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Dual Control

The PI-regulator has been used to control industrial Processes
for much more than 100 years. Two reasons for its extensive

use are its simplicity and its good performance in many situ-
ations. With this regulator there is no control error if the
closed-loop system is stable. The requlator parameters are
fairly easy to tune, and, in principle, very little knowledge
of the controlled process is required for the tuning. These
properties have resulted in the wide-spread use of the PI-regu-

lator in industry.

There are, however, processes that need a more complex regula-
tor. Some disturbances cannot be suppressed sufficiently well
by a PI-regulator. The process characteristics may vary so
much with time that no constant PI-regulator could control the
system satisfactorily. The arrival of digital computers has
now made it possible to implement control laws that require a
substantial amount of computing for each new control action.
Control algorithms that were previously too complex can now be
implemented. Buth, with increasing regulator complexity, the
number of regulator parameters to be chosen has also increased.
It may then be difficult to find the best combination of para-
meter values. This tuning problem is one reason why the more

complex regulators have not been used in practice.

To overcome the tuning problem the so called self-tuning regqu-
lator was derived some years ago; see Kalman (1958), Wieslander
and Wittenmark (1971), Peterka (1970) or Astrdm and Wittenmark
(1973) . The basic idea is to estimate first the process dynamics
on-line using a real-time identification algorithm, and then
calculate the regulator parameters as if the true system were
perfectly described by the estimated system model. This is an
adaptive regulator, since it can change its parameters to

follow changes in process dynamics. The self-tuning regulator
has been tested on several industrial processes and has been

found to be a valuable complement to conventional PI-controllers;



see Astroém, Borisson, Ljung, Wittenmark (1977).

The self-tuning regulator was primarily designed to handle
systems with constant but unknown parameters. Practical
applications of the self-tuning regulator and simulated
examples have indicated that it can also manage to control
slowly time-varying processes. But, with larger or more rapid
parameter variations in the system, it is expected that more
complicated reqgulators will be required. Such problems are
discussed in this thesis.

Parameter variations may be modelled by assuming that the
system parameters are stochastic processes. Stochastic optimal
control theory can then be applied to derive an optimal
control law. In general however, the calculations become

quite involved, and only for very simple cases will this pro-
cedure yield a practical regulator. But Feldbaum (1960) noted
that the optimal control law has a particular structure. The
input has two different tasks. It must, of course, govern the
system as usual. But it must, at the same time, make the para-
meter estimation as accurate as possible in order to improve
future control of the System. These tasks are often conflicting,

The regulator must compromise between good control and good
identification. Such regulators are called dual. This thesis
treats various aspects of dual control, and consists of this
summary and the following papers:

I. A Simple Dual Control Problem with an Analytical
Solution. IEEE Trans Automatic Control AC-21 (1976)
840-844.

IT. On Consistency for the Method of Least Squares Using
Martingale Theory. Submitted to IEEE Trans Automatic
Control (1977).

III. Regulators for Time-varying Stochastic Systems.




There are very few cases for which the optimal dual control

law has actually been calculated. In order to gain more

insight into the nature of dual control it is desirable to

have examples where the optimal control can be computed analy-
tically. Part I of this thesis contains one such example. It

is a discrete-state Markov chain. The transition probabilities
are determined by the inputs in a particular way. It is then
not only possible to calculate the optimal control law, but
also to compare the performance of several suggested suboptimal

schemes for dual control.

In a dual control problem unknown system parameters must be
estimated. It is then important to know the behaviour of the
estimation algorithm. It seems reasonable to demand that for
constant system parameters the estimates should converge to

the true values. This is called consistency.

Part II of the thesis considers consistency for the method of
least squares. A modification of this identification scheme
is employed in part III, where the processes, however, have

time~varying parameters.

A Bayesian point of view is adopted in discussing consistency.
Compared with previous results, the underlying assumptions about
the distribution of the random variables involved are more
restrictive. On the other hand, the assumptions concerning
feedback and system stability are less restrictive. The least
squares method is a basic estimation algorithm and it is there-
fore important to understand all aspects of it. The results of
part II clearly show the relation between least squares

estimates and martingales.

In most cases the optimal dual control problem can not be

solved. It is therefore interesting to study the effects of
making different approximations. This is done in part III of
this thesis. A number of suggested algorithms are discussed,

and a new, suboptimal, dual control law is derived. Some
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algorithms require a large amount of computing effor. So far,
this has been considered a serious drawback. With modern
computer technology, however, prices are rapidly decreasing,
and it is now possible to have small, low cost computers,
dedicated to certain control tasks. Potential regulators need
no longer be disqualified because they require lengthy calcu-
lations or large memory space. It is, however, still important
to find out for what kind of systems more complicated algo-
rithms will be advantageous, and when simpler regulators will
suffice. This point is examined, by means of simulations, in
part III, where also different suboptimal regulators are

compared.

As in the simple PI-regulator, all the adaptive regulators
employ feedback from the output; the only difference is that,
in adaptive regulators, the computations required to deduce

the control action from the output are more complex. Feedback
is thus a very general and useful concept in automatic control,

even for complicated time-varying stochastic systems.

Simulation is a valuable tool to get a feeling for the proper-
ties of suboptimal control laws. But a thourough analysis and
a true understanding of dual control is still missing. New
formulations of the problem must probably be sought in order
to arrive at complete solutions. This is an interesting area

for future research in dual control.
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Part 1

A Simple Dual Control Problem with an
Analytical Solution

JAN STERNBY

Abstract—A stochastic control problem for which the optimal dual
control law can be calculated analytically is given. The system is a four
state Markov chain with transition probabilities that depend on the control
variable. The performance of the optimal dual control law and of some
suboptimal control laws are calculated and compared.

I. INTRODUCTION

It is, in general, very difficult to solve control problems leading to dual
control laws in the sense of Feldbaum [5). A few examples of this type
have been solved numerically by extensive computer calculations; see,
e.g., [3], [6], [8], [9], and [15]. The motivation for solving these necessarily
rather simple problems has been to obtain some insight into how dual
control laws actually work and thus to understand how to make good
suboptimal dual controllers for more difficult problems.

But numerical solutions do not, however, give as much and as detailed
information as analytical solutions. For one thing, with just a numerical
solution it is not known what happens between data points. For this
reason an example is given in this short paper which is completely
solvable over any time interval. With the analytical solution given, one
can study in detail how the dual controller works, An analytical com-
parison is also made between the performance of different control
strategies. However, this is a very special problem, and consequently
nothing can be said in general about other and more realistic problems.

The example is based on governed Markov chains as in [14], but may
also be looked upon as a simplification of the example in [8]. In Section
I1, two problems are formulated corresponding to open- and closed-loop
control, Functional equations for the two cases are set up in Section III
and their solutions appear in Section IV, Some different control laws are
considered, including an open-loop feedback control, see, e.g., [1], [4],
[10], and [13]. The performance of these controls is analyzed in Section
V. The last section is a discussion of the results.

Manuscript received March 1, 1976; revised August 5, 1976, Paper recommended by Y.
Bar-Shalom, Chairman of the IEEE S-CS Stochastic Control Committee. This work was
supported in part by the Swedish Board for Technical Development under Contract
74-3476.

The author is with the Department of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden.
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The calculations needed are easy but tedious, and are therefore
omitted. They are, however, stated in [11].!

II. Two PROBLEMS

Consider a Markov chain with four states called x; to x,. The
transition probabilities depend on a control variable u O<uxgl), and
are shown in Table I. The functions p, are given in Fig. 1.

For every u

Pr¥Py+ps=pytpy+ps=1.

The p; s are chosen piecewisely linear in # to make the calculations
simple and, for the same reason, some of the transition probabilities are
identical and others are zero. The desire to achieve a dual effect in the
resulting regulator also restricts the possible choices of DS,

Introduce the loss function # which assigns a loss to the states in the
following way:

h(x)=h(x)=1, h(x)=h(x,)=0.

The loss function thus puts the states together into two groups: x, and x,
in one and x, and x; in another. For obvious reasons these groups will
_ be called the one-states and the zero-states, respectively.

Let us first consider the open-loop problem. No measurements are
made and thus the only available information about the state is its initial
probability distribution which is known in advance. The value of the
state at time ¢ is denoted by x’.

Problem 1 (open loop): Determine at 1= o a sequence v of values for
the control variable to minimize the criterion

- g+ n
W,=E 3 h(x")

r=1f5+1

where n is chosen in advance.

The second problem is the corresponding closed-loop situation. At
every time ¢, 5+ 1 <1 < f5+ n, the value of the loss function is measured.
This means that it is possible to separate a zero-state from a one-state
but impossible to separate the two states within the group.

Admissible control laws at time ¢ may use all information available at
that time, which is now the initial probability distribution for the state
and the outcome of all measurements up to and including that at time ¢.
Due to the Markov property this information is contained in the condi-
tional probability distribution for x*,

Now consider Problem 2.

Problem 2 (closed loop): Find a sequence v of admissible control laws
to minimize the criterion

g+ n

W,=E > h(x")

t=15+1

where n is chosen in advance. This is the problem which leads to a dual
control law,

III.  DERIvATION OF FUNCTIONAL EQUATIONS

Using dynamic programming, functional equations for the minimal
loss in the two cases are easily established. The system is completely
time-invariant, so that the functional equations can be set up in such a
way that the minimization involved is a minimization with respect to the
initial control variable at 1=,

Since all the transition probabilities from states x,; and X, are equal
the future development of the process will be the same if the current
state is x, or x,. The same property is also true for states X3 and x4
Therefore, introduce

g = the probability for the initial state to be x, or x;.

'This report is available on request from the Department of Automatic Control, Lund
Institute of Technology, P.O. Box 725, $-220 07 Lund 7, Sweden.

Copyright © 1976 by the Institute of Electrical and Electronics Engineers, Inc.

Printed in U.S.A. Annals No. ¢12AC005
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TABLEI
THE TRANSITION PROBABILITIES

current < % x
next state 1 2 3 X4
state

Xy py () pq () p, (w) py(w)
%, p3(w | pylw) | 0 0

X4 0 0 Pgq (1) Py (W)
Xy pg (U pg (W) pg (W) pg (u)

A
rT———— b
|
|
|
1 -3l
|
0
0 4— >
] 05 1 u u
R
L 1
|
15 sl
|
|
05 '
0 05 1 u u
Fig. 1. The transition probabilities as functions of u. Each line is marked by its slope.

Then the corresponding probability for x, or x, will be 1 — g. Also define
P%q,u) and P(q,u) as

PY%q,u)=the probability for x’*! to be a zero-state if the control
variable at 1=ty was u.
P1(q,u)=the corresponding probability for a one-state.

Table I then gives

P (gu)=qps(u)+ (1~ q)-ps(u) (1
PUgw=glp, () +ps]+ (U~ [py(w)+ps(w)]. (@)

The Open-Loop Case
In this case g(g,u) is introduced as

§(g,u)=the probability for xo*! (the state at time f=1ry+1) to be x,
Or x,, if the control variable at ¢ = 1 is u.

Then from Table I

7(g,0)=qlp, () +p5 ()] + (1= g)p, (w). A3)
Put
F, = min W,

where 7 is the number of steps considered. F‘,, will be a function of ¢ and
for n>2

F,(¢)=min { P'(4,00) + F,-1[3(9.50) ]} @
with
F,(g)=minP' (g,5,). )

Looking just one step ahead the probability for the next state to be a
one-state is minimized in (5) (and in (8) below).

(841)

The Closed-Loop Case
For this case set

¢%g, u)=the probability for x’*! (the state at time /=1r5+1) to be x,
given that it is a zero-state.
g'(g,u)= the probability for x**! to be x|, given that it is a one-state.

By the multiplication rule of probabilities this means that

qp3(u)

o gp () + (1= g)py ()
q°(q.u)= m =

i
and ¢'(qu)= oY) - (6)

As in the previous section put (without overbars)
F, = muin W,
and obtain for n>2
F,(q)=min {P' (4,00 +F,_, [4'(g,09))- P (g,05)
0
+F,_1[g%q,00] PO (g0)) (D

with
Fi(9= n})inP' (g,v9). (8)

The expression to be minimized in (7) will be denoted by J,(g,vy). In
it the first term is the immediate loss, while the last two terms add up to
the expected loss for the next n—1 steps knowing that measurements are
going to be made. ’

IV. SoLuTioNs To THE TWO PROBLEMS

By repeated use of (4) or (7) for increasing values of n, it is now
possible to calculate fn(q) or F,(q) for any n. In [11] it is shown that the
expression to be minimized is always a piecewisely concave function. As
an example of this, J (g,vy) is shown in Fig. 2 for =04, 0.5, 0.7, 0.8,
and 0.9. : e

For every value of n, J,(q,v,) is of the same type as J (q,vy). The
only possible minimizing values of the control variable are vy=0, 0.2,
0.8, and 1, independently of n and ¢g. The minimization is then done by a
direct comparison of the four corresponding losses.

It should be emphasized that for most choices of piecewisely linear
transition probabilities the number of values for the control variable that
has to be checked will not be four, or even constant, but will increase
with n. For such a case it would then not be possible to get an analytical
solution valid for all n. Using (2), (5) and (8) give

- _[09q, g<l1/2 .
F@=r@={oon_ o 1510
and
()= @)={ o5 1513 (eithertorg=1/2)

Since a complete knowledge about the state means ¢=0,0r g=1.it is
clear that the best one-step regulator chooses v, asif the: most probable
state was the true one. :

The Open-Loop Case

Starting with the f,(q) above, it is shown by induction in [11] that

F,(9)=min[ Kig, K (1-9) ]

with
0.8, if I?{’-q<1?5’ (1—-¢g)  (smallg’s)
DgP'=40.80r0.2, if 1?1"-q= 1?5' (1-¢) (medivm q’s)
0.2, if K> K5 (1—¢q) (big ¢’s)




Fig. 2. The expected loss for infinitely many steps as a function of vy plotted for some
values of ¢g. The rings mark out the global minimum for each q.

where
KP=3(1-07")>3 and KJ=15(1-04")-15.

The limiting optimal control for n—o0 is then

sopt { 08, g<1/3

S 02 g>1/3. (either for g=1/3)

This control scheme can be used either in an open-loop mode (if no
measurements are made) or as the suboptimal closed-loop control law
called “open-loop feedback optimal control.” In Section V analytical
expressions for the performance of these two and some other controls
are given. Note that all control laws in this short paper will be discon-
tinuous as functions of ¢. In the following they will be chosen to be
right-continuous.

The Closed-Loop Case

In [11] it is shown by induction that for n>2
F,(g)=min[K"g,1-09¢,K" (1~ ¢)]

with
08, ifF,(9=K"q (small ¢’s)
ofPt=< 1, if F,(g)=1-09¢
02, ifF,()=K"(1—¢q)

(medium g’s)
(big g’s)

where K"=1.4(1-0.1"")>14 n—oo. .

For g-values close to 1/2, vy=1 is chosen. This v;-value will never be
used by the one-step regulator (or if the state is completely known), and
so the n-step regulator is essentially different for n > 2.

The value vy=1 gives an identification step since ¢°(1)=1 and ¢'(1)=
0, i.e., the exact state becomes known. Then the future loss will be zero.

Thus, the n-step regulator for n > 2 works as follows: For g:s close to
zero or one, i.e., good knowledge about the current state, v, will be
chosen as by the one-step regulator, whereas for g:s close to 1/2, ie,
poor knowledge about the current state, an ider}tification step will be
taken, )

The function F, is shown in Fig. 3 for some values of n. Note that for
all n>2 the loss is 1—~0.9¢ for ¢ close to 1/2. This is the expected loss
when taking an identification step.

The number of identification steps will be either one or zero. It will be
zero if the true initial state is probable enough. Then all the time control
actions will be taken as if the most probable state was the true one, and
the probability for this state will increase. ’

The identification step, if there is one, does not have to be the first
step. If the true initial state has a very small probability, an “incorrect”
control action is taken, but no identification is made until the mistake is
discovered. This will happen when transition into a one-state occurs.

15

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DECEMBER 1976
Fn 4
1-09q

7/
- m(q) /
05 7

Fz (q) 7,
T X
/// 1(Q) N
I N
1/ \
0+ +—+—rt +—t { -
0 05 1 q

Fig. 3. Graphs of the function F, for some values of n.

V. COMPARISON OF DIFFERENT STRATEGIES

In this section the expected n-step loss is listed for six different control
strategies. The loss will be denoted by Fi(q), j=a, b, ¢, d, e, or f
according to

F9— open-loop control (no measurements);

Fb— open-loop feedback optimal control (OLFO);

F¢— one-step regulator;

F4— two-step regulator;

Fe— approximate multistep regulator;

Ff— optimal dual regulator.

In order to include certainty-equivalent control in the above list a state
estimate is needed. A natural choice is to take the most probable state as
the estimate. Table I and Fig. 1 then give the certainty-equivalent control
and it turns out that it is identical to the one-step regulator.

The approximate multistep regulator is calculated in the following
way. When (7) is minimized to give v, the optimal open-loop loss for an
infinite number of steps, F, is used instead of the corresponding
closed-loop loss. This corresponds closely to what is done for more
general systems in [12]. The approximate multistep regulator and the
OLFO control both use the optimal open-loop loss. However, the OLFO
control is computed as if no further measurements are made, but when
computing the approximate multistep regulator it is assumed that a final
measurement will be made at the next step. Another method using an
approximate future loss in the minimization is the one given in [7]
leading to “neutral” control.

To calculate the F/: s an equation similar to (4) (case a) or (7) is used,
where the minimization with respect to v, is removed. Instead the
vy-value inserted should be some function of ¢, depending on which
regulator is used.

In this section v, will denote the control used at time r=r,+k, a
function of g, the a posteriori probability for the state at time r=14+k
to be x, or x,. The ¢ previously used is thus equivalent to g,.

5.1. Open-Loop Control

The control law is

(08, g.<1/3
%=102, ¢.>1/3.

No measurements are made, and ¢, can be computed from a formula
similar to (3)

Ae+1= qk[Pl (v0) +P3(0k)] +(1=q) pa(vy):

Thus, all g, :5s and v, :s can be computed in advance.
Now from [11]

F“={3(1—0'7 )90 as n—>e0.

