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LIMIT CYCLE OSCILLATIONS IN
HIGH PERFORMANCE ROBOT DRIVES

Anders Wallenborg and Karl Johan Astrém

Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden

Abstract

Analysis and design of high performance robot drives require that elastic
modes and nonlinear friction are considered. A control law based on lin-
ear state feedback and an observer can be used to provide active damping of
the resonant modes. The achievable bandwidth is limited by the appearance
of limit cycle oscillations at zero speed. The limit cycles are caused by the
Coulomb friction in the drive motor, and their appearance is related to the
stability of the regulator. It is shown that an unstable linear regulator is a
sufficient condition for limit cycle oscillations in this type of system. This, in
combination with the inherent windup problem, leads to the conclusion that
unstable regulators should be avoided when designing flexible servo control
systems. The stability of the regulator depends mainly on a dimensionless
quantity, which includes the load inertia, the spring constant of the elastic
modes and the closed loop natural frequency. Analytic expressions have been
derived from which approximate values of the stability limit can be calculated
with good accuracy. All results have been verified experimentally on a simple
prototype system.

1. Introduction

Elastic modes in gears and harmonic drives are characteristic features of cur-
rent robot drives. Elasticities are also becoming more common due to the trend
towards lighter mechanical designs. The elastic modes are lightly damped, and
depend on configuration and load. The control system must therefore provide
active damping in high performance robot drives. Improved performance also
requires that nonlinearities, such as Coulomb friction, are considered in the
design.

Several authors have studied flexible servo systems and nonlinear friction com-
pensation in rigid body servo systems. See for example [1], [3] and [9]. We
believe, however, that the combined effects of flexible modes and nonlinear
friction have not yet been fully investigated. This paper has been motivated
by observations of limit cycle oscillations in flexible servo systems [11]. The
mechanism which generates the oscillations is explained. The oscillations are
due to a combination of elasticity, nonlinear friction and demands for high
performance of the system. In this paper we present mathematical models,
analysis and experimental results.



Figure 1. The experimental setup. The DC drive motor and tacho generator are
to the right, and the inertial load is to the left.

2. [Experimental setup

A robot joint can be modelled as a two-inertia system, with a drive motor
coupled to an inertial load via an elastic spring representing flexible modes.
A laboratory model has been built to experimentally verify the results. It
consists of an electric DC drive motor connected to an inertial load by a
weak shaft. In order to keep the instrumentation simple, we have studied
the speed control problem only. A ’colocated’ speed sensor is assumed. The
measured signal is thus the drive motor speed. This is normally case in robotic
applications. The physical dimensions of the system were chosen such that the
resonance frequency of the oscillatory modes would be reasonably low. This
was accomplished by using a thin wire for the weak shaft. A photograph of
the experimental setup is shown in Figure 1.

3. Robot Joint Model

Linear model

Let the variables related to the drive motor have index 1 and the variables
related to the load have index 2. The moments of inertia of the drive motor
and load are J; and Ja, respectively. The spring constant is denoted k, and the
spring damping coefficient is d. Viscous friction in bearings etc. is described by
two damping coefficients d; and d;. See Figure 2. The drive motor is assumed
to give a torque M proportional to the input voltage u, hence M = knu. This
is a good approximation for a motor with current feedback.
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Figure 2. Linear robot joint model.

Introduce the state variables 1 = w;,z2 = wy, and z3 = 63 — 6;, where w; and
w, are the angular velocities of drive motor and load, and 8; and 8, are the
corresponding angular positions. The measured output signal is y = kg, w;
[Volt], where k,, is the drive motor tachometer gain. The input signal u is
the input voltage to the drive amplifier. Torque balances for the motor and
load give the following state space model:

_Gtd 4 k k
J1 J1 J1 J—”‘
£(t) = d  _dtd _k[=(t)+ ]| G | u®)
Jz J2 J2 0 (1)
-1 1 0

y(t) = (k,,,l 0 o] z(t)

Using the parameter values from the experimental system, the following linear
state space model is obtained:

045 0 109 1136
&(t) = [ 0 —0.07 —16.0] z(t)+[ 0 ]u(t)
0

-1 1 0 (2)

y(t)= (01 0 0] 2()

Note that the damping d is negligible. The state space model (2) has the
transfer function

113.6(s? + 0.07s + 16)

Ga(s) = (s +0.1)(s2 + 0.4s + 125) (3)

Simplified linear model

The elements of the system matrix that contain damping are very small, cf,
eqn (1) and (2). A simplified state space model can be obtained by neglecting
the damping terms, i.e. d = d; = da = 0. This gives

0 0 Em
i0=|, o, _ }c_z 2(t) + E ot ] u(t) .
11 0 .

y®) = (ka 0 0)2()

This simplified model can be used for approximate analytical calculations.



