LUND UNIVERSITY

A PC System for Data Acquisition and Recursive Parameter Estimation

Bergman, Sten; Persson, Per

1984

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Bergman, S., & Persson, P. (1984). A PC System for Data Acquisition and Recursive Parameter Estimation.
(Technical Reports TFRT-7275). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/ab87b541-1a8e-404b-ba45-a57fb109ebe3

CODEN: LUTFD2/ (TFRT-7275)/1-104/(1985)

A PC SYSTEM FOR DATA ACQUISITION AND RECURSIVE
PARAMETER ESTIMATION

STEN BERGMAN
PER PERSSON

DEPARTMENT OF AUTOMATIC CONTROL
LUND INSTITUTE OF TECHNOLOGY
may 1985

Document name

LUND INSTITUTE OF TECHNOLOGY [Report

Date of issue
gil;AFﬂgENT OF AUTOMATIC CONTROL May 1985

Document number
S AT Sweden CODEN: LUTFD2/ (TFRT-7275)/1-104/ (1985)
Author(s) Supervisor

BERGMAN Sten

Sponsoring organization

PERSSON Per

Title and subtitle
A PC SYSTEM FOR DATA ACQUISITION AND RECURSIVE PARAMETER ESTIMATION.

Abstract

The implementation of data acquisition and recursive parameter estimation
algorithms in a personal computer (PC) is presented. The goal was to investigate
the feasibility of using a cheap PC for BWR monitoring. The experience from
program development, tests etc showed that the selected APPLE][+ PC was too
slow to be used for real-time application, and by memory limitation only a limited
model structure could be allowed. However from tests and modular programming
in Pascal gives a good portability to other systems. By remote analysis a powerful
VAX 11/780 could be used for estimation on an asynchronous basis. A
commandprocedure for computer communication APPLE][/VAX was developed

and tested with good success.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient's nofes
English

DOKUMENTDATABLAD RT 3/81

Security classification

Distribution: The report may be ordered from the Department of Automatic Control or borrowed through
the University Library 2, Box 1010, $-221 03 Lund, Sweden, Telex: 33248 lubbis Llund.

A PC SYSTEM FOR DATA ACQUISITION AND
RECURSIVE PARAMETER ESTIMATION

by

Sten Bergman
and

Per Persson

Department of Automatic Control
Lund Institute of Technology
BOX 118
S - 221 00 Lund, SWEDEN

- May 1985 -

TABLE OF CONTENTS:

ABSTRACT
1. INTRODUCTION
2. THE SYSTEM GOAL
3. SYSTEM DESIGN
System specification
Software design
Implementation experiences
4. IDENTIFICATION AND DETECTION
5. REMOTE ANALYSIS
Data communication
Data transmission
6. EXPERIMENTS
7. CONCLUSIONS
8. ACKNOWLEDGEMENTS
9. REFERENCES
APPENDIX 1 PROGRAM-USER INSTRUCTIONS

APPENDIX 2 PROGRAM CODE

ABSTRACT

The implementation of data acquisition and recursive parameter estimation
algorithms in a personal computer (PC) is presented. The goal was to investigate
the feasibility of using a cheap PC for BWR monitoring. The experience from
program development, tests etc showed that the selected APPLE][+ PC was too
slow to be used for real-time application, and by memory limitation only a limited
model structure could be allowed. However from tests and modular programming
in Pascal gives a good portability to other systems. By remote analysis a powerful
VAX 11/780 could be used for estimation on an asynchronous basis. A
commandprocedure for computer communication APPLE][/VAX was developed

and tested with good success.

1 INTRODUCTION

Surveillance of the dynamic behaviour of systems and subsystems has become an
important tool for detection of component failures and wear. One reason for this
is the increased complexity of industrial systems together with the strict
requirements on safe and steady operation. Another is the evolution of the
micro-processor technology which have provided tools for efficient and cheap

surveillance systems,

The dynamic surveillance problem can be approached in many different ways. See
Willsky (1976) for a survey of methods. One approach is to monitor the process
dynamics in real-time using recursive identification. The obtained estimates, or
functions on them, can be displayed to detect sudden changes in the dynamic
behaviour or to give indication when the system dynamics has drifted into an
undesired region. See e.g. Hagglund (1983). Another approach which have been
extensively applied for surveillance of nuclear reactors has been the detection of
spectral changes in the reactor noise. In Gopal and Ciarimitaro (1977), Piety
(1977), Piety and Robinson (1976) and Fry (1971) various aspects on algorithms
for automatic signature analysis of power spectral density data are given. These
applications mainly addresses the surveillance of of PWR reactors, using remote
analysis methodology. In Andoh et al (1981), Tamaoki, Kawano and Sato (1982),
Ohsawa and Kato (1974) and Andoh et al (1983) experiences from the

surveillance of BWR reactors in Japan are presented.

The exterme safety requirements associated with power production has motivated
several studies of dynamic surveillance. Different aspects on reactor noise and
its relevance to safety are given in e.g. Thie (1976), Mayo and Ziegler (1979) and
Currie (1980).

The experiences so far have been concentrated mainly to two different monitoring
concepts. One concept related to plant based monitoring (on site) and another
related to plant remote monitoring (off site). The latter concept has been applied
in Holland, where raw data from the Borsele reactor is transferred more than
200 km to the research center in Petten, where analysis and fault detection are

performed. A similar concept have been applied at the Sequoyah Nuclear Plant in

5
the USA where data, (in this case computed spectra) are transferred to the Oak

Ridge National Laborotories more than 250 km away from the plant.

While most experiences concerns spectral estimations on reactor noise, some
applications have also been reported addressing autoregressive identification

techniques. See e.g. Chow and Wu (1979) and Wu and Ouyang (1982).

In a feasibility study the main circulation process dynamics and its control were
investigated, using recursive identification and autoregressive moving average
structures. See e.g. Bergman and Gustafsson (1979). The goal of this study was
to get a better knowledge of the process, to investigate if normal noise is
sufficient for identification, compared to PRBS experiments, and to test various

parametric model-structures for identification.

2 THE SYSTEM GOAL

Based on the experiences from reactor noise analysis from the Barsebiack plants,
and application of recursive estimation methods, a research project was initiated

in 1982, with the following goals:

1 Development of suitable methods for Boiling Water Reactor surveillance,

identification and fault detection.

2 Implementation of a small test system in a Personal Computer (PC)
environment.
3 Experimental validation.

The first goal addresses the problem of choosing an apropriate method for
surveillance of a complex plant, like a nuclear reactor. While most surveillance
systems so far, have been based on spectral analysis, using Fourier transform
techniques (FFT), this system will address parametric identification methodology.
That is, to fit parameters in a given linear input-output structure of the process.
By letting the system discount old data the process may also be slowly
timevarying. Compared to spectral estimation methods, using FFT, recursive
estimation methods, in real time, should have some advantages, especially in
computational simplicity. The surveillance of a BWR cat e.g. be made by stability
monitoring. This requires measurement of transfer functions. In the following,
BWR surveillance is supposed to involve model identification, related to the
transfer function dynamics between the reactor dome pressure and the average

neutron flux.

The second goal was to implement the identification routines or the interface
between data acqusition and existing identification packages, like e.g. the IDPAC
and RECID packages. The motivation for using a micro-processor front-end, was
mainly because of other application areas than nuclear reactor noise analysis.
Similar surveillance problems may be found in hydro-power plants, wind power

plants etc.

7
The third goal was seen as essential for obtaining information on "real-life"
problems. The experiments should concern both detection and surveillance as well

as the implementation aspects, system structuring, software design etc.

3 SYSTEM DESIGN

In this section various aspects on the system design will be discussed. First a
brief introduction to the system specification will be given, then different aspects

on hardware requirements and software design will be discussed.

3.1 System specification

The noise monitoring system was based on the following general specification:

1. The monitor should be considered as an information system, working in
parallell with other control, measurement and protection systems in the
plant.

2. The main task is to track the process dynamics to estimate the inherent
reactor stability and to detect anomalies.

3. It should be a cost-effective system in the sense that it should utilize

high-level software languages and possibly existing packages for

identification.

4. In the prototype phase, operator communication facilities could be kept to a
minimum.

5. Possibility to integrate the system in an advanced diagnosis system should

be foreseen in the design.

Existing prototype systems for reactor noise surveillance have mainly been based
on moderate sized mini-computers like PDP, TOSBAC, NORD etc. equipped with
A/D converters, 30-128 kbyte of primary memory, disc based operating systems,
graphical devices for output etc. The prices for these surveillance systems varies
typically between 40 000 and 80 000 §. The monitor in this concept study should
if possible not exceed more than 10 000 §. A natural choice therefore fell on
application of some existing and well proven PC-system. An APPLE I+ was

selected for this prototype, mainly because of the following four reasons.

Good familarity with the APPLE existed.
Good support of peripherials existed.
High-level language support (PASCALFORTRAN etc) existed.

W N -

Low cost.

