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ABSTRACT 
 
Objective: Dynamic susceptibility contrast (DSC) MRI requires deconvolution for 
retrieving the tissue residue function R(t) and the cerebral blood flow (CBF). In this 
study, deconvolution of time-series data was performed by wavelet-transform based 
denoising combined with the Fourier transform (FT). Materials and Methods: 
Traditional FT-based deconvolution of noisy data requires frequency-domain 
filtering, often leading to excessive smoothing of the recovered signal. In the present 
approach, only a low degree of regularisation was employed while the major noise 
reduction was accomplished by wavelet transformation of data and Wiener-like 
filtering in the wavelet space. After inverse wavelet transform, the estimate of 
CBF⋅R(t) was obtained. DSC-MRI signal-versus-time curves (signal-to-noise ratios 
40 and 100) were simulated, corresponding to CBF values in the range 10-60 ml/(min 
100g). Three shapes of the tissue residue function were investigated. The technique 
was also applied to 6 volunteers. Results: Simulations showed CBF estimates with 
acceptable accuracy and precision, as well as independence of any time shift between 
the arterial input function and the tissue concentration curve. The grey-matter to 
white-matter CBF ratio in volunteers was 2.4±0.2. Conclusion: The proposed 
wavelet/FT deconvolution is robust and can be implemented into existing perfusion 
software. CBF maps from healthy volunteers showed high quality. 
 
Key words: Deconvolution, dynamic susceptibility contrast, magnetic resonance 
imaging, perfusion, cerebral blood flow, wavelets, noise 
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INTRODUCTION 
 
Accurate and robust deconvolution algorithms are essential for obtaining reliable 
regional cerebral blood flow (CBF) estimates by use of an intravascular tracer. In 
dynamic susceptibility-contrast (DSC) MRI for assessment of brain perfusion (1), 
singular value decomposition (SVD) is a common tool for solving the convolution 
integral in matrix form, in order to obtain the impulse residue function R(t) of the 
tissue of interest from the tissue concentration time curve C(t) and the arterial input 
function AIF or Cart(t) (2). The initial implementations of the SVD deconvolution 
algorithm (denoted 'standard SVD' in this report) are sensitive to even a modest time 
delay between the two functions involved, i.e. between the measured arterial input 
function and the corresponding tissue concentration time curve (3). Wu et al. (4) and 
Smith et al. (5) have recently presented modified SVD-based algorithms, insensitive 
to arterial-tissue delay. 
 
Alternative deconvolution techniques have been introduced for use in DSC-MRI. For 
example, Østergaard et al. investigated a number of approaches, both model-
dependent and model-independent, in a simulation study (1). Examples of other 
recent DSC-MRI deconvolution approaches are likelihood-based algorithms, such as 
iteration schemes for maximum likelihood expectation maximisation (6) and 
estimation of the impulse residue function as the mean value of an optimised joint 
Gaussian distribution (7). Furthermore, the classical filtered Fourier-transform (FT) 
deconvolution was employed by Rempp et al. (8), and has later been compared with 
SVD-based techniques using experimental DSC-MRI data (9, 10). 
 
Deconvolution based on division in the frequency domain, after Fourier transform of 
C(t) and Cart(t), has the advantage of being insensitive to possible time delays 
between the two functions. On the other hand, the conventional FT-based 
deconvolution requires the application of a filter (e.g. the Wiener filter) in the 
frequency domain in order to suppress the effects of noise. Unfortunately, such filters 
inevitably result in a smoothing of the recovered function and a corresponding 
suboptimal representation of edges. In DSC-MRI perfusion measurements, the CBF 
is theoretically given by the initial value of a continuously decreasing tissue residue 
function, i.e. by a value that corresponds to the edge of a function. In the present 
study, a hybrid deconvolution approach, combining a Fourier-domain regularisation 
with wavelet-based denoising (11), is proposed for CBF calculation in DSC-MRI. 
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METHOD 
 