Nonlinear model including static friction

A more detailed robot joint model, including Coulomb friction, has been used
for simulation. The Coulomb fmctlon is modelled as two friction torques My;,
(i =1,2), acting on the motor and load [1], [2]:

—Fisign(w;) (w1 #0)
My; = { —M; (w1 =0 and |M;| < F) (5)
—F; sign( M) (w1 =0 and | M;| > F)
The parameter F; is the magnitude of the friction torque and M; is the total
torque acting the shaft (excluding the nonlinear friction). For simplicity the
friction model (5) is symmetric, i.e. the friction torque is the same in both
directions of rotation.

The magnitude of the friction torques were estimated by measuring the input
voltage required to run the system in steady state at lowest possible speed.
At low speed, the viscous friction torques can be neglected. The input signal
is then proportional to the sum of the Coulomb friction on the motor and the
load. The estimated friction torque values were F; = F, = 5-10~% Nm.

4. Linear Control Design

The linear model (2) has two poorly damped oscillatory modes with the natural
frequency w, = 11.2 rad/s, and one slow real pole at s = —0.12. The control
design is based on pole placement with state feedback and an observer (6]
The control law is

{é=A£+Bu+K(y—Ca‘:) ©)

= lryr - Lz

where Z is the estimated state vector. The feedback gain L is chosen to give the
desired closed loop poles, and I, is chosen to give unit steady state gain from
the reference value ¥, to the process output. As a nominal design the closed
loop poles are all placed at approximately the same distance from the origin
as the resonant open loop poles. The selected closed loop natural frequency
is wyg = 12 rad/s. The resonant poles are moved to a well-damped location
(relative damping ¢ = 0.7).

The observer design is a trade-off between convergence rate and noise sensi-
tivity. The observer gain K is chosen such that the observer poles are placed
in the same pattern as the closed loop system, but at a distance awy from the
origin. The factor a is given the nominal value a = 1.5, which implies that
initial state estimate errors will decay faster than the closed loop dynamics.

Controller stability and windup protection

The design method above does not guarantee that the resulting controller is
stable. Eliminate u from the observer equation in (6), and collect all terms on
the right hand side containing the state vector estimate 3:

3= (A- BL - KC):!:+BI,.y,.+Ky
u=1ly — L&
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Figure 3. Closed loop step response with linear model. Nominal control design
(wa = 12). Solid line = motor speed, dashed line = load speed.

The controller is unstable if the matrix (A — BL — KC) has eigenvalues in
the right half of the plane. This is the case with the nominal design. It is an
undesired property, which implies that extra precautions must be taken in the
implementation to avoid windup problems during startup, or if the loop is at
any time broken.

Simulation results

The closed loop step response was simulated with SIMNON [4], [5]. The
reference step amplitude, y» = 1 V, was selected to keep the maximum torsion
of the weak shaft within given bounds. In the simulations with the nonlinear
joint model, a non-zero initial condition w;(0) = 1.0 rad/s was used to emulate
small initial start-up disturbances.

The step response with the linear model and nominal control design is shown
in Figure 3. Note that the drive motor speed y; has a significant overshoot,
whereas the step response of the load, y», has a well damped closed loop step
response. The reason for this is that the open loop transfer functions from the
input u to y; and y, have different zeros.

The closed loop step response with the nonlinear model including Coulomb
friction (cf. Section 3) is shown in Figure 4. A limit cycle oscillation appears
when the reference value is zero. By simulating the closed loop system with
the Coulomb friction on either the drive motor or the load set to zero, it was
found experimentally that the oscillations are caused by the nonlinear friction
in the drive motor. The oscillations appear only when the speed reference is
zero. This can be explained by the discontinuity in the Coulomb friction at
zero speed. At non-zero speed values, the Coulomb friction can be regarded
as a constant load disturbance. Hence it does not influence the stability of the
system as long as the direction of rotation does not change. It causes a steady
state error, however, since the control law does not have integral action. The
limit cycle oscillation can be eliminated by reducing the specified closed loop
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Figure 4. Closed loop step response with nonlinear model. Nominal control design
(wet = 12). Solid line = motor speed, dashed line = load speed.
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Figure 5. Closed loop step response with nonlinear model. Reduced bandwidth
design (wq = 8). Solid line = motor speed, dashed line = load speed.

