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Abstract 

The paper addresses the aspects of control of real- 
time systems with varying sampling rate. To moti- 
vate, an example is given in which a stable contin- 
uous system is sampled at two different sampling 
rates. Two controllers are designed to minimize 
the same continuous quadratic loss function with 
the same weights. It is shown that although the 
design leads to stable controlled closed loop sys- 
tems, for both discretizations, the resulting sys- 
tem can be unstable due to variations in sampling 
rate. To avoid that problem, we suggest an op- 
timal controller design in which a bound on the 
cost, for all possible sampling rate variations, is 
computed. This results in a piecewise constant 
state feedback control law and guarantees stabil- 
ity regardless of the variations in sampling rate. 
The controller synthesis is cast into an LMI, which 
conveniently solves the synthesis problem. To il- 
lustrate the procedure, the introduction example 
is revise using the proposed LMI synthesis method 
and the stable control law is given, which is ro- 
bustly stable against variations in sampling rate. 

1 Introduction 

The paper is concerned with the control of 
sampled data systems which have variations in 
the sampling rate. Such systems arise for different 
reasons. One of them is the optimal usage of 
central processing unit (CPU) resources [3] [2]. 
Roughly speaking, several tasks are carried out 
on the very same CPU, one of them is t o  compute 
the control law. When enough computational 
recourses are available, the control law is com- 
puted more frequently than when the recourses 
are used for other computations. This leads to 
variations in sampling rate, which can potentially 
unstabilize the controlled system. 
In the following we will give an example of 
how variations in sampling time can lead to 
instability. We proceed in proposing a controller 
design, which results into a piecewise linear state 
feedback control law and is robustly stable to vari- 
ations among the prescribed sampling rates. We 
show how such state feedback controllers can be 
found using linear matrix inequalities (LMI). We 
illustrate the design procedure by revisiting the 
introductory example, where a linear quadratic 
design approach lead to instability. 
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1.1 Example 1: Two different sampling 
times, same continuous loss function in both 
As an example of instability by scheduling, the 
real-time control of the following linear continuous 
system 

X = AX+bu 
(1) y = c x  

is considered, where 

Bo- 

x2 
Bo- 

U)- 

XI- 

are the system, input and output matrix. The 
continuous system is stable with poles in the left 
hand-side of the complex plane p1,2 = -0.05 & 
1OOi. In the following, two discrete systems are 
derived from this continuous system. The contin- 
uous system is discretized with two different zero 
order hold circuits, where the sampling rates are 
hl = 0.002s, h2 = 0.094s respectively. The two 
discretizations are represented by 

\,, second sample 

i E {1,2} 

where @i = eAh*, ri = soh, eAsBds and i de- 
notes the discretized system obtained with sam- 
pling time hi. Both discretizations lead to stable 
discrete systems with the spectral radius p(a.1) < 
1, p ( G 2 )  < 1 respectively, where p(@i)  gives the 
largest eigenvalue of ai. 
A discrete linear quadratic optimal controller is 
designed for both discretizations, minimizing the 
continuous loss function 

J = L m ( x ( t ) T Q c x ( t )  + u(t)TRu(t))dt  

subject to system (2) sampled at hl ,  h2, where 

(4) 

Q c = [  2oy 20000 ] R = 50 

The resulting gain matrices are found by discretiz- 
ing the loss function (4) 

khi+hi 

Q1,i = ihi (a? (s , khi )Qc@i (s , khi ))ds 

and solving the discrete .algebraic Riccati equa- 
tion. 

such that we get 

- 195.401 -1296.6 
K1 = [ 19.4121 ] K 2 =  [ -8.826 ] 

For both discretizations the controlled closed loop 
systems is stable, i.e p(@1 - rlK1) < 1, p ( @ 2  - 
I'zKz) < 1 respectively. Hlowever in the case where 
the system is sampled with hl for 1 sampling in- 
terval and then the system is sampled with ha for 
2 sampling intervals repeatedly we find that this 
sequence is unstable. This can be seen by look- 
ing at figure 1 or at the spectral radius of the re- 
sulting system p((@2 - r : ! ~ ~ ) ~ ( @ ~  - r l K 1 ) l )  > I .  
We obtain the spectral ra.dius of the resulting sys- 
tem by writing the solution for sampling at hl 
once, Xhl = (@I + I'lKl)xo and sampling at h2 
twice, X2h2+hl = (a2 + 1?2K2)2Xhl.  We can now 
substitute into each other and obtain 5h2+3hl = 
( @ 2  + r ~ K 2 ) ~ ( + 1  + r1Kl)zo.  Since this is done 
repeatedly we can think of it as the new system 
description and take the spectral radius of it, in 
this case it is larger than one, hence the resulting 
system is unstable. 

