript file. An %)0rientation comment is required for
landscape figures. These two comment lines are inserted by MDBBOX, based
on the figure’s corner coordinates and data in the PostScript file. The corner
coordinates are to be measured by the user. The PostScript file is then ready
to be inserted in your TX file.

Figure 1. Portrait figure (left) and Landscape figure (right). Block diagrams
with permission from Britt-Marie Carlsson.

Preparing the figure

1. Draw the figure in MacDraft!

Select the ’PAGE SETUP’ menu, and then select papersize A4, orientation
Portrait or Landscape (usually Portrait) and a scale small enough to print
the figure on a single paper. Print the figure on the LaserWriter. This
print is necessary later in the procedure.

Creating the PostScript file

3. To create a PostScript file in MacDraft, hold down 3 while pressing first
P, then RETURN and finally F, i.e. 38 + P + RETURN + F. Keep F
depressed until MacDraft verifies that a PostScript file is created.

4. Quit MacDraft.

5. The PostScript file is always named PostScript and is usually located in
the same directory as the MacDraft program. Using a Macintosh with a
hard disk , you find it in the BILD-directory, otherwise on your MacDraft
diskette. If, however, there is a file named PostScript on your application
diskette or directory, this file is overwritten by the new PostScript file. If
you want to create and transfer more than one PostScript file to the Vax,
you must rename the file before you create your next PostScript file. If
you want a file named PostScript to remain on your diskette, make a copy
instead.

6. Transfer the file(s) to the Vax, see Section 5.

3. MacDraw figures

The procedure for a MacDraw figure is similar to a MacDraft figure, but there
is a difference in creating a PostScript file.

Preparing the figure

1. Draw the figure in MacDraw!

2. Select the’PAGE SETUP’ menu, and then select papersize A4, orientation
Portrait or Landscape (usually Portrait) and a scale small enough to print

the figure on a single paper. Print the figure on the LaserWriter. This
print is necessary later in the procedure.

Creating the PostScript file

3. To create a PostScript file in MacDraw, select PRINT and then press 38
F as soon as the mouse button is released. Keep #8 F depressed until
MacDraw verifies that a PostScript file is created.

Quit MacDraw.

The PostScript file is always named POSTSCRIPT and is usually located
in the same directory as the MacDraw program. Using a Macintosh with a
hard disk , you find it in the BILD-directory, otherwise on your MacDraw
diskette. If, however, there is a file named POSTSCRIPT on your appli-
cation diskette or directory, this file is overwritten by the new PostScript
file. If you want to create and transfer more than one PostScript file to
the Vax, you must rename the file before you create your next PostScript
file. If you want a file named POSTSCRIPT to remain on your diskette,
make a copy instead.

6. Transfer the file(s) to the Vax, see Section 5.

4. Adobe Illustrator figures

Since Adobe Illustrator files are stored as PostScript files, this section only
discusses how to save a proper file.

Preparing the figure

Draw the figure in Adobe Dlustrator!

2. The figure must (to my belief) be printed on one paper in order to appear
correctly in TEX documents. This is accomplished in two steps. First,
select the 'PAGE SETUP’ menu, and select papersize A4 and a scale
small enough. Then you must 'DEFINE PAGE EDGES’ to make sure the
figure is printed on a single paper. In the the latter procedure, you can
place the figure at an arbitrary position on a page.

Creating the PostScript file
This is an almost trivial task.

3. In the 'SAVE AS’ menu, specify a file name and select the store option
"PostScript only’ (default). Save the file.

4. Quit Adobe Illustrator.
5. Transfer the Adobe Illustrator file(s) to the Vax, see Section 5.

Comment

The Adobe Illustrator PostScript file does not contain any showpage com-
mand. The figure may be located outside the ’normal PostScript page’ on
the LaserWriter. Thus the file is not printable by itself, using PSdump on a
Macintosh or lwprint on the Vax.

When Adobe Tllustrator prints the page, the program adds translation,
rotation and scaling to the file, and sends a showpage command. Sofar, land-
scape figures have not been tested. The PostScript file contains a %%Bounding-
Box comment, but it is not directly readable for PSFIG. Processing the Post-
Script file by MDBBOX takes care of this.

5. File transfer from Macintosh to Vax

This section desribes file transfer from Macintosh computers to the Vax.

1. Select the Vax-symbol, which invokes MacKermit on the Macintosh. The
Macintosh is now a VT100 terminal connected to the Vax. Hit the Return-
key for Vax-login, select the desired target directory for your PostScript
file and then invoke Kermit on the Vax too. Set the Vax Kermit in server
mode. This may look like:

Username: xxxxx
Password: -----

$ set default [.xxx]
$ kermit
Kermit-32> server

2. Now select 'SEND FILE’ in the FILE menu. Select drive and directory,
and then the desired PostScript file. In the ’As:’-box, give a reasonable
Vax/VMS file name, e.g. FIGURE.PS. Then click at the ’SEND’ box. If
the communication works alright each packet requires less than one second
for transfer.

