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DUAL CQ N TROL OF A LOW ORDER SYSTEHM
by
K J Astrdm and A Helmerssan

Departiwent of Automatic Control
Lund Institute of Technhology

LUND SWEDEN

Abstract:

The dual control law for an integrator with constant but unknown gain is computed.
Numerical problems associated with the solution of the Bellman equatiaon are
reviewed. Properties of the dual control law are discussed. A representation which
makes it easy to compare dual control with certainty equivalence and cautious
control is also introduced.

Resume: .
Commande duale d’un systeme premier ordre.

1. INTRODUCTION

The notion of dual control was introduced by Feldbaum €1960) as a result of an
attempt to fovmulate optimal cantrol problemss which would give adaptive control
laws. Several attempts were made to coinpute dual cohntrol strategies faor different
praoblems after Feldbsum’s original publication. Ses e.g. Florentin (1962)s Astvdm
(19635)y Bohlin (196%7): Astrdm and Witts=amark (19713, Jacobs and Patchell (1972),
Hughes and Jacabs (1974)s Tse and Bavr-Shalom (1973+ 1975), Rar—-Shalom and Tse (1974,
19763 . Although the dual control fornmulation is conceptually appealing it leads to
excessive computations. The cowmputational difficulties led same researcher to
despair and abandan the fields Wonham (1962). The computational powar available in
the late sixties was limited. Since wmuch larger computing paower is available today
it seems reasonable ta reconsider computation of dual control laws. The main reason
is to develop an understanding of how dual control works. Anothar reasohn is to
understand the limitations of the heuristic approaches to adaptive control 1like
model reference adaptive contraol and self-tuning regulators.

In this paper the dual control law js computed for a process which can ba described
as an integrator with constant but unknown gain. This is ane of the simplest
nontrivial adaptive contral problems.

The problem 1is stated in Section 2 and the Bellwman equation is derived. Suitable
scaled variables which adwit gaod physical interpretations are also introduced. It
is a nontrivial prablem to solve the Bellman equation numerically. Differant aspects
oh the numerics are discussed in Section 3. The results obtained are sumwarized in
Section 4. Simulations of the optimal contral laws are given in Section S.

2. PROELEM STATEMENT

Cansider the first order discrete time system described by
y(t+1) = y(t) + b udt) + g e(t+1) 2.1y

whare y(t) is the output or the process states u(t) is the control variable and
{eft)} is a s=zquence of independent normal (0> 1) random variables. Furthermore o is

A
a known canstant and b is a random variable with a normal (b¢O)y PCOI) distribution.



The model (2.1) represents an integrator whose gain b is an  unknown constant. The
control problem for such g plant is nontrivial because a constant feedback may nat
hecessarily give ‘a stable system.

Assumne that the purpose of control is to miniamize the loss function

t+T ]
J=E { I Iyl | v } (z.2)
k=t+1 t

Ld
where Yt denotes the sequence of observed outputs and inputs available at time ts
i.e, v = (x(t),x(t—l);...qut—i)vu(t—E);...)v Br more precisely the sigma algebra
generated by those variables. The symbol EC.IYt) denotes the conditional expectatian

given Yt. Tha adimissible controls are such that u(t) is a function of Yt.

To formulate the optimal cantrol problem it is useful to introduce the hyperstate of
the problem. See €.9. Astrdm (1778). The hyperstate is the state y(t) of (2.1) and
the conditional distribution of b given Yt. In this case the conditianal

distribution is gaussion with mean

A
b(t) = ECbCty |V 2
t
and covariance
A 2
POt = E{Lb(t) ~ b(t)] |Yt}
See Astrdm (1978) . These waments can be computed recursively fram

A A A
b(t+1) = bet) + KC(E) Ly (t+13 — y(t) - bBltiluct)] (2.3

PCE+1)

[1 - KCb)udt)IPct) 2.4)

where the estimatar gain is
-2 2 2 2
KDY = uctiPiedyy “ced, Y (L = o + 4y Pcty
Introduce the normalized innovation
A
2(t) = [y(t+1) - Y)Y = batruced1/yctd,

and the normalized state variables

A —_—
(Y = yed/oy Bitd = boe) /vPoe)

E(t) 1/VRCEY vit) = uitIvP(t /g,

The equations (2.15, €2.3) and (2.4) can then by written as

net+1) = (nq + v + ¢{:;:753ct> (z.53
xCE+1d = (31497 + ye) ot (2.6)

-
ECE+1) = (Evi+v) (&) (2.7)