third sample 

bo 

240m sample 

O J  X l  O' 
aa. 4 3  d 2  o t  o 2  

Figure 1: Unstable sequence 

The Fig. 1 shows the sa.mples, the discrete points 
of the continuous trajectory, for the unstable sys- 
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tem in phase-plane. The system 2 is sampled for 
one sampling interval with hl ,  i.e. small distance 
between initial and first sample, and twice with 
h2, i.e. larger distance between first second and 
third sample. It can be Seen that the trajectory 
enlarges and it gets further away from the origin, 
i.e. sample 240 is much further away from the ori- 
gin then initial sample. 
It turns out that this is not the only sequence, 
which unstabilizes the system, table 1 shows fur- 
ther sequences for which the resulting system is 
unstable. 

n . h l  
m.hZ 

p ( p 2  - r2~2)mh2(+1 - r l K p l )  > 1 

l ' h l  1 .h l  2 . h l  2.h1 2.h1 
2.h2 3 . h ~  4 -h2  5.h2 6 . h ~  

Figure 2 shows another unstable sequence. The 
system is sampled one time at hl and three times 
at ha. 

and has a terminal penalty, which is greater or 
equal than the cost of bringing the states to  the 
origin for the worst case variations in sampling 
rate. The resulting control law is given by a 
piecewise linear state feedback controller. We 
show that this leads to  a closed loop system, wich 
is stable for all variations in sampling rate. 

2 Controller design 

For controller design we suggest that instead of 
minimizing a continuous objective function over 
the infinite horizon, we minimize only over one 
sampling period. To compensate for the remain- 
ing cost we add a terminal penalty. Minimizing 
only over one sampling rate is more sensible since 
the sampling rate may change after one sampling 
period anyway. Since the terminal penalty has to 
be at least as big as the remaining worst case cost 
we write the following inequality 

z(kh)TPz(kh)  2 min zL /""+h(zTQc~ + uTRu)dt 

+z(kh + h)TPz(kh + h)  (8) 

Figure 2: Unstable sequence 

We have seen that even when two stable discrete 
controlled closed loop systems are obtained, from 
a stable continuous system, with state feedbacks 
minimizing the same continuous loss function that 
variation in sampling rate (switching between 
these two systems) can lead to  instability. 
In the next section we will propose a controller 
synthesis which will overcome this problem. An 
optimal controller design is stated which mini- 
mizes the loss function over one sampling time 

'd h E H = {h i ,  h2,. . . , hn} 

The solution gives an optimal, piecewise constant 
state feedback controller which is stable regardless 
of the scheduling. 
The first step in solving (8) is to  discretize the 
objective function. This is done similarly as in 
[8]. The discretized objective function over one 
sampling interval with terminal penalty is 

z (kh)TPz(kh)  2 
min ( zT ( kh) Q 1 ,i z ( k h )  + 2zT ( k h )  Q 12,i U ( kh) 

+ uT(kh)Q2,i.(kh)) + z (kh  + hi)TPz(kh + hi) 
(9) 

v ZE { 1 , 2  ,..., n] 



where 

and ai = eAha,  ri = eAsBds is the fundamen- 
tal respectively the input matrix of the discretized 
system. 

Theorem: If there exists P = PT > 0, Ki, i E 
{1 ,2 ,  ..., n} such that 

V i E {1 ,2 ,  . . . ,  n} 

then the sampled system is stable under vari- 
ations for all admissible sampling rates hi, 
i E {1 ,2 ,  . . . , n} and its performance is bounded 
by xTPx. 