bandwidth. This is shown in Figure 5, which corresponds to a control design
with wy = 8 rad/s.
5. Nonlinear Analysis

The behaviour described in Section 4 can be explained with the describing
function method [2], [7], [10]. To apply this method, the system is decomposed

6
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Figure 8. Servo system with speed control divided into linear and nonlinear sub-
system.

into one linear and one nonlinear subsystem by neglecting the friction on the
load, and approximating the Coulomb friction in the drive motor with an ideal
relay function. To make the system autonomous, the speed reference y, is zero.
The decomposed system is shown in Figure 6.

The nonlinear friction torque My is modelled by

= {*5 53 g

where F is the magnitude of the Coulomb friction torque, cf. eqn (5). The
describing function for (7) is

4F
Yi(C) = ¥ ®)
where C is the amplitude of the periodic oscillation. Note that the point
—1/YN(C) moves along the negative real axis with C. The Nyquist curve
for the linear subsystem with nominal control design, i.e. wy = 12 rad/s, is
shown in Figure 7. The Nyquist curve intersects the negative real axis at
G(jw) ~ —500. The oscillation amplitude is given by

Gliv) = gy =—5p = C=-2150) Q

With F = 5.10~* Nm the amplitude is C = 0.3 Volt. The oscillation frequency
is determined by the condition arg G(jw) = —180°, which in our case gives
w = 15.8 rad/s. The absence of limit cycles with the lower bandwidth design
(wa = 8 rad/s) is explained by the Nyquist curve (see Figure 8), which never
intersects the negative real axis. Thus the describing function method predicts
stability.
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Figure 7. Nyquist curve for the linear subsystem in Figure 6 with wy = 12.
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Figure 8. Nyquist curve for the linear subsystem in Figure 6 with wg = 8.

A sufficient condition for instability

The presence of limit cycles is related to the stability of the controller. An
unstable controller is in fact a sufficient condition for limit cycles to appear
according to the describing function method. To show this, we will first prove
the following result.

LEMMA 1 Consider a system with a rational transfer function G(s). Assume

that the system is strictly proper, asymptotically stable and that the steady
state gain G(0) is finite and positive. Also assume that G(s) has no zeros on

8
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Figure 8. Block diagram of a linear system with a process Go(s) and a regulator
G,(s) in the feedback loop.

the imaginary axis. Then the Nyquist curve G(jw) must intersect the negative
real axis if G(s) has zeros in the right half plane.

Proof: Let the process transfer function be

By assumption, the denominator A(s) is stable i.e. it has all its zeros in the
left half plane. Factor the numerator polynomial B(s) as B = B, Bj, where
B; has all its zeros in the right half plane and By has all its zeros in the left
half plane. Rewrite the transfer function G(s) as

_B1 BB, _

G(s) = B—I-T_G’l G2
where the zeros of B} are the zeros of B; reflected in the imaginary axis.
Notice that G;(jw) is an all-pass filter with unity gain. If G(s) has zeros in
the right half plane, then deg(B:1) > 0 and the high frequency phase shift of
G1(jw) is
arg(G1(jw)) = -n-7w+ ¢

where n = deg(B;) and € — 0 as w — oco. The remaining part, G, of the
transfer function G is minimum-phase and asymptotically stable. It is also
strictly proper since deg(Bj) = deg(B;). Consequently, for high frequencies
the phase shift of Ga(jw) is

arg(Ga(jw)) = ~mZ +§

where m = deg(A) — deg(B) and § — 0 as w — oo0. Thus we can conclude
that if G(s) is non minimum-phase, then

w]j_x.g) arg G(jw) = ¢oo = —(2n + m) - g < ._2ﬁ

In the absence of zeros on the imaginary axis, ¢(w) = arg G(jw) is a continuous
function of w. We know that ¢(0) = 0, since G(s) is assumed to have a positive
steady state gain, and that the asymptotic phase shift is ¢, < —37/2. Then
there must exist a finite frequency w, such that ¢(w,) = —7 and hence G(jw)
intersects the negative real axis at w = w,. (]