The_Bellman_Equation

Assume that the winimum of the loss function is assumed faor an admissible contrdl
law and introduce the function

t4T 2

A <
W_(yvbsPyt) = win E { IN yik) | Y }
T k=t+1 t

A standard Dynamic Programming argument gives the follawing Bellman aequation

A 2 A .
W_CysbsPyt) = win E {y(t) + W (yC(E+1)vbCt+1dy PCE+1) s t+1)|Y }
T udtd T-1 t

A
The conditiomnal distributions of y(t+1) and bL(t+1) are normal, and the conditional
distribution of P(t+1) is a point distribution. Hence

A A2 2 2
W_(ysbsPyt) = min {Cy+bu) +0 +u P+

T u

- 2 .
f2 2 uP o P
ijE)NT 1(y+bu o +u P Eab+——:-—5— E’—E——;——it+i)d5}
- . VaTwu'P g +u"p
where
=

(e) = -
¢ Var

Using the normalized variables and the carrasponding loss function V  the equation
can be written as

2 2
VT(q,ﬁsg't) = min {Cn+ﬁv) +1l+v + 2.3
v

' t+1)ds}

o
2 =
Jm(a) VT 1(n+ﬁv+¢{:;—q21 BY1l+v +ves EVi+y
- .
For T = 1 the loss functian becomes
A A 2 2 2
w1Cy‘b7P|t) = inin {(y+bu) + 0 +u P}.
u
The corresponding equation in normalized variables is

2 =
vi(n,ﬁ,g't) = min {(n+ﬂv) + 1 + v } =1 + ———,
v

The optimization is eas} to do because the right hand side is quadratic in v. Notice
that V1 does not depend on E and t.

It follows by induction that VT also does not depend explicitely on £ and t.

Introducing

2 z 7 f_i Az
UT(naﬂvv) = +dvy + 1 + v 4+ J ple) VT 1(n+ﬁv+ 1+v  EsfV/1+v + vE) ds 2.9



the equation (2.3) caﬁ thus be written as
V_ i) = win U (qspaw) (2.10)
T v T

The salution to the stochastic optimal contral problem is thus reduced to solving
the recursive optimization problem given hy the Bellman equation (2.10). The

v = vo s By 2.1L

which gives the normalized v control as a function of the wnormalized hyperstate n
and f.

If the parameter b is khown the cantrol problem has a simple solution given by the
minimum variance control law

u = -x/b.

See Astrdm (1970). This gives the normalized loss function

The difference
L ny B) =V Gy B = T
T T i

can thus be interpreted as the part of the loss function which is due to the
uncertainty in the parvameter b. This is called the learning_loss.

3. NUMERICS

The Bellman equation does not have an analytical solution. It is therefore necessary
to solve (2.10) nhumsrically. One itasration of (2.10) can be decomposed into three
steps.

1(ny ) by their values in discrete points.

1. Representation of tha functians VT
Values for other arguments are obtained by interpalation.

2. Evaluation of the integral in (Z.9) using a gquadrature formula.

3. Minimization of the Ffunction UCnsgiv).

The steps are closely interrelated. The selsctiaon of methads in  each step requires
insight into the proporties of the functiaon V(nsg).

Properties_of_the_loss_function

Far T =1 +there is an analytical solution to the optimizatiaon prablem. Althaugh
there is no known analytical solution for larger T there ave some sywmetry
propertias which are useful. The loss functian Y is symaetric in bath n and . The
optimal contvral functiom v is asymmetric in 1 and - This can be derived recursively
from 2quation (2.10). It can also be understoad intuitively because if the output n
of the pracess changas sign then the control variable v wmust also change sign.

For T =1 the loss function is =qual zero both when n==0and 3 =0. For T 2 1 we
can expect that v is not equal zeva for eithar n = 0 ar g = O becauss of probing. We
may thus expact discontinuities in v when N aor B change signs due to asymmetry. The
functian vin: @2 may also have other discontinuities. To undevrstand how these accur

notice that it follaws from (2.103 that the value of the function v for the



arguments v and § are obtained by searching Utns 8y v) far the value v which gilves
the smallest value. If the function Ufns @3y v) for fixed n and  has several local
winima with respect to v it may happen that the winimum switches from one local
minima to another whan n or B is changed a little. This occurs e.g. for U (O, Bs vI

as is shown in Fig. 1. The funection V() may have a discontinuity in its first
partial derivatives where v(ny3) is discontinuous.

