LUND UNIVERSITY

MESS -- A Minimal Expert System Shell

Larsson, Jan Eric

1988

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, J. E. (1988). MESS -- A Minimal Expert System Shell. (Technical Reports TFRT-7380). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/49a805cf-187e-4597-9499-9407d4a309a6

CODEN: LUTFD2/(TFRT-7380)/1-12/(1988)

MESS—A Minimal Expert System Shell

Jan Eric Larsson

Department of Automatic Control
Lund Institute of Technology
August 1988



Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name
Technical report

Date of issue

August 1988

Document Number

CODEN: LUTFD2/(TFRT-7380)/1-12/(1988)

Author(s)
Jan Eric Larsson

Supervisor

Sponsoring organisation

Title and subtitle
MESS—A Minimal Expert System Shell

Abstract

This report describes a small expert system shell. The system is written in Chez Scheme and handles both
forward and backward chaining. The source code is short, (192 lines), and the system is well suited for
inclusion in larger programs. A small manual, the source code, and examples of rules and runs are included.

Key words

Chez Scheme, Expert System Shells, Production Systems

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 12

Security classification

Recipient's notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.







MESS—A Minimal Expert System Shell

Jan Eric Larsson

Department of Automatic Control
Lund Institute of Technology
August 1988



Department of Automatic Control
Lund Institute of Technology

Box 118

S5-221 00 LUND

Sweden

(© 1988 by Jan Eric Larsson. All rights reserved

Published 1988
Printed in Sweden



Contents

Introduction

The Rule Syntax

The Database

Forward Chaining
Backward Chaining

The Source Code

An Example of a Rule Base
Example Runs

References

O OO

10
11






Introduction

MESS is a small expert system shell which supports both forward and backward chaining. The rule
syntax is simple and Lisp-like, but contains everything that is needed for a smaller project. There is
a small number of utility functions and a simple tracing facility. The MESS system is written in Chez
Scheme and the entire code is 192 lines long. The intention is that the user should be able to get a
complete understanding of what is happening by reading the code. The system should also be easy to
include in a larger program. For readings about Scheme, see Abelson, Sussman, and Sussman, [1985],
and Dybvig [1987]. An inspiration for this project is found in Winston and Horn [1981], where a small
rule-based system is outlined.

The Rule Syntax
A rule has the following syntax:

(rule <name>
(it
<pattern>

<pattern>)
(test
<Lisp expression>

<Lisp expression>)
(then
<pattern>

<pattern>))

The name of the rule should be either an atom or a string. The test part is optional, but the if and
then parts must exist. The patterns used in the if and then parts may be arbitrarily nested Lisp lists.
These are not proper facts, but matching patterns. During execution, they will be matched against the
facts in the database.

An atom in a pattern starting with a '~ is a variable and will match any expression in the cor-
responding fact. If the variable occurs several times in a rule, it must match the same expression
everywhere. The variable ’-’ is the anonymous variable and will match different expressions in the same
rule. The anonymous variable may also occur in the facts in the database. This can be especially useful
for database queries in backward chaining, to allow for incomplete hypotheses.

Negation of a pattern is written as (not <pattern>). A rule containing such a negation will only
be triggered if there is no corresponding fact to match it in the database.

In backward chaining, the system may be allowed to ask for the truth of matching patterns. Such
a matching pattern must start with a ’#’. This '+’ will be cdr’ed off, and is not used in matching with
the facts.

The patterns in the then part may contain a ’~’. This means that the next item will be evaluated
before the pattern is used. Three special functions are also available in the then part. A pattern of the
form (remove <pattern>) means that the corresponding fact should be removed from the database. A
pattern of the form (call <pattern >) means that the cdr will be used as a function call. In both
these cases, the bodies may contain variables. A patterns of the form (ask <pattern>) means that the
pattern will be queried for.

The facts in the database and the hypotheses are also arbitrarily nested Lisp lists, but they may
not contain any variables, except for the anonymous variable *-.

The Database

The system keeps its data in three different lists. The rules should be put in a list named rules. The
facts reside in a list called facts. The hypotheses to be tried in backward chaining should be put in the
list hypotheses.

A simple tracing facility is available. If the variable trace is non-nil, a message will be printed
every time a rule is used, in forward and backward chaining.



Forward Chaining

The forward chaining is started with the top-level function (fc). Some initial facts must be present
in the database, i.e., the facts list. The forward chaining strategy matches the if parts of rule after
rule against the facts in the database. When the entire if part of a rule matches, the tests of the test
part are evaluated. The test expressions must all return non-nil values. In that case, the then part is
applied. Patterns starting with remove, call, or ask have special effects. Other patterns will be added
to the database if not already there. The rule will be successfully used only if at least one pattern is
added to or deleted from the database. Once a rule has been found and successfully applied, the system
starts all over again, searching for a rule that will match the updated database. The forward chaining is
finished when no rule can be triggered.