9
However, as the APPLE I+ is designed with a 8 bit 6502 central processing unit,

running at only 1 MHz, problems were expected to show up in both addressing
and speed. During the system development other systems have shown up in the
market, but also accelerators for the APPLE exists today. The structure of the

system is shown in Fig 3.1.

Serial
5 Mb interf,
disk
rt clock
, e Apple][+ -—-—I--
printer
64 kb
16 ch.
RD
floppy
kbd display

Fig 3.1 Hardware structure.

10
The system consists of the following parts: An APPLE Ill+ with 64 kbytes of

memory, a 5 Megabyte Winchester disc, a 5 1/4" floppy disc, a real-time clock, 16
channels of 12 bit A/D converter, a serial communication card a printer and a

CRT monitor.
3.2 Software design

A number of programs to take care of the data acquisition, parameter
identification, data presentation and communication with the host computer (VAX

11/780) were developed using APPLE-PASCAL.

The sampling program (SAMPLE) can be run in two modes. One slow and one fast
mode. In the slow mode the channels to be collected and the associated gaincodes
can be chosen arbitrarily. The sampling throughput in this mode can be
approximnately described by the minimum sampling interval TS given by TS=
11-Nc + 32 ms. A maximum sampling frequency of 5 Hz can thus be achived with
16 input channels. The fast mode simply scans the first Nc channels and assumes
equal gain settings. The minimum sampling interval in this mode can be given by

T=9N + 4 ms.
s c

The identification program (IDENT) performs recursive identification according to
the structure given in chapter 4.1. However, for a structure containing A,B.CD
and F polynomials, model orders exceeding 2 could not be estimated due to
memory limitations in the APPLE. For an AB,C structure model orders up to 3
could be handled. During the identification parameters are plotted on the CRT
using graphic commands. Parameters are also logged on a parameter file on the

disc, for later retrevial and analysis.

A number of utilities have also been developed, such as a parameter display
program, a statistical program for parameter value analysis and a parameter
calculation program including e.g. fault detection etc. A simple communication
program for remote analysis at the VAX computer was also developed. This
program (VAXCOM) allows the operator to use the APPLE as a simple terminal.
The program accepts all simple VAX/VMS-commands as DIRECTORY, PRINT, SET
DEFAULT etc. The program uses the $-sign from the VAX and interprets it as a
VMS-prompt. Using the VAXCOM software,a small program for backup purpose
was also developed (BACKUP). Another program also using VAXCOM is the VAX

11
software which converts a "file-of-real" into ASCIl characters and creates a VAX

textfile.

In order to test the identification routine a program DATAGEN was also

developed. This program simulates a system given on the form:

ACa Y y(t) =B(a7y u(t) + e(t) (3.1)

where u(t) is a PRBS signal and e(t) is white noise. The program prompts the

user for A-, and B-parameters and stores a {u(t),y(t)} sequence.
3.3 Implemementation experience

The APPLE-computer which has been used in this project has in many ways
proved to be good. Its operating system and editor are efficient and easy to use.
The APPLE graphics was sufficient for the presentation of data and calculated
parameters. Especially when the computer is wused together with a
Winchester-disc it becomes very easy to handle. The CORVUS Winchester-disc of
the system has been a problem. A couple of disc crashs with loss of some
programs have delayed the work several weeks. After a disc crash the disc may
be damaged in some places. The operating system can not cut a file in pieces and
write it on the empty places on the disc, but must have a free area on the disc,
with a size at least as big as the file. This means that when the disc has been
damaged a couple of times and there are a number of "bad blocks" on the disc
there may not be room enough to write a big file, although there is plenty of free
room spread out on the disc. This is a great disadvantage of the operating
system. Later (in 1984) it was found that the disc crashes probably was due to a

bad internal grounding.

However the greatest disadvantage of the APPLE-computer is that it is slow. A
identification of a file with 500 datapoints and a second order model takes about
15 minutes. This makes it impossible to use it for on-line identification, except for
very slow systems. The program memory was not sufficently large. It was
impossible to carry out identification with a model-order greater than 3. The
realtime-clock is another problem. To decide the sampling period you must
measure the time before and after the sampling sequence, compute the time

difference and divide by the number of samples. The clock-card does not give the

12
possibility of having a "wait-time"-function, i.e. a function which makes the

program wait a specified time. This makes it necessary to have a delay-loop in

the program to make it possible to change the sampling period.

13
4 IDENTIFICATION AND DETECTION

The test system was based on BWR stability properties reflected by the transfer
function characteristics between reactor dome pressure and the average neutron
flux density. Off-line estimation of parametric models would require an
implementation of a minimization algorithm. However, using a recursive method,
on-line processing of every new sample is possible. Given a number of pairs,
{u(t),y(t)) t=1..N }, we recursively estimate a model represented by one of the

following structures

A(aY) y(k) = B(@Y) u(k-Td) + C(q™") e(k) (4.1)
-1 -1
y(k) = B_[CITil u(k - Td) + 9(33)- e(k) (4.2)
Alg 7) ' D(q 7)
-1 -1
(1+a@™h) v = 2Oy - gy + L2Cla) (4.3)
1+ F(q ") 1 +D(q ")

Introducing the parameter- and the measurement-vectors as

[-y(t-1) 1 Ay]
_Q(t—na) na
u(t-1) b,
o(t)= | u(t-n,) (4.4) o(t)= b (4.5)
e{t-1) cy
i é(t—nc)) X énc U

The system model can now be represented by the simple relation:

y(t) = o(t)Te(t) + e(t) (4.6)

The covariance matrix P(t) is further defined by the relation

P(t-1)e(t-1)¢ (t-1)P(t-1)
A(t) + @ (t) P(t-1) o(t)

P(t) = [P(t—l) -]/A(t) (4.7)

14
and the parameter update is given by

e(t) = y(t) - 6" (t-1)o(t) (4.8)
o(t) = 0(t-1) + P(t)e(t)e(t) (4.9)

Finally, A(t) is given by

At) = Apr A(t-1) + (1 -2 (4.10)

o)
However, it is the computation of the matrix P which is the most time consuming
part of the algorithm. The multiplication of two NxN matrixes requires N3
multiplications and N3 additions. Using the knowledge that P is symmetrical (i.e.
P=PT), we can write the ultiplication as follows
T T.T.T T T,.T T

PooeP=(pP) oP=(pP)eP (4.11)
We now multiply (pTP, which requires N2 multiplications and additions and obtain
an Nx1 matrix, this matrix is transposed and multiplied by itself. This will give a
symmetrical matrix so we just have to compute the superdiagonal part of the
matrix which requires 0.5+«Nx(N-1) multiplications. To compute this matrix we now
need 1.5*N2+0.5:N multiplications and N2 additions instead of N3 operations of
each. In Table 1 the number of different operations necessary to carry out the

identfication algorithm are shown. N is the total number of parameters estimated.

Computational Operation
part + = € /
€ 0 N N N
P N2+2N+1 |0.5(N°-N) | 2.5N%+0.5N | N2-N
A 1 1 0]
e N 0
Relative weight 1 1 2 3

Table 4.1 Number of operations in the identification algorithm.

15
The relative weight means that in APPLE-Pascal a subtraction takes as long time

as an addition, a multiplication takes twice and a division three times as long time
as an addition. The total amount of operations, in equivalent additions, for one

recursion in the identification is given by Nop = 10.5-N2 + 45N -1

The absolute executiontimes for the four arithmetic operations in different
languages and in different machines are presented in the following table. The

executiontime also depends on the value of the operands.

Apple }[+ VAX 11/780
Operation
Pascal Basic Pascal FORTRAN
Addition 1.4 ms 48 ms 1.4 ps 0.6 ps
Multiplication 2.8 ms 45 ms 1.4 ps 0.6 pus
Subtraction 1.4 ms 40 ms 1.0 ps 0.6 ps
Division 4.2 ms 50 ms 1.0 us 0.6 us

Table 4.2 The executiontime of arithmetical operations on different computers.

The recursive algorithm has been implemented in both APPLE-Pascal and VAX-11
Pascal. Execution tests have been made with the following results for an
ABC-model.

Time/recursion Computer
Model order APPLE][+ VAX 11/780

1.3 s 56 ms

2.5s 66 ms

4.5 s 95 ms

Table 4.3 The time for one recursion of the identification algorithm, on different

computers.

If the A,B,C,DF model is used for the identification the APPLE can handle at most

a second order model. This is of course a severe restriction.

16
5 REMOTE ANALYSIS

5.1 Data communication

By a modem the APPLE computer is connnected to the public telephone network.
This permits data to be sent to other computers for efficient computation, remote
supervision etc. As one of the drawbacks of the Apple was the computational
speed, and limited memory capacity, the VAX 11/780 computer of the Department
of Automatic control, at Lund Institute of Technology was chosen for the
computational work. Existing packages for identification like IDPAC and RECID
could then be used. Facilities for communication and remote execution of

preselected macros was therefore implemented in the APPLE-programs.