< 1/3__) g9
"1 1.5(1—-047)(1— gp),

2> 1/3 | 1.5(1—gq)

Note that F% = F_ of Section IV.
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5.2. Open-Loop Feedback Control

Again the control law is
4 < 1 / 3

0.8,
v, =
102, g»1/3
but now the measurements are used to update g,. Depending on the
measurements, an equanon similar to one of those in (6) will be used

where.g%q,u) and g'(q,u) are replaced by g, ,, # by v, and ¢ by G-
Then from [11]}

Fb=
Go > 1/3.

n

1.5(1-0.4")q,,
1.5(1=0.47)(1—gqq),

5.3 One-Step Regulator (Certainty-Equivalent Control)

(08,
%=1 02,

where g, is calculated as in 5.2. From [11]

Now

qk<l/2
qk>1/2

. 1.5(1—0.4")q,, qo<1/2
" 1.5(1—-04"X(1—gq,), gqo»1/2.
5.4. Two-Step Regulator
The control law is
08 0<g,<25/54 (~0< g, <0.46)
0,=41, 25/54<¢,<39/54 (~046<¢,<0.72)

02, 39/54<g. <1 (~0.72< g, < 1)

and ¢, is again computed as in 5.2. From [11]

(1.4=5-0.1")g,,
Fé={1-09,
(14=5-0.1)(1~ gp),

0< gg<25/54
25/54 < g9 <39/54
39/54< gp< 1.

5.5. Approximate Multistep Regulator

To obtain the control law minimize
J* g, 0)= P! (qka vk,) + F_w [q' (qk, Uk)]'Pl (qk,vk)
+F, [4°(q 001 PO (4 00)
with respect to v,. This gives

08, 0<g,<120/306 (~0< g, <0.39)
1, 120/306< g, <255/306 (~039< g, <0.83)
02, 255/306<g, <1 (~083< g, < 1).

U=

As previously, g, should be computed as in 5.2. From [11]

(1.4~5-0.1") g, 0<¢<120/306
Fe=<1-09¢,, 120/306 < g, <255/306
(14=5-0.1")(1—qg), 255/306< go< 1.
5.6. Optimal Dual Regulator
This regulator is
08, 0<g,<50/115 (~0< ¢, <0.43)

oe=41, 50/115< g, <92/115 (~0.43< g, <0.80)
02, 92/115< g <1 (~080< g < 1)

(843 )
Foy
1..
- a
{ b
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s P a,b,c
08 ]
1 Fop
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i det | ) o
|1 L0
+ [0 (N
i I
0 ——t H/“{ N p
0 1zo/§g_5_ g_fz_?ss 1 q,
306 115 54 54 115 306

Fig. 4. The expected losses for infinitely many steps, Fi,, as a function of the probabil-
ity for the initial state to be x; or x, when ‘using different control strategies. a)
open-loop control; b) open-loop feedback optimal control; ¢) one-step regulator; d)
two-step regulator; ¢) approximate multistep régulator; f) optimal dual regulator, The
bottom curve is ), from which d) and e) differ only by the two dashed and black areas,
respectively.

with g, as in 5.2-5.5, [11] gives

(1.4-5-0.1")¢,,
1-0.94,,
(1.4=5-0.17)(1~ g),

0< ¢p<50/115
50/115< gg<92/115
92/115< go< 1.

Fl=

n

In Fig. 4 the expected losses for infinitely many steps when using these
six regulators are compared. Note that most of the dual effect is present
for the two suboptimal dual controllers. The difference between the three
can be explained as follows.

The two-step regulator is designed to be used for only two steps, and
the need for identification is therefore less than with the optimal dual
controller. This means that g, must be closer to 1/2 before an identifica-
tion step is taken,

The approximate multistep regulator, however, must try to find a good
estimate of the state immediately, since it is designed as if no measure-
ments are made after the first one, )

Fig. 4 classifies the six regulators into three groups: The first group is
just the open-loop control, which, of course, gives the biggest loss. The
second group consists of the operi-loop feedback control and the one-
step regulator. For these two the slope of F/ is = 1.5 depending on the
go- These strategies do not use any identification steps and so this type of
regulator is called passively adaptive by Bar-Shalom and Tse [2]. Note
that the one-step regulator is better than open-loop feedback control for
this example. The third group consists of the two-step regulator, the
approximate multistep regulator and the optimal dual control. Here the
slope of FZ, is * 1.4 for small and big g4's, but the loss is decreased by
taking an identification step when g, is close to 1/2. These controls are
called actively adaptive in the terms of [2].

VI. CONCLUDING REMARKS

The most interesting feature of the given example is that the problem
is solvable analytically. This means that it has been possible to examine
in detail how different strategies work.

It turns out that in this case the best one-step regulator is equivalent to
certainty equivalence control. The best two-step regulator, however, is
essentially different in that it gives the possibility for making identifica-
tion steps. Having this feature built in it performs nearly as good as the
optimal dual regulator. The same thing is also true for the approximate
multistep regulator.

An interesting detail is that for this example the one-step regulator
performs better than open-loop feedback control, but, of course, the
problem is a very special one, and again nothing can be said in general.
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Nevertheless, as the analytical expressions are given it is also possible
to see how the dual control law is made up. The expected loss for the
next n steps may have three local minima as a function of the control
variable. Two of these correspond to control actions taken when knowl-
edge about the state is good, while the third one: corresponds to a control
giving an identification step. For the one-step regulator and the open-
loop feedback control this last minimum is never the lowest one, and so
this value for the control variable is never used. Multiple minima in the
expected loss as a function of the control variable are also reported in [3]
for a different example.

Since the two-step regulator and the approximate multistep regulator
both give nearly minimal loss, it seems as if a good way to derive
suboptimal dual regulators is to include some approximation of the
future loss when taking expectation and minimizing in order to find the
current value of the control variable. However, the example in this paper
is a special one and for a more general case it can only be said that it
may be interesting to examine the effect of such approximations.
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Part II- On Consistency for the
Method of Lleast Squares
Using Martingale Theory

ABSTRACT

Least Squares Identification is considered from the Bayesian
point of view. A necessary and sufficient condition for
consistency almost everywhere is given under the assumption

that the data are generated by a regression model with white

and Gaussian noise.
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1. INTRODUCTION

The method of Least Squares (LS) has been treated by many
authors, starting with Gauss. Mann and Wald (1943) were the
first ones to apply it to time=series modelling, and also
to prove its consistency for this case. Astrdm (1968) exten-
ded the consistency result to systems with an input, and
Ljung (1976) has shown convergence and consistency under ve-
ry mild conditions that e.g. include general feedback situa-

tions.

By using a Bayesian approach to the identification procedure
it is possible to show convergence of the LS estimate just
by combining a couple of known theorems. In the present pa-
per the true system parameters are thus regarded as random
variebles and not constants, which is usually the case. The
same approach has been used previously by Astrdm and Witten-
mark (1971).

The main result is a necessary and sufficient condition for

consistency a.e. for the LS method in the Gaussian white noise

case under a weak condition. This is proved in a series of
theorems, where the basic idea is that the LS estimate is a
conditional mean, and therefore converges a.e. according to

martingale theory.
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2, THE LEAST SQUARES IDENTIFICATION METHOD, NOTATIONS

Let a system with p outputs y(-) and r inputs u(-) for every

integer t be governed by the vector difference equation
y(t) + Aly(tml) +toee. + Any(tmn) =
= Blu(tml) + ... + Bmu(t“m) + v{(t) (1)

where v(t) is some (vector) disturbance. Introduce

@(t)T = [*y(t“l)T cas my(tnn)T u(twl)T oo u(tam)T]
and
ot = [Ay o0 B By .. B, ]

To get a formal similarity with the filtering problem it is
convenient to represent the unknown parameters as a vector.
Therefore, introduce
x = col 8
which is obtained by writing the columns of € under each
other. This is, of course, not crucial, but it simplifies
comparison with the well-known Kalman filter.
Then with
o)t = " (p rows)
’ T
0 @ (t)

(1) can be written

y(t) = @(t)Tx + v(t) (2)




23

With the ordinary non-Bayesian approach a weighted LS estimate

of x at time t, Cpr ig obtained by minimizing with respect to g
t
1 - T 2
v (g) = —=— ] |ly(s) -e=)" - ¢l (3)
t - t, s=t.+1

(where W is a posgitive definite weighting matrix).

Notice that for every diagonal W the estimates will be the same

as 1if W is the identity matrix.

In this paper, however, the parameter vector x is considered
as a random vector with known a pailonl mean and covariance.
The LS estimate gt of x is defined to minimize

E(x—E) (x-E) 7T (3a)

with respect to &, and is allowed to be a function of the
a pilord information and all measurements up to and including

time t.

Now let all random variables be defined on a sample space Q.
In treating consistency, the true system parameters are usual~-
ly considered as constant:butunknown. Theneach point w in the
- sample space gives a certain realization of the noise sequence
{v(t)} (and of the input sequence {u(t)} in case of random in-
put), whereas the true system parameters are the same for eve-
ry w. The concept "almost everywhere", a.e., then means "for
almost every realization” for the particular system given.
Ljung (1976) has given very general conditions for the LS es=

timates to be consistent a.e. in the above meaning.

With the true system parameters considered as random variables,
the choice of system is regarded as part of the experiment, and
each realization starts by picking a system. Then if the dist-
ribution function of the parameters is continuous the probabi-
lity will be zero to have the same true system in two different

experiments. Each point w in the sample space will thus give
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1) the true system parameters and 2) a noise sequence. The
sample space may be regarded as a product space, so that

w = (ml wz), where ®. determines the true system and w

1
determines the noise seguence.

2

With this point of view, the concept a.e. means "for almost
every realization for almost every system". This must be re-
membered when comparing the results of this paper with other
results. In particular nothing can be said about a certain
given system when the probability for the system parameters

to take any special values 1s zero.,
The following additional notations will be used:

Ft = the o-~algebra generated by all measurements of y and u

up to and including time t.

F = the smallest g-algebra containing Ft for every t
X, = E(x Ft) - the conditional expectation of x given Ft
_ 2 oo\ T _ C o ! .
Pt = E((x XQ(X xt) lFt) the conditional covariance of x
given Ft
i@t » R - the indicator function for the set B (lB(w) = 1
if w € B otherwise lj(0) = 0)

P(B]Ft) = the conditional probability for B given Ft
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5. GENERAL RESULTS

It is well-known (see e.g. Kalman (1960) or Jazwinski (1970))
that under very general circumstances the LS—estimate mini-
mizing (3a) is the conditional mean. This fact makes the fol-

lowing theorem interesting.

Theorem l: Suppose that the distribution of the true parame-

ters x has finite second moments. Then X, and P, converge

t

A~

a.e. The limits are denoted by x, and P_.

Proof: According to Theorem 9.4.5 in Chung (1968) the condi-
tional mean of an integrable variable is a martingale that
converges a.e¢. Now x has finite second moments and each com-
ponent of the vector it is a conditional mean. Moreover,

(P)yy = E((xth)i~<xth>j|Ft) = E(XinIFt) -t ()

~

where the first term is a conditional mean and the second

one has already been shown to converge. o

In fact, Chung (1968) also shows that the limit &m = E(x]ﬁn)

a.e. In the next theorem this limit is examined.

Theorem 2: With the assumptions of Theorem 1, if M is the

set {CDIPOo = 0} then lMiXW = 1l,°x g.ea
If PM) = 1 then also X, ¥ in L.

Proof: It is sufficient to consider the scalar case, since
Pt - 0 implies that all its diagonal elements tend to zero.
Since M € Fw, E(lMIFt) - lM a.e, according to Lévy's zero-
or-one law, Chung (1968) p. 313. Then

2
E(lM‘Ft) 'Pt =+ 0 a.e.
But

2 2. 2 S 2
0 s EQ|FOpy = EQuIFO % EGCIF) - QIR0 2k,
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Now both terms of the right member are uniformly integrable
since they are less than E(xZIFt) (a.e.), which is a condi-
tional mean and thus uniformly integrable by martingale theo-
ry [Chung (1268), Theorem 9.4.3]. Also both terms converge
a.e. and so they must converge in Ll [Chung (1968), Theorem
4.5.4]1, Then the left member converges in Ll and a.e., and

the limits must be equal, i.e. zero. This means that

2 " 2 22 2,
E{E(lM}Ft) P E((x %) IFt)} = E{E[E(lM[Ft) (x, %) ;Ft)} =

- 2
= E(E(L[F) (x.-x))7 > 0

s0 that

- e (v 2
E(L, | F) (x,=x) = 0 in L
and the last part of the theorem is proven. But Lé&vy's zero-

or-one law and Theorem 1 together imply that

~

E(L,|FL) e (x =x)

. . . . . 2
converges a.e. The limit must be zero because it is in L°.

Then also

1 - (x

M =x) = 0 a.e,

t

which proves the theorem. O

Remark: From the proof it is evident that the theorem can be

applied component-wise,

These two theorems might also be used in connection with other
identification schemes than the LS-method. Then it must be
shown that the difference between the estimate and the condi-
tional mean tends to zero. The conditional mean is unfortunate-
ly difficult to calculate in general. For the Gaussian case,
however, it is equal to the linear LS-estimate, which is given

by the Kalman filter equations.
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4, MAIN RESULTS. THE GAUSSIAN CASE

The following theorem, given in Astrdm, Wittenmark (1971),
couples the Kalman filter equations to the conditional mean.
The LS-estimate %t isAthen given recursively by the same
equations since Ep = Fpo
Theorem 3 (Astrdm, Wittenmark): Suppose that the true para=-
meter vector x is Gaussian with a prload mean m and a palord
covariance PO’ {v(t)} is a sequence of independent, equally
distributed normal vectors with zero mean value and positive
definite covariance R, and x and v(t) are independent for all
t. Let the output vector of the system be generated by (1l).
Then Fhe conditional distribution of x given Ft is normal with
mean X, and covariance Pt’ where x, and P, satisfy the diffe-

t t
rence eqguations

Xe = Xeop PR [y(t) =@ (e) Tx ] (4)
P, =P . =P ot [R+ o) p, o] o (5)
t t-1 t-1" £=1% . -1
where
K(t) = P, .0(t) [R + o) e, .a(t) ]F = P, a(t)R™T (6)
t=1 y t-1" £
and the initial conditions are %tO = m, PtO = Py

Proof: For the single-input single-output case the proof is
indicated in Astrdm, Wittenmark (1971). The extension to the
multivariable case is straightforward. The last equality in

(6) is proved by multiplying (5) with @.»(t)Rml from the right

to get
pt@(t)R“l = Ptml®(t){R + @(t)TPtml@(t)}%le
(fr+ o™ @R - e, o)r) =
= K(t) - T
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Corollary 1: Under the assumptions of the theorem it follows

from Theorem 2 that the estimate Et = x is consistent a.e.

t

and in LZ provided Pt - 0 a.e.

Note that for Theorem 3 to hold it is necessary to use the
correct initial conditions. Equation (4), however, gives a

parameter estimate also for other initial values.

Corollary 2: If the parameter estimates are not used in the

control law and Pt = 0, then the estimate given recursively

by (4) = (6) is consistent a.e. for any initial values éto

and Pry > 0.

Proof: Using the well-known matrix identity

1 =1 1 -1

(A+BCD) ~ = A © = A “B(C “lpat

+pa"1B)
(5) can be written
prt = plt 4 em)rR e )T (7)

Rewrite (4) and use (7) to get

~ wl,.

x, = (I - PO(OR "0(t)7) x 1

+ P O(E)R Ty (t) =

€

1 B, -1

X, = PtPtoxtO + Py mj (k)R “y(k) (8)
k—LO+1

Now suppose that S_ satisfies (5) with s;é = A + P:é, Then (7)

shows that Szl = A + P;l for all ¢ > tD’

rix identity with B = A and C = D = I gives

so that the above mat-

171 (9)

Sp = Py -~ PA{I +P.A ¢

t t t
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Since the estimates are not supposed to influence the system,
® and y will be the same for any initial %tO and Ptoo

Now replace Pt in (8) by S, and then insert (9). Suppose Pte 0.

The first term of (8)'twill then tend to zero. Because
of (9) the second term will be split up into two, of which
the last one tends to zero. The remaining term is equal to
the second term of (8), and thus converges to %n for any ini-

tial wvalues. n]

The initial values may, however, be inportant for other rea-
sons than consistency. Some problems in connection with the
initialization of equations (4) - (6) have been studied by

e.g. Hagander (1973) and Lainiotis (1976).

Remark: It is Wellmkn?wn (see e.g. Astrdm (1968)) that the
welghted LS-estimate e is also given by eguations (4) = (6)
if the weighting matrix W = Rwl. The initial condition then
is PZ% = 0. Using Corollary 2 when P, has become invertible
a consistency result is obtained also for this case.

Moreover, if R is diagonal then Ty is also the ordinary LS-
estimate, i.e. it minimizes Vt(°) for W = I. Since R must be
known it can also be made diagonal by a transformation of va-

riables, and so it is no restriction to assume R diagonal.

Corollary 3: Under the assumptions of the theorem

0
i

) K(s)K(s)" <  a.e.
S=t0+l

which gives a lower bound to the convergence rate of K(t).

Proof: By Theorem 1 P, converges a.e. and (5) and (6) give

t

t
P, = P, = ) K(s)[R + @(s)TPS@(s)]K(s)T
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The sum is thus convergent. But R positive definite implies

R + @(s)T PS ®(s) » €¢I £for some ¢ > 0.

Now a condition is needed to guarantee that P 0. This is

-
t
given in the next theorem.

Theorem 4: With notations and assumptions as in Theorem 3 and

Pt0>0

{o| P, >0} =

= {Q)I ) [aTMD(S)]Z divergent for every constant column vector a*O}
s=t,+1
0

To prove this the following lemma is needed.

Lemma: Let {Pt} be a sequence of positive definite matrices
such that P, » P, and Pt - P_ positive semidefinite for all t.
Then

Tm
P =0®a Ptla -+ L0 for every constant column vector a#0.

Procf: The proof is given in Appendix.