The linear part of the closed loop system (cf. Figure 6) has the structure
shown in Figure 9, with one process and one controller block. The process

9



transfer function G,(s) from motor torque to motor speed is

B,(s) = 4544(s® 4+ 0.07s + 16) (10)
A,(s) " (s+01)(s2 + 0.45 + 125)

This transfer function is similar to (3). The only difference is in the steady
state gain, since here we consider the motor torque as the input signal. With

zero speed reference, the controller transfer function G,(s) can be calculated
from (6):

Go(s) =

G(s) = g% = L(sI - A+ BL+KC)'K (11)
The closed loop transfer function is
G= Boily = Q (12)

Note that the controller poles appear as zeros in the closed loop system. The
closed loop system is strictly proper, since deg(A,) = deg(4,), deg(B,) =
deg(4,) — 1 and deg(B,) < deg(A,) (cf. eqn (12) above). The closed loop
poles are always asymptotically stable (for any sensible control design !), and
the complex zeros of B,(s) are in the left half plane. The closed loop steady
state gain is positive, since a positive torque input will yield a positive speed
output.

Now consider the case of an unstable controller. The transfer function G(s)
then has at least one zero, but no poles, in the right half plane. From Lemma 1
it can be concluded that the Nyquist curve of the closed loop linear subsystem
must intersect the negative real axis. Assuming that the nonlinear friction can
be modelled by an ideal relay function (7), the describing function method in
combination with the Nyquist stability criterion predicts a limit cycle oscilla-
tion. This is a sufficient but not necessary condition, since the Nyquist curve
may intersect the negative real axis even with a stable controller. It is con-
Jjectured from practical experience, however, that regulator instability is also
a necessary condition for limit cycles to appear.

6. Performance Bounds

The regulator designed in Section 4 has the characteristic equation
A.(s)=det(sI- A+ BL+ KC)=0 (13)
where A,(s) is a third order polynomial
Ar(s) = 8%+ a15% + ags + a3 (14)

Assume a control design where all closed loop poles are placed at a distance
w from the origin and the complex poles have a relative damping ¢. The
observer poles are placed in the same pattern but at a distance aw from the
origin (a > 1). Using the simplified linear model (4), the coefficients in A,(s)
can be calculated as functions of the process and control design parameters.
The errors introduced in the regulator poles by this simplification are quite
small. Introducing the dimensionless quantity

szz

w=— g (15)

10



the following coefficients of A,(s) were obtained with the symbolic manipula-
tion program MACSYMA [8]:

a1 = w(2¢+1)(a+1)

Jik
3 2
az = —5- (a20%® + a1 W? + agew + azs)

J3 (16)
Jik
az = .172‘” (asow? + azw + as3)
2
where
azo = —a®
as = 4a?¢ + (2a3 + 40 + 2a)¢ - (oz3 + a4+ a)
azs = — (4a(® + (2a® + 4a + 2)¢ + (@ + @ + 1))
J.
a3=1+ J_:
aso = a’(a+1)(2¢ + 1)
az1 = — (4a(a+1)(C+ )+ +a? +a+1)
J
as2 = (@+1)(2¢ +1) (1 + J—:)
Regulator stability
The polynomial A,(s) is stable if
ai,az,az >0
{ 1,02,a3 (17)
aiaz > ag

To evaluate the stability criterion aja; > as, introduce the quantity e defined
by
€ = ajas —asg (18)
Inserting a;, a2 and a3 from (16) into (18), simple but cumbersome calculations
using (15) give
J1w3
J2

(cow? + 1w + ¢3) (19)
where
co=—a*(a+1)(2¢ +1)
e = 8a2(a + 1)(’3 + 4(¢:\z4 + 4a® + 4a® + oz)(2
+4(c*+2a*+a) +at+aP+a’ +a
c2 = — (8a(a+1)¢3 + 4(a® + 3a® + 3a + 1)¢2
+2(20® + 3a® + 3a + 2)¢ + a(a + 1))

The coefficient @, is always strictly positive, and does not influence stability.
The sign of a; and e, however, will be negative for large w values. By cal-
culating and plotting az(w), as(w) and e(w) for a particular choice of design
variables ({,a), we can get a more detailed picture of the set of w values for

11
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Figure 10. Normalized coefficients of the regulator characteristic polynomial.