The datacommunication consists of the following sequence, fist the signals are
sampled with the program SAMPLE, and the values of the measurements are
stored on a file on the CORVUS-disc. Then a VAX -textfile is created from the
APPLE, with the VAX/VMS command CREATE. The values which were stored on
the APPLE file are then converted to ASCIl characters, which then are

transmitted to the VAX-computer.

5.2 Data transformations

If we want to process the data further, we can execute a DCL commandprocedure
from the APPLE. This procedure can call programs on the VAX, e.g. IDPAC,
which can perform advanced signal processing. An example of such a procedure

is given in Appendix 1.

For this prototype system, some examples on how to transform the raw data into
specific parametric information will be given. In the first step the data quality is
checked. This is made by blocking the data in windows, and computing the
meanvalues, variances and maximum and minimum values for each window. If
they are consistent the data will be accepted for further processing. In the next
step Fourier spectra are computed for the input signals. In the third step
Auto-Regressive identification is performed. In step four recursive estimation is

performed using ARMAX structures.

17
6 EXPERIMENTS

In order to test the data acqusition and identification algorithm of the APPLE, a
simple experiment was performed using an analog simulator. A second order

system, given by the transfer function:

1

s“+ps +q

G(s) =

(6.1)

was simulated. White noise, low-pass filtered by a first order system was used as
input signal. The sampling rate was 10 Hz. The identification algorithm assumed a
second order ABC-structure. In Table 6.1 the true and identified system

parameters are shown.

True Parameters Estimated Parameters

Continuous Discrete Continuous Discrete

System System System System

P q 4) P q a a,

2 1 -1.626 | 0.661 | 2.80 | 0.87 |-1.648 | 0.686
4 3 -1.350 | 0.436 | 1.40 | 1.20 |-1.512 | 0.578
2 2 -1.591 | 0.661 1.86 | 1.00 [-1.589 | 0.657
2 3 -1.557 | 0.661 1.60 | 1.00 [-1.612 | 0.714
4 9 -1.183 | 0.437 | 0.69 | 1.60 [-1.362 | 0.564
3 2 -1.474 | 0.537 | 1.50 | 1.20 |-1.524 | 0.586

Table 6.1 Result of parameter estimation from analog simulator tests.

A comparision of the true and estimated parameters show a big discrepancy. The
reason is not clear. However one explanation mat be that the input signal was not
constant between the samplings. Another that the output was too corrupted by
noise or that the A/D converter was bad. For estimation of dynamical changes,
absolute parameter accuracy is of minor interest, especilally if parameter vectors

are stored by learning procedures.

18
7 CONCLUSIONS

A reactor noise monitor consisting of a PC-system (APPLE) for data acquisition
and a VAX-host computer for parameter estimation has been tested. Recursive
estimation algorithms and a new fault detector was implemented in the PC-system
(APPLE][+). However due to memory limitation only a third order model could
be run in the PC. The computational speed was also found to be too low for
on-line purposes for the PC. By remote connection the PC system can collect
data, store them on disc files, establish communication with a VAX host computer,
transfer data, and execute a command procedure in the VAX. Validation against
analog simulator test, showed that the parameter estimation quality was poor. The
reason is not clear, but one explanation could be that the input signal varied

between the samplings.

By programming in Pascal the entire system is rather portable to other
computers. Since 1982 many PC systems have been developed and are available.
So are also efficient number crunchers in form of array processors (SKY,
Systolic, Marinco etc). The capacity of these systems are far from what can be
achieved by an APPLE. Still the price is not too frightening. A powerful PC
system with an array processor, A/D converters etc could probably be achieved
for a cost around 15000-20000 $, which still is about half the cost of existing

systems.

8 ACKNOWLEDGEMENTS

Sydkraft Research Foundation is gratefully acknowledged for giving financial

support for this project.

19

9 REFERENCES

Fry D (1971): "Experience in Reactor Malfunction Diagnosis Using On-line

Analysis" Nucl. Techn., 10

Izumi and lida (1973): "Application of On-line Digital Noise Analysis to Reactor
Diagnosis in JMTR.” J. Nucl. Sci. Technology, 10,4

Oksawa, Kato and Oyamada (1974): "Experiments of Anomaly Detection System of

a Reactor Core" Nucl. Techn., 23

Tou and Gonzalez (1974): "Principles of Automatic Pattern Recognition”

Addison-Wesley Publ. Co. Inc, Reading Massachusetts.

Kato et al {1976): "A New Monitoring Method for BWR Plant Equipment” Trans.
Am. Nucl. Soc., 23

Piety and Robinson (1976): "An On-line Reactor Surveillance Algorithm Based on

Multivariable Analysis of Noise” Nucl. Sci. Eng., 59

Willsky (1976): "A survey of Design Methods of Failure Detection in Dynamic

Systems." Automatica 12

Gopal and Cirarimitaro (1977): "Experiences with Diagnostic Instrumentation in

Nuclear Power Plants”" Progr. Nucl. Energy, Vol 1

Piety K.R. (1977): "Statistical Algorithm for Automated Signature Analysis of
Power Spectral Density Data." Progr. Nucl. Energy, Vol 1

Cow, Wu and Cain (1977): "Malfunction Detection of Nuclear Reactor by Dynamic

Data System Methodology"” Progr. Nucl. Energy, Vol 1.

Mayo C (1979): "Post Accident Reactor Diagnostics of TMI-2", paper presented
at 12th Informal meeting on Reactor Noise, Studsvik, May 16-18, '1979.

20
Ziegler G (1980): "Post Accident Reactor Assesment by dynamic Measurements”,

Proc. ANS/ENS, Topl. Mtg Thermal Reactor Safety, Knoxville, TN, April 6-9,
1980.

Andoh et al (1981): "Operating Experience of a BWR Plant Diagnosis System"
Prog. Nucl. Energy. No

Tamoki, Kawano and Sato (1982): "On-line Diagnosis Algorithm Based on Noise
Analysis” Progr. Nucl. Eng. No. 9, 1982

Thie J (1982): "Power Reactor Noise"”, ANS Monograph.
Wu S. and Ouyang M. (1982): "A new approach to reactor noise analysis by the
dynamic data system (DDS) methodology", Progr. in nucl. energy, Vol. 9,

1982.

Andoh et al (1983): "Development of BWR Plant Diagnosis System Using Noise
Analysis" J. Nucl. Sci. and Techn. Vol 20, No 9.

Hiagglund T (1983): "New Estimation Techniques for Adaptive Control"
LUTFD2/TFRT-1025/

21
APPENDIX 1

USER INSTRUCTIONS FOR DATA ACQUISITION PROGRAMS

10.1 General remarks

These instructions describe some programs which were written for data
acquisition and analysis. When the programs have been run the computersystem
has had the following configuration. The computer was an Apple][+ with a
Corvus Winchester disk in slot 6, an Epson Printer in slot 1, a 16 channel A/D
converter in slot 5, a 300 baud communicationcard slot 2 and a clock-card in slot

3. The programs were written to be run with this configuration.

The reader of these instructions is assumed to have some familiarity with Apple
][Pascal. He must know how to execute programs, how to make filespecifications
etc. All data and parameterfiles are of the Pascal file type "file of real”.

The programs SAMPLE, VAX, VAXCOM and BACKUP should be used together with
a VAX computer. To be able to communicate between the Apple and the VAX you
must login on the VAX with another terminal and give the VAX/VMS command

$ SET TERMINAL/SPEED=300/NOPARITY.

Then plug in the Apple in the communication card and run the desired program.
It is recommended to run the programs with a slow communication card (300
baud) because the data transmission protocol is very simple and we must be sure

that the VAX can take care of the incoming data without any problems.

10.2 Programs for data acqusition

DATAGEN

The program DATAGEN generates datafiles containing input and output signals

from a discrete transfer function.

The program starts by asking for output-file name. Give the name without
extension. The program then asks for the modelorder, the "noiselevel” n, the

number of samples to be stored and A and B parameters in

A(q) y(k) = B(q) u(k) + n e(k]).

22
The input signal is a PRBS signal generated by a shift register and the signal e

consists of randomnumbers. Data is then stored on a file with the format:

NUMBER_OF_SAMPLES (
NUMBER_OF_CHANNELS (

NOS)
NOS, default = 2)

MODELORDER

CAHNNELNUMBER_1 (default = 0)
GAINCODE (default = 4)
GAINCODE (default = 4)
CHANNELNUMBER_2 (default = 1)
GAINCODE (default = 4)
GAINCODE (default = 4)
U(1)

Y(1)

U (NoS)

Y(NOS)

This program is mostly used to test other programs and identification algorithms.

SAMPLE

The program SAMPLE samples data and stores the values on a file. The program
can collect data from 16 channels and store the data on files ready to be used by
IDENT. The program can also transfer files to a VAX and can start a batchjob to
take care of the transferred datafiles with more advanced programs e.g. IDPAC.
The name of the VAX commandprocedure which does this is IDP.COM. (A little

more about how to use this possibility can be found in section 10.3)

The program first asks for fast or slow scan. In fast scan the N first channels
are scanned with the same gaincode, in slow scan different channels are allowed
to be picked out and be scanned with different gaincodes.