Proof of Theorem 4: Theorem 1 gives Pt - P a.e. for some

P, 2 0. The formula in Theorem 3 for computing P shows

t+1l
that P < 0 and so P_ = P_ > 0 for all t. Then the
lemma gives

- P
t+1 t - t

Pt - 0= 5¢le A - wt o for every constant vector 3+ 0

Summing up (7) gives
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Now use that R is positive definite so that Bleléle<82aI

for some £y > 0 and €, and get

UN == == ) 't Nr—‘ = ~
Tt hi= 7 TReer o™ <
t 0 : =
g=t,+1
0
P (s) 0 ip(s)T 0 a ]
t . . 1
~T ~ . . .
< ) areesa | . £,T- P o=
T og=t +1 1 P 2 Ty~
0 0 0 (s) 0 ¥ (s) a
P
P t o "
=€y ) (al.np(S)w(s)Ta-)
j=1 s=tg+l I J
In the same way
oT, =1 =1 £~ T
a (P 7 =PyT)a 2 &y I (aie(s)w(s) a.)
=1 s=t.+1
Thus
a Pt a » » for every constant a # 0
>
t T 2
) [a"w(s)]® divergent for every constant a #% 0
S=to+l

This completes the proof. o

Theorem 4 shows that in the Gaussian case (with v(-) being
white noise] the only condition needed for consistency a.e.
is that

o]

I [atecs) 1P

s=t0+l
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be divergent a.e. for every constant vector a % 0. This con-

dition will be referred to as CC (Consistency Condition).

Now for simplicity consider single-input single~output sys-
tems. Then in the open-loop case CC is a condition on the in-
put only, provided the input and the noise are independent.
This is realized as follows. For CC not to be fulfilled aTm(t)
must tend to zero as t - «©. But if any of the a-components
corresponding to y-components of ¢ (t) are non-zero, a?p(t)
will contain a noise term from the y. This noise term cannot
be cancelled by any other term when the input and the noise

are independent, and amp(t) cannot tend to zero.

To prove consistency in the open-loop case a common assump-—
tion is that the input is persistently exciting. For a defi-
nition of this concept see e.g. Astrdm and Bohlin (1965). To
show its relation to CC consider the case v (t) = u(t=1). Then

u is persistently exciting of order one only if

N
lim %]:- y u(t)2> 0
: I
N=v>oo

whereas CC only demands that
“ 2 ..
Y u(t)® diverges

so that u(t) may e.g. decrease to zero with increasing t.

In the closed-loop case CC gives a condition on the feedback.

If it is linear and constant, it must be of such a high order
that not all of its terms are components in the vector ¢ (t).
If it is time-varying it must not converge too fast to a li-

near and constant feedback of low order.
Example (from Lijung (1974))3 Consider the system

v (t+l) + xly(t) = xzu(t) + e(t+l)
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where {e(t) !} is a sequence of independent Gaussian random
variables with zero mean and unit variance. Let the input

be given by the time-varying feedback
u(t) = £(t)y(t)

where £(t) - £ as t - . Then with al = [a; a,]cCis

(e

Ila, + a,f(8) 1%y (6)?

diverges for every a # 0. Now y(t) A 0 because of the noise,
so there must be a subsequence for which {y(t)z} is bounded
from below. For CC not to be satisfied it is then necessary

2 . . .
that [a; + a,f(t)]” » 0, i.e. a; + a,f = 0. Thus CC is satis-
fied if

Mo - £]7

diverges since

iy ) *® a °
Z[al + azf(t)]é = agei[f(t) + ;ﬁ] = a2e2[f(t) - f]

For the case when the minimization of Vt(-) is restricted to

a finite set of parameter values this result and the consis-
tency condition (CC) was shown in Ljung (1974), cf. also Ljung
(1976) . @

Finally the qguestion of non-consistency will be treated. In
order to conclude non-consistency a.e. it is not sufficient
that P_, the a posterioni covariance after all the measure-
ments, is nonzero. But if the a posterionl distributionis con-
tinuous and x is a constant, then with P_ > 0 the probability
will be zero for the estimate to take any particular value,
especially the true one. When x is a stochastic variable, how-
ever, this is not sufficient. Then x and %w might depend on

the realization in similar ways, to give a nonzero probability
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~

for x = x . The next theorem treats non-consistency in the

Gaussian case and couples it to P_ being non-zero.

Theorem 5: With the assumptions of Theorem 3

Proof: As in Theorem 2 it is no restriction to consider the
scalar case only. According to Theorem 3 the conditional dis-

tribution of x given Ft is normal with mean Xy and covariance

Py- Introduce the sets M = {0[P, < Y} and M = {0|P_ = 0}.

Then

€ 2
1 J' e“’s /ZP—

“ds <
Y/2n P, -¢
.

P(lx-x.| < s|F) =

1 if w € 1
v

<
“if%ii o 28 < 1 o 28 = k(y)-¢e if w & M
yam P vany T

Taking expectations on both sides gives

P(lx=x_] < &) < k(y)-¢& + P,

|
for all t > tOQ Now P(MY) can be made arbitrarily close to
P(M) by choosing Yy small enough.

~

But x, = x_ a.e. and so by Egorov's theorem (see e.g. Halmos

(1950)] for any & > 0 there exists a set N with PM) > 1 - §

such that x, = x, uniformly on N. Then there is a T(¢) so that

for all © > T(¢g).
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This gives

p(%@:x) < Pllx-x| < e) < P({Ix-x| <e}nu)+s <
< P(x x| < 2¢) + 6

if t > T(¢). Now the right member can be made less than
P(M) + 386 for any 6 > 0 by choosing first &, then Y to make
P ) < P(M) + & then ¢(0 < & < 6/2k(y)) and finally t > T(e).

Thus

P(x_=x) < P(1) = P(P_=0)
Then
P(x_=x, P_#0) = P(x_=x) - P(x_=x, P_=0) =

= P(x_=x) - P(P_=0) < 0

where the last equality is implied by Theorem 2. This completes

the proof. O

Remark: Theorems 2 and 5 together show that the sets {m]Pm=O}

and {m|§m=x} can differ only by a null-set.

Theorems 4 and 5 should be combined to show different cases of
non-consistency. A constant and linear feedback of sufficient-

ly low oxder is, of course, one case, since then afw(t) = 0

everywnere for some a % 0, so that CC is satisfied nowhere.

The only difficult cases are when the feedback converges too
fast to a linear and constant one. Then the exact limit in con-
vergence rate separating consistency from non-consistency will

depend on the stability of the limiting closed-loop system.

Example (continued): Consider again the first-order example

given above. If the closed-loop system is stable and
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v 2
YIE(E) - £1°
converges then Pt # 0. But 1f the closed-loop system is un-

stable then f£(t) must converge faster in order to make

Tla, + ayf(6) 1%y (6)?

convergent, and the required convergence rate depends on how
unstable the closed-loop system is, which in turn depends on

£, Xq and Xoe
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5, CONCLUSIONS

The two main ideas and results of this paper are 1) the way
of looking at the true system parameters as random variables
with some assumed « paionl distribution and 2) the coupling
of consistency and non-consistency for the LS-method to the
divergence or convergence of a certain series (CC, the Con-
sistency Condition). This condition is shown to be sufficient
and necessary in the Gaussian white noise case. It may be in-
terpreted as a condition that the input should "shake" the
system long enough, in the open-loop as well as in the closed-

loop case.

It is interesting to note that the theorems do not reguire
any conditions on the stability of the systems, as do most
results previously given. However, in showing consistency
using CC, unstable systems seem to require a "less exciting"

input than do stable systems.

As for extensions, the case with time-varying noise covari-
ance could be treated. This would affect only Theorem 4 and
CC would include the noise covariance. Theorems 1 and 2 are
given in a general form, but their possible application to
other cases has not been investigated. However, Theorem 4
may be used for any method containing a P-equation as in the

LS—-case.
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APPENDIX

Lemma: Let {Pt} be a sequence of positive definite matrices

such that Pt » P and Pt - P positive semidefinite for all
t. Then

P = 0= aTPila - oo t = oo

(=] T

for every constant column vector a + 0.

Proof of the lemma: First suppose that P = 0. Let At be the
Then

smallest eigenvalue of Pt .

aTPEla > AtaTa - oo L » o

for every constant a % 0, since all eigenvalues of Pt tend

to zero.

Next suppose P_ *# 0, and assume that it is diagonal. This is
no restriction since it is symmetric and thus can be diagona-
lized. At least one of the elements of P_ must be non-zero,

say the (1,1)-element. Then put

Al 0 Al 0
P, = AZ and P = Oﬂ
0 0 * 0
so that P > P, Also introduce AL =P, - P and A, with
( . \
£ 1ot t t ] _t
all ‘ alz al3 50 0 0 all | alZ o600 0
mmmmm | e e N S
t £ t T
. asy : as, By eeens B asy :
t £t Lt SN
31 1 232 33 o %
o , Dol R
PO B ‘. o
L : l °l : l
J

Then A, -
£ =

\'
<




Now
t t
Al+all : al2 .....
S
det Pt = 21 l - =
. ! e
. |
‘ I
Aq | at at I at
1 | 1o e 11 | 13 e
et BN EE | "o
€
S R N
I o
0 S
= Ay det A+ det Az Ay det Ay
so that for the (1,1)=element of P;l
(Pml) _ det At . det At B :i
t 11 . = X
det Pt xl det At Al

Thus with a~ = [1 0 0 ... 0]

I T
alP la < L a“a # o
t - Xl

as t - o,
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Part I - Regulators for Time-varying
Stochastic Systems

ABSTRACT

Suboptimal dual regulators for stochastic adaptive systems
are considered. A new algorithm is proposed and a survey of
previously suggested schemes is given. It is discussed for
what kind of system the new algorithm will be advantageous,
and when a simpler scheme will suffice. This discussion is
illustrated by simulations where different regulators are

compared.
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1., INTRODUCTION

Bvery control system is subject to disturbances from its envi-
ronment. A successful regulator design then requires that the
disturbances are taken into account. This indicates the need

to model the disturbances. One way to do this is to use stochas-

tic processes. This leads to stochastic control theorv.
i

There is one type of stochastic control problems whose optimal
solution has been known for long, namely the linear-quadratic-
gaussian problem. In this problem the system dynamics and the
measurements are assumed to be linear with known parameters and
additive gaussian noise. The object of control is to minimize a
cost functional, which in the discrete time case is a sum of
squares of deviations of the input and the output from their de-
sired values. In an admissible control law the input is a func-
tion of all the present information, i.e. initial data and cur-

rently available measurements.

This problem admits an analytical solution through dynamic pro-
gramming. A recursive equation for the loss, the Bellman equa=-
tion, is then obtained, which will give the optimal solution.
The linear-quadratic=gaussian model has been used in many prac-
tical problems, often with a very good result. One drawback with
this model is that it requires a great deal of knowledge about
the system to be controlled. In practice the system parameters
are often not known and may even be time-varying. They might
then be modelled as stochastic processes, just as the disturban-
ces. This gives a nonlinear stochastic control problem. A survey
of different regulators for stochastic adaptive systems is given
in Wittenmark (1975b).

For such problems, the Bellman equation for the loss may still
be derived. Even 1f it cannot be solved the Bellman equation
gives useful information about the character of the optimal con-
trol law. Feldbaum (1960) realized this and introduced the con-

cept of dual control. By this is meant that the purpose of con-

trol is twofold. It shall estimate unknown parameters and at

the same time keep the output at a desired value. These objec-
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tives are often conflicting, since estimation is usually im-
proved by increasing the input. In some situations, however,
this is not the case. It may happen in special cases that the
quality of estimation will not at all be influenced by thesinputs.
An example of this is the above mentioned linear-quadratic-
gaussian problem. Such systems are called neutral by Feldbaum
(1960) .

In general it is not possible to calculate optimal dual control
laws. Much effort has therefore been spent in trying to find
good suboptimal controls having dual properties. A straightfor-
ward method is to first estimate the system parameters using
all available information, and then use the estimates in a con-
trol law as i1f they were the true values. This is called cer-=

tainty equivalence. Cautious controls take also the estimate

covariances into account when calculating the input.

In Jacobs and Patchell (1972) the effects of dual control laws
are explained using three terms. These are: a certainty equiva-
lence input, a cautious correction term because of uncertain pa=
rameters, and a probing term to improve the estimates. Subopti-
mal dual control laws are often derived as some combination of

these 3 parts.

One approach in designing suboptimal dual control laws is to
neglect probing. Whatever estimates that come out of the esti-
mation algorithim are then used, and nothing is done to improve
future estimates. Parameter learning is then completely acci-

dental. Such control laws are called passively adaptive by Bar-

Shalom and Tse (1974). They use the term actively adaptive for

the opposite case, when the control law is designed also to im-

prove the quality of future estimates.

This report considers different regulators having dual proper-
ties. A model for the system and the optimality criterion are
given in chapter 2. The algorithms considered are discussed in
chapter 3. A new control law is described in chapter 4. To com-
pare regulators some simulations were performed. They are collec-
ted in chapter 5. The last chapter contains some concluding re-

marks.
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2. THE SYSTEM AND THE CRITERION

The reason for setting up a certain mathematical model of a
system can be either practical or theoretical. In the first
case the model should describe a specific real system as well
as possible in some sense. Such models are often complicated
= nonlinear, time-varying and maybe infinite-dimensional or

stochastic. Analysis is then difficult or even impossible.

If the model is set up for theoretical reasons, it is chosen

to fit in with the analysis needed to show the desired point.

In such a way a lot of results have come out that are valid

for certain classes of systems. An example of this is the com~
mon use of linear, time-~invariant, finite-dimensional models.
One measure of the value of the theory is then how well it works

on real systems.

For dual control problems, however, it is difficult to find

theoretical models that give tractable calculations. Only in
simple or special cases has it been possible to calculate an
optimal dual control law and express it explicitly as a func-

tion of the available information, see e.g. Sternby (1976).

In dual control theory it is thus necessary to use simple mo-
dels and to make approximations in order to get results. The
models should then be choszsen to give as few and as accurate
approXximations as possible. On the other hand the models should

also capture some properties of real systems.

Models
In this report only single-input single-output systems will
be considered. The model used is [cf Astrdm and Wittenmark
(1971) )

y(t) = ¢(t)8(t) + e(t) (2.1)

p(t) is a row-vector consisting of functions of old outputs and
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inputs (up to and including time t=1). The unknown parameters
are collected in the coluwan vector 6(t), and e(t) is assumed
to be (scalar) gaussian white noise with zero mean and vari-

ance 020 The evolution of @ (t) is given by

O(t+l) = @0 (L) + v(t+l) (2.2)
where @& is a known matrix and €(0) is a gaussian random vector
with mean m and covariance PO. The noise v(t) is also assumed
gaussian and white with zero mean and covariance R. The sequences

{e(t)} and {v(t)} and the vector 6(0) are independent.

The parameter model (2.2) could be made more sophisticated. The
parameters may e.9. be taken as the outputs from a general disc-
rete time Markov process. However, from a practical point of
view even the model (2.2) is a bit too detailed. For example,

it seems unrealistic to assume knowledge about the dynamics of
unknown parameters. Thus in practice ® will have to be a unity

matrix.
With
o(t) = [my(tml),a.,,ay(twna), u(t=l),.,.,u(tmnb)] (2.3)

(2.1) becomes an ordinary linear difference equation model, but
the formulation allows also nonlinear models, as long as they
are linear in the parameters. In the following ®(t) will be as-
sumed to have the form (2.3), and the parameter vector is taken
as

o)t

= [al(t),aga,ana(t), bl(t),,..,bnb(t)]
Note that the case with constant but unknown parameters is ob-
tained by putting ® = I (the identity matrix) and R = 0. Unfor-

tunately, this does not simplify the calculations.




49

s e e o e G e B OED o oy 553 e e e G e

In the literature it is common to consider linear state-space

equations
x(t+1) = A(t,0(t) )x(t) + B(t,0(t))u(t) + w(t) (2.4)
y(t) = Cc(t,0(t))x(t) + e(t) (2.5)

The unknown parameters 8 (t) are often assumed to enter linearly
into the equations, and to vary as in (2.2). The model (2.4) =
- (2.5) can then be transformed into a difference equation with
dependent equation noise, where the unknown parameters enter
linearly as in (2.1). Unlike (2.1), however, all parameters
will not get the same time index. This fact shows up also in

the estimation.

The state-space approach has been taken by e.g. Bar-Shalom and
Sivan (1969), Tse and Athans (1972), Xu and Athans (1973), Sa-
ridis and Lobbia (1972), Frost (1970) and Jacobs and Hughes
(1975) . The reason for using this model is probably the success-
ful and wide=spread use of it in the known parameter case. With
unknown parameters, however, some difficulties are added. As

will be shown later on, most dual controllers need an estimate

of the parameters 6(t). The best estimate in the least squares
sense is the conditional mean. With the model (2.4) - (2.5) it

is not possible to calculate this exactly, unless the whole

state is measured exactly, or A and C are completely known. Thus
approximations must be made already at this stage, e.g. by using
an extended Kalman filter as is usually done. This is somewhat
unsatisfactory, since the convergence properties of extended Kal-
man filters are not yet fully understood. This problem is avoided

by using the model (2.1).
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Estimation

Most regulators need some estimate of the parameters. The con-
ditional mean is a good choice. To calculate this the amount

of available information must be specified. This is an impor-
tant point, which is connected to the choice of admissible con-
trol laws. In this report Ft is defined as the g—algebra gene-
rated by all outputs up to and including time t, i.e. y(t),
y(t-1), ..., and all previously applied inputs, i.e. u(t-1),
u(t=2), «..

For the model (2.1) = (2.2) the conditional distribution of
future values of & is gaussian and it can easily be computed
using an orxdinary Kalman filter, Astrbm, Wittenmark (1971).
The estimate of 8 (t) calculated at time t=1 will be denoted

by @(t) and its covariance matrix by P(t).