3. Repeat item 2 until all files are transferred.

Finish the Vax communication by clicking '"BYE’ in the REMOTE menu.
If you click "FINISH’ instead of 'BYE’, you continue the terminal session
at the Vax. Then you must log out in the standard way, i.e. $ logout.

5. Quit MacKermit.

6. Insert a BoundingBox comment in your Vax PostScript file, see Section 6.

6. Inserting a proper BoundingBox comment

This section applies to PostScript files from MacDraft, MacDraw and Adobe
Illustrator which have been transferred to the Vax.

1. Process the PostScript file by MDBBOX.

MDBBOX inserts a BoundingBox and an Orientation comment into MacDraft
and MacDraw PostScript files, taking scaling and orientation into account.
Default file name: POSTSCRIPT, default file type .PS.

MDBBOX prompts for the corner coordinates (in mm), of the lower left
and upper right corners of the figure. These coordinates are all measured from
the lower left corner of the paper. The z-direction is to right (along the short
side of the paper), and the y-direction is upwards (along the long side of the
paper). For a landscape figure, the lower left corner of the paper is located
to the upper left of the figure. Compare the landscape figure in Figure 1. An
example:

4

$ mdbbox figure

This is MDBBOX dated October 13, 1987
Enter BoundingBox values (in mm)
Lower left x: 20

Lower left y: 50

Upper right x: 185

Upper right y: 250

[*==> Done <==x]

MDBBOX does not prompt for any coordinates if the file is created by Adobe
Ilustrator.

2. The file is ready for insertion by PSFIG in any TpX document.

7. Simnon, Idpac, etc.

These programs may produce a meta coordinate file for the hardcopies. This
file is converted to a PostScript file by HCOPY2PS, and is then ready for
insertion in any TpX document.

Preparing the figure

1. Prepare the figure by plot, ashow, etc. in Simnon, Idpac, etc.

2. Create a meta file filename.p by the hcopy command.

> hcopy meta /filename

Creating the PostScript file

3. Process filename.p by HCOPY2PS.

$ hcopy2ps/noprint/... filename

The option /noprint is necessary if the PostScript file is to be saved on disk.
A number of other options for scaling, text fonts, etc. are available. Text
fonts and the plot itself can be independently scaled. Thus the best place for
choosing figure size is probably here. The output file is filename.plo. For
further information see TFRT-7352.

4. The file is ready for insertion by PSFIG in any TEX document.

8. Control-C

Control-C may produce a meta coordinate file (a pen-file) for hardcopies. This
file is converted to a PostScript file by CC2PS, and is then ready for insertion
in any TEX document.

Preparing the figure

1. Plot the desired variables.

2. Set up Control-C to store a pen file in filename.pen and then replot
the figure.

[> hard = ’pen’ ! hardcopies stored in pen-files
[> redhard >filename.pen ! redirect output to ’filename.pen’
B2 ! default file name is ’ctrlc.pen’
[> replot ! create the pen file
[> redhard -close ! close the pen file
[> redhard >ctrlc ! redirect again to protect

]

[> *filename.pen’

If the file type (.pen) isn’t specified in the redhard command, the plot is
stored in filename.dat.

Creating the PostScript file

3. Process filename.pen by CC2PS.

$ cc2ps/noprint/... filename

The option /noprint is necessary if the PostScript file is to be saved on disk.
Default input file type is .pen. The output file is filename.plo. For further
information see TFRT-7352.

4. The file is ready for insertion by PSFIG in any TEX document.

9. GNUPLOT

GNUPLOT is an interactive program for plotting mathematical functions or
data files. You can get a PostScript file produced directly by GNUPLOT, but
it is better to store a meta file in ’Simnon format’ and process the meta file
by HCOPY2PS instead. This is the procedure described below.

Preparing the figure

1. Plot the functions you desire.

2. The the output must be redirected to a file and replotted in the following
way.

gnuplot> set terminal hcopymeta
gnuplot> set output ’filename.p’
gnuplot> replot

gnuplot> set output ’junk.p’

The replot command can be substituted by a real plot command, e.g. plot
sin(x)/x, but the result is directly stored in the file. You may select any file
type, but .p is the default for HCOPY2PS. The last set output command is
for protection of filename.p. Otherwise you get more than one figure in the
same file.

Creating the PostScript file
3. Process filename.p by HCOPY2PS.

$ hcopy2ps/noprint/... filename

6

The option /noprint is necessary if the PostScript file is to be saved on disk.
The output file is filename.plo. For further information see TFRT-7352.