\

In ordinary quadratuvre algorithms, like Simpson’s rules a continuous int=gralris
replaced with a weighted suin of the values of the integrand at discrete points in
the integration interval. f

Ta compute the integral in eguation (2.10)y the loss function V is  firstl|
evaluated in several old coardinates (n'f) dependent on v and €. For each vy a
weighted sum is computed on a set of data points of VT 1CnsB). Whan v is varied the
i
set of data points, for which the sum is computed: is also varied. Such a
computation way introduce artificial local minima in the computed function.

It is thus important to consider the interplay bestween interpolations quadvature and
optimization. It is also very important to remember that the optimal control may be
discontinuous. Having understood some of the difficulties involved it, is nhow
possible to tailor the algarithms to the problem.

v

The winimization algovithmn used is straightforward. Three equally spaced node leHt5|
are fitted to a parabola and the winimum of this parabola is tested as a potential
global minimum. Since the Ffunctiaon U may have several local winima it is necessary
to combine the local optimization with a global search.

The functions V and v were represented by their values 1in discrete points. The'
varizble n and A were transformed by the mapping X 9 x/(1+x). A uniform grid in the
transforimed variables was used. The gridsizes were varied from 14 x 16 to 1258 « 128.
The function values wera interpolated using an interpolation polynowial having
sixtsen coefficients. Because of the symmetry properties of ¥ and v the functions
are tabulated for one octant anly.

The range of intsgration is reduced to the interval [-5,51: without any sighnificant’
loss af accuracy. The guadrature algar1thm is modified to cope with discantinuities
in the first derivative of V for 1 =0 and § = 0. The discontinuity points ave i.e.

£ = — (n+ﬁv)//i+v‘ and € = - B/{::ﬂjv.

The integral is evaluated by an oirdinary Simpsan’s algarithms except for thaose!

U500,8, ) |

Fig. 1 Illustrates why the control law is discantinuous.



intervals which containing discontiruities. These intervals are dividad into two
Subintervalss one on eithar side of tha discontinuity. The subintervals are then
evaluated using Simpsan’s algorithm and accumulated to the total integral. .

4. RESULTS E

The algorithms ware programsed in Pascal on a Vax-11/7820 computer. Simple commands
were introduced to give Flexibility to change parameters, sequences of iterations,
input/output handling etec.

The_Dual_Control_Law

The dual control law ¢2.11) which is a function of two variables may be represented
by surface and level plots. It is wuseful to introduce som& scaling. The control
variable u or v is rapresentad as

ub vi3
“:———z.—._—

% n

(4.1)

To obtaimn finite plots the stats variablas N and R are alsa represented using the

2 z . .
scales n/01+n) and B /7i+37). The advantage of this representation is that the

certainty equivalence control is the plane

po= 1 4.2

and the cautious control is the plane

. _E_?_ (4.3)

1+B‘
Using the chosen representatiaon it is easy to compars dual cantrol with cartainty
equivalence and cautious cantral. The dual control laws for the time horizaons T = 3,
and T = 31 are showh in Fig. 2. Notice that the dual contral Ffunction agrses with

the certainty aquivalence control when the parameter §» which represents normalized
parameter uncertainty is very large. Dual agress with cautious control when the
parameter ns which represents normalized control errors is very large.

For small values of n and f the dual control is much larger than the cautious
control. Notice that there is a zone where dual control is larger than the certainty
equivalence control. This zone graws with increasing time horizon T.

oq
on
50
0q
50
0o
A0 )

oo o m Lo

Fig. 2 Dual caontrol laws for &) T = 3 and BY T = 31.




The dual control is lavger than the cautious control except for Z £ T £ & when there
exists 3 small region where the dual control is swmaller than the cautious cantrol.

It appears fram Fig. 28 that the dual contral law is discontinuous. This is shawn
mare clearly in Fig. 3 where v(0sB) is plottsd varsus f. Notice that both +the
certainty equivlence and the cautious controls ave zero far n = 0. Far T = 3 theve
is a discontinuity for g = 0.39. The reason fov this is thes switch  from one loeal
minimum  to another which was demonstrated in Fig. 1. The discontinuity is wore
pronounced for T = & but it appears that the discontinuitiss are less pronounced for
increasing T. Computations up ta T = 100 indicate little difference between the
control policies for T = 100 and T = 31. The difference lvioo - v10| is less than
0.012 for all n and B.

The question whether a limiting control policy exists T 9 o is open. A simple
approximations Helmevsson (i951) indicates that no limit learning loss function
existsy i.e. is the learning loss tends to increase infinitely.

S, SIMULATIONS

A few simulations were perfarmed to get further insight into the properties of the
dual control law. This includes comparisons with self-tuners and cautious control
laws. Differsnces between the control laws may be expected only duvring the transient
phase when there are sighificant parameter uncertainties. The steady state
performance of the contral laws will he mare or less the same.