Depending on which voltage range the signals which should be sampled lie in,
different "gaincodes" must be chosen in this program. This table shows how to
chose gaincode when the voltage interval is known. When in doubt chose

gaincode 4, which corresponds to the largest voltage interval.

23

GAINCODE VOLTAGE RANGE
0 0..5V
1 0..1V
2 0.. 05V
3 0..0.1V
4 -5 ..5%V
5 -1 .. 1V
6 -0.5 0.5V
7 -0.1 0.1V

Table 10.1 Gaincodes.

After the answer of this question the user has to fill in a table with two-letter

commands.These commands are

AF 'applefile’ ! Outputfile on the Apple
given without extension
VF 'vaxfile' ! Name of VAX-file without

extension if transmission

is to be done, not necessary

to specify if TR N is given
NS 'number_of_samples’

DE 'delay’ ! To control the sampling-rate

NF 'number_of_files' ! The number of files which you want
to create

PR 'y' or 'n' ! If you want a printed log of
the sampling

CI 'minutes’ ! If (T mod minutes)=0 the sampling

is started
(T is the time in minutes
since midnight)

ID 'y' or 'n' ! If you want to start a batch-job
on the VAX, not necessary to
specify if TR N is given.

TR 'y' or 'n’ ! If you want to transmit files
to the VAX.

If you have chosen fast scan mode you must fill in

NC 'number_of_channels' ! The number of channels you want
to sample
GC 'gaincode’ ! Gaincode for the channels you want

to sample.

24
If you have chosen slow scan mode you must fill in

IC 'channelnumber' 'gaincode’
for the channels you want to sample. If you want to delete one entry write
IC 'channelnumber + 100°'

The command EX starts the execution. Unfortunately no default values are
assumed so you must fill in the whole table. After having sampled the values of
one file you will get information of the sampling period, written on the screen
and on the printer. Be sure that the printer is connected when you use the
program! The sampling period can be altered by changing the delay parameter.
The minimum sampling time in slowscan mode is TS = 11-Nc + 32 ms, and in

fastscan mode TS = Q-Nc 4+ 4 ms, where Nc is the number of channels.
The samples are stored on a file of real numbers with the format

NUMBER_OF_SAMPLES (=NOS)
NUMBER_OF_CHANNELS (=NOC)
MODELORDER
CAHNNELNUMBER_1

GAINCODE

GAINCODE

CHANNELNUMBER_NOC
GAINCODE
GAINCODE

Y_1(1)

Y_Noc(1)

Y_1(NOS)

Y_NOC (NOS)

The Apple and VAX files will then be 'applefile'1.data
'applefile'number_of files.data and 'vaxfile'l.t .. 'vaxfile'number_of_files.t. The files

which are created on the VAX will be ASCII files with one column. The parameter

MODELORDER will always be set to 2 in this program.

25

26
10.3 Data displaying programs

The program DISP displays a datafile graphically on the screen.

The program first asks for the file you want to display. Write the filename,
without extension. Then the program writes out the channels which are available
in the file, and asks for which channel you want to display. The first 250 samples
are now shown. Strike 'return' and the program prompts with ">'. Now you can

give 4 commands

Print out help text

Continue, display the next 250 samples
Exit from the program

If you want to look at a new channel or a
new file

ZMmax

If you print 'N' you get back to the mainprogram, which will ask for a new file to
be displayed, if you answer '$' the last file used will be assumed. This is
convenient when you want to look at another channel of the file you are

displaying.
LIST
The program LIST lists the content of a file on the screen.

The commands in the program are

R 'filename' ! List a file of real numbers

P '"filename' ! List a parameterfile (generated in IDENT)

D 'filename' ! List a datafile (generated in DATAGEN or
SAMPLE)

! Exit from the program
Hrite out a help text

= m

The filenames must be given without extension. The program stops the listing

every 10 lines. To continue the listing type C to stop the listing type E or Q.

27
10.4 Calculation programs

IDENT

The program IDENT identifies a discrete model

A@) y(x) = B(@!) uk - Td) + c(ah) e(k) (10.1)
1 A
yle) = B Ly - 1a) + SAL k) (10.2)
A(q ") D(q 7)
-1 -1
(1 +A(qQY) y(k) = —B-L]_—i u(k - Td) + Lﬂq—_ll (10.3)
1 +F(q ") 1 +D(q 7)

from signals on a datafile and stores the estimations of A(q) for every sample on

a parameterfile.

The program starts by asking which datafile you want to identify from, then the
program asks for the name of the output parameterfile. Give the filenames
without extensions. The next question will be 'MANUAL OR AUTOSTART 7' If you
answer M (= manual) various parameters must be given to start the identification

algorithm. You will be asked for these parameters by the questions

ID MODELORDER ! The order of the identified model.
Must be < 4.
A1l ! Initial values for the A parameters

A modelorder

B1 ! Initial values for the B parameters

B modelorder

RUNBETA (Y/N) ! Yes means a special identification
algorithm, a little different from
the LQ algorithm. Don't use it !

gammai ! Parametervalues you must give if

gamma2 you chose this algorithm.

death
lambdaO ! Forgetting factor in the identification
lambda

delay Td ! The delay in formulas (1) .. (3)

28

ABCD ! If you want to identify according to (2)
ABCDF ! If you want to identify according to (3)
P for Y ! Initial diagonal values of the P - matrix
PY

P for U

PU

P for EPS

PEPS

P for V and Z ! Hill be asked only if you identify model
pvz (2) or (3)

Use manual only to alter the modelorder parameter and use the values given in

the 'AUTO-case’ for the rest of the parameters.

If you answer A (=auto) the identification will be started with the following

parameters

MODELORDER = 2
RUNBETA = NO

ABCD = NO
ABCDF = NO
LAMBDAO = 1
LAMBDA = 0.975
Td = 0

Al =0

A2 =0

Bl = 0

B2 =0

PY1 = 100
PEPS2 = 100

The program now writes out which channels are available and you chose which
one you want as input channel (u in formula (1) .. (3)) and as output channel (y
in formula (1) .. (3)). The identification starts and you can see its progress on

the screen.

When the identification is finished you get the question 'Another identification?' if
the identification has been successful answer N and you leave the program with
the A parameters saved on a file. If you answer Y nothing is saved and you can

redo the identification, probably with other parameters.

29
The result of the identification will be stored on a parameter file with the format

NUMBER_OF_SAMPLES
MCDELORDER
A_1(1)

A_MODELORDER (1)
A_1(NUMBER_OF_SAMPLES)

A_MODELORDER (NUMBER_OF_SAMPLES)

Unfortunately this is not a very fast program, this table compares identification

speed for similar algorithms on an Apple and a VAX.

Time/recursion Computer
Model order APPLE][+ VAX 11/780
1.3 s 56 ms
2.5s 66 ms
4.5 s 95 ms

Table 10.2 The time for one recursion of the identification algorithm, on different

computers.

The memory limitations of the Apple makes it impossible to identify according to
model (2) or (3) with a modelorder greater than 2. If modelsstructure (1) is used

the Apple can handle models of order 3 too.

PARCALC

The program carries out different calculations on the identified parameters, given
from IDENT on a parameter file. The program is menu-driven. The program can
plot parameterfiles in two formats, the user will be asked for the limits of the
parametersizes. The program can also compute meanvalues of the parameters in a

given time interval and the quadratic parameter-distance

30
a2 =% (a,- a,)?
1 1

where a, are given by the user and aO»i are read from the file. This can be used

to detect changes in the estimated parameters.
STAT

The program STAT computes statistics from a datafile. Meanvalue, variance and a

histogram plot is computed for every channel on a file.

The program starts by asking for the name of the datafile you want to examine.
Give the name without extension. STAT then computes statistics and histograms of
all channels of the file, and writes out which channels are available in the file. To
display the results of these computations the following one-letter commands are

available

H 'channelnumber' ! Display the histogram of the given channel
S 'channelnumber' ! Display statistics of the given channel

A ! Display statistics of all channels

E ! Exit from the program

31
10.5 Communication programs

BACKUP

The program BACKUP transfers textfiles from an APPLE memory device to a
VAX.

First you must give the VAX/VMS command
$ SET TERMINAL/SPEED=300/NOPARITY
from another terminal, then plug in the Apple and execute the Apple program

BACKUP. The program starts by asking if you want to read from a backupfile.

If you answer N (=no) the program prompts with "' and you write the name of
the textfile you want to transfer to the VAX. The program continues to prompt '

until you write '$’'. At the most you can transfer 30 files in one execution.