Theory of DSC-MRI perfusion measurements 
Briefly, the assumed relationship between the measured signal S and the 
concentration Cm is given by Eq. 1 (1): 
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where k is a proportionality constant, t is time, TE is echo time and S0 is the baseline 
signal. A correction factor kH (set to 0.705 ml/g in the present study), including brain 
density and the haematocrit values in large and small vessels, is normally applied, i.e. 
C(t)=kH⋅Cm(t) (8). The CBF is then defined by the convolution in Eq. 2: 
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Deconvolution strategy 
In order to obtain a convolution filter with normalised area, rescaled concentration 
parameters were introduced by dividing the tissue concentration C(t) as well as the 
arterial concentration Cart(t) with the area under the arterial concentration curve, i.e. 
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Furthermore, the scaled tissue residue function was defined as Rs(t)=CBF⋅R(t), and 
the relationship between the measured tissue concentration, the arterial concentration 
and the tissue residue function is given by the convolution integral: 
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Basic FT-based deconvolution, with notations from DSC-MRI, can be 
mathematically described as follows: 
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In the presence of noise, frequency-domain, low-pass filtering is normally applied, in 
order to obtain a reasonable estimate of the scaled tissue residue function, denoted 
[Rs(t)]α. A typical representation of such a filter is given by Eq. 6: 
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|FT[Rs(t)]|2 is an approximation of the power spectral density of the input signal. 
Furthermore, σ2 is the variance of the noise and α is the regularisation parameter that 
controls the trade-off between noise suppression and signal distortion. The factor N, 
i.e. the number of data points used in the discrete Fourier transform, is included due 
to the general convention that [ ] 22 )()( ∑∑ =

k sk ks kCNfCFT . When α is large, the 
shape of R(t) becomes distorted, i.e. R(t) is smoothed and its edges become less 
sharp, and, on the other hand, if α=0 the deconvolution is severely hampered by 
noise. The Wiener filter corresponds to the setting of α=1. 
 
The use of Eq. 6 requires knowledge about Rs(t) for determination of |FT[Rs(t)]|2, and 
this function is obviously unknown in practise. In the present study, a Tikhonov 
regularised FT-based estimate, denoted [Rs(t)]T, obtained using a constant 
regularisation parameter T, was used as an approximation:  
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Hence, by applying the initial approximation Rs(t)≈[Rs(t)]T to Eq. 6, an approximation 
to [Rs(t)]α was obtained: 
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In the present study, a low α value was employed, and the major noise reduction was 
accomplished by discrete wavelet transformation of [Rs(t)]α, followed by Wiener-like 
filtering in the wavelet space (see Eq. 10). However, the calculation of the shrinkage 
factors δj requires knowledge of the wavelet coefficients wj of the true signal Rs(t), so 
the application of Eq. 10 was proceeded by a moderate hard thresholding, i.e. the 
wavelet coefficient was set to zero if |wj| was smaller than a certain threshold value 
(Eq. 9): 
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where ρ is a threshold factor. Thereafter, the Wiener-like filtering was applied to 
shrink each wavelet coefficient wj' by a factor δj, according to Eq. 10: 
 

wj'' = δjwj', where 
22

2

'

'

σ
δ

+
=

j

j
j

w

w
       [10] 

 
After inverse wavelet transform, the final estimate of Rs(t) was attained, and the 
maximal value of the Rs(t) estimate was assumed to represent CBF. The wavelet used 
was the Daubechies family wavelet of grade 2, and an approximation of the noise 
variance σ2 was obtained as the variance of the finest scale wavelet coefficients. 
 
The computer program for deconvolution of DSC-MRI data using the above concept 
was designed in Interactive Data Language (IDL 6.0, Research Systems Inc.), using 
the features of the IDL Wavelet Toolbox for the discrete wavelet transform.  
 
Simulations 
The simulation procedure was designed to facilitate comparison with previously 
published investigations of deconvolution techniques applied to DSC-MRI. Realistic 
DSC-MRI data (64 data points with a temporal resolution of 1.0 s) for artery as well 
as for tissue were simulated, corresponding to a constant CBV of 4 ml/100g and CBF 
values ranging from 10 to 60 ml/(min 100g). The arterial concentration curve was 
defined by Cart(t)=kart(t-t0)3exp(-(t-t0)/1.5 s) (t>t0), where kart is a constant adjusted to 
give a reasonable signal loss during the simulated contrast-agent passage (2, 12). A 
recirculation effect was introduced by adding a downscaled and time-shifted copy of 
the above function convolved with an exponential function with time constant 30 s 
(12). 
 