Then
o(t) = E[0(t) |F,_]
P(t) = E[(8(t) - 8(t))(0(t) - é(t))T]thl]

Recursive equations for é(t) and P(t) are given by

9 (t+1) = 28(t) + K(t)[y(t) - @(t)6(t)] (2.6)
_ T OP (L) @ (t) T (t) P (L) dr
P(t+l) = ®P(L)® + R - 5 % (2.7)
o7 + (t)P(t)op(t)
where
K(t) = @P(t)m(t)T(oz + @(t)P(t)@(t)T]ml (2.8)

The model (2.1) thus admits an exact solution of the estimation

problem.
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To handle time=-varying parameters the matrix R in (2.7) should
be different from zero. Another way to treat this case is to
keep R = 0, but instead divide the right member of (2.7) by a
so-called forgetting factor, which should be close to, but less
than unity. Then é(t) as given by (2.6) will no longer be the

conditional mean of & (t), but may still be a good estimate.

The_neoise assumption
The equation noise e 1s in this report assumed to be white. The
case with dependent noise can,; however, be handled if the de-

pendence is known. Let
e(t) = w(t) + cqw(t-1) + ... + CncW(t”nc) (2.9)

where w(t) is gaussian white noise. Then the c¢:s could be in-
cluded in 9 (t) and the w:s in 6 (t). However, if the c-parame-
ters are not known, it is again not possible to calculate the
conditional means exactly. This is, of course, the normal si-
tuation, but will not be considered in this report, since the

white noise case is difficult enough.

One suboptimal way to handle unknown c-parameters may be first
to estimate them using e.g. a recursive ML-method, and then
take the estimates as being the correct values. This use of
the certainty equivalence principle can be motivated. It has
been noted that in many cases the accuracy of the c-parameter
estimates does not depend as much on the input as that of the

other estimates. This is illustrated in the following example.

Example 2.1: Consider the system

y = bu + cv + e

where b and ¢ are unknown parameters, v is a measurable dis-
turbance and e is random with zero mean and unit variance. All
time indices are dropped, since the system will be studied for

one step only. If v had been the old value of e this would have
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been an ordinary system with dependent noise, but v is assumed
measurable here to make computations easy. In the previous no-

tations

o=[u v]

Suppose
0

p, O

PO = .
0

P

Py p i
bb bc PO@ @PO

1+ wPOmT

which gives for Prp and Pac

0 0_2
Pb(l +PCV )

Ppp = 2 2
bb pgu + (l+pgv )

O_+,O ouz
pc pbpc

P 3 0 2
ce pgu -F(l+pcv )

It

The input u may be chosen to reduce the uncertainties, but v
is fixed. The variance of b will stay between 0 and pg depend-
ing on the value of u. To get a small variance u should be made

big.

=

But the variance of C can vary only between (l/(l+pgv2))p2 and

2 . . .
pga Now put v- = 1 = the variance of e, which is the expected

value of v2 if v were the previous e. Then if pg is not too big
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the variance of ¢ is always very close to pg and little can
be gained by choosing u. Note also that as expected the best
choice of u to get a good é is always u = 0. In fig. 1 is

shown how p 1/90 and / 0 vary with u for po = 0.25,
bk’ b Poc/Pe Y c

P%? 4
N Rofo

e

0
0 i é Dg-uz

Fig. 1 - The covariances of b (pbb) and ¢ (p..) related to
e . : cc
their previous values.

The example suggests that the estimates of ¢-parameters are
not much influenced by the input signal. For general dual con-
trol problems, however, nothing is known about the effect of

using certainty equivalence to take care of c-parameters.

Criteria
For the model (2.1) = (2.3) a cost functional is given as
R 2
Ty = kzl (v (k) - v, (k)) (2.10)

where yr(t) is the reference value for the output. The optimal

input is determined by minimizing the expected value of (2.10).
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A penalty on the control actions can be included by adding
the term q(u(k) - ur(k)); in (2.10). This is important in
practice because it makes it possible to limit the size of
the control signal. No penalty on the control will, however,
be included in this study because it will require the deter-

mination of an extra parameter.

Some authors have used a time-varying weighting of the terms
in (2.10). This is necessary to treat problems where e.g. on-
ly the final state is important and not the whole trajectory.

Such problems are not studied here.

When the model (2.4) = (2.5) is used, the cost functional is
usually quadratic in the states and in the input. This choice
makes computations feasible in the known parameter case. With

unknown parameters approximations must again be made.

When minimizing the expected value of Jy in (2.10) the value
of N will influence the characteristics of the resulting con=-
trol law. Two different situations will be considered in this

report.

For N small the control law must try to estimate the parame-
ters quickly in order to gain anything in the following steps
from an accurate estimation. This situation ig of interest
when dealing with industrial batch processes, e.g. cement-
making, pulp-making and some types of steel-making. In chapter
5 some simulations for small N are shown where the true parame-
ters have been taken as constants (® = I and R = 0). These si-
mulations thus show how fast the parameter=-adaptation will be

with different regulators.

A large value of N corresponds to a steady state situation.
Suppose that the true parameters are constants and that the

true system is described correctly by (2.1). With {e(t)} white
and gaussian the estimates will then converge to the true para-
meters with probability one under very general conditions, see
e.g. Ljung (1976) or Sternby (1977). Every good regulator should

then converge to its deterministic counterpart, and produce a
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corresponding steady state loss. This situation can be analyzed
through the ordinary differential equations given by Lijung (1977).
For large values of N and constant parameters the problem is thus
understood to a reasonable degree. Little is, however, known
about the time-varying case for large N. This is investigated

through simulations in chapter 5.

A third property to study could be the ability to track changes
in the reference value. In Norman (1976) three regulators are
compared in this respect by simulations of a first-order system.

This question will, however, be left aside in this report.

Admissible Control Laws

Finally must be defined what is an admissible control law. It
is natural to let the input at time t, u(t), be a function of
all information available at this moment. This can be expressed
in probabilistic terms as u(t) € Ft’ The a phricrd known statis-
tics of the noise and the parameters are then considered as con-

stants.

For the gaussian case all this information are collected in
the estimate and its covariance together with the vector ¢ of

0ld inputs and outputs.

The optimal control problem may thus be summarized as follows.
Find an admissible control law for the system (2.1) - (2.3)
that minimizes the expected value of (2.10) for a certain va-
lue of N.
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5. SOME DIFFERENT REGULATORS

A functional equation for the minimal expected value of the
loss JN in (2.10) is derived in Astrdm, Wittenmark (19271).
Introduce the vector ¢(t), which is ¢(t) with u(t-1) replaced
by a zero. The triplet (é(t),P(t),ﬁ(tU will be denoted by g, .

Also introduce Vt as

N
Vt = Vt(ct) = min E[kzt(y(k) - yr(kn ZlFt“l} (3.1)

The minimization is with respect to the present and future ad-

missible control laws. Then by dynamic programming

. 2
Vt(ct) = 212@1)5{&&) - yr(t)) + Vt+1(ct+1)|th1} (3.2)

This equation, the Bellman eguation, can be solved only in a
few special cases. One example is the ordinary linear-quadratic
problem, which is obtained by putting P(t) = R = 0. Another one
is a system where the parameters vary as white noise, i.e. ® =0
in (2:2), see e.g. Tou (1963) or Gunckel and Franklin (1963).
Unfortunately, these cases all give non-dual control laws,

whereas the interesting cases of dual control remain unsolved.

The Bellman equation has also been solved numerically for a
couple of problems. However, even with only a few unknown para-
meters this leads to extensive computer calculations, so this

is no method to use in practice.

The nature of difficulties of solving (3.2) will now be discussed.
Let £ = [0,...,0,1,0,...,0] be a vector with the same dimension
as ¢(t) and with its only non-zero element at the position cor-

responding to u(t-1l). Then VN is
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v, = o0+ BaemFm” + [y - Fanom]? -

[26 () (v, (@) - Hm)em) - £p )G (0 T2

[26 () ]° + £p(0)&” (3.3)
and

26 () (y () = o) - Le@Fa)’”
u(N-1) =

[£60)]% + ep ()Lt (3.4)

The next step should now be to insert (3.3) into (3.2). Then
two difficulties arise. Firstly € (N) and ®©(N) are stochastic
N—p® With the condi-

tionally gaussian variable é(N) in the denominator of (3.3)

variables that are not measurable w.r.t F

the expectation cannot be given in a form suitable for further

calculations.

Moreover, the right member of (3.3) depends in a very compli-
cated way on u(N-2). Via (2.7) P(N) is itself a function of
u(N=2). Also the distributions of é(N) and ¥ (I) depend on u(N=2).
Thus even with an analytical expression for the conditional ex-
pectation there would be very little hope for a possibility to
minimize (3.2) analytically. In this report various approxima-

tions will first be discussed and then compared by simulations.

The resulting regulators can be classified into two main groups

with some sub-groups each. These are

I REGULATORS WITH ACCIDENTAL LEARNING
a) Self-tuning regulators (STURE)

b) Cautious regulators

c)

Open=loop=optimal feedback type regulators (OLOF)

1T REGULATORS WITH ACTIVE LEARNING
a) Based on modifications of the one-step loss function

b) Based on approximations of the future loss
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This taxonomy is not perfect. Some of the regulators could in
fact be placed in either of two groups. However, the classifi-
cation may be of some help to look at different proposed me-

thods in a systematic Way .

Note that the regulators in the first group may also show ac-
tive learning. This is because they are modified to be able to
handle also time-varying systems. The classification is based

on the original algorithms.

The different regulators will now be discussed.

3.1. Regulators with Accidental Learning

e e et e e S R G O e © € wms e o i o e o o o o o

This regulator is treated to some detail in Astrém, Wittenmark
(1973) and in Astrdm, Borisson, Ljung, Wittenmark (1977). A si=-
milar regulator is treated in Clarke and Gawthrop (1975), where
particular attention is given to command following by feed

forward. The regulator is there called a Self-Tuning Controller.

The basic self-tuning requlator is obtained by calculating the
minimum variance regulator with the true system parameters re-
placed by their estimates (certainty equivalence). With only one
time~delay in the system the best one-step prediction of y should
then be made equal to Y. From (2.1)

Q(t+1l)o (t+1) = Y, (t+1)
which gives

W(t) = o[y (£+1) = F(t+1)6 (£+1) ] (3.5)

bl(t+1)

It is shown in Astrdm and Wittenmark (1971) that for known sys-
tems, the minimum variance regulator minimizes the expected

value of (2.10) for any N. The self~tuning regulator is thus
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the approximative solution obtained by considering the esti-
mates as being completely correct. The estimate covariances

P are not taken into account, so STURE is a non-cautious re-
gulator. It is also clear that the inputs are not at all cho-

sen to improve the estimates, i.e. learning is accidental.

In practice it has been found useful to limit the control

gsignal., This may affect learning.

This regulator is primarily designed for unknown, but constant
systems. For constant minimum-phase systems driven by white
noise it has been shown always to converge to the true mini-

mum variance controller, Ljung, Wittenmark (1974).

Taking R # 0 in the parameter model (2.2) the identification
procedure can also track time-varying systems, and STURE can
be made to work at least in some cases. It ig shown in Appen-
dix A that for a system with only the first a~parameter un-

known and y, . = 0 STURE is optimal if N < 3 in (2.10).

The self-tuning regulator has been applied successfully to
several real life systems. A review is given in Astr®m, Boris-

son, Lijung, Wittenmark (1977).

Simulations have also shown that STURE performs well on many
time-varying systems for a large N in (2.10), see Wittenmark
(1973) , Abramowicz, Stymne (1975), and chapter 5 of this re-
port. There is, however, one problem. For constant parameters
STURE will meet difficulties if the estimate of the leading
b-parameter has the wrong sign. The closed-loop system is then
unstable, and the outputs will grow. In Lijung, Wittenmark (1974)
and (1976) it is shown that the large outputs will improve the
identification to give good estimates more guickly. The closed-
loop system will then be stable again after a while. For time-

varying systems this may not be enough if the b,~parameter

1
changes sign often, or is freguently very close to zero.

As can be seen from (3.5) STURE will give very large inputs
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when gl(t) is close to zero. If the true b,-parameter is not
small this will cause the output to be large. It is therefore
necessary to put a bound on the amplitude of the input. This
may on the other hand be dangerous if the system is unstable,
since it restricts the possibilities to drive the system back

to normal if the output has once drifted away.

To summarize, it seems ag 1f the self-tuning regulator can
be used successfully on some time-varying systems, as long as
the leading b-parameter does not change sign or comes very

close to zero frequently. Some precautions must then be taken.

A cautious regulator is obtained by taking N = 1 in (2.10) and
using the resulting control law (3.4) all the time (with N re-
placed by t+l). The input generated in this way is denoted
ul(t). Again learning will be accidental, since the design is
made as 1f the new estimates will never be used (N = 1). The
difference compared to STURE is that the cautious regulator

also takes the uncertainties of the estimates into account.

This regulator will not have the same problems as STURE for
sma%l 51, because the input given by (3.4) will be finite even
if bl = 0. There will, however, be other problems. The follow-
ing may happen. Suppose that the input for some reason is

small for a while. Then identification will be poor, so that
the variance term in the denominator of the input expression
will grow. This causes the input to remain small and so on.

This effect is called turn—off, and has been discussed by se-
veral authors, e.g. Wittenmark (1971), Astrdm and Wittenmark
(1971) , Hughes and Jacobs (1974) and Alster and B&langer (1974).

When turn—off does not occur, the cautious regulator seems to
work very well. Thus it is natural to try preventing turn-off
in some way. This can be done simply by adding an extra signal
directly to the input to ensure good identification all the

time. Then some questions arise. What is the most suitable size
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and form of the extra signal? When should an extra signal be

added, all the time or just now and then?
A simple method is to take the extra input as
t
ue(t) = ¢c(-1) (3.6)

where the constant ¢ has to be chosen in advance. 0Of course,
(3.6) could be replaced by a Pseudo Random Binary Signal,

which is often employed in system identification. The optimal
choice of ¢ will depend on the true system. This method is dis-
cussed in e.g. Wieslander, Wittenmark (1971). In Nakamura, Na-

kamura (1973) white noise is used as an extra signal.

Since the turn-off problem comes from KPKT (the variance of

A

b

l) growing too large, it seems better to assure that the sign
of ug is such that it helps decreasing ﬂPﬂT. A straightforward

way is to give ue(t) the same sign as ul(t), This gives
u (€)= ce-signfuy (t)] (3.7)

A closer examination of the equation for P, (2.7), shows that

this may not be the best way. From (2.7)

P (t+2) 8T = 2P (t+l)a LT -

_ ﬁ@P(t+1)w(t+1)Tw(t+1)P(t+1)®T£T

02 + i,o(t+l)P(t+l)Lp(t+l)T

+ ore”T

(3.8)

Only the second term of the right member depends on u(t). With
@(t) = B(t) + Lu(t) this term is

[£®P (£+1) G (L+1) ~ + 2P (t+1) £ u(e) 12
6% 4 B(e+L)P (b4 1) e+ 1) T+ 24P (c+1) B (e+1)Tult) + £P (t+1) £Tu(t) 2
{(3.9)

The maximum of (3.8) is obtained as the minimum of (3.9), i.e.
by making the numerator equal to zero. Now, in practice, @ is

usually chosen to be diagonal since the dynamics of the para-
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meters is seldom known. Then (3.8) is symmetric around its
maximum and decreasing with increasing distance from it. The
sign of ue(t) should then be chosen to maximize the distance

of the total input ul(t) + ue(t) from the maximum of (3.8).

For long periods of time turn—off does not occur, and acci-
dental learning is sufficient. It is then unnecessary to use
any extra input, which just will increase the loss. One pos-
sibility is to apply the extra input only when the variance

of bl is greater than a certain limit. This gives

Casign[ul(tﬂ if P (£+1) LT > Pyin

-
t
i

w

.10)
. s
0 if LP(E+1)L7 < P,

This scheme has been tested by simulations in chapter 5.

A slight modification is to test Pbl/%i against a limit in-
stead of just Ppq- The motivation for this is that the dif-
ficult cases are when %l is close to zero compared to the un-

certainty.

Another possibility is to add the extra signal if the abso-=
lute value of the ordinary cautious input (3.4) is smaller
than a preset value. Again this value has to be chosen in ad-

vance.

The master thesis by Mannerfelt (19277) shows a method to de-
termine the size of the extra input. The idea is to allow the
minimal one=step loss to increase by a certain fraction X} due
to the extra input. With u(t) = ul(t) + ue(t) the one-step

loss is
E{[y_(tﬂ) - yr(t+l)]2[Ft} = [?p‘(t+1)é(t+1) + LB (D) u(t) — yr(t+l)]2 +

+ [R+]) + u(t) B+ [§e+l) + eu(®)] T + o =

= vyt ue(t)z[(zé(t+l))2 + ﬂP(t+l)@T] = (L)

1 (3.11)



63

where Vﬁ is the minimal one-step loss. Some terms have dis-

appeared in the second last expression, because ul(t) minimi=
zes (3.11). The last equality of (3.11) is the defining rela-
tion for [ue(t)

°

An advantage with this method is that it makes the choice of
magnitude of ue(t) more problem-independent, while the input
itself depends very much on parameters, noise and reference
value. It also makes |ue(t)| time=-varying, hopefully according
to the need for identification. A disadvantage is that with
known parameters the total cost will be precisely the fraction
A greater than its achievable minimum. This could be taken care

of by letting A depend on the uncertainty with A = 0 for P = 0.
Hughes and Jacobs (1974) combine the questions of the size of

the extra input and when to apply it. They take the total in-

put uq + u, as the function of Uy shown in fig. 2.

oo, A

Fig. 2 — The total input of Hughes and Jacobs (1974).

Again the threshold value has to be chosen a prioad.

It is worth noting that the difficult case for both the basic
self-tuning regulator and for the basic cautious one is when

él is close to zero. Both regulators then give extreme inputs,
but in different ways. Consider a case where only one parame-

ter is estimated, the first b-parameter, so that the last term




in the numerator of (3.4) disappears. Then for 51 = ( STURE
will give an infinite input, while the cautious regulator gives
zero input. Also for all other values of él the self-tuning in-
put is larger than the cautious one. These observations suggest
the use of an input which lies between those of STURE and the
cautious regulator. The arithmetic mean will give an infinite
input in the above example and cannot be used. Instead the har-

monic mean could be tried. For the case considered this gives

i

20 (e+1) [y _(t+1) = B(t+1)0 (t+1)]
uh(t) = — (3.12)

[26(t+1)]% + & ep(t+1) 2"

The only difference to (3.4) is that in (3.12) P is divided by

2, which makes this regulator less cautious.