Proof: Rearranging (9) and taking z k + 1  = i P i z k  + 
Fit&, 'ZLk = Kixk We obtain 

(ai + riKi)TP(ai  + riKi) - P+ 

+ (Q1,i  + 2Q12,iKi + K,TQ2,iKi) 5 0. (14) 

V ( x )  = X ~ P X  serves as Lyapunov function since 
P = PT > 0 and 

with 

1 Qi,i Q12,i [ QG>i Q2,i 
V Z € I = { l , 2 , . . . l n }  Qi= 

where Qi are positive definite for all i and [IKi] 
are full rank, therefore - [ IK i ]Qi[ IK i ]  is negative 
definite and hence A V ( x )  5 0. 

We have seen if we manage to  find a controller 
which satisfies (8) and therefore also (13) we 
can guarantee that the controlled closed loop 
system is stable for all variations among hi, 
i E {1 ,2 , .  . . , n}. We wi1.l now show how we can 
formulate the controller synthesis into a LMI, 
such that we obtain P arid Ki. 

3 Controller synthesis using LMI 

We have seen that a system in form (1 )  with 
its discretizations ( 2 )  arc: robustly stable for vari- 
ations among the prescribed sampling rates h,, 
V i E {1 ,2 , .  . . , n)  and its cost is bounded by 
P = PT > 0, when we find the state feedback 
gains K,, i E {1 ,2 , .  . . , n} which satisfy (13). The 
remaining problem is to  obtain the P and the K,s. 
In order to obtain P and the Kzs, we formulate the 
controller synthesis into a LMI. We take (13) 

(a, + r2K2)TP(a2 + r%K,) - P+ 

+ ( & I , ,  + 2Q 1 2 , 2 K  + KTQ2,JG) 5 0 

which we can write as 

V i E { l , 2 , .  . . ,n} 

Applying Schur's complement to  the above expres- 
sion we obtain 

K? 11 

v i E {1 ,2 ,  ..+} 

where 

Q1,i Q12,i 1 Qi [ QT2,i Q2,i 

J 
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Multiplying the above inequality from left and 
right with 

[ pi1 s ]  
and setting WO = P-l,  Wi = Kipp1 we obtain 
the controller synthesis LMIs 

v i E {1,2, . . . ,  72) 

in WO = W z  > 0 and Wi. The solution of the LMI 
(20) gives the state feedback gains Ki = WiWCl 
V i E { 1,2, . . . , n}. Applying the state feedbacks 
gives a stable closed loop system which is robust 
against variations among the sampling times hi 
V i E {1,2,. . . , n}. However we would not only 
like to stabilize the system we would further like 
to minimize the cost for driving the states to the 
origin for a given objective function (8). There- 
fore we would like to minimize the trace of WCl. 
Unfortunately this is a non-convex optimization 
problem. Instead of minimizing min Tmce(Wcl)  
we minimize 

min log det W<' 

subject to (20) which is a convex optimization 
problem. 
We have shown how the state feedback synthesis 
problem is cast into a LMI. In the following we 
give an illustrative example. 

4 Example 

We will now demonstrate the synthesis procedure 
by controlling system (1) again, however since we 
use the synthesis procedure above we will be cer- 
tain that  the controlled closed loop system is sta- 
ble and robust against variations among all hi. We 
sample the system again with the two very same 
sampling rates hl = 0.002s, h2 = 0.094s. Using 

i E {1,2) 

where 

0.000 
0.0°20 ] rl = [ o.020] 

0.9801 
" = [ -19.8649 0.979 

-0.995 0.0002 ] r2 = [ 0.0001995] 
" = [ -2.4660 -0.9950 0.0002466 

For the controller design were we want to satisfy 

+z(kh + h)TPx(kh + h)  (25) 

v h E H = {hl,h2} 

we take the very same weights as in the introduc- 
tion example 

R = 50. Qc = [ 2oooo ] 
0 20000 

We then obtain and obtain Q I , i ,  Q2,i and Q3,i by 
solving (10)-(12), such that we can write 

v iE{1,2} 

5329.5 -394.6 -0.529 
& I =  [ -394.6 39.5 0.0395 

-0.529 0.0395 0.1001 

1 9381400 -6.0714 -938.1423 
& I =  [ -6.0714 933.2359 0.0010 

-938.1423 0.0010 4.7938 
(29) 

we can now solve the state feedback synthesis LMI 
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v i E  {1,2} Acknowledgement: This work is partly sup- 
ported by the UK Engineering and Physi- 
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GR/M47256 and obtain WO = w: > 0 and wi, w2, which 

gives the state feedback gains Ki = WiWT' V i E 

{1,2) 
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