The forward chaining uses a very simple conflict resolution strategy. The rules are searched from
the beginning of the rules list, and the first rule to match will be chosen. In the matching of each
pattern, the facts list is searched from the beginning. As new facts are cons’ed to the front of this list,
more recent facts will be preferred over older ones. Every time a rule has been used, the system starts
anew from the beginning of the facts list. This simple strategy is efficient and may easily be controlled
by the order of the rules in the rules list.

Backward Chaining

The backward chaining is started with the top-level function (bc). Some facts may or may not be
present in the database, and at least one fact should be placed in the hypotheses list. The system goes
through the hypotheses, either until one is verified, or the list is empty. A hypothesis may be verified
in several ways. If a corresponding fact is found in the database, the hypothesis is immediately verified.
If it is found in the then part of a rule, the patterns of the if part become new hypotheses, and the
system tries to verify them recursively. If a hypothesis starts with a ’*’, and can be verified neither with
the database nor the rules, the system asks for its truth. The answer must be either of 'y’or'n’. Asa
result of a query, a fact (asked <pattern>) is put into the database. Thus, the system will never ask
for the same thing twice.

The backward chaining uses the same conflict resolution strategy as the forward chaining, i.e., the
rules and facts lists are searched from the beginning. The search may thus be guided by the order of
the rules in the list.

The Source Code

Here is the entire source code of the system. The global variables rules, facts, and hypotheses should
be given the appropriate values.

j———MESS---A Minimal Expert System Shell -
3 Author: Jan Eric Larsson

H Department of Automatic Control

- Lund Institute of Technology, Lund, Sweden

;———Rule selectors — S

(define (getifs rule)
(cdr (assoc ’if (cddr rTule))))

(define (getthens rule)
(cdr (assoc ’then (cddr rule))))

(define (gettests rule)
(if (null? (assoc ’test (cddr rule)))
nil
(cdr (assoc ’test (cddr rule)))))

;———Fact manipulation e



(define (var? e)
(and
(symbol? e)
(equal? (substring (symbol->string e) 0 1) "-")
(not (equal? e ’-))))

(define (fillin fact env)
(cond
((null? fact) nil)
((and
(var? (car fact))
(assoc (car fact) env))
(cons (cadr (assoc (car fact) env)) (fillin (cdr fact) env)))
((atom? (car fact)) (coms (car fact) (f£illin (cdr fact) env)))
(t (cons (£illin (car fact) env) (fillin (cdr fact) env)))))

(define (evalstuff fact)
(cond
((null? fact) nil)
((equal? (car fact) ’") (cons (eval (cadr fact)) (evalstuff (cddr fact))))
(t (cons (car fact) (evalstuff (cdr fact))))))

(define (addnewfacts fact env)
(let ((f (evalstuff (fillin fact env))))
(cond
((equal? (car f) ’remove)
(if (member (cadr f) facts) (set! facts (remove! (cadr f) facts)) nil))

((equal? (car f) ’call) (eval (cadr f)) nil)
((equal? (car ) ’ask) (ask (coms ’* (cadr f)) env))
(t (set! facts (coms f facts))))))

s———Unification--——-——===——— -~ _ _—

(define (unify p d env)
(cond
((and (null? p) (null? d)) env)
((or (null? p) (null? 4)) nil)
((or (equal? (car p) ’-) (equal? (car d) ’-)) (unify (cdr p) (cdr d) env))
((equal? (car p) ’#*) (unify (cdr p) d emnv))
((equal? (car p) (car d)) (unify (cdr p) (cdr d) env))
((not (var? (car p))) mnil)
((null? (assoc (car p) env))
(unify (cdr p) (cdr d) (cons (list (car p) (car d)) env)))
((equal? (cadr (assoc (car p) env)) (car d)) (unify (cdr p) (cdr d) env))
(t nil)))

;———Forward chaining- - B e

(define (getfact fact factlist env)
(cond
((equal? (car fact) ’*) (getfact (cdr fact) factlist env))
((null? factlist) (if (equal? (car fact) ’not) (list nil emv) nil))
((equal? (car fact) ’not)
(if (null? (getfact (cadr fact) factlist env))
(1ist (cdr factlist) env)
nil))



((Let ((newe (unify fact (car factlist) env)))
(if newe (list (cdr factlist) newe) nil)))
(t (getfact fact (cdr factlist) env))))

(define (putfact fact factlist env)
(cond
((null? factlist) (addnewfacts fact env))
((unify fact (car factlist) env) nil)
(t (putfact fact (cdr factlist) env))))

(define (testif ifs rule env)
(if ifs
(do ((e (list facts env)) (mewe t) (retval nil))
((or (null? newe) (equal? mewe ’(() ((())))) retval) retval)
(set! newe (getfact (car ifs) (car e) (cadr e)))
(if newe
(begin
(set! e (1ist (car newe) (cadr e)))
(set! retval (testif (cdr ifs) rule (cadr mnewe))))))
(checktest rule env)))