Three different shapes of the tissue residue function R(t) were investigated, namely 
exponential, triangular and box-shaped. The explicit mathematical definitions of 
these functions can be found in the paper by Murase et al. (12). In order to obtain the 
corresponding tissue concentration curves, the tissue residue functions were 
convolved with the arterial concentration curve. 
 
In the next step, arterial and tissue signal curves were generated using Eq. 1, using S0 
values of 200 and 600 for tissue and artery, respectively. Due to the large tracer 
concentration differences between artery and tissue, it is difficult to obtain a 
reasonably large signal drop in tissue without at the same time saturating the arterial 
signal (13). One solution is to set a shorter TE for a slice through a brain-feeding 
artery and a longer echo-time for the tissue slices (14, 15), and this approach was 
assumed in the present simulations with TEart=0.013 s and TEtissue=0.055 s. Random 
noise from a Gaussian distribution with standard deviation σ was added to the tissue 
signal curve to yield a desired signal-to-noise ratio (SNR = S0/σ) of the tissue 
baseline signal. The arterial noise distribution was modified to be Rician, since 
arterial signal might drop to very low levels. The main part of the simulations was 
carried out at SNR=40, assumed to approximately represent a "low-SNR situation" in 
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DSC-MRI. To assure that the proposed method is not severely dependent on SNR, a 
"high-SNR situation" was also investigated (with the same settings of T, α and ρ). 
The selected SNR levels were based on limited experimental DSC-MRI data from 
gradient-echo (GRE) echo-planar imaging (EPI) with TE=55 ms at 1.5 T (SNR of the 
order of 40) and TE=21 ms at 3.0 T (SNR of the order of 100). Note that these 
experimental data were used only to roughly establish the baseline SNR in tissue. 
 
After noise addition, the noisy concentration curves for artery and tissue were 
calculated according to Eq. 1. The arterial and tissue data arrays were then doubled, 
i.e., extended to 128 positions. In this added part of the array, concentration data were 
extrapolated gradually towards zero, according to the formula suggested by Gobbel & 
Fike (16), in order to avoid extreme high-frequency oscillations at the end of the 
deconvolved curve. CBF was then calculated according to the theory outlined above. 
In order to optimise the combination of T, α and ρ, estimates of the CBF error were 
introduced in the simulations. First, the error |CBFtrue-max[[Rs(t)]T]|/CBFtrue 
(averaged over all investigated CBF values and all shapes of the tissue residue 
function) was calculated for a number of T values. By using the optimal T value, a 
reasonable combination of α and ρ was determined in a similar way, by finding the 
combination of α and ρ that minimised the error |CBFtrue- CBFsimulated|/CBFtrue 
(averaged over all investigated CBF values and all shapes of the tissue residue 
function). CBFsimulated denotes the final estimate of CBF in the simulations. 
 
Keeping in mind that previously presented deconvolution methods (e.g., 2) have 
shown pronounced sensitivity to any time delay between arterial and tissue 
concentration curves (at short MTT), calculations of CBF were also carried out with 
tissue-curve time shifts of up to ±3 seconds. In the simulations of time-delay effects, 
the true CBF value was 60 ml/(min 100g), corresponding to MTT=4 s (i.e. the 
shortest MTT investigated in this study). 
 