If you answer Y (=yes) the program will read a number of filespecifications from
a textfile named 'SYS:BACKUP.DATA'. This file has the format

PREFIX_1
FILE_1

PREFIX_N
FILE_N

Maximum number of filenames in this 'backupfile’' is 30. You can create this file
with the Apple Pascal editor, if you rename the file after you have written it.
(Output files from the editor will always be '.TEXT' files.) Then the program will
write out these filenames one by one and ask if you want to transfer the file.
Write 'Y' if you want transmission 'N’' otherwise. After you have chosen the files
the transmission takes place. It is very convenient to have the files you do
backup on once a day on a file like this, so that the backup becomes easier. All

filenames must be given without extension, '.TEXT' is always assumed.

This program was mainly used during the program development, to have backup
of the programs on a more reliable memory device than the Apple devices. It was

also possible to use the texthandling programs on the VAX on these files.

32

<
<

The program VAX transfers an Apple datafile to an ASCll-file on the
VAX-computer.

First you must give the VAX/VMS command

$ SET TERMINAL/SPEED=300/NOPARITY

from another terminal, then plug in the Apple and execute the Apple program
VAX. The program asks which file you want to transfer to the VAX. Give the
filename of the Apple datafile, without extension. Then you will be asked for the
name of the VAX file you will create. On the VAX this file will be created with
the VMS command CREATE. After this the Apple file will be transferred to a VAX
ASCIl file. One real number is converted to 8 ASCIl characters which are
transferred to the VAX. This is a rather slow program, it takes about 7 minutes

to transfer 1000 real numbers.

VAXCOM

The program VAXCOM enables the user to use the Apple as a very simple

terminal to a VAX.

First you must give the VAX/VMS command
$ SET TERMINAL/SPEED=300/NOPARITY
from another terminal, then plug in the Apple and execute the program VAXCOM.

Be careful! This communication protocol is extremely simple. Don't try to do
something advanced with this program. The program should only be used to
check the communication between Apple and VAX. Only use 'simple’ VAX/VMS
commands to test this e.g. SHOW DEFAULT, SHOW USERS or DIRECTORY. The
most important thing is that you must not produce a $-sign from the VAX to the
Apple, the Apple will interpret this as a VAX/VMS prompt and consider the
response of the last given command as terminated. You can terminate the

program by typing 'SLUT'.

PRSET

The program PRSET sets the Epson printer in American mode.

33

34
10.6 IDPAC calls from Apple

If you give the command ID Y in the program SAMPLE, then SAMPLE will make
the VAX/VMS commandprocedurecall @IDP 'vaxfile’.’T and the following

commandprocedure will be executed.

BAAPADPADDAADPDAAPAPADADPADPADPDPAAODPAPAPLDPDPDPAAADPADADPADDHODPHDPDODPDAHPDHOH A A

$

SET NOVERIFY ! Don't echo the commands
LEN='F$LOCATE(".",P1)"’

S: ='F$EXTRACT (O,LEN,P1) ' ! Find the string 'vaxfile'’
SET DEFAULT DISK: [USERDIR] ! Go to the desired directory
F:='S'" . COM" ! Create unique filenames
SL: ="SL"'S' ! for this procedure

!

Now write a file which, when executed, will

call IDPAC, and do some analysis on the

file 'vaxfile'.T. The logical name of this file

is COMFILE.

In this procedure it is supposed that we have sampled

2 channels with 5 Hz and stored 1000 samples.

PEN/WRITE COMFILE 'F’'

Go to the directory where you want to place the
the result files.

RITE COMFILE "$ SET DEFAULT DISK: [DATADIR]"
Call IDPAC

RITE COMFILE "$ RUN DISK: [PROGDIR]IDPAC"

5 Hz = 0.2 sec

R R R ™ T B

WRITE COMFILE " LET TICK.=0.2"

WRITE COMFILE " LET DELTA.=0.2"

1

I Give IDPAC commands which will convert the

! input textfile to a IDPAC binary data-

! file with 2 columns.

! The input file is 'vaxfile' and the outputfile

! will be SL'vaxfile'

1

WRITE COMFILE " CONV ''SL''''S"' 2" ! 2 channels
WRITE COMFILE "
WRITE COMFILE "
WRITE COMFILE "
WRITE COMFILE "
WRITE COMFILE "
WRITE COMFILE "
WRITE COMFILE "
WRITE COMFILE " STOP"
WRITE COMFILE "$ EXIT"

Here should the rest of the
IDPAC commands be placed.

Be sure to have created unique
filenames for all files you
create in IDPAC.

35
CLOSE COMFILE
L: ="DISK: [DATADIR]"'S'".LOG"

| Start the file 'vaxfile'.COM as a batch-job.
! Delete the file 'vaxfile'.COM when the batch-job
is ready.

PAPAPHDHHPHrAN

SUBMIT/NOPRINT/ DELETE/NOIDENTIFY/LOG_FILE='L' 'F'

To be able to use this efficiently further knowledge in the art of writing

commandprocedures is required.

APPENDIX 2
Program code
program Backup;

(%
Transfers a number of apple-textfiles to a vax-computer.
The filenames are given in the program or read from
a backup-file with the format:

Prefixl
Filel
Prefix?2
File2

Prefixn
Filen

Author : Per Persson
Date : 83-JULY-12 *)

var
InFile : file of char;
Fil : file of char;
OutFile : file of char;
Back : file of char;
Sg : string;
Ch : char;
I : integer;
J : integer;
K : integer;
Vx1l : integer;
Nof : integer;
FilArr : array [1l..30] of string;
PrefArr : array [1..30]1 of string;
B : array [1..301 of boolean;
(¥= = = = = = = = = = = = = . === = = = = = = = = = = =
procedure Vx(Ch : char);
(* Writes one character on the transmissionline. *)
begin
OutFile” := Ch;
Put (OutFile);
end;
(%= = = = = = = = = = = = =@ = = = = - =& & - - - = = = - -
function Gt : char;

(% Reads one character from the transmissionline. #)

begin
Get(InFile);
Gt := InFile*;

end;

(k= = = = = = = = = = = = = = = = =

procedure Init;

(# Initializes the program and reads filenames. #)

var
St : string;
Colon : integer;
Long : integer;
begin

for I := 1 to 30 do

BLI] := true;
rewrite(InFile, "REMIN: ") ;
rewrite(OutFile, ’'REMOUT:‘");
writeln(’'Textfiles assumed. ');

write(’'Do you want to read from backupfile? ’);

readln(Ch);

if Ch = 'N’ then
begin
Nof := 0O;
repeat
Nof := Nof + 1;

write(’>’);
readln(St);
if St <> ’'s$’ then

begin
Colon := pos(’':’, St);
Long := length(St);
PrefArr{Nofl := copy(St, 1, Colon);
FilArr[Nofl := copy(St, Colon + 1, Long - Colon});
end;
until St = ’'$’;
Nof := Nof - 1;
end
else
begin
reset (Back, ’‘'SYS:BACKUP.DATA’);
Nof := O;
while not eof(Back) do
begin
Nof := Nof + 1;
readln(Back, PrefArr(Nofl);
readln(Back, FilArr[Nofl);
end;
writeln;
writeln(’'Type Y for backup’);
wvriteln;
for I := 1 to Nof do
begin
writeln(PrefArrf{I]l, FilArr(Il, ’'.TEXT’);
write(’ - > ');

readln(Ch);
if Ch = 'Y’ then

39

BII) := true
else
BI[I] := false;
end;
end;
end;

(B= = = = = = = = = = - = e e e == - -

procedure Awvay;

(¥ Sends one file on the transmissionline,
the escape-caracter is used as line terminator on the vax. #*)

var
Ch : char;

begin
while not eof(Fil) do
begin
if eoln(Fil) then
begin
readln(Fil);
Vx(chr(27));
Ch := Gt;
end
else
begin
read(Fil, Ch);
Vx(Ch);
end;
end;
end;
(#= = = = = = = = & - - - - - - - e - - - - = - - -
begin
Init;
for I := 1 to Nof do
if BI[I]1 then
begin
write(’Backup ‘, PrefArr(I], FilArr(I], ’'.TEXT’);
writeln;
write(’ - >’);
reset(Fil, concat(PrefArr(I], FilArr[{Il, ’.TEXT’));

(¥ Create a VAX/VMS file with the command create %)

~

-
“- W% % w %N w =
S Nt Nl N N N
we wWe we We ws wa we

for J := 1 to length(FilArr[I]) do
Vx{(FilArr(I1[J1);

Vx(’.’);

Vx(’A’);

Vx('P");
Vx(’'L’);
Vx(chr(27));
repeat

Ch := Gt;
until Ch = ’'$’;
Away;
Vx(chr(S0-64));
repeat

Ch := Gt;
until Ch = ’s$’;
close(Fil);
writeln(’to vax ’, FilArr[I],

end;

end.

".APL’);

40

41

program DataGen;
uses AppleStuff;

(* Generates a datafile from the model
a(gly(t) = b(giu(t) + e(t)
wvhere u(t) is a prbs-signal and e(t) is noise.