4. The file is ready for insertion by PSFIG in any TpX document.

10. PRO-MATLAB

PRO-MATLAB outputs a meta coordinate file on request. To get a PostScript
file including a BoundingBox comment, you should not use the postprocessor
GPP, described in the PRO-MATLAB manual, directly. RGPP is a special
department version of GPP, which calls GPP for creation of a PostScript file
and then includes a BoundingBox.

Preparing the figure

1. Using the meta command, the plot is sent both to your terminal and the
desired meta file. This may look like:

>> meta filename
>> plot(....)
>> meta

The output file is filename.met. The last meta command redirects the output
in order to protect filename.met.

Creating the PostScript file

2. Call RGPP to get a PostScript file containing a BoundingBox.

$ rgpp filename

RGPP outputs filename.ps. Note that the file type .met should not be
specified when calling RGPP. filename.ps is ready for insertion by PSFIG
in any TEX document.

11. Special cases

This section contains special information for ’wizards’ on how to possibly
overcome problems. There is no guarantee for success.

If the BoundingBox is missing or the the figure doesn’t print or some other
mysterious error occurs, then there are two ways of possibly overcoming this.

pscoord.pos

pscoord.pos is a PostScript file which generates a coordinate system on the
current page. The file is to be included in another PostScript file, which then
is to be printed by lwprint. The result is (hopefully) at least a coordinate
system printed on the page. The coordinates may help you diagnosing, and if
the figure is printed on the page then you may check the BoundingBox limits.
pscoord.pos is located in ps$inputs.

BBFIG

BBFIG appends the PostScript file bb.ps and the specified file and prints the
new file. The figure and tight BoundingBox coordinates will be printed. You
must still insert the BoundingBox manually. This may look like:

$ bbfig filename.ps

Note that the file type must be given. The output file is bbfig.ps, which must
not be deleted before it is printed by lwprint. Also note that this doesn’t
always work, e.g. on PRO-MATLAB figures the BoundingBox coordinates
will be invisible.

The BoundingBox comment

The BoundingBox comment must look exactly like this.

AhBoundingBox: 1lx 1lly urx ury

11lx, 11y, etc are the PostScript coordinates of the lower left and the upper
right corners respectively of the BoundingBox, separated by spaces.

12. Using PSFIG in TEX

This section gives a few examples on how to insert figures and applies to all
PostScript files. PSFIG is further documented in next Section.

1. Insert figures in your TEX file in the following way.

!style<report>
!input psfig “Initializes PSFIG

!topinsert
!centerline<!psfig<file=figl.ps,height=50mm,clip=>>
!caption<This figure is inserted on top of a page.>
!endinsert

!midinsert

!centerline<!hbox<
!psfig<figure=portrait2.ps,width=60mm,height=60mm>
!psfig<figure=landscape2.ps,width=60mm,height=60mm>>>

'caption<Figure 1 was inserted this way.>

!endinsert

About the PSFIG options: If width or height is specified the figure will be
uniformly scaled to give the desired size. If both are specified the figure will
be non-uniformly scaled to the desired size. Clipping, clip=, hides all parts of
the figure outside the BoundingBox. file= and figure= are equivalent. Note
that psfig calls should not be split into several lines.

2. Run TEX and DVILW, i.e.

$ tex file
$ 1w file

8

If you define the logical name temp, then DVILW may put the PostScript
file e.g. on a disk without disk quota. The file is then printed and deleted.
An example:

$ define temp scr:[username]
$ lw/temp file

Then DVILW outputs scr: [usernamelfile.ps, which is printed and deleted.

13. PSFIG — A Short Documentation

This section gives a brief summary on the use of PSFIG. The full documenta-
tion can be found in the PSFIG manual in TFRT-7352.

Commands

'input psfig Initialization of PSFIG. This command must precede the first
figure, where PSFIG is called.

!psdraft Draft mode. Correct space is reserved, but figures are not
printed. Instead the file specification is printed in the reserved
space. Draft mode is on until the command !psfull is given.

!psfull Full mode. PostScript files are included. Full mode is on until
the command !psdraft is given. Full mode is the default
mode.

Draft mode is useful when including large PostScript files. Then full mode is
used only when the final version is printed.

Figure input

A PSFIG call looks like this.

!psfig<file=filename,optioni=valuel,...>

A PSFIG call should neither be split into several lines nor contain spaces. This
piece of advice is found in the PSFIG manual, but may be unnecessary.

Figure placement

Figures are usually put in a figure insertion, e.g in a !topinsert.
!centerline<!psfig<...>> This figure is centered.
!rightline<!psfig<...>> This figure is aligned with the right margin.
Ipsfig<...> This figure is aligned with the left margin.
However, a figure may be included at any point in the text. An example is the

38 character, which is inserted using PSFIG. Since this character is inserted
several times a TEX macro is used. The previous insertion looks like this.