Experiments 
The technique was also applied to in vivo data from six healthy volunteers, 3 males 
and 3 females, in the age range 21 – 26 years (average age 23 years). Written 
informed consent was obtained before the DSC-MRI experiment, and the study was 
approved by the local ethics committee. Each of the volunteers received 0.2 mmol/kg 
bodyweight of a gadobutrol contrast agent (Gadovist® 1.0, Schering AG, Berlin, 
Germany). The contrast agent was administered into a peripheral arm vein using a 
power injector at a rate of 5 ml/s, followed by a 40 ml saline flush with the same 
injection rate. Injection was started 18 s after the start of the perfusion imaging 
sequence. DSC-MRI was carried out using a 3 T head scanner (Siemens Magnetom 
Allegra), employing a GRE-EPI pulse sequence with echo time 21 ms, slice thickness 
5 mm, interslice gap 1.5 mm, field of view 210×210 mm2 and image matrix 128×128. 
Twenty slices with a total of 60 images per slice were recorded, with a temporal 
resolution of 1.5 s over a period of 90 seconds. Oblique transversal-to-coronal slices 
were positioned so that the second lowest slice passed through the pons/medulla 
junction and the root of the nose. 
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Acquired signal data were post-processed according to the procedures described in 
the above sections. The AIF was typically recorded from an artery in the Sylvian 
fissure region. Similarly to the simulated data, arterial and tissue data arrays were 
extended to 128 positions and concentration data were extrapolated gradually towards 
zero (16). Relative CBF maps were calculated using the proposed wavelet/FT-based 
deconvolution concept with T=0.015, α=0.1 and ρ=4.0. Ratios of CBF in grey matter 
to CBF in white matter were calculated from relative CBF values taken from regions 
of interest in thalamus grey matter (GM) and frontal white matter (WM). 
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RESULTS 
 
 
In Figure 1a, the error estimate |CBFtrue-max[[Rs(t)]T]|/CBFtrue (averaged over all 
investigated CBF values and all shapes of the tissue residue function) is given as a 
function of T. From this plot, the optimal value of T=0.015 was obtained. Figure 1b 
shows the CBF error |CBFtrue- CBFsimulated|/CBFtrue (averaged over all investigated 
CBF values and all shapes of the tissue residue function) for different combinations 
of α and ρ. From several reasonable combinations of α and ρ, all corresponding to a 
low CBF error, the combination α=0.1 and ρ=4.0 was selected for use in the 
subsequent applications of the wavelet/FT deconvolution method.  
 
Figures 2a and 2b show results from the simulation study, i.e. estimated CBF versus 
true CBF obtained at SNR=40 and SNR=100, respectively, using the wavelet/FT-
based deconvolution with T=0.015, α=0.1 and ρ=4.0. Figure 3 illustrates the ratio of 
simulated CBF to true CBF (at SNR=40) as a function of the delay time between the 
AIF and the tissue concentration curve; the true CBF value was 60 ml/(min 100g), 
corresponding to MTT=4 s. 
 
The experimentally obtained GM-to-WM CBF ratio was 2.44±0.13 (mean±SD), and 
the individual results from the six healthy volunteers are given in Table 1. Figure 4 
displays relative CBF maps corresponding to three centrally located slices, calculated 
by the wavelet/FT deconvolution technique. 
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DISCUSSION 
 
 
The discrete wavelet transform is a powerful tool for reduction of noise in time series 
data. In the present project, a relatively simple method was implemented by use of the 
Wavelet Toolkit available in IDL and incorporated into a well-established FT-based 
deconvolution strategy. Compared with conventional FT-based deconvolution of 
noisy data (2), the presently proposed algorithm appears to provide considerably 
higher accuracy at high CBF (i.e. short MTT), due to the minimal filtering required. 
Furthermore, the wavelet/FT deconvolution approach is computationally not too 
demanding and the results are insensitive to any time delays occurring between the 
site of the measured AIF and the concentration curve of the tissue of interest.  
 