Author : Per Persson
Date : 83-July-04 %)

type
ObsType = record
U : real;

Y : real;
end;
var
Y : array [0..350] of real;
U : array [0..3501 of real;
A : array [0..50] of real;
B ¢ array [0..50]1 of real;
R : real;
Niv : real;
NoiselLev : real;
J : integer;
N : integer;
I : integer;
ModelOrder : integer;
P1 : integer;
P2 t integer;
P3 : integer;
P4 : integer;
PS5 : integer;
P6 : integer;
P7 : integer;
P8 : integer;
P9 : integer;
P10 : integer;
P10 : integer;
Pl1 : integer;
P12 : integer;
Data : file of real;
Obs : ObsType;
St : string;
(= = = = = = = = = = = = = = = = = = e == s = = = = = = =

procedure PRBS;
(# Generates a prbs-sequence. #)

var
Ph : integer;

begin
urol := P12;

if (P11 %* P12 = O) and (P11 + P12 = 1) then

Ph := 1
else
Ph := 0O;
P12 := P1l1;
P11 := P10;
P10 := P9;
P9 := P8;
P8 := P7;
P7 := P6
P6 := P5;
PS := P4;
P4 := P3;
P3 := P2;
P2 := P1;
Pl := Ph;
end;
(#= = = = = = = = = & - - - e e e e e - - e e - -

procedure Start;
(* Initializes the program. #)

var
I : integer;

begin
write(’'Output file: ’);
readln(St);
St := concat(St, ’.DATA’);
write(’'Modelorder: ’);
readln(ModelOrder);
for I := 1 to ModelOrder do

begin
write(’a’, I, ': ')
readln(AlLIl);

end;

for I := 1 to ModelOrder do

begin
write(’b’, I, ': ")
readln(B[I1]);

end;

write(’Noiselevel: 'y

readln(NoiseLev);
write(’Number of samples:’);
readln(N);

Pl := 1;
P2 := 0;
P3 := 1;
P4 := 1;
PS := 1;
P6 := 1;
P7 := 1;
P8 := 0O;
P9 := 1;

P10

1]
= v
-e

end;

rewrite(Data,

Data* := N;
Put(Data);
Data* 2;
Put(Data);
Data? :=
Put (Data);
Data* := 0;
Put(Data);
Data? := 4;
Put(Data);
Put(Data);
Data* := 1;
Put(Data);
Data* := 4;
Put(Data);
Put(Data);
Niv := 0.95;

St);

end;
(%= - - -
begin
Start;
for I :=
begin
PRBS;
YLO1 :
for J
YLO1
Obs. U
R
R :=
YLO]1 :
Obs. Y
Data*

1 to N do

=0
:= Y[Ol
t= ULO];

:= random;
R /7 32767;
= Y[O]l + NoiseLev * (R

:= YI[O];
:= 0Obs. U;

Put (Data);

Data*

Obs. Y;

Put(Data);

for J
begin
YLJ]
ULtJi
end;
end;

close(Data,

end.

:= ModelOrder

Yy -
utJy -

lock);

350 do

ModelOrder;

11;
11;

H
1 to ModelOrder do
- A[3j] = Y[31]

downto 1

+ BL[j1 * ULJI;

- Niv);

do

program Disp;
useg TurtleGraphics, AppleStuff;

(¥ Displays a datafile graphically on the screen.

Author : Per Persson
Date : 83-july-04 %)

type
SetType = set of 'A’..’'2';
var
Dat : file of real;
Command : SetType;
I : integer;
J : integer;
K ¢ integer;
Mo : integer;
Ns : integer;
Kan ¢ integer;
Chan ¢ integer;
Noc : integer;
Inp : integer;
R1 ¢ real;
R2 : real;
Oldfile : string;
Fil : string;
St : string;
Ch : char;
Chanv : array [0..15]1 of
record
I : integer;
G : integer;
end;
Range ¢ array [0..7,1..2) of real;
(k= = = = = = = = = = = = = & - & = & - - - = - - - -

procedure Help;
(* Is called to write out a Help text. *)

begin
wvriteln;
writeln(’H Help’);
writeln(’C Continue’);
wvriteln('E Exit’);
writeln(’N New channel/file. Then $ for same file’);
writeln;
end;

(= = = = = = = = = = & e e e e e e e e e e = - - -

procedure Dot(X, Y : integer);
(# Puts a dot on the screen. %)

var
D : boolean;

44

45

begin
DrawBlock(D, 1, O, O, 1, 1, X, Y, 3);
end;

(%= = = = = = = = = = = = = - - - -

procedure StringIt(X : real; Int : boolean; var St : string);

(¥ Converts a real number to a text-string. #)

var
I : integer;
J : integer;
S : string;

begin
St = '’ ’;
if X < 0O then
St := concat(St, ‘'-');
if abs(X) < 1 then
St := concat(St, ’'0’);
X := abs(X);
I := trunc(X);
str(I, S);
if I > 0O then
St := concat(St, S);
if not Int then
begin
X := X - trunc(X);
I := trunc(100 * X);
str(I, S);
if I < 1 then
S := concat(’'00’, S)
else if I < 10 then
S := concat(’'0’, S);
St := concat(St, ’'.’, S);
end;
end;

T T

procedure Rng;
(¥ Initializes the program. #)

var
I : integer;

begin

Fil := ' 7’;
DldFile :
Command

RangelO, 11
RangelO, 21
Rangell, 11
Rangell, 21
Rangel2, 11
Rangel 2, 21

|

L] -
-

Z o~

O0O0FOU ~~
Q
m
el

o oo
* wes we we ws
-e

Rangel3, 11
Rangel 3, 21
Rangel4, 11
Rangel4, 21
Rangel5, 11
Rangel5, 21
Rangel6, 11
Rangel6, 21
Rangel7, 11
Rangel?7, 21 :

for I :=
begin

Chanvfil.I :=
Chanv([(il.G :=

end;
end;
(- - - -

L]
[
-e

P OOOFRENULOO

e se ee
we we we we (O v
-

= N O

QL we ws e

(4 I

0 to

procedure NewScr(K :

integer);

(¥ Writes a new form on the screen
with the time interval k#250 to (k + 1)#230.

var
I :
St :

integer;
string;

procedure Ax(X, Y :

begin

PenColor(None);
MoveTo(X, Y);

StringIt(Vval,

PenColor(White);
wetring(St);

end;

begin

InitTurtle;
PenColor (White);
FillScreen(Black);

for 1
begin
Dot (I,
Dot (I,
end;
for I
begin

Dot (20,

Dot (270,

end;

Ax (13, O, true,

20 to 270

10);
170);

integer; B : boolean; Val

B, St);

do

11 to 169 do

I);
I);

Ax(103, 0, true, (
Ax (203, 0, true, (

Ax (251,
R1
R2

0, true,
:= RangelChanv(Kanl.
:= RangelChanv{Kanl.

K % S0);

(K +

K +
K +

14
2) % 50);
4) % 50);
S) » 50);
I,13;
G, 21;

r

*®)

real);

46

Ax(0, 6, true, -R2);
Ax(0O, 86, true, R1 / 2 - R2);
Ax (0, 166, true, Rl - R2);
Dot (18, 10);
Dot (19, 10);
Dot(18, 90);
Dot (19, 90);
Dot (18, 170);
Dot(19, 170);
Dot (20, 9);
Dot (120, 9);
Dot (220, 9);
Dot (270, 9);
end;

(¥= = = = = = = = = = = = = = =

procedure ShowChan;

(* Plots the content of a channel on the screen.

begin
for J := 1 to Ns do
begin
if ((J mod 230) = 0) or (J =
begin
if J > 1 then
begin
TextMode;
repeat
write(’>’);readln(Ch);
case Ch of
'E’ : exit(program);
N’ : exit(ShowChan)
'C’' : GrafMode;
'H’ : Help;
end;
until (Ch in Command);
end;
NewScr(J div 350);
PenColor (None);
MoveTo(20, 1735);
StringIt(Kan, true, St);

.
’

1) then

St := concat(’cannelnumber’, St);

PenColor(White);

wstring(St);

for I := 1 to Chan do
Get (Dat);

Inp := trunc(((Dat* + R2)

PenColor (None};

MoveTo (20, Inp + 10);

PenColor(White);

for I := Chan + 1 to Noc do

Get (Dat);
end;
for I := 1 to Chan do
Get (Dat);

¥ 160) / R1l);

*)

47

Inp := trunc(((Dat* + R2) % 160) / Rl);

for I := Chan + 1 to Noc do
Get(Dat);
MoveTo((J mod 250) + 20, Inp
if ((J + 1) mod 250) = O then
readln(Ch);
PenColor(White);
end;
readln;
TextMode;
write('Type @ to quit. ’);
readln(Ch);

end;
(=~ = - = = = = - - - - - - - - -
begin
Rng;
repeat
if Fil <> ’'$’ then
Ol1dFile := Fil;
write(’Display file: ")
readln(Fil);
if Fil = ’'$’ then
reset(Dat, concat(0ldFile,
else
reset(Dat, concat(Fil, ’.DA
Ns := trunc(Dat* + 0.2);
Get (Dat);
Noc := trunc(Dat? + 0.2);
Get(Dat);

Mo := trunc(Dat* + 0.2);
wvriteln(’Number of sampels:
writeln(’Systemorder: ’
writeln(’Available channels:’
for I := 1 to Noc do
begin
Get(Dat);
J := trunc(Dat* + 0.2);
write(’” ’, J);
Chanv[J1.I := I;
Get(Dat);
K := trunc(Dat? + 0.2);
Chanv[J1.G := K;
Get(Dat);
end;
writeln;
write(’'Display channel: ’);
readln(Chan);
Kan := Chan;
Chan := ChanvI[Chanl.I;
ShowChan;
close(Dat);
until Ch = ’'Q’;
end.