Transient Behaviour

To perform the simulations it is hecessary to have some repressntation of the dual
control law. A table and an interpolation farmula could be usad. It s, however,
more convenient to have an analytic approximation. The following spproximstion of

the dual control law obtained far T = 31 was used
D.56+3 1.9
v(nipgr = - -n+ s ) Gy g O (S.1)
Z.2+0.02 g+p” 1.7+8

Notice that v is asymmetric in m and 3. The first term can be interpreted as a
modified certainty equivalence and cauticus term. The s=cond term represents active
probing. It sxcites the process aven when N = 0. The loss function of this
suboptimal control was only 0.2 units larger than the optimal loss function for T =
31. This corresponds to an increase in the loss function of less than one percent.

Simulations were made using the interactive simulation language Siwnon. See Elmgvist
g

0.5+

0

0 50 100 B

Fig. I The dual control law VIiOs@) far T = 3y &3+ 11 and 1.
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(1973). The simulations showed that the dual regulator is very raobust. The loss
function did not wvary iuch for different simulations with diffevrent parameters and
initial values. The learning period for dual control is in most cases less than five
steps. There are no problems even if the algarithm is initialized with the wrong
sign of the gain. The initial value of the variance P(O2 shoulds howevers not be to
smalls because the learning period will then be extended and the loss increases.

The dual regulator was compared with rcertainty equivalence control and cautious
control.

The certainty equivalence control is sonetimes good. During start-up periods it
givesr howeversy too large control signals when the gain estimate 1is close to zero,.
1t may therefore give very largs losses during stavt-up. The asymptotic behaviour
isy howevers very close to optiwmal. The cautious control is too cauvtious which
results in long learning periods when gain astimate is close to zero because of
turn-off. The dual control does wnot have any tendencies of turn—off. The simulations
indicate clearly that it may be useful ta make some modificatins of the self-tuning
regulator in arder to improve its transient behaviour.

Even if the dual controller discussed in this paper is not intended for time varying

gains it can be expected to be a good approximation to the optimal controller if the

parameters do not change too rapidly. Suppose that the gain can be wmodelled as
bet+1) = § bltd) + o vID) S.2

where {v(t)} is white gaussian noise with zero m=an and unit variance.

The estimator must then be wodified. The Bellman equation is more difficult to
colves because it has three independent variables instead of two. The execution time
for the new problem 1is significantly longer. It has been investigated how well the

regulator (5.1) behaves in combination with the correct state estiwmator for (5.2).

2

yit)

1

N t

[ LI o =4

1

was evaluated for different noise realizations and different values af p. The
paraneter ¢ was chosenh so that the gain b would get unit variance.

) 2 . .
The tracking loss is o as N 4+ = in the constant gdin case i.e. when p = 0 and ¢ =

1. In the simulaticns the estimator eguations were modified to cops with non
canstant gain as modelled above. Three simulatiohs were made for each p to compare
the steady state performance of the regulators. In Fig. 4 the tracking lobss varsus @
is plotted for cautious control and dual control. Certainty =squivalence control
detoriated and gave much largev tracking lossas than the other regulatovrs. This was
due to too large control signals when the gain estimate was close to zero.

Tracking loss

Fig., 4 Comparisaon bestween dual and cautious caontrol for a process with time varying
gain. The tracking loss is plottad versus the gain noise parameter a.



.

Fig. S shows the difference between dual and cautious contral for the case p = 0,05,
Ths same noise sequences were used for both the controllers. The cautious controller
regulates well, except in intervals whare the gain is close to zevo. It can clearly
be seen that the cautious contrellep behaves to cautious in these intervals. The
dual controllers an the other hand: copes well with these problems using active
probing.

&.  CONCLUSIDNS
L]

Calculations of dual cantrol laws give interesting insight into the nature of the
optimal solutions to adaptive control problems. In particular it is shown that the
optimal control may be discontinuous. This may be ane possibility to define the
probing action. The camparisons with cautious and certainty equivalence cantral
2¥plain why the cartainty equivalence control bahaves so well asymptotically. It
also explains the poor behaviour of cautious control under certain conditions (tupn
off). The results also indicate that the heuristic algorithms may be improved. Thare
have been suggestions for improved strategiss based on appraximative solutions to
problams with a short time horizon e.q T=2; Sse Sternby (1977). Such appraoximations
ara of limited value fop the example disocussad in this paper bacause there is a
considerable difference betwsen the strategies obtained far T=2 and T=30. Based an
the results of this Paper it sesms important to use a much longer time horizon to
obtain the full benefits of learning.
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