Florentin (1962) has calculated numerically the optimal control

for the system
y(t+l) = y(t) + bu(t) + e(t+l)

where only b is unknown. The loss function was as (2.10) except
that it also included the input. The reference value was yr(t)E
= 0. It turned out that the optimal control could be approxima-
ted by

_ 26 (t+1)y (t)
[ﬂ@(t+1)]2 + L pernet 41

2

(t) = (3.13)

It is remarkable that the only difference with (3.12) is the
last term of the denominator, which naturally comes in when
the input is included in the loss function. Because of the
form of the inputs (3.12) and (3.13) it is, however, question-=-

able whether either has any dual action.
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An early discussion of the OLOF strategy is given in Dreyfus
(1964) . A discrete state three-stage decision problem is dis-
cussed., It is shown that OLOF gives a performance which is ve-
ry close to optimal. On the other hand, in the Markov chain
example of Sternby (1976), certainty equivalence control is
better than OLOF.

The basic approximation in controllers of OLOF type is that

all future inputs are taken as functions of present informa-

tion only. This is in contrast with the active learning case,
where future inputs are allowed to be functions of future in-
formation. Using the OLOF approximation the expected value of
the loss is minimized by dynamic programming. Unlike the pre=
viously discussed regulators the effects of the present input

on future outputs are taken into account to some extent.

Further approximations must be made in the general case. They
give different versions of the OLOF controllers. In Tse and
Athans (1972) the model (2.4) = (2.5) is considered with 8 en-
tering only in the B-matrix. The loss function is quadratic

in state and input.

The behaviour of the algorithm can be tested only by simula-
tions. This was done to some extent in Tse and Athans (1972).
In RKu and Athans (1973) the results are extended to include
also unknown A-parameters. Further approximations must then be

done.

Mehra (1974) has given a similar derivation of the optimal
open loop loss for an impulse response model. The solution

is obtained from a two point boundary value problem. Applying
only the first input and recalculating at every step then
yields an OLOF controller.

In Jacobs and Hughes (1975) another approximation of future
loss is made. A corresponding deterministic problem is consi-

dered, where all random variables are replaced by their means.
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The optimal closed loop loss for this problem is then used to
approximate the future loss in the original problem. As usual
the calculations have to be redone at every step. The result-
ing regulator, which could also be classified as a cautious

regulator, is called neutral.

When using an OLOF controller the input is calculated as if

no further measurements are going to be made. Another approach
is to assume that measurements are made, but that they will

not be used to improve the estimates or their covariances. The
future parameter values are then assumed to be random variables
that are independent of the inputs, the outputs and the noise.
Their distribution is determined by the current estimate and
its covariance. This gives a Riccati equation for the expected
value of the loss. The resulting regulator will still only give
accidental learning of parameters, since the input is calculated
as if it could not improve the estimates. Such a regulator can
be expected to handle changes in the reference value guite well
since the output is measured and fed back. In Norman (1976) si-
mulations indicate that this is actually the case. The regula-
tor is there called open-loop-mean—-variance (OLMV). The amount

of computing necessary is a draw-back with this method.

Murphy (1968) makes still another approximation. When calcula-
ting the expected value of future loss the input is supposed to
be a time-varying linear feedback from future estimates. The
time=-varying gains are then calculated using dynamic program-
ming based on linearization around a predicted trajectory. The
feedback thus consists of two factors, the gains and the future
estimates. The gains are deterministic, but the future estimates
are random variables. This regulator is something in between an
OLOF regulator and one with active learning. The approximation
made may be rather crude, since the optimal regulator is cer-

tainly not a linear feedback from the estimates.
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3.2. Regulators with Active Learning

A dual control law must compromise between good control and
good parameter identification. Since the quality of identifi-
cation can be expressed by the variance of the estimates, one

possibility is to include the variance in the loss function.

Alster and B&langer (1974) use as cost functional the expected
value of (2.10) with N = 1. However, the minimization is done
under the constraint

tr P(e+2) T > M (3.14)

where M is a constant to be chosen. This gives a lower limit

to the input when P is large since

1 1 1

P(e+42) T = P(e+1) T+ © (t+1) T (£+1) (3.15)
(o]
Thus
2 - ~ e~
u(t)” > M - tr P (t+l) = p(t+l)o(t+l) (3.16)

L
2
o

When the right member of (3.16) is less than zero this regulator
ig identical to the basic cautious regulator. The effect of (3.16)
is to decrease the periods of turn-off. They are unfortunately

not completely eliminated.

Wittenmark (1975a) uses the cost functional

W, o= E{[y(t+l) -y, (t+1)] 2|Ft} + £ (P(t+2)) (3.17)

where £ is a scalar function of the covariance matrix of the
estimates in the next step. The weighting factor A has to be
chosen in advance. Both terms in Ww depend on u(t), and the

compromise between control (= the first term) and identifica-

tion (= second term) is evident.
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The choice of the function f is also discussed in Wittenmark
(L975a). It is pointed out that the leading b-parameter is

the most important one. Therefore a good choice may be £(P) =
= ZPKT, i.e. to pick out the variance of the leading b=-parame-

ter. Another choice could be £(P) = tr(P).

In Wittenmark (1975a) simulations indicated that the value of
A is not very critical. This point will be further examined
in the simulations of chapter 5. To minimize (3.17) its expli-
cit dependence on u(t) must be shown. The mocdel (2.1), (2.7)

and the definitions of £ and § give

W, o= [W(E) £ (b+1) + F(e+l)B(e+l) - y_(£+1)]° +

# [FEH1) + Lu(D)]P(E+1) [F(E+D) + Lu()]” + o +

+ Xt @P(t+l)@T + R =

_OP(e+1)[@(E+1) + Lu(t)] [HE+]) + Lu(£)] P (t+l)o
o+ [F(E+1) + Lu(t)] P (t+1) [F(e+1) + Lu(t)] T

(3.18)

From this equation it seems likely that WW has several local mi-
nima. As a possibility for minimizing (3.18) Wittenmark (1975a)
suggested numerical optimization. Some precaution must then be

taken to get convergence to the correct local minimum.

A systematic way of choosing the smallest minimum is obtained

by the following argument. Suppose that ET is an eigenvector of
@T. This means that bl(t+l) may depend on bl(t) and noise, but
not on the other parameters. In practice this is mostly fulfilled,

since @® usually has to be chosen diagonal. Also suppose that

f(pP) = KPKTQ The first term of (3.17) is minimized by the cau-
tious input ul(t)° With uz(t) denoting the maximum of KP(t+2)£i
the dependence of u(t) in the two terms of (3.17) may look as

in fig. 3.
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Fig. 3 = Typical behaviour of the two terms of (3.17).

It is proven in appendix B that there is exactly one local mi-
nimum of (3.17) to the right of ul(t), and that this is also
the global minimum. Because of symmetry a corresponding result
holds if ul(t) < uz(t)u If ul(t) = uZ(t) one of two things may
happen. Either ul(t) = uz(t) is the only local minimum, or it
is a local maximum. In the latter case there isg exactly one lo-

cal minimum on each side with the same value of (3.17).

The starting value for the numerical minimization can be taken

as the cautious input ul(t) with a first step away from uz(t).

With £(P) = tr(P) or f(P) = {P{T another method can be used to
avoid the problems. Then WW is a rational function of u(t), and
its derivative can be calculated analytically. The numerator of
the derivative will be a fifth order polynomial. Using a root-
finding algorithm the zeroes of the derivative can be found and
the global minimum is determined by comparing the corresponding
values of (3.17). The root-finding may be time consuming (of the
order of tenths of seconds on a PDP-15) . Numerical minimization
has the advantage that it can be stopped after any number of ite-

rations.
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The most complicated of the proposed approximative dual control
laws is the wide-sense adaptive dual control algorithm sugges-
ted by Tse, Bar-Shalom and Meier (1973). They consider a gene-
ral nonlinear system with additive noise in both states and
measurements. The cost functional is also nonlinear. Tse and
Bar-Shalom (1973) applied this algorithm to the model (2.4) -
(2.5) with a corresponding cost functional, quadratic in the

states and the input. The main steps are as follows.

For each value of u(t) considered, an approximate loss is cal-
culated. To do so, first x(t+l) is predicted from u(t) and the
estimates at time t. A nominal future trajectory is then cho-
sen, e.9. as given by an OLOF controller or the solution to a
corresponding deterministic linear-quadratic problem. The sys-
tem is linearized around this nominal and the loss is mini-

mized up to second order. Finally the immediate loss is added
to give the total expected loss, which is minimized by select-
ing u(t). One way to lock upon the algorithm is to assume that
measurements are going to be made in the next step, but not

thereafter. With an OLOF controller it is assumed that no mea-

surements are made even in the next step.

The wide-sense adaptive algorithm thus gives a linear—quadratic
problem to solve for each new input that is tried. The time in-
terval considered in this problem should, of course, equal the
time to go in the original problem, but in order to save com-

puting time a shorter time interval may be used.

All these steps have to be gone through for several input values
at each sample point, since the total loss has to be minimized
numerically to obtain the optimal input. Therefore this algo-
rithm may require substantial computations, especially when the
number of steps to go is large. Another drawback is that the al-
gorithm is hard to analyze, and little is known about the ef-
fects of the various approximations. The numerical minimization
also requires some attention, since the loss function may well

have several local minima.
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Because of the complexity of this method it has not been in-
cluded in the simulations of chapter 5. For a simple integra-
tor example a comparison with the cautious regulator and the
two-step regulator defined below can be found in Sternby and
Pernebo (1977). It is shown that for the particular example
the wide-sense adaptive and the two-step regulators give simi-
lar results. In particular, they seem to generate almost the

same inputs.

The wide-sense adaptive algorithm is, however, very general,
and can be used not only to keep a system in steady-state. In
Tse and Bar—Shalom (1973) simulations are shown for cases when

the objective has instead heen to achieve a certain final state.

Another regulator based on approximation of future loss has

been suggested by Chow (1975). His model is of the state equa-
tion type and the whole state is observed. The criterion is

quadratic, but not additive, because it contains also products
of outputs from different times. An approximate dynamic pro-

gramming is performed corresponding to (3.2). In each step the
minimal future loss is approximated with a quadratic function
of all previous states. This is done by calculating the deri-
vatives numerically. It is then possible to calculate the ex-
pected value of this quadratic function and continue the dyna-
mic programming. This is also a rather laboriocus method. Some

possible simplifications are also discussed by Chow (1975).

The last regulator to be discussed in this report is obtained
by putting N = 2 in (2.10). This is believed to introduce some
of the required dual effect. It is, however, not possible to
solve even this problem exactly. Further approximations must be
made. This regulator will be discussed to some detail in the

next chapter.
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L, THE TWO-STEP REGULATOR

4,1, Motivation

Taking N = 2 in (2.10) may give a control law that works satis-
factorily also for longer times. To show this a few examples

will be given.

Example 4.1.1. The first one is taken from Sternby (1976), where

a controlled Markov chain is considered. For special choices of
transition probabilities and loss function it is possible to
calculate e.g. the optimal control law, certainty eguivalence
control and the two-step regulator analytically. For this
example the difference in performance between the optimal con-
trol and the two-step regulator is negligible, while certainty

equivalence control performs somewhat worse. o

Example 4.1.2. Another example is given in Sternby and Pernebo

(1977) . A wide-sense adaptive dual control and the two-step re-
gulator are compared on a first order system, an integrator with
unknown and time-varying gain. The comparison is made using Mon-
te Carlo simulations. The wide-sense adaptive dual control is
derived for 3 different values of the number of steps to go,
N=1, N=2 and N = 20, With N = 20 the Riccati-eguation for
the corresponding linear guadratic problem will reach very close
to its steady state. The results can therefore not be expected

to be improved much by increasing N further.

As expected the control law obtained with N = 20 performs bet-
ter than that with N = 2, but the difference is surprisingly
small, and within the estimated standard deviation. The average
loss per step is 1.51%0.04 with N = 20 and 1.54%0.04 with N = 2,
A fairly goocd performance with a loss of 1.65%20.05 per step is
also obtained for W = 1. One reason is that for the wide-sense
adaptive regulator the estimate is not allowed to become close
to zero, because that would make the corresponding linear-quad-

ratic problem singular. o
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Example 4.1.3. As a last example consider the scalar system
x(t+l) = ax(t) + bu(t) + v(t+1) (4.1)
y(t) = cx(t) + e(t) (4.2)

where a, b and ¢ are known parameters and {v(t)}and {e(t)} are
independent sequences of independent gaussian variables with
zero mean and unit variance. With known parameters any value
of N in the loss function (2.10) will give the same control
law. To get a difference it is necessary to include also the
input in the loss function. The input is thus determined to

minimize the expected value of

1 41 2 D)
5 z x(8)® + ku(s=1)“ (4.3)
Tog=t+l

where k is some given constant. The-aim with this example is
to compare the control laws obtained by using N = 1, N = 2 or
letting N » e« in (4.3). This is a standard problem, and its

solution can be found in standard texts such as Astrdm (1970).
All control laws have the form

u(t) = L.x(t) (4.4)
The average value of the loss per step is

a202P2

e (4.5)
N CZP + 1

P+ 5

where P i1s the stationary value of the estimate variance and
SN is the stationary solution to the associated Riccati equa-
tion. The only difference between the three control laws is

the value of 5, whereas P will be the same.

It turns out that SN depends only on N, a and k/bzﬁ Therefore
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choose b equal to one. Figs. 4 - 6 show SN as a function of k
for some values of a. Each figure contains one curve for each
of the three N-values.

0 T T T T T T T T T
5 k 10

Figs. 4 - 6 = SN for N = 1, 2 and o with a = 1 (fig. 4),
(fig. 6).

F
a~ = 2 (fig. 5) and a = 0.9

In fig. 4 a = 1. Then 82 is rather close to Sm. The two-step
approximation is thus quite good in this case. It can be shown
5= k k

that as k » « S_ ~ /k, Sy ~ 5 and S, ~ -

When the system i1s unstable, k must not be taken too large if
a finite N-value is used. This would result in an unstable
closed~loop system, because the input is kept too small to

stabilize it. This is seen in fig. 5 where a = 2. Still N = 2
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is much better than W = 1, but only on infinite N keeps S finite
for all k.

For |a| < 1 Sy
N = 1 can be used without much extra loss if k is very large or

tends to the same limit with any N as k = <, Thus

very small. With a = 0.9 as in fig. 6 there is an interval for k
where SZ is much closer to S_ than to Sl' Then again the two-
step approximation is good. When |a| is further decreased the
differences between the three control laws will rapidly vanish
completely for all values of k. Then, of course, the one-step
approximation is excellent, and there is no need to have N = 2,
]
In conclusion, the examples of this section have shown that there
are cases when the two-step approximation works very well. There
are, however, other cases when the improvement over the one=step
approximation is small, or when the approximations do not work

at all.

Another problem is caused by non-minimum-phase systems. It is
well-known (Astrdm (1970)) that even for systems with known pa-
rameters the criterion (2.10) will then give an optimal system
that is extremely sensitive to parameter errors. For unknown pa-
rameters control laws obtained with this criterion can therefore
not be expected to work well. To overcome this problem the input
should be included in the loss function. But even then there
will be problems if too few steps are considered in the input

calculation.

4,2, Derivation and Approximations

In chapter 3 the Bellman equation (3.2) was stated. The optimal
loss in the last step, VN’ was also given in equation (3.3). To
compute the best two-step input u(¥-2), it is necessary to cal-
culate E(VN

FNW2)° As was discussed in chapter 3 this cannot be
done analytically, so some approximation must be made. It is
then important to remember that the difficult situations are

when the estimate of the first b-parameter is close to zero.
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The approximation chosen should therefore be accurate at least
in such cases. It would also be an advantage if the approxima-=
tion éould simplify minimization of the expected loss w.r.t.
the input. It is then preferable to be able to do this analy-
tically. But also with a numerical minimization it must be pos-
sible to keep track of every local minimum to assure that the
global minimum is found. Some different approximations will now

be discussed.

With FN“Z given all random parts of Vg in (3.3) are generated
by y{(i~1). However, V, can also be written with ﬁé(Nh’VﬁP(N)KT=
= x as the basic random variable. Using this notation the prob-
lem is to find approximations tO

E iﬁ&% (4.6)

1 + x

where x € N{(m,o0). They should be most accurate for small m/c,
and should not give too difficult a minimization to perform af-

terwards.

o s s s ez e A i T £ G T Bm ema R b

One method is to replace all random variables by their means.

This is called Gauss approximation and gives for (4.6)

f(x) £ (m)
E —— R (4.7)
%< 4+ 1 m- 4+ 1

The uncertainty o does not enter into (4.7) at all, which is
probably a disadvantage. For m = 0 this approximation is good
only when ¢ ~ 0, i.e when the b-parameter estimate 1is very ac-

curate.
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Another possibility is to make a serial expansion of the deno-
minator around the mean of x2 before taking the expectation.

This gives

. £(x)  _ . 1 £ (x) ~
1+ xz 1+ m2 + 02 1 + xZ - m2 = 02
1 + m2 -+ 02
) n 2, 2 2lF
~ 5——7 * L EE(x) S R— (4.8)
1 +m” + ¢ k=0 1+m + o
With n =0 (4.8) is
£ f(x)2 o~ Eféx) 5 = E (numerator) (4.9)
1+ x 1l +m” 4+ 0o F(denominator)

This is the approximation used for the two-step regulator. It
turns out that for small values of m/¢ this is a much better
approximation than (4.7). To illustrate this the correct value
(4.7), (4.9) and (4.8) with n = 2 have been calculated for a
simple case where f(x) = 1. Fig. 7 shows the result for m = 0

as functions of o.

a: correct value
b: (4.7)
c: (4.9)
d: n=2 in (4.8)

0.5+

0 l —
0 ] 2 3 4 o

Fig. 7 = Approximations of (4.6) for m = 0.
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The accuracy of (4.9) decreases with growing m. For m = 1 and
o close to zero the correct value increases with ¢ while (4.9)
decreases. This is seen in fig. 8. This approximation is thus
not very good for small o-values when m/0 is not close to ze=
ro. Inclusion of one more term from (4.8) obviously takes care
of these problems. However, this extra term would make the two-

step regulator much more complicated.

a: correct value
4 b: (4.7

¢ (4.9)

d: n=2 in (4.8)

Fig. 8 - Approximations of (4.6) for m = 1.