'def!CTRL<!psfig<figure=ctrl.ps,height=3mm>>
An example is the !CTRL! character,

PSFIG options

The options in a PSFIG call have the form option=value. The standard
options (including file specifications) are

file= The value is the name of the PostScript file to be included.
figure= Same as file=.

height= Desired figure height, e.g. height=50mm.

width= Desired figure width.
clip= Takes no value. Hides all parts of the figure outside the Bounding-
Box.

If width or height is specified the figure will be uniformly scaled to give the
desired size. If both are specified the figure will be non-uniformly scaled to
the desired size. If none of them are specified the figure will be inserted in
natural size.

Advanced options

There are a number of options which may provide a number of special effects.

For reasons of completeness, they are listed below. Further documentation

may be found in the PSFIG manual in TFRT-7352.

rheight= Specifies the reserved height of the figure. Default value is same as
height. rheight is the size of the !vskip when reserving space
for the figure. A unit must be specified.

rwidth= Specifies the reserved width of the figure. Default value is same
as width.

prolog= A PostScript prolog file can be prepended to the figure file.
postlog= A PostScript postlog file can be appended to the figure file.

bbllx= The lower left z coordinate of the BoundingBox can be specified in
the PSFIG call, using PostScript coordinates. The unit must be
specified, e.g. bbllx=300pt. At present this value is overridden
by the value in the BoundingBox comment.

bblly= Analogously for the lower left y coordinate.
bburx= Analogously for the upper right z coordinate.
bbury= Analogously for the upper right y coordinate.

If the PostScript file doesn’t contain any BoundingBox comment, the Bound-
ingBox coordinates can be specified in the PSFIG call instead.

One way of handling a too big BoundingBox supplied by an application
program is to use !'vskip and !hskip (positive or negative) to compensate
for deviations from the desired appearance. Do not change the BoundingBox
comment. This is as ugly as patching in an executable image.

Examples
On next page a MacDraft figure is shown. Then 3 examples are given, where

the figure is inserted in different ways. Finally a number of figures from
different applications are inserted.

10

— PID
L— Reli
-1
Fig. 4

This text is glued on an original MacDraft print, which is printed in 90 %
scale. The BoundingBox is roughly sketched by hand.

11

Example 1

The figure is inserted in the following way.

Text before the figure.

'midinsert
!centerline<!psfig<figure=portrait.ps>>
!endinsert

Text after the figure.

Text before the figure.

PID

z\d

Process

Text after the figure.

Fig. 4

Note that the “caption” appears below the line “Text after the figure.”. The
reason is that the whole figure is printed, also the parts located outside the
BoundingBox. Further, the figure is printed in it’s natural size, 100 %, since
neither width nor height is specified.

12

Example 2

The figure is now inserted in the following way.

Text before the figure.
Imidinsert

!centerline<!psfig<figure=portrait.ps,width=100mm,clip=>>

lendinsert
Text after the figure.

Text before the figure.

v

El_l
A
T

» Reli

Text after the figure.

u E_y_-_—
}

Now, using the clip= option, the “caption” has disappeared since it is outside
the BoundingBox. Further, the figure is uniformly scaled and the resulting

width is 100 mm.

13

Example 3

The figure is now inserted in the following way.

Text before the figure.

!midinsert

!centerline<
!psfig<figure=portrait.ps,width=100mm,height=150mm,clip=>>

!endinsert

Text after the figure.

Text before the figure.

PD

A '
) Process)

Reli

Text after the figure.

Since both height and width are specified, the figure is non-uniformly scaled
to the desired size.

14

Example 4

A number of figures from different applications are inserted.

(53
3
(7]
o
w
b3 i
q) -
Q’ -
° o
A ImG - 1§ & 05
1 Re G Qoe 2
¥ [/'" - L 3
T 2 .E 00 e -
Ie l"’\ /
Ly § | ——
Gliw) =]
N g ~/

E . B B B E

&

" @ ® 3 B & B B N = »

LgHes

Figures from Control-C, GNUPLOT and PRO-MATLAB.

!midinsert

!centerline<!hbox<
!psfig<figure=t2.ps,width=40mm>
!psfig<figure=figiir.ps,width=40mm>
!psfig<figure=autocorr.plo,width=40mm>>>

!endinsert

Figures from Adobe Illustrator, MacDraw and Idpac.

!midinsert

!centerline<!hbox<
!psfig<file=tcos_tsin.plo,width=40mm>
!psfig<figure=gnuplot.plo,width=40mm>
!psfig<figure=mlbbtest.ps,width=40mm>>>

!endinsert

Figures from Control-C, GNUPLOT and PRO-MATLAB.

15