(define (checktest rule env)
(do
((tests (gettests rule) (cdr tests)))
((or (null? tests) (mot (eval (fillin (car tests) env))))
(if tests nil (usethen rule env)))))

(define (usethen rule env)
(do
((thens (getthens rule) (cdr thens)) (retval nil))
((null? thens) (if retval (list nil retval) nil))
(if (putfact (car thens) facts env) (set! retval env))))

(define (findrule)
(do
((rlist rules (cdr rlist)))
((or (null? rlist) (testif (getifs (car rlist)) (car rlist) *((()))))
(if (and trace rlist)
(begin
(display "Rule ")
(display (cadar rlist))
(display " triggered")
(newline)))
(if (null? rlist) nil t))))

(define (fc) (if (findrule) (fc)) ’0k)

;———Backward chaining—-- —————

(define (verifyif ifs rule env)
(if ifs
(let ((e (verify (car ifs) facts env)))
(if e (verifyif (cdr ifs) rule (cadr e))))
(checktest rule env)))

(define (inthens? fact thens env)



(cond
((null? thens) nil)
((unify (car thems) fact env))
(t (inthens? fact (cdr thens) env))))

(define (userule fact env)
(do
((rlist rules (cdr rlist)) (mewe nil))
((or (null? rlist) newe) newe)
(set! newe (inthens? fact (getthems (car rlist)) env))
(i newe (set! newe (verifyif (getifs (car rlist)) (car rlist) newe)))
(if (and trace newe)
(begin
(display "Rule ")
(display (cadar rlist))
(display " triggered")
(newline)))))

(define (ask fact env)
(cond
((and
(equal? (car fact) ’%)
(null? (getfact (list ’asked (cdr fact)) facts env)))
(set! facts (cons (list ’asked (cdr fact)) facts))
(let ((f (cdr (£illin fact env))))
(display "Is this true: ")
(display (if (equal? (car £) ’not) (cadr f) f£))
(newline)
(if (equal? (read) ’y)
(if (equal? (car f) ’not)
(begin (set! facts (cons (cadr £) facts)) mnil)
(begin (set! facts (cons f facts)) (list facts env)))
(if (equal? (car £) ’not)
(begin (set! facts (cons £ facts)) (list facts env))
(begin (set! facts (cons (list ’not £) facts)) mnil)))))
(t nil)))

(define (verify fact factlist env)
(cond
((getfact fact factlist env))
((userule fact env))
((ask fact env))))

(define (bc)
(do
((h hypotheses (cdr h)))
((or (null? h) (verify (car h) facts ’((()))))
(if (null? h)
(display "No hypothesis verified")
(begin (display (car h)) (display " verified")))
(newline)))
’0k)

;———Global variables NSRS S S

(define trace nil)



(define rules nil)
(define facts nil)
(define hypotheses nil)

An Example of a Rule Base

This small example shows what a rule base might look like. The expertise in this case concerns how to
“hang around in bars.”

(define rules ’(

(rule bar-1
(if
(bar open)
(capital is -)
(not (has a beer)))
(then
(buy a beer)))

(rule bar-2

(it
(buy a beer)
(capital is -x))

(test
> -x 9))

(then
(remove (buy a beer))
(remove (capital is -x))
(capital is ~ (- -x 10))
(has a beer)))

(rule bar-3
(if
(has a beer))
(then
(call (display "Drink a beer"))
(call (newline))
(remove (has a beer))))))

(define facts ’((bar open) (capital is 50)))

(define hypotheses ’((buy a beer)))

Example Runs
This is what happens when the system is run with the rules and facts shown in the example above.

% scheme
Chez Scheme Version 2.0.1 Copyright (c) 1987 R. Kent Dybvig

> (load "mess.scm")

O

> (define trace t)

trace

> facts

((bar open) (capital is 50))
> (fc)

Rule bar-1 triggered
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Rule bar-2 triggered
Drink a beer

Rule bar-3 triggered

Rule bar-1 triggered

Rule bar-2 triggered
Drink a beer

Rule bar-3 triggered

Rule bar-1 triggered

Rule bar-2 triggered
Drink a beer

Rule bar-3 triggered

Rule bar-1 triggered

Rule bar-2 triggered
Drink a beer

Rule bar-3 triggered

Rule bar-1 triggered

Rule bar-2 triggered
Drink a beer

Rule bar-3 triggered

Rule bar-1 triggered

ok

> facts

((buy a beer) (capital is 0) (bar open))
> (set! facts (cdr facts))
((capital is 0) (bar open))
> hypotheses

((buy a beer))

> (bc)

Rule bar-1 triggered

(buy a beer) verified

ok

> facts

((buy a beer) (capital is 0) (bar open))
> (exit)

%
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