With a minimization to follow, the derivatives are also of in-
terest. Fig. 8 shows that for m = 1 (4.9) may be not so bad
for o > 0.8. The dependence on m for a fixed o (= 1/Y2) is
shown in fig. 9. Again (4.9) is best for small m/o=-values, but
the error is almost constant, and the erxrror of the derivative

will thus be small.

To summarize, the approximation (4.9) seems to be good when m/¢
is small, which is a desired property. For larger m=-values
there is an area around ¢ = 0 where it is not so good. Compar-
ing (4.7) and (4.9) the latter is better, at least in the im-
portant case of small m/o-values. This is one reason for choos-
ing (4.9) in this report. Another reason is that, as pointed
out below, the minimization to follow will be easier than with
(4.7).
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a. correct value
b b: (47)
c: (49)
n=2 in (4.8}

0.5

Fig. 9 - Approximations of (4.6) for ¢ = 1//27.

When using (4.9) on two different expressions for the same

gquantity the results may be different as for

E(Xz) = m2 + 02

and

r x2(l+x2) o E(x2+x4) _ m2 + 62 4 202[02 + 2m2]
1+ XZ E(l-fxz) 1+ m2 + 02

This is taken into account in the following way when E(VNIFNwZ)
is calculated from (3.3). The last two terms of (3.3) is a dif-
ference between similar terms i1f P is small. The difference is
zero if P is zero. Therefore (4.9) is applied to the difference,
and not just to the last term, even though the second last term
could be treated without approximation.

The result from using (4.9) on E(VNIF ) is now inserted into

N=2
(3.2) . This gives a rational function of u(i-2), which is de-
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rived in appendix C. To find the minimum the derivative is
taken and equated to zero. This gives a 5th order polynomial
to solve. The input, finally, 1s determined by a direct comn-

parison of the 5 corresponding function values.

It is worth noting that the expected value of the denomina-
tor of (3.3) does not depend on u(N-2). This fact simplifies
the minimization when using approximation (4.9). On the other
hand it is possible that this simplification introduces a ma-
jor difference to the optimal regulator. Anyway, if Gauss
approximation were used, the denominator would depend on
u(N-2), and the derivative would be a 9th order polynomial
instead. This would more than triple the time required to
solve for its zeroes, at least with the root=finding algo-

rithm used in the simulations of this report.

Since the approximation (4.9) is not very accurate when m/o
is large, it might be better not to use it then. For such
cases the basic cautious or self-tuning regulators are pro-
bably good enough. A modification of the two-step algorithm
would then be to use (4.9) only when m/o is small and (3.4)
or (3.5) otherwise. The effect of this can only be tested by

simulations.

4,3. Relations to Other Regulators

There is one special case when the two~step regulator and the

regulator by Wittenmark (1975a) minimizing (3.17) are very si-

milar. This is a system with no a-parameters and only one b-

parameter. Then (3.3) reduces to

N2 .
02 N yr(N) Pbb (V)

b (M) 2 +P,, ()
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on which the approximation (4.9) is applied. Using the Kalman
filter equations (2.6) = (2.8) the expected value of the deno-
minator is

(17 012 | } _
El[b(N)] P () [Fo o=

E{lo, b(i-1) + K(n-1) (y(@-1) - u(N-2)b@-1))]% +

2 2 2
2 " ) ® ot pp N-L) Tu(n-2)
+ @bbeb(le) + Ry T 02 ) 5 FNmz =

+ u(lN-2) Pbb(Nwl)

2

bw-1)1% + ol b (

N-1) + Rbb (4.10)

L2
which is independent of u(N—=2). With this approximation (3.2)
becomes

nd . ] 2
N-1 ut§m2) El(y@-1 - y, (9-1)) IFNmz] +

2 yr(N)Z
+ oo A 5 5 Pbb(N) (4.11)
[@bbb(le)] + @ Py (N-1) 4+ R

But minimizing (4.11) is exactly the same thing as minimizing
(3.17) for t = N-2 if

£(P @) = Py (N) (4.12)
and
yr(N)2
A= 3 (4.13)
[@bbb(ﬂml)] P Fop ¢ Ry

Thus in this case the two-step regulator is equivalent to the
regulator of Wittenmark (1975a) with a time=-varying x. Intui-
tively it seems useful to let X vary, since the need for iden-
tification wvaries, and is largest when Bi/Pbb is close to zero.

It could therefore be interesting to try using (4.13) or some
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modification of this type in Wittenmark's regulator also for

more complicated systems.

An advantage with Wittenmark's regulator is that numerical
minimization can be used to find the global minimum of the
loss function. Because of the possibilities for several local
minima a root-finding algorithm is employed for the two-step
regulator, which is a bit time-consuming. A middle way could
be to assume all parameters known except for the first
b-parameter, and then use the (4.9) approximation. This might
simplify the minimization, and if the leading b-parameter is
much more important than the others the increase in loss might

be small. This possibility has not yet been examined closer.

Cautious_regulator

An interesting question to ask is: How big is the difference
between the two-step regulator and the basic cautious one?
This point will now be studied for the system treated above
with only one b=-parameter and no a-parameters. To simplify
further put ®bb =Y, = 1. Firstly (4.11) is expressed in terms
of u(N-2) with X as in (4.13). For easy notations the argu-

ments are dropped. The first term is

L, = (buD)? + u’p + 0% = (Pb2)u? - 2bu + 1+ o (4.14)
and the last term is
v 2 2 2
L2=_>\P+R~m§£=im%fm?>\w§£m!;-§w+?\ (4.15)
g” 4+ u’Pp g + u’Pp

The graphs of Ll and L2 may look as shown in fig. 10.



0 . | ; :
-2 -1 0

Fig. 10 - A typical behaviour of Ly L,

The nminimum of Ll is denoted Uy and the total minimum u*.

The derivative of (4.14) is

dL . .
L - 2u(P+b2) = 2b
du

which gives

il :,,amm;ém
1 P+}’32

As shown in appendix B u* and the maximum of L,

and

are always
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(4.16)

(4.17)

on different sides of U e When uq is away from zero, u* and

Y1

maximum of LZ is narrower than the minimum of Ll, then u*

are relatively close. But if uq is close to zero and the

and u, are quite different. This ig the case if b is small,

and if estimation can be much influenced by choosing u,

it can if the second derivative of L1+L2

Now

which

is negative at u = 0.
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2
a% (L, +L,) . 2
2 = 2(p4b%) = 2 Es =
du u=0 b+ P + R ag
~9 362 + R + P[l = '“'}2-
= 2b° + 2P > g (4.18)

b + P + R

To get (4.18) negative it is necessary that 02 < 1. This

5 will
not change very much with u, and the cautious regulator uy
may just as well be used. If 02 < 1 then (4.18) will be ne-

means that if the measurements are very bad, then L

. . 2, . .
gative if b” is small and P big enough. This means that when
measurements are accurate enough, uy and u* may differ signi-
ficantly when the estimate is close to zero compared to its

uncertainty. To illustrate, the following numbers are given

b = 0.05
P = 0.5
R = 0.1
62 = 0.1

In fact these are the numbers used for fig. 10. They give

~ 0.1 and u* a~ 0,65

s s e G T s G T e

Numerical solutions to dual control problems in Bohlin (1969)
and Astrdm and Wittenmark (1971) indicate that the control
law may be a discontinuous function. The two-step regulator
is indeed discontinuous. In the above example the minimizing
u for L1+L2 will be discontinuous at b = 0. Changing b will
not influ?nce LZ’ but the minimum of Ll will move. When de-
creasing b fr?m a positive value the global minimum of Ll+L2
will jump at b = 0 from the right local minimum to the left

one.
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5. SIMULATIONS

In all the simulatidns the system output is generated by (2.1)
with ¢o(t) as in (2.3). The corresponding parameter vector 6(t)
is generated as shown in (2.2) unless otherwise stated. The
noise was generated by summing 12 sequential outputs from a
mixed congruential generator with 131 072 states. The period
then was 16 384. For each simulation the performance is
measured as

1 i 2
v, = D (v(v) -y (1) (5.1)
N o=ty o+ 1ot=ty

When examining steady-state behaviour td was usually set to

t 50 in order to decrease the influence of initial values.

q =
Most simulations were performed M times to get a measure of
the spread of the performance function. The different runs
were considered as independent, and the mean value and the
standard deviation of the collection of M values of vV, were

computed as

M

- 1 i
VS =% z VS (5.2)
i=1
m "
| i =2
>3 —\/ﬁfi izl (VS-v,) (5.3)

where V; is the result of the i:th run. Then Z tells how close
to ?; the result of single runs will usually be. This value

will, of course, depend on the length of the simulation.

To get a measure of the accuracy of Vg its standard deviation

Y~ is estimated as

since the different runs are considered as independent.
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Parameter estimation is an important part of the considered
regulators. The same estimation algorithm is used for all re-
gulators in order to make conditions as equal as possible.
The estimation algorithm contains a model of the system, and
In

cases where the model structure is correct, all parameters

the parameters of that model must be chosen in advance.
were set to their true values. In some of the simulations,
however, the true system was generated in another way. The
parameters for estimation then had to be tried out by simu-=
lation. This tuning was done using the cautious regulator,
and the same parameter values were then used for the other

regulators.

For easy reference the regulators tested are listed and num-

bered in table 1.

Regulator Parameters

1. Self-tuning regulator (3.5) Input limit

Yim
2. Cautious regulator (3.4)

3. Cautious, perturbed with extra input

3a. according to (3.6) amplitude Uy of extra input
3b. according to (3.7) Ug
3c. according to (3.10) u, and uncertainty limit Piin
3d. according to Mannerfelt (3.11) A in (3.11)

4. Wittenmark's regulator, £(P) = epet A din (3.17)

5. Two-step regulator

Table 1 = List of regulators

Note that regulators 2 and 5 have no parameters apart from
those of the estimation algorithm. As shown in table 1 the
other regulators have additional parameters that have to be
chosen in advance. This may be a serious drawback, especially
if

cor 1f the performance is sensitive to the parameters.

a piont  knowledge about the optimal value is available
In the

no
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simulations the extra parameters were determined experimental-

ly, and are well-tuned.

The minimization in Wittenmark's regulator was done numerical-
ly. A line search based on the fitting of a guadratic to 3
points was used. It was found that 5 iterations was normally

sufficient.

Simulation l: This example illustrates that for slow parameter

variations, where the leading b-parameter keeps away from zero,
the non-dual regulators will do quite well, The system is of

first order with

a(t) = 0.2 + 0.58in0.01t
b(t) = 1.5 - 0.98in0.01t
02 = 1
yr(t) = 0

Note that sometimes a(t) > 1, so that with no control the out-
put would drift away. The optimal control for known parameters
is u(t) = %%%%-y(t). The closed=loop system then has a pole at
the origin and disturbances will be eliminated in one step. The
gain of the optimal regulator is shown in fig. 1l. It varies
between 0.17 and 2.33 with a period of 200n ~ 628 steps. The
gain variation is thus very slow compared to the dynamics of

the optimal closed-loop systemn.

gain

24

O T T T T

0 500 time 1000

Fig. 11 = Gain of the optimal regulator for known parameters.
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With sinusoidal a(t) and b(t) the parameters in the estimation
algorithm have to be tried out by simulation. The covariance
matrix for the parameter noise was first determined from the
maximal derivative of the parameters. This is the maximal pa-
rameter change in one step, and could therefore be a reason-

able value for the standard deviation. This would give
R = diag[0.000 009  0.000 081]
However, with sinusoidal parameters the changes are coordinated,

and simulations showed that a larger R-value had to be used. The

following values were finally chosen

o I (unity matrix)
R = 0.005-I

02 = 1

o T

0(0)" =[0.9 1]

P(0) = 0.1-I

Regulators 1 (with no input limit), 2 and 5 were used, each in
1 run of 1000 steps. As expected all 3 regulators gave very si-

milar results with the following loss per step

STURE 1.072
Cautious 1.067
Two=step 1.071

With known parameters the loss would be VS = 1.0, To show the
similarity the regulator gains in the interval [200,300] are
given in fig. 12. The parameter estimates are also similar and
are shown only for the two-step regulator in fig. 13 and 14.
Notice that the gain of the regulators agree well with the op-
timal gain although the parameter estimates a and b vary sig=

nificantly from the true values.
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STURE, Two-step

Cautious

Optimal

200

250

time 300

Fig. 12 = Regulator gains of STURE, the cautious and the two-

step regulators and the optimal gain for known para-

meters.
2_
]_
O T T T J ] . T
0 500 time 1000
. 13 = The a-parameter and its estimate.
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0 500 time 1000

Fig. 14 - The b-parameter and its estimate.

It is obviously not necessary for the regulators to have ac-
curate estimates of both parameters. In fact, a closer look
at (3.4) and (3.5) reveals that in both cases with Yr(t) g 0
the input depends on the guotient of the estimates, but not
on the estimates themselves. Fig. 15 shows é(t)/ﬁ(t) and
a(t) /b(t) for the two-step regulator.

It is possible to estimate the system parameters better by
applying an extra input as is done with the cautious regula-
tors 3. But this is not necessary for controlling the system,
and will increase the loss. Figs. 16 and 17 show the estimates
when using regulator 3a with u, = 0.5. Estimation is better,

at least in the second period, but the loss was VS = 1.731.

With a non-zero reference value (3.4) and (3.5) show that both
parameter estimates are needed and in simulations their accu-

racy was much higher than with v () = 0.
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|
0 500 time 1000

Fig. 15 = Gain of the two-step regulator and the optimal gain
for known parameters.

a,a
2_
1_
O li T T T T T T l‘ -
0 500 time 1000
Fig. 16 = The a-parameter and its estimate when using an extra

input.
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b,b
3
g
1
0 T T T T T T T T T
0 500 time 1000
Fig. 17 = The b-parameter and its estimate when using an extra
input.

In order to get a feeling for the limitations of the regulators
the frequency of the parameter variation was increased. Two ad-
ditional frequencies were tried, 0.1l and 0.3, which correspond
to periods of T = 63 and T = 21 steps respectively. The result

is given in table 2.

Parameter period (steps) T=628 T=63 T=21

Regulator

STURE 1.072 1.566 3.158
Cautious 1.067 2,193 2.911
Two-step 1.071 1.582 2.905

Table 2 - The loss for different speeds in parameter variations.

The large loss with the cautious regulator for T = 63 is due

to short periods of turn-off. Apart from this all 3 regulators
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still behave very similarly. The performance limit is set by
the estimation algorithm, which cannot follow too rapid para-

meter variations.

Simulation 2: This example is more difficult than the previous

one. The parameters are stochastic processes, and the variation
in the gain is much larger. The system is of first order with

the parameters generated as

a(t+l) 0.98a(t) + v, (t+1l)

1

b(t) = 2 + x(t)~

where

x(t+1) x(t) + v, (t+1)

5

As in simulation 1 the optimal control with known parameters

is u(t) = %%%%vy(t), This gives a closed-loop system with a
pole at the origin. The gain variations of the optimal regula-
tor are much faster and larger than in the previous simulation.
But the b-parameter does still not change sign, and is always
greater than 2. One realization of the optimal gain is shown
in fig. 18 and the corresponding parameters a(t) and b(t) are

shown in fig. 19, where the two straight lines indicate z1.

Note that the a—-parameter is sometimes large with e.g. a(275) =
~ =2, With no control the output would then drift away very
quickly. Towards the end of this realization the optimal gain
is close to zero for a while. This is because b(t) increases
drastically, with a maximum of 20.5. The gain must then be es-
timated accurately, since errors will be multiplied by a large
b(t).




94

gain

0 100 200 300 400 time

Fig. 18 - One realization of the optimal regulator gain for
known parameters.

a,b

b (1)

I
400 time

Fig. 19 = One realization of a(t) and b(t).
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Most parameters in the estimation algorithm were given their
correct values. The true b=-parameter, however, does not fit
in the model (2.2) which is used in the estimation. The model
for the b-parameter was found empirically by simulations. The
initial guess for the standard deviation of the b-parameter
noise was based on the derivative of the b-parameter equation.

Then x(t) = 1 was used as a common value for x. This gave

2
R, = [2x(t)o ]" = 0.16

Simulations showed better results with a somewhat larger Rb’
and the final choice was

© =1
R = diag[0.04 0.4]
o2 = 0.04

0% = 0.1 1]

P(0) = diag[10 1]

For each regulator 30 runs with N = 500 and td = 50 were per-

formed. The result is shown in fig. 20, where VS £ £ is marked

out for all cases.

Vs A : :" 1 QYA
| \ |
| | i

01t ! | | T 01
| } [ |
| |4 [
| | |

P 1 | #zz f Y
Yim®
| | |
| | |
| | |
t. STURE i 3b. Cautious : 4. Wittenmark's :5. Tv;/g—

OJ- — - ] e | + + } + - s p-LO

0 1 Ui 0 o0l o om o002 o003 A |

Fig. 20 = The loss with different regulator parameters.
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The results for the best parameter choices are also listed in
table 3.

Regulator V_tY Parameter

1. STURE 0.0623+£0.0028 U, ., = oo
lim

1. STURE 0.0582+0.0012 u,. = 0.6
lim

2. Cautious 0.106£0.030 - = =

3b. Perturbed cautious 0.089+£0.009 Iue[ = 0.006

4, Wittenmark's 0.0586+£0.0018 A= 0.005

5. Two-step 0.0571+0.0012 - =

Table 3 = Best results in simulation 2.

With the cautious regulator and no extra input a few cases of
turn=off occurred. With ]uel = 0.003 one of the runs gave v, o=
= 6.449. The reason was a short period with negative bl, which
by chance was fatal to that particular run. The mean loss for
the perturbed cautious regulator with ]ue] = 0,003 is then ve-

ry inaccurate with $s = 0.28%0.21.

The arrow in fig. 20 at Ugig = 0.4 for STURE indicates that one
simulation gave an unstable closed-loop system. This may happen
when the input is limited, since a large input is required when

the system is unstable. Figs. 21 - 24 show what happened.