Nominal design case (w = 12, = 1.5). Solid line = az,(w), dashed line = aan(w)
and dotted line = e, (w).

which the regulator is stable. Figure 10 shows a plot of the the normalized
and dimensionless coefficients

(W) = Draaw) asalw) = ~—aa(w)
2n = J]_k 2 ’ 3n = Jlkw 3
and
Ja
en(W) = me(w)
with nominal design parameters.  The normalized coefficients are plotted

because they are of the same order of magnitude and thus the sign shifts are
more easily observed in the plot.

Bandwidth limit

The stability limit is in our case determined by the condition en(w) < 0.
The stable w interval is 0.59 < w < 6.05. With J, = 150 - 10~® kgm? and
k = 2.4.1072 Nm/rad, the upper natural frequency limit corresponding to
Wmaz = 6.05 can be calculated from (15):

2 kWmaz

[ =
max J2

= Wmaz = 9.84 rad/s

This is a good approximation of the true natural frequency limit. A numerical
calculation of the regulator poles for different w values using the complete
servo model shows that the stability limit is wy,z, = 9.90 rad/s.

If a certain minimum closed loop natural frequency w is required, the corre-
sponding maximum inertial load J, (or, alternatively, the minimum k value)
can be calculated from the w stability limit and (15). The influence of the

12
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Figure 11. Measured closed loop step response with nominal design (wa = 12
rad/s). Drive motor speed = solid line, load speed = dashed line.

control design on the achievable bandwidth can be investigated by plotting the
normalized coefficients for different ¢ and a values. By increasing the relative
damping ¢ of the closed loop system, the achievable bandwidth with respect
to regulator stability is increased. A fast observer (increased a), on the other
hand, has the opposite effect. Note that the sign of a; and a3 depends not
only on w, but also on the inertia ratio J»/J;. With reasonable inertia ratios
this dependance is small, however, since J,/J; only appears in the constant
(w-independent) term.

7. Experimental Results

The continuous time control law (6) was implemented using conventional ana-
log circuits with operational amplifiers. Before designing the circuits, the
linear state space control law was transformed into a form suited for analog
implementation by amplitude scaling of the state variables. The drive mo-
tor speed, the load speed, and the control signal u were logged using a data
acquisition program with a sampling interval of 10 ms. A high frequency dis-
turbance can be seen on the motor speed. It is caused by tachometer ripple,
and the ripple frequency is proportional to the motor speed. The steady state
speed (1 V = 10 rad/s) corresponds to a ripple frequency of 100 rad/s.

The experimental results agree well with the simulations. Limit cycle oscil-
lations appear as predicted when the desired closed loop bandwidth is too
high. Figure 11 shows the step response with the nominal (high bandwidth)
design, and the step response with reduced bandwidth design (wy = 8 rad/ s)
is shown in Figure 12. The frequency of the limit cycles measured in the
experiments agrees well with the calculated value. The amplitude of the os-
cillation is approximately 0.2 V. This is smaller than the predicted value 0.3
V. The amplitude discrepancy can be explained by an incorrect value of the
Coulomb friction torque. It follows from equation (9) that an incorrect value

13
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Figure 12, Measured closed loop step response with reduced bandwidth design
(wet = 8 rad/s). Drive motor speed = solid line, load speed = dashed line.

of the friction torque gives an error in the predicted amplitude, but not in the
frequency.

8. Conclusions

Simple mathematical models have been used to analyse and predict the be-
havior of a servo system with flexible modes and nonlinear friction. They give
good insight into qualitative properties of the system, and also quite accurate
quantitative results. A control law based on pole placement with linear state
feedback and an observer can be used to provide active damping of the reso-
nant modes in the system, provided that the poles are chosen appropriately.
The achievable bandwidth is limited by the appearance of limit cycle oscilla-
tions at zero speed. The limit cycles are caused by the Coulomb friction in the
drive motor, and their appearance is related to the stability of the regulator.

A sufficient condition for the appearance of limit cycles is that the linear
regulator is unstable. The stability of the regulator depends on a dimensionless
quantity w, which includes the load inertia, the spring constant of the elastic
modes and the closed loop natural frequency. The regulator will be unstable
for large w values and limit cycles appear. Analytic expressions have been
derived from which approximate values of the stability limit can be calculated
with good accuracy. The relation between unstable regulators and limit cycle
oscillations, in combination with the inherent windup problem, indicates that
unstable regulators should be avoided in control design for servo systems with
elastic modes. The requirement that the regulator should be stable imposes
constraints on the achievable bandwidth.

14
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