+ 10);

".DATA’))

TA’));

Ns);
Mo);

»
?
);

48

program Ident;
uses TurtleGraphics, AppleStuff;
(¥ Identifies a model

B(g)y(t) = B(qlu(t) + C(gle(t)

from a given datafile.

Author: Per Persson
Date: 04 - JULY - 1983 #)

type
FiType = array [(1..201 of real;
MatType = array [(1..10,1..10]1 of real;
RecType = record
u : real;
y : real;
end;
FilType = File of real;
var
Fi : FiType;
Theta : FiType;
W : FiType;
P1 : MatType;
P : MatType;
Lambda : real;
LambdaO : real;
Gammal : real;
GammaZ2 : real;
Beta : real;
Death : real;
R : real;
S : real;
Nlev : real;
Epsl : real;
Vi s real;
Z1 : real;
Ul : real;
] : real;
Y1 : real;
Y : real;
Td : integer;
Y1l : integer;
Yh : integer;
Ul ¢ integer;
Uh ¢ integer;
El : integer;
Eh ¢ integer;
Z1 ¢ integer;
Zh t integer;
V1 ¢ integer;
Vh ¢ integer;
T ¢ integer;

G1 ¢ integer;

G2 ¢ integer;

Ja : integer;

Inp ¢ integer;

Outp ¢ integer;

Mo : integer;

Np : integer;

I ¢ integer;

J : integer;

Noc : integer;

Na ¢ integer;

Nb ¢+ integer;

Nc ¢ integer;

Nd : integer;

Nf ¢ integer;

Ua : array [1..20] of real;
A : array [1..20] of real;
B : array [1..20] of real;
Dt ¢ RecType;

Ch ¢ char;

Print ¢ char;

Chl ¢ char;

Sgd ¢ string;

Sgp : string;

St : string;

ABCD : boolean;

ABCDF : boolean;

RunBeta : boolean;

Pe ¢ boolean;

ChanVec : array [0..15] of boolean;
Apar ¢ FilType;

Data : FilType;

Pri ¢ file of char;

(* parameter file format:

number of sampel
modelorder

al(l)

a2(l)

amo(1l)

al(nos)
a2(nos)

amo(nos)
data file forwat:
number of samples

number of channels
modelorder

chnr(1)
gc(l)
gc(l)

-

chnr (noc)
gc(noc)
gc(noc)
yl(1l)

ynoc(1l)

yl(ns)

ynoc(ns)
*)

(¥= = = = = = = = = = = = = = = - = - - -

procedure PlotDot(X, Y : integer);
(# Plots a dot on the screen at x y. #%)

var
Dot : boolean;

begin
DrawBlock(Dot, 1, O, O, 1, 1, X, Y, 3);
end;

(%= = = = = = = = = = & - - - - === -

procedure InitAll(Bo : boolean);
(# Initailizes the program. #)
var

I : integer;
J : integer;

begin
for I := 1 to 20 do
begin
FilIl := 0O;
WLI] := 0;
ThetalIl := 0O;
UalIl := O;
end;
for I := O to 15 do
ChanVeciI] := false;

rewrite(Apar, Sgp);
reset(Data, Sgd);

Np := trunc(Data” + 0.3);
Apar* := Np;

Put(Apar);

51

if Bo then
writeln(Np, ' sampel’);
Get (Data);
Noc := trunc(Data* + 0.5);
Get (Data);
Mo := trunc(Data* + 0.3);
if Bo then
begin
writeln(’Default modelorder: ', Mo);
write(’Id modelorder :’);readln(Na);
end
else
Na := Mo;
Apar® := Na;
Put (Apar);

Nb := Na;
Ne := Na;
Nd := Na;
Nf := Na;
Y1 := 1;
Yh := Na;
Ul := Yh + 1;
Uh := Na + Nb;
El := Uh + 1;
Eh := Na + Nb + Nc;
21 := Eh + 1;
Zh := Na + Nb + Nc + Nf;
Vil := Zh + 1;
YVh := Na + Nb + Nc + Nd + Nf;
if Bo then
begin
for J := 1 to Na do
begin
vrite(’a’, J:1, ’: ')
readln(ThetalYl + J - 11);
end;
for J := 1 to Na do
begin
wvrite(’b’, J:1, ': Yy
readln(ThetalUl + J - 11);
end;
end;
Beta := 03
Epsl := 0;
T := 0O;
R := 0;
S = 0;
Y = 0;
Y1 := O3
U = 0;
Ui := 0;
21 := 0;
Vi := 0O;
end;

!
I
]
|
|
i
|
|
I
1
I
!
!
1
|
I
1
|
I

(%~ -

53

procedure Channel;
(¥ Initializes the channelvector. #)

var
I : integer;

begin
for I := 1 to Noc do
begin
Get(Data);
ChanVecltrunc(Data” + 0.5)] := true;
Get(Data);
Get(Data);
end;
end;

(M= = = = = = = = = = = & = e = = e e e e e e e = = == -

procedure InitAll2(Bo : boolean);

(#* Initializes the program.
The initialization is too long to
be made in one procedure.
An Apple-Pascal limitation. #)

var
I : integer;
J : integer;
Ph : real;
Ch : char;

procedure SetUpp;

(% Questions and answers #)

begin
writeln(’P for y’);
wvrite(’'py: ") ;

readln(Ph);
for I := Y1l to Yh do

PLI,I] := Ph;
writeln(’P for u’');
write(’pu: ")
readln(Ph);
for I := Ul to Uh do

PL{I,I] := Ph;
writeln(’P for eps’);
write(’peps: ');

readln(Ph);

if Ph = 0 then
Pe := false

else
Pe := true;

for I := E1 to Eh do
PLI,I) := Ph;

if ABCD or ABCDF then

begin
writeln(’P for v and
write(’'pzv: ")
readln(Ph);
for I := Z1 to Vh do
PLI,I] := Ph;
end;
end;
begin
for I := 1 to 10 do
for J := 1 to 10 do

PLI,Jl := O;

if not Bo then

begin
RunBeta := false;
Gammal = 0.95;
Gamma2 := 0.95;
LambdaO := 1;
Lambda := 0.975;
Death = 0.93;
Td := 0;
for I := Y1l to Eh do
PLI,I1 := 100;
Pe := true;
V1 := Eh;
Vh := Eh;
Zl := Eh;
Zh := Eh;
ABCD := false;
ABCDF := false;
end
else
begin

write(’RunBeta (Y/N)
readln(Ch);
if Ch = 'Y’ then

RunBeta := true
else

RunBeta := false;
if RunBeta then
begin

write(’Gammal:
readln(Gammal);
write(’'GammaZ2:
readln(Gamma?Z2);
write(’Death:
readln(Death);
end;
wvrite(’LambdaO:
readln(LambdaO);
write(’Lambda:
readln(Lambda);
write(’Delay td:
readln(Td);

’);

r);
r);

r);

54

write(’ABCD model 7’);
readln(Ch);

if Ch = 'Y’ then
ABCD := true
else
begin
ABCD := false;

write(’ABCDF model?’);
readln(Ch);

if Ch = 'Y’ then
ABCDF := true
else
ABCDF := false;
end;
if ABCD then
begin
V1 := Zh;
Vh := Zh;
end;
if (not ABCD) and (not ABCDF) then
begin
V1l := Eh;
Vh := Eh;
Zl := Eh;
Zh := Eh;
end;
SetUpp;
end;
end;

(= = - = = = = = = - - - - - - -

procedure ShowCoeff;

(# Displays the current parameter estimate on a printer.

var
I : integer;
J : integer;
begin

wvriteln(Pri, '- - - - - - - - =

writeln(Pri, ’'Datafile: 'Sgd) ;
writeln(Pri, ’'Parameterfile: ’, Sgp);
writeln(Pri, ’‘time ', T+1:4, ’ sampel’);

write(Pri, ’'a:’);

for I Yl to Yh do
write(Pri, ThetallIl:9:4);

writeln(Pri);

write(Pri, ’b:’);

for I := Ul to Uh do
write(Pri, Thetal(Il:9:4);

writeln(Pri);

wvrite(Pri, ’'c:’);

for I := El1 to Eh do
write(Pri, ThetallIl:9:4);

if ABCD Then

');

55

*)

begin
write(Pri,
for I
write(Pri,
wvriteln(Pri);
end;
if ABCDF then
begin
write(Pri,
for I
write(Pri,
end;
writeln(Pri);
writeln(Pri);
writeln(Pri);

'd:’);
Zl to Zh do

ThetalIl:9:4);

rf£:7);
t= V1 to Vh do
ThetalIl:9:4);

end;
(%-

procedure Recid(Obs

(# Carries out the recursive identiFication.