Just before t = 370 the a-parameter drifts down to a =~ =4. This
demands a large negative input. With a limit of =0.4, this can-
not be generated and the output drifts away in just a few steps.

Note also that the large output makes a very accurate.

With the large a-parameter variations of this example it is thus
difficult to find a suitable input limit. Moreover, the decrease
in the loss will be fairly small. In a practical problem the
a=parameter usually varies less. It is then often possible to

find gquite reasonable bounds for the control signal.
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o 3 T time S

-044

— . — ———
300 350 time 00 350 time

Figs. 21-24 - An unstable realization with STURE.

Fig. 21 - the a-parameter and its estimate
P'ig. 22 = the b-parameter and its estimate
Fig. 23 - the input
Fig. 24 - the output

To summarize this simulation, the two-step regulator, STURE
with no input limit and Wittenmark's regulator give approxi-
mately the same performance. But STURE is the simplest one,

and could therefore be preferred.

Simulation 3: In order to find the limitations of the self-

tuning regulator, the b-parameter is now moved closer to zero,
and the variation is speeded up a little. The first order sys-
tem is generated with the same a-parameter, equation noise and
reference value as in the previous simulation. The b-parameter

is now

2
b(t) = 0.5 + x(t)
where

X(t+l) = 0.999x(t) + v2(t+l)
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E(vz(t))2 = 0.09

The gain of the optimal regulator for known parameters may now
change considerably in just one step. One realization is shown
in fig. 2% with the corresponding b-parameter in £ig. 26. The
gain changes are about as fast as the dynamics of the optimal

cloged-loop system, which has a pole at the origin.

The parameters in the estimation algorithm were chosen in the

same way as in simulation 2. Intuitively, should be larger

85b
than before, since the b-parameter noise is larger. It turned
out, however, that with 0.5 as the lower limit for b(t), it is
more important to keep the estimates "calm"” in order to avoid

sign errors. The same value as before was therefore chosen.

gain
2_
0-
-2
~b l | Y T _
0 100 200 300 400 time
Fig. 25 = One realization of the optimal regulator gain for

known parameters.
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b

30

20+

10

0 I | T :

0 100 200 300 400 time

Fig. 26 = One realization of the b-parameter.
Again 30 runs with W = 500 and td = 50 were performed for each

regulator. The gain changes are very large and the a=-parameter
is sometimes greater than 1. This makes control very difficult,
and the result from just 500 steps will depend very much on the
actual noise sequences. The mean loss i1s then not an appropriate
measure. Instead the results from each run is marked out by a
cross in fig. 27, which indicates the probability distribution

of the loss function.

Fig. 27 clearly shows the difficulties in using mean values on-
ly for problems of this type. The two-step regulator gives the
most concentrated distribution. It has only one run with Vs > 1,

and this maximum value is only ~4.12.
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REGULATOR Runs
theoretical for known parameters with
1.STURE T/ ‘ s
g 1&@ MY » » y oo
1§ v |
u“m=1 B xx  xx X [ 03
I l
. g 3
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3b. Cautious | v |
lugl=0.0005 BEB x x x x x oot
L l
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j{:ODS | X X X X X x X |xox
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A=0.10 | X XX %X X -5
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A=001 i§§§§§§ X XX x x X [ sodbox
|§¢ I
5. Two-step ¥ x x x [ x
l ' . + — -
0 05 10 Vg

Max

18.9

7h
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61.4

918

37150

144

272

733

412

Fig. 27 = The distribution of the loss function. The arrows
denote median values.

The minimal value of the loss for known parameters is 0.04.

The self-tuning regulator can manage most of the realiza-

tions. This regulator has, however, difficulties when ﬁ(t)

changes sign. The two-step regulator is safer in such cases,

and also gives a lower median value,

for STURE.

0.08 compared to 0.10

The large loss (1074) for STURE with u = 1 again shows

the danger of limiting the input.

stability.

The loss then grew infinitely.

lim

In 6 runs this caused in-

Occasional big

losses for all other regulators arose during comparatively

short periods of bad control.
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Large inputs can be generated by STURE in two different ways.
One is when 5, the denominator of (3.5), is close to zero.

If the true b-parameter is not small this effect is not wan-

ted. The other case is when the open—loop system is unstable,
so that big inputs are needed for stabkilization. In this case
a limit on the input may be fatal, as shown in the simulation

above.

Instead of limiting the input, [%] could be kept away from
zero by force. The size of the forbidden region could then be
determined from the wvariance of the b-parameter estimate. An-
other alternative is to limit the regulator gain. This might
be more natural in practical problems. These two methods have,

however, not been tested in this report.

For this difficult system, the large losses in some of the
runs are usually generated in just a few steps. An example
is shown in figs. 28-29, which is the output and the loss in
a run with Wittenmark's regulator and X = 0.01. A major part

of the loss is generated at t = 275,

This explains the wide-spread results from different runs.
Difficult periods occur just now and then. If such periods
are completely absent in one run, the loss will be very small
and otherwise big. The only way to get less spread out results
is to use longer runs, so that all runs contain some difficult

periods.

On the other hand, the criterion is maybe not very well-chosen
for this kind of problems. It will focus the efforts of the
controller totally to the short difficult periods. This indi-
cates that what is needed is a detailed study of what happens

over a few sampling intervals when the output is large.

In this simulation the two-step regulator is uniformly better
than all the others. The need for extra computing efforts is

well compensated for by improved performance.
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Figs. 28 = 29 = The output and the loss in one realization with

Wittenmark's regulator.

Simulation 4: Sofar, the b-parameter has not been allowed to

change sign. The next simulation is taken from the master the-
sis by Mannerfelt (1977), where an integrator with a zero mean
stochastic process as gain is studied. The system is

y(t) = y(t=1) = b(t)u(t=1) + e(t)

The parameter variations are described by

b(t+l) = 0.9-b(t) + v(t+l)
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and

Fe(t)? = 0.25
Ev(t)? = 1
y.(t) =1
b(0) = 0

1,

The b-parameter model implies frequent sign changes. A typical

realization of b(t) is shown in fig. 30.

TR N

MR |

0 100 200 300 400 time

Fig. 30 = One realization of the b-parameter.

When b(t) is zero the system is not controllable, and the out-
put variance will grow linearly. But also with b(t) small,

but non=-zero, estimation errors will make control difficult,
and the input may easily get the wrong sign. This would give
an unstable closed-loop system if b(t) were constant. Parti-
cularly difficult situations occur when the true b-parameter
stays close to zero for a while as e.g. around t = 285 in

fig. 30.
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It can be expected that the self-tuning regulator will have

difficulties to control the system. With a small

1

b=parameter

estimate in the denominator, this input is very sensitive to

estimation errors.

In the estimation the a=coefficient -1 was assumed to be

known. Only b (t) was estimated. At first all parameters in

the estimation algorithm were set to their true values with

~
9

b(0) = 0.1

it

P(0) 10

Then also &, =
bb

= (0.9,
with t, =

a 100. The additional parameters

and 4 were well-tuned using simulations.

1 was tried instead of the true value @ =

For each regulator 50 runs of 500

each regulator is shown in table 4.

“bb

steps were recorded
of regulators 1, 3
The best result for

g * z Vé X
Regulator ® = 0.9 Parameter o =1 Parameter
bb bb
1. STURE 1.160%£0.043 wu,, = 0.7 1.110%0.040 wu,, = 0.65
Llim 1lim
2. Cautious 1.680%0.040 none 1.605%0.043 none
3a. Perturbed 1.095£0.023 |ue| = 0.15 1.084%0.023 |[u | = 0.15
cautious
3. ~"- 0.995%£0.021 Iue[ = 0.14 0.965+0.019 ]ue[ = 0,16
fu | = 0.16 lu | = 0.17
3c. =" 1.02520.022 1.012+0.024 -
P.. = 2.0 P,, = 2.0
lim lim
3d. -"- 0.855+0.028 X = 0.1 0.860%0.027 X = 0.15
4, Wittenmark's ~ 0.905%0.025 X = 0.3 0.905+0.025 A = 0.2
5., Two—step 0.915%0.036 none 0.95040.030 none
Table 4: Results from integrator example.
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The best performance is obtained with regulators 3d and 4.
But to get these low losses the A-value had to be well ad=-

justed. Regulator 34 with @ = 0,9 and A = 0.3 gave e.g.

VS = 1.01. Also for regulatgis 1, 3a and 3b WS has a distinct
minimum at the indicated parameter value. In a practical si-
tuation it would probably not be possible to tune the parame-
ters optimally. The two-step regulator is then a good alter-

native without any extra parameters.

The self-tuning regulator performs surprisingly well com-
pared to the other regulators of table 4, despite the fact
that the b-parameter changes sign. It is, however, necessary
to limit the input, and furthermore the loss increases consi-
derably when Ulim is moved away from its optimal value. With
Uyim = 24-22 and @, = 0.9 the loss is e.g. 'VS = 2,46, Limit-
ing the input is not too dangerous in this case, since the
system is just on the stability limit and not exponentially
unstable. This is why it is possible to make STURE work at

all in this example.

Turn-off is probably a major reason for the big loss with the
cautious regulator. With an extra input the loss is decreased
considerably. Unexpectedly regulator 3c showed no improvement
to regulator 3b. It seems to be more important to give the
extra input a correct sign than to remove it when it is not

needed (cf. regulators 3a, b and c).

It is noteworthy that the results are in most cases better
with ®-= I than with the true value. This is good, because
for real systems @® would not be known, and ® = I is then a

natural choice.

Some runs were also made to test the sensitivity of the re-
sults to the R-value in the regulator. A factor of 10 up or
down approximately doubled the loss for regulators 2, 3c, 4
and 5.

In this example the difference in performance between the re-
gulators is thus small if they are all well-tuned. The two-

step regulator, however, gives no additional parameters to tune.
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Simulation 5: With two integrators instead of one the diffe-

rences between the regulators ought to be more evident. This

is shown in this simulation. The system is

y(t) = 2y(t-1) + y(t=2) = b(t)u(t=1) + e(t)

with
b(t+l) = 0.95:b(t) + v(t+l)
and
2 _
Ee(t)? = 0.0009
Ev(t)? = 0.09
yr(t) = 1
b(0) = 0.5

The b=parameter variations are similar to those of simulation
4, and there are the same problems due to sign changes. In this
simulation, however, the effects are amplified by the second
integrator. Fig. 31 below shows one realization of the b-para-

meter.

Again the a-coefficients are assumed known, and all parameters

for the estimation algorithm were set to their true values with

b(0) = 0.5

P(0) 10

As in simulation 3 short periods of bad control may give domi-
nating contributions to the total loss. Such periods will oc-=
cur when the true b-parameter varies around zero. Then even

an optimal control law would have trouble, since the estimate
of b(t+l) cannot be more accurate than the noise added to

b(t) allows. With b(t) = 0 the system is not controllable and
the output will drift away rather guickly.
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Figs. 31 - 36 show the b-parameter, the estimation error and
covariance, the input, the output and the loss for one run

with the two=-step regulator.

In order to be able to use the guadratic loss function to com-
pare different regulators very long runs were made. The proba-
bility is then small for a run not to contain any difficult
periods, and the results should be less wide-spread. Due to
the limited period of the random number generator the number
of runs was cut down to 25 with 5000 steps in each and td==50.
Fig. 37 shows VS £ Y~ for some choices of regulator parameters.
Notice that the result for regulator 2 (cautious) is the point

A = 0 or [ue[ = 0 in regulators 3a, 3b, 3d and 4.

For this system the best modification of the cautious regula-
tor is regulator 3b. It is less sensitive to the value of lue‘,

and also gives a smaller minimal loss.

The two regulators 4 and 5 give in this case a significantly
smaller loss, which could compensate for their larger comput-
ing requirements. The advantage with the two-step regulator

is, of course, the absence of an extra parameter to tune such
as A. No results for the self-tuning regulator have been gi-
ven. This is because it was impossible to make it work satis-
factorily. The best result in one run for any value of Uqim
was Vs = 00,4798, and more than half of the runs gave Vs > 1.

The result for the best parameter value of each regulator is
listed in table 5. For further illustration these results are
also given in fig. 38, where 2 cases with N = 500 are also shown.
Each run is marked out by a cross as in fig. 27. The arrows de-

note the median (upper arrow) and the mean (lower arrow).

With longer runs the relative distance between the median and
the mean or between the maximum value and the mean is smaller.
This is most evident for regulators 4 and 5. The results for

the other regulators are still quite spread out.
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0 160 200 300 00 time 500

Figs. 31 = 36 = One realization of the double integrator with
the two-step regulator. From above: the b-pa-
rameter, the estimation error, the estimate
variance, the input, the output and the loss.
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Fig. 37 = The loss with different regulator parameters.
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Fig. 38 - The distribution of

the loss function.
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Regulator VS X Parameter
1. STURE 11.527.2 Uyim = 1

im
2. Cautious 0.,343+0.054 none
3a.Perturbed cautious 0.244x0.055 ]ue| = 0.03
3b, ="= ="=  0,213%£0.043 Iue] = 0.027
3d. ="- == 0.261+£0.049 A= 0.001
4. Wittenmark's 0.124%0.011 A = 0.16
5. Two=step 0.130%0.016 none

Table 5 = Results for double integrator.

It appears in fig. 38 as if the mean loss per step is lower
with N = 500 than with N = 5000. This is, however, a mere co-
incidence. The 30 runs with 500 steps should give the same
amount of information as only 3 runs with N = 5000. By chanee
these "3 runs” may well give a much too low mean loss. This
fact was demonstrated when 51 more simulations with the two-
step regulator and N = 500 were performed. In the last but one
the loss per step was VS = 3.03. This run alone raised the

mean loss from V_ = 0.084 to V, = 0.12.

In problems of this kind it is thus dangerous to compare mean
values only, not to mention single runs. It is necessary to
get to know the whole probability distribution of the loss

function.

In this simulation there are large differences in performance
between the regulators. It is not possible to find any suit-
able input limit that will make STURE work satisfactorily. An
extra input will improve the performance of the cautious regu-
lator only to a certain extent. This clearly motivates the use
of Wittenmark's regulator or the two-step regulator since they
may improve the performance further by approximately a factor
of 2. In this example the result is sensitive to variations in
the extra regulator parameters. For this reason the two-step

regulator is the best choice.
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Simulation 6: All previous simulations have illustrated steady-

state performance. The behaviour in the first 10 steps will now
be studied. The system is a double integrator with unknown but

constant gain

y(t) = 2y (t-1) + y(t=2) = bu(t=1l) + e(t)

with

Fe(t)? = 0.01
yl_,(t) = 0

v(=1) = y(=2) =0

The purpose of this simulation is to study the cost of learning
the b-parameter. This is done in 50 runs for each regulator
with N f 10 and td = 1. For a certain value of the initial es-
timate b(0) and covariance P(0) the result will, of course, de-
pend on the true b-parameter value. This effect is averaged

out by taking the true b-parameter for each run from a proba-
bility distribution. Previous simulations have shown that sign
errors in the estimate for b will give problems. To decrease
the risk for sign errors the true b-parameter is always made

positive by taking

x ©if x > 20

—

10[1 + exp(0.1x~2)] = - if x < 20
where x is gaussian with mean and standard deviation both 50.

In the estimation algorithm the a-coefficients are assumed

known. The b-coefficient is known to be constant but with an
initial uncertainty. All parameters in the estimation algo-
rithm were set to their correct values, disregarding the 1li-

mit on b.

This means
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D =TI

R = 0

o® = 0.01
b(0) = 50
P (0) = 2500

The results from this simulation are given in the first column
of table 6. The probability distribution of the loss function
has long tails in this example too, so that just a few of the
runs may give dominating contributions to the mean loss. It
turned out that in all such runs, the true b-parameter was close
to 10, which is the least possible value. The explanation is
that due to large initial uncertainty, there is a risk that the
estimate of b will go too far when decreasing from 5(0) = 50
towards the true b-value. The estimate may even get the wrong

sign.

This situation was tested separately by making 50 new runs with

were also made. These two cases are shown 4s cases b and ¢
of table 6.

A comparison of cases b and c¢ indicates that it is safer to

underestimate the b=-parameter than to overestimate it. The on-
ly exception is the cautious regulator with a well-tuned extra
input, where the two minimal loss values are approximately equal.
The true b-parameter is, however, different in the two cases,

which may influence the result.
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for each regulator are underlined.

Case a Case b Case ¢
Regulator Parameter 5(0) =50 b(0) =50 b(0) =5
b varying b=5 b=50
1. STURE uy, = 3.63.5 2.8%2.4  0.331%0.060
=0.005 0.166%0.071  1.45%0.29  0.025%0.004
=0.01 0.073%0.029  1.15%#0.26  0.037%0.005
=0.02 0.032+0.009  0.47+0.13  0.112:0.012
=0.05 0.031£0.009 0.111%0.034 0.34440.052
=0.08 0.038+0.013 0.090%0.025 0.419%0.090
=0.15 0.062#0.031 0.091%0.027 0.335:0.062
2. Cautious - 0.034%0.008 0.197+0.038 0.120£0.029
3b. Perturbed u_=0.0001 0.034%0.008 0.175%0.028 0.068%0.011
cautious =0.0005 0.028%0,005 0.141%0.020 0.033%0.006
=0,001 0,02840.004 0.115%0.016 0.024¢0.004
=0.005 0.140£0.023 0.042:0.006 0.068£0.002
=0.009 0.423£0.074 0.03120.005 0.199+0.003
=0.02 ~ 0.023%0.002 0.975:0.008
=0.,04 - 0.045:0.002 3.933%0.016
4. Wittenmark's A =0.00002  0.025%0.005 0.125¢0.017 0.015£0.002
=0.00005  0.022£0.004 0.109%0.017 0.014%0.001
=0.0002 0.024+0.003 0.062#0.008 0.016+0.001
=0.0005 0.028+0.003 0.047£0.007 0.018+0.001
=0.001 0.032£0.004 0,039£0.006 0.021£0.001
=0.002 0.040£0.005 0.038t0.007 0.027+0.002
=0.008 0.071#0.011 0.025%0.005 0.045:0.002
=0.02 0.111#0.018 0.024£0.004 0.069:0.003
=0.10 0.235£0.039 0.022£0,002 0.152£0.005
=0.25 0.366£0.064 0.026£0.002 0.237+0.006
5. Two-step - 0.028£0.006 0.090£0.010 0.015+0.002
Table 6 - Results from 1l0-step simulations. The best values
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It is obviously necessary to limit the input if the self-
tuning regulator is used. The optimal limit-value will de-
pend on the true b=-parameter because the amplitude of the
optimal input with known parameters depends on b. The prob-
lem associated with overestimating the gain (case b) was
discussed above. When STURE is used underestimation (case
c) may also cause difficulties. The inputs generated will
then be too big in the first few steps, since the denomina=
tor of the input equation is 5, This will, however, speed
up estimation, so that control is near optimal very soon.
But the first few steps of large inputs cause the loss to
be higher than with any other regulator. As shown in table
Uyim = 0.005).