The optimisations of T, α and ρ were carried out at SNR=40, but Figure 2 indicates 
that no pronounced SNR dependence of the estimated mean values is at hand when 
SNR is increased. The standard deviations of the CBF estimates were, as expected, 
reduced at SNR=100. It might be worthwhile to further optimise T, α and ρ for other 
appropriate SNR levels, but this was beyond the scope of the current phase of the 
project. The results of the present investigation indicate that the wavelet/FT 
deconvolution technique provides an acceptable accuracy over the entire range of 
CBF values. The tendency towards a slight overestimation at low CBF (longer MTT) 
and an underestimation for the exponential residue function at high CBF (short MTT) 
is typical also for the SVD techniques, as illustrated by Wu et al. (4) and Andersen et 
al.  (7). The standard deviation (SD) of the simulated wavelet/FT CBF estimates 
appeared to be slightly higher than for the standard SVD technique, as indicated by 
graphs presented by Østergaard et al. (2) and Andersen et al. (7). However, Andersen 
et al. (7) claimed that the low standard deviations often seen when standard SVD is 
employed can, to a significant extent, be the result of an inherent erroneous behaviour 
of the SVD technique. The method based on retrieving the mean value of an 
optimised joint Gaussian distribution (7) shows excellent performance, but is 
computationally demanding and very time consuming. The algorithm proposed by 
Vonken et al. (6) displays, at a given number of iterations, underestimated CBF 
values at short MTT when a time delay between the arterial input curve and the tissue 
response is introduced. This effect can, however, be minimised by employing a larger 
number of iterations. 
 
Finally, the in vivo example (Fig. 4) shows that the wavelet/FT algorithm provides 
CBF maps of high quality. The observed GM-to-WM CBF ratio of 2.44 is in 
accordance with previously presented results obtained by other medical imaging 
modalities. For example, the PET investigation by Leenders et al. (17) showed an 
average GM-to-WM ratio of 2.46. The Tc-99m-HMPAO SPECT study by Wirestam 
et al. (18) resulted in a somewhat lower ratio of 2.24, but it should be remembered 
that the subjects in the SPECT study were considerably older (average age 66 years). 
 
In conclusion, the proposed deconvolution technique is an interesting alternative to 
previously presented methods. The accuracy and precision of the wavelet/FT-based 
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CBF estimates are comparable with the state-of-the art SVD algorithms, the results 
are insensitive to any time shift of the measured AIF compared with the true AIF, the 
calculation procedure is typically faster than for likelihood-based methods, and the 
required mathematical algorithms can easily be implemented into existing perfusion 
software (e.g., 19). 
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Table 1. Ratios of CBF in thalamus grey matter to CBF in frontal white matter 

obtained in six healthy volunteers. 

 

Volunteer # CBFGM/CBFWM 
 

1 2.66 
2 2.34 
3 2.28 
4 2.51 
5 2.41 
6 2.46 

mean±SD 2.44±0.13 
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FIGURE LEGENDS 

 

Figure 1a: 

The error in the simulated, preliminary CBF estimate (see Eq. 7) as a function of the 

regularisation parameter T at SNR=40. Each data point corresponds to the mean 

value of 500 simulations. The displayed uncertainties were calculated by standard 

error-propagation theory using the observed standard deviations of the simulated 

parameter max[[Rs(t)]T] as input. 

 

Figure 1b: 

Surface plot of the error in the simulated CBF estimate for different combinations of 

α and ρ at SNR=40. Each data point corresponds to the mean value of 200 

simulations. 

 

Figure 2: 

Simulated CBF estimates versus true CBF for three different shapes of the tissue 

residue function (exponential, triangular and box-shaped). The simulated CBF values 

were obtained by the wavelet/FT deconvolution technique assuming a baseline tissue 

signal-to-noise ratio of (a) 40 and (b) 100. For each data point, the simulations were 

repeated 1000 times and the error bars correspond to ±1 SD. 

 

Figure 3: 
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The ratio of simulated CBF to true CBF as a function of the time shift between the 

AIF curve and the tissue concentration curve. The simulation was carried out with 

true CBF=60 ml/(min 100g), CBV=4.0 ml/100g, MTT=4.0 s and SNR=40. Negative 

time shifts correspond to cases when the tissue concentration curve preceded the AIF. 

For each data point, the simulations were repeated 1000 times. 

 

 

Figure 4: 

Relative CBF maps from a healthy volunteer, calculated using the proposed 

wavelet/FT deconvolution algorithm. 
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Figure 1a 
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Figure 1b 
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Figure 2a 
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Figure 2b 
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Figure 3 
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Figure 4 

 

 