In practice it may be difficult to find an appropriate limit

6 this effect is overcome by limiting the input (
to use in just 10 steps.

In case a the cautious regulator works well even without any
extra'input, Using this facility the loss may be decreased

by less than 20%. In cases b and c with large initial esti-
mation errors more is gained. Without the extra input the re-
gulator is overly cautious, and parameter estimation is too
slow. But a well-tuned extra input makes this regulator far
better than STURE in case b and about as good in case c. A
comparison of the speed of parameter estimation is given for
case ¢ in figs. 39 = 44, where the loss and the variance of

b in 10 runs are shown for STURE, the unperturbed cautious

and the two-step regulators.

With STURE the variance is very small after just one. step,

but the price for this is a large initial loss. The cautious
regulator decreases the variance too slowly, so that the es-
timate may drift around too much. It can even become negative.
The output is then big, and produces a jump in the loss, but
also a much decreased variance. With the two-step regulator
the loss increase is about the same in each step with just
two exceptions. Note also the different scales of fig. 44 from
those of figs. 40 and 42. With the two-step regulator the
speed of parameter estimation is thus well adjusted to give

a small total loss.
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Wittenmark's regulator is the best one in all 3 cases and

its performance is not very sensitive to the value of 2.

The two-step regulator is almost as good in case ¢, but can-

not handle case b very well. Thus if the gain is not overes-

timated the two-step algorithm is again a good choice, since

it introduces no extra parameters. If possible to do, it may,
however, be worth while to try out a good A-value for Witten-

mark's regulator.

Comparing the two-step and cautious regulators shows that in
cases b and c¢ of this example a great deal is gained by look-
ing two steps ahead instead of one. But the large loss for

the two=-step regulator in case b indicates that two steps are

alsco insufficient.

Summing up this simulation the cautious regulator is found
to be better than STURE. The lowest loss 1is obtained with Wit-
tenmark's regulator, but if the b-parameter is not overestima-
ted the two-step regulator also works well. In practical prob-
lems with just a few steps to go it is hardly possible to tune
any parameters. The two-step regulator is then better than
all the others, since they are in this example sensitive to

the parameter values.
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6. CONCLUSIONS

There are three main contributions of this report. The first
one 1s the attempt in chapter 3 to present current ideas on
dual control in a systematic manner. Next a new algorithm

was given, which has been shown to work in some simulated
examples. In the simulations chapter finally, examples were
given to show when a suboptimal dual control law is motivated

and in which cases simpler adaptive schemes will do.

The main problem with the self-tuning regulator is that small
values for the estimate of the leading b-parameter will pro-
duce too large inputs. This is most apparent when the true
b=parameter may change sign or is frequently close to zero.
The cure used in this report was to limit the control signal.
This may be difficult if the system is unstable. It may also
be difficult to find suitable limits in practice, e.g. if

there are only a few steps to go.

In many cases the cautious regulator works very well as long
as turn-off does not occur. When this happens control may be
very bad. An extra input will then improve the performance.
In some cases, however, it shows up that this regulator is

myopic.

In the most difficult examples of this report the two-step
and the Wittenmark regulators can manage much better than

the others. This will then compensate for their larger com=
puting requirements. It should be emphasized that the two-
step regulator introduces no extra parameters to tune. This

is of great importance in practice, since no a piioil know-

ledge about the optimal value of these parameters is usual-
ly available. They may also be difficult to tune well enough

in a practical application.

Throughout the simulations the estimation algorithm has been
supplied with an accurate system model, in some cases even

the true one. This is unrealistic in practical situations,
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and it remains to be examined what are the effects of errors
in the model. The noise characteristics are, of course, not
known in general. In many cases the model order and the mo-
del structure may not be known. This makes it even more im-
portant to keep down the number of parameters to choose in
advance. It has been suggested to estimate also the noise cha-
racteristics on line. This would reduce the amount of a prlori
information needed, but the effect when combining this with

e.g. the two=-step regulator has not yet been studied.

In this report only independent equation noise has been trea-
ted. It is not clear how the results should best be extended
to systems with c-parameters. This is a subject for future

research. Moreover, systems with a longer time delay than one
sampling period has not been considered. This is also a prob-
lem to consider in the future. Nonlinear systems may often

be rewritten as time-varying linear systems. It would there-
fore be interesting to test different suboptimal dual schemes

on nonlinear systems.

As for improvements of the two-step regulator the approxima-=-
tion of future loss could be made more accurate. Two terms

in the serial expansion of future loss could e.g. be used in-
stead of one. It may, however, be more rewarding to find ap-
proximations that will make it possible to calculate multi=-
step regulators. Such approximations must then preserve their
structure when taken through one more step of a dynamic pro-=
gramming procedure that includes taking expectation and mini-

mizing w.r.t. the input.

In some simulations the distribution of the loss function

wag found to have long tails. This raised the question whe~
ther the quadratic criterion is suitable or not for this kind
of problems. Future research in dual control could maybe pro-
duce better criteria and also better system models. This is
probably what is needed also to get a deeper understanding
of the nature of dual control. There is still a.lot to be

done in this area.




119

APPENDIX A

A 3-step Example

Let the system be described by (2.1) with only al(t) as in
(2.2) and the other parameters time=varying but known. The
only non=zero covariance is then the covariance for al(t)
which will be denoted by P(t) in this appendix. With zero
reference value (3.3) is

2 2.,
VN = g~ + y(U-1)"P(N) (A.1)
The last two terms of (3.3) cancel since bl(t) is known so

that LP(N) = 0. The minimizing u(N=1) from (3.4) is

W(N-1) = —E—[-F0) 6 (M) ] (A.2)
by (i)

which is the self-tuning regulator (3.5) with Yy = 0 and

bl (t) known.

Inserting (A.l) into (3.2) gives

V.. ., = min E[y(le)2 + o2

2
. + yW-1)"P(M)|F__,] =
N=1 0 (H-2) | n-2

= min {02 + {1 + P(N)][(m(mml)é(ﬂml))z +
u(N=-2) L

+ oy (-2) 2P (-1) + 02]} =

o + [1 + 20 ][y @-2) % (-1) + ¢2] (A.3)

where the minimizing u(N=-2) makes

©(M-1)8 (W-1) = 0 (A.4)
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U(N-2) = —2 [ = G(N-1) 6 (N~1) ]

bl(le)

This is still the self-tuning input.

Now from (2.7)

22p (1-1) 4y (1-2) 2

2

P(N) = ®°P(N-1) + R - :
@7 + y(N-2) “P(N-1)

With P(N) from (A.6) eguation (A.3) becomes

0% + [1 + 0%p(-1) + R][ym-2)2P(-1) + o?] -

<
I

- %P -1) %y (9-2) 2 =

02(2+R) + 02®2P(Nwl) + [1+R]P(Na1)y(Nm2)2

Again (3.2) is used to give

A = min € [y(Nw2)2 +

Ve JIF._ ] =
@ (4-3) N-1'"N-3

= min [{1 + (LR P (-1 { [o-2)6 (9-2)]2 +

u(N=3)

2

F oy =3)2P@-2) + 02} + 02 (24R) + g ®2P(Nwl)]

[{1 + (l+R)P(le)}{y(NmB)ZP(N=2) + 02} +

%

+ 0% (24R) + GZ@ZP(an)J
Also u(N-3) should be chosen to yield
P(N=-2)9(N-2) =0

which gives the self-tuning input

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
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B (N=3) = e[ -3 (N=2) 6 (1=2) ] (A.10)
by (N-2)

In the next step, however, the last term of (A.8) contains
P(N-1), and its denominator contains y (N-3). This makes the
next expectation impossible to calculate. To summarize, the
self=-tuning regulator gives an optimal input for this sys-

tem when looking just 3 steps ahead.
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APPENDIX B

The Location of the Glokal Minimum of (3.17)

Introduce
T
a = LP(t+1)L
b = £P(t+1)3 (t+1) T
B 2 o ~ T 2
c = alc” + @(t+L)P(t+1)p(t+l) ) = b

x = au(t) + b

With £(P) = £P£T the last term from the argument of f in
(3.18) is

, LOP(EHD) [F(e+l) + Lu(t) 17 [G(e+1) + fu(t)IP(t+1)o e’
o2 + [G(E+1) + Lu(t) 1P (t+1) [F(t+1) + 2u(e) 1T

(B.1)

r

But Ki is an eigenvector of @r, The eigenvalue is denoted @

b
Then with the definitions above (B.l) becomes
2
2
= AD.a X = Aégac 5 1 - A@ia (B.2)
c + x X + C
All other terms of (3.18) are quadratic in u(t). Now Ww is
split up into
W= £(x) + g(x) (B.3)

W

where g(x) is the first term in the right member of (B.2),

and f(x) is quadratic in x. Then f£(x) will have a minimum cor-
responding to the u(t)-value given by the cautious regulator
(3.4). Thig point is denoted Xq . The functions £ and g may

typically look as shown in fig. 45.




. J

Fig. 45 - f and g of (B.3).
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It is evident that g(x) is symmetric around its maximum at

x = 0 and tends to zero as x - o, It is then no restriction

to assume Xz 0. The opposite case follows similarly.
suppose that Xq and x*, the global minimum of WW, have
site signs. Then g(x*) = g(-x*) but £(x*) > f(-x*), at
if x) ¥ x* . Thus Ww(mx*) < Ww(x*) which proves that x

x* have the same sign. The global minimum must then be

Now
oppo~
least
and

out~-

side %y since £ + g is decreasing from 0 to Xy To continue,

the derivatives of g are needed.

g'{x) = mlkiéac 5 2x 5
[x7 + ¢
2
g't(x) = x@iac ox = 2¢
[x° +c]
g (x) = - A@?ac 24x[x° - ]
' [x2 + c]4

Now g''(x) > 0 if x2 > ¢/3 and f£''(x) > 0 give

£''(x) + g''(x) >0 for x% > c/3

(B.4)

(B.5)

(B.6)
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But g''"(x) = £'"""(x) + g'''(x) > 0 when 0 < %2

< ¢/3 shows
that £''(x) + g''(x) is increasing so that one of two things

will occur.

1) Fri(x) + g''"(x) >0 ¥ x >0
<0 for 0 < x < x4
2) £ (x) + g' (%)
> 0 for x > x
0
Both cases are treated simultaneously by putting Xg = 0 for

the first case.

First assume that Xy 2 Xge Then f£'(x) + g'(x) is increasing

c: ;s ] i — ¥

for x > Xy and if Xy F 0 £t (xl) + g (Xl) =g (Xl) < 0. There
is then exactly one point x* > Xq with £'(x*) + g'(x*) = 0.

This must be the global minimum.

If Xy = 0 £'(x) + g'(x) > 0¥ x >0, and x = = 0 is the

X
1
only stationary point (global minimum) .

Next suppose X; < Xg. Then again f'(xl) + g'(xl) < 0 and

f' + g' is decreasing for x < X, so that £'(x) + g'(x) < 0

0
for X1 <X 2 Xy For x > X4 f' + g' is increasing and there
is exactly one x* > X4 with £'(x*) + g'(x*) = 0. This x*

must then be the global minimum., If f'(xl) + g'(xl) = 0 then
Xq is a local maximum, since the second derivative is nega-

tive.
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APPENDIX C

The Two-step Regulator

The optimal two-step input is determined by minimizing w.r.t.
u(N=2)

E{[y(Nwl) o yr(;\;\]l)]z + leFNWZ} =

= [e@-Dow-1) -y, m-1]% + o@-1)P@-1)o w-1)7 + 02 +

+ ol 4 E{%(N)p(ﬂ)%(N)T.FNWZ} +

+ E{[,YI(N) - gp“(N)é(N)]ZIFN“Z}

3 A ~ 2
(Lo [y, 1) - Gaew) - Lp ) B 1 (c.1)
[eB ]2 + Lpanet N-2

In (C.l) eg. (3.3) has been inserted for Vige The first expec-

tation can be calculated exactly. As discussed in chapter 4
the approximation (4.9) is applied to the difference of the

last two terms.

In the following u(N-2) will be denoted by just u. Some addi-

tional notations ars needed.

[~y @=1), «.., u(@=-1), ...]

P (N)

W) = [~y@=1), «.., 0, u(®@=2), ...]
p(M)s = [0, -y(@-1), ..., 0, u(@=1), ...]

£=10, ..., 0, 1, 0, «..]

e
Il

[1, 0, «.., O, 0, 0, ...]

S is thus a shift matrix. These definitions give
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i

o () pN) + uN-1)4 (C.2)

i

D) = e@-1)s - y@-1)7% (C.3)

Also introduce

v (8=1) = p(N-1)8 (-1)

C =
r = E[CZIFNWZ] = oMN-1)P (N-1)@(-1)T + 5% =
= P @-1)LTu? + 20 (1) F-1) Tu +
¢ Fu-1) e -1 Fa-1T + 62
a = E(le)é(le)

g = Lo(N-1) = by (N-1)
Yy =y,

a’ = @é« (N=1)

b = LS - I

a = p@-1)s - Za

et = op (~1) P -1 T

£* = op(u-1) L%

H = op(W-1)3° + R
The first row of (C.l) 1is then
- 2
[a - y, (=1) + Bul® + r (C.4)

All these quantities except ¢ are known at time N=2, and u
enters only in ¢ and r. The next step is now to extract the
dependence on ¢ in (C.1l) and calculate the expectations. The
Kalman gain is

K(N-1) = % (el+ely)
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In the sequel just XK will denote K(N-1l). Also

D) = ©@-1)s - Ly(N-1) = d + bu - Lz
8(N) = a’ + Kz
P(N) = H - rKK.

Then for the first term of expectation in (C.1)

PP @danT = (drbu-Fz) (H-rKK') (d+bu-Lz) "

Since El¢|F = (0 the expectation is

N“ZJ

T, 5T

(d+bu)(HmrKKT)(d+bu)T + E(HmrKK YL r =

T

2
= (@+bu)H(d+bu) " - Z[(d+bu) (eT+E W] +

~ ~ ~ M
+ r2ul? - (@t ETw) 2 (C.5)
Since u enters into r, (C.5) is no polynomial, but a rational

function of u.

The common denominator of the last two terms of (C.1l) gives

[ed () 1% + epn e’ = [eaT+exz ]? + £ (5-rKKD) T

The expectation of this is

[2a”1? + ex)?r + gue” - rerxeT = [£aT]? + eme”T (C.6)
The expected value of the denominator does thus not depend

on u.

tions. The numerator is then
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[y, (D) - 5<N)é(N>]z{[zé(N)]z T KP(N)KT} -

A ~ A ~ 2
- {esany, o0 - Fandan] - e Fan T}’ =

e Ly () - Sad e 1? +
+ zﬁé(N)[yr(N) - e Jer @ an T -

- [P ()3 ) T2

N 2
K(HmrKKT)zT[Y - (d+bum£c)(aT+Kc)] +

+ 2(£aT+ch)[y - (d+bum%c)(aT+Kc)]ﬂ(HmrKKT)(d+bu41c)T -

2
- [e-rreT) (arbu-To)"]" =

A + Bz + Ccz + Dc3 + Ec4 (C.7)

where

P 2
E(HmrKKT)El[Y - (d+bu)aT] +

g
Il

+ 2£a [y - (d+bu)al ] (H-rKKY) (d+bu)® -

2

~ [ (2-rRK") (a+bu) T ] (C.8)
T T ey T 2
C = L(H-xKK™)L {[ﬁa = (d+bu)k] +
+ 2[y - (d+bu)aT]ZK} +
+ zzaT{ﬁKz(HmrKKT)(d+bu)T -

T

~ [Ta™ - (d+bu)K]£(HmrKKT)?T} +

+ ZKK{[EaT - (d+bu)K]£(H»rKKT)(d+bu)T -
- [y - (d+bu)aT]£(HmrKKT)ZT} -

T 2 2
Ty T

- [ £ (H-rKK (C.9)
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E = K(HmrKKT)ZT[zK]Z - 2(2R) (FK) L (H-rKK) 7" (C.10)

The expressions for B and D are of no relevance since they

will disappear in the expectation. With
4 _ 2

the expected value of the numerator of the last two terms

is

A + Cr +3Er> (C.12)

where A, C and E are given above.

In (C.8) = (C.10) only r, K and u itself depend on the input.
It can then be shown that

Ar -+ Cr2 + 3Er3 (C.13)

is a 4th order polynomial in u. To see this, notice that rK
is a linear function of u, and r i1s guadratic in u. It turns

out that the non-polynomial parts of (C.13) will cancel.

They are

1 T T 42
= = [£rKek™ (d+bu) ™ ] ‘ (C.8a)
and

2
- L Lerke®e® {(apw)k}T] +

+ % 2{rK(d+bu)rKKrKrKT(d+bu)T (C.%a)

The complete expression for the approximate two-step loss is
then

% {r[a -y, (N-1) + Bu]2 + % 4 ol o+
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+ r(d+bu)H(d+bu)T - [(d+bu)(eT+fTu)]2 +
+ rzszT - r(ZeT+szu)2 +

+ : T]Zl 7+ (Ar + cr? + 3Er3)} (C.14)
La + LHL

with A, C and E given above.

To f£ind the minimum of (C.1l4) its derivative is calculated.

This will give a 5th order numerator, since (C.l1l4) has a
4th order numerator and a 2nd order denominator. Using a
root-finding algorithm the zeroces of the derivative can be
found, and the corresponding values of

to find the global minimum.

(C.14) can be compared
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