RecType);

each time it is called)

var
Thetaln
Ny
NyO

(%-

var
I H
J 3
Vi H
LoInd
HiInd

(¥ Vut :
begin
if ABCD
begin
LoInd
HiInd
end
else
begin
LoInd
HiInd
end;
for I
begin
Vi :
for
Vi

J

VutlI]

: FiType;

real;

¢ real;

procedure MultVM(Min : MatType; Vin

integer;
integer;
real;

integer;
integer;

Min # Vin #)

or ABCDF then
t= Y1;
:= Vh;
= Y1l;
:= Eh;
t= LoInd to HiInd do
0;

LoInd to HiInd do

Vi;

Vi + Min(I,J] * Vin(J1;

FiType;

var Vut

56

Makes one recursion

FiType);

end;
end;
(%- - - - -
procedure

(¥ Fih :=

var
I :

J :

Sla

H

LoInd

HiInd

begin
if ABCD
begin
LoInd
HiInd
end
else
begin
LoInd
HiInd
end;
for I :=
begin

Mul (p

P % Fi »

integer;
integer;
FiType;
real;
integer;
integer;

or ABCDF

Y1l;
Vh;

Yi;
Eh;

LoInd t

H := 0;

for J
H :=
SlalIl
end;
for I :=
for J
begin
Fihl
Fihl
end;
end;
(%- - - - -
procedure

:= LoInd to HiInd do
FilJ]l % PLI,J1;

H +
:= H;

LoInd t
:= I to

I,J1 :=
J,I1 :=

Measure;

MatType; Fi

transp(Fi)

then

o HiInd do

o HiInd do
HiInd do

57

FiType; var Fih : MatType);

¥ p where p is symmetric =)

SlalIl % SlalJl;

FihlI, J3;

(% Updates the measurements #*)

var
I ¢+ integer;
Uh : real;
UH1 : real;
begin
Yl := Y;
Y := Obs.Y;
if Td = 0 then

begin

Ul := UalTd]l;
for I := Td downto 2 do
UalIl := UalIl - 113;
UalLl]l := Obs.U;
end;
end;

(4= - = = = = = = = = = = = = =

procedure UpDateFi;

var
I ¢+ integer;
H : real;
H1l : real;

begin

for I := Yh downto Y1 + 1 do
Fi[I] := FilI - 13;

FilYl]l := -Y1;

for I := Uh downto Ul + 1 do
FilI]l := FilI - 13;

FifUll := Ul;

for I := Eh downto E1 + 1 do
FifIl := FilI - 11;

FilEl]l := Epsl;

if ABCDF then

begin

for 1 := Vh downto V1 + 1 do

FilIl := FiflI - 113;
FilV1l] := -V1;

end;
if ABCDF or ABCD then
begin
for Ii := Zh downto Z1 + 1 do
FilIl := FilI - 11;
FiflZl1] := -21;
end;
end;
(- = - = = = = = = = = = = - =

procedure ComputeZ;

var
I : integer;

begin
Z1l := 0O;
for I := 21 to 2Zh do
Z1 := Z1 - ThetallIl »* FilIl;
for I := Ul to Uh do

Z1 := Z1 + ThetalIl * FilIl;

58

(- - - - - -

procedure ComputeV;

var
I : integer

.
’

to Vh do

- ThetalIl * FilI1l;

El to Eh do

V1 := V1 + ThetalIl * FilIl];

begin
Vi := 0;
for I := V1
Vi := V1
for I :=
Vi := V1 +
end;

(%- - = - - -

Epsi;

procedure ComputeEps;

var

I : integer;

begin
Epsl := y;

for I := Y1l to Eh do

Epsl := Epsl

if ABCD or
for I :=
Epsl :=

end;
(- - - - - =

ABCDF Then
Z1l to Yh do

- ThetalIl * Fi(Il;

Epsl - ThetalIl #* FilIJ;

procedure ComputeP;

var

Fih : MatType;
Vec : FiType;

I : integer;
J : integer;
H : real;

Sla : FiType;

begin
Pl := P;
Mul(P, Fi,

Fih);

MultVM(P, Fi, Vec);

H := 0;
for 1
H :=
H := H
for I
for J :=
begin
PLI,J]
PLJ, I
end;
if RunBeta
begin
for I :=

n + XN

Yl to Vh do
+ VeclI]l * FilIl;
Lambda;

Yl to Vh do

I to Vh do

(PLI,J]
PLI, J];

then

Yl to Uh do

(Fih(I,J1 /7 H))

/ Lambda;

59

PLI,I] := PLI,I] + Beta;
if ABCD then
for I := 21 to Zh do
P[{I,TI) := PLI,I]1 + Beta;
if ABCDF then
for I := V1l to Vh do
PLI,I] := P[I,I] + Beta;
if Pe then
for I := E1 to Eh do
PL(I,I] := PLI,I] + Beta;
end;
end;
(¥= = = = = = = = = = = = - - - -
procedure ComputelLambda;
begin

Lambda := LambdaO % Lambda + (1 - LambdaO);

end;

(K= = = = = = = = = = = = = = = = = = - -

procedure ComputeTheta;

var
I t integer;
Fi2 : real;
H1 : real;
H : real;

Vut : FiType;

begin
MultVM(P, Fi, Thetaln);
for I := Y1 to Eh do
ThetaInlI]l := ThetalIn[I] % Epsi;
if ABCD or ABCDF then
for I := Z1 to Vh do
ThetaInl{I] := ThetalIn{Il % Epsl;
for I := Y1l to Eh do
ThetallIl := ThetalIl + ThetalInl(Il;
if ABCD or ABCDF then
for I := Z1 to Vh do
ThetalIl := ThetalI] + ThetalIn(I];
end;

($= = = = = = = = = = = = = - - - - -

procedure ComputeBeta;

var
I : integer;
Fi2 : real;
H1l : real;
H : real;

Vut : FiType;
(# Generally not used. #)
begin

S := 0;
for I := Y1l to Eh do

S := S + ThetaInl[I]l % WLI];
for I := Y1l to Eh do

WLI) := Gammal % WI[I]l + ThetaInl[I];
if ABCD or ABCDF then

begin
for I := 21 to Vh do
S := S + ThetalInl(I]l * WI(Il;
for I := Z1 to Vh do
WLI] := Gammal ¥ W[I] + ThetaIn[Il];
end;
if S > 0 then
S :=1
else
S := -1.0;
R := R % Gamma2 + (1 - Gammal) * S;
Fi2 := 0O;
for I := Y1l to Eh do
Fi2 := Fi2 + FillIl * Fil(Il;
if ABCD or ABCDF then
for I := 21 to Vh do
Fi2 := Fi2 + FilIl % FilIl];
MultVM(Pl, Fi, Vut);
H1 := 0O;
for I := Yl to Eh do
Hl := H1 + FilIl % Vutlil;

if ABCD or ABCDF then
for I := 21 to Vh do

H1 := H1 + FilIl * Vut{Il;

NyO := Lambda / (Lambda + H1);
if R < 0.9 then

Ny := 1
else

Ny (= 8 ¥ (1 - R);
if R > 1 then

Ny = 0O;

if Fi2 <> O then
H := (NyO - Ny) / Fi2
else
H := 1000;
if R > Death then
Beta := H
else
Beta := 03
end;
(¥= = = = = = = = = = - - = - - - - - - -
begin
Measure;
UpDateFi;
if ABCD or ABCDF then
ComputeZ;
ComputeEps;
if ABCDF then
ComputeV;
ComputeLambda;
ComputeP;

62

ComputeTheta;
if RunBeta then
ComputeBeta;
end;

(#= = = = = = = = = = & D 4 e e mm s e - m s s e e e e e e e .o - -

procedure StringIt(X : real; Int : boolean; var St : string);
(¥ Converts a decimal number to a string. #*)

var
I : integer;
J : integer;
S : string;

begin
St := " ’;
if X < 0 then
St := concat(sSt, ’'-’);
if abs(X) < 1 then
St := concat(St, ’'0’);
X := abs(X);
I := trunc(X);

str(I, S);
if T > O then
St := concat(St, S);
if not Int then
begin
X X - trunc(X);

I := trunc(10000 * X);
str(I, S);
if I < 1 then

t= concat(’000’, S)
e 1f I < 10 then

:= concat(’000’, S)

S
ls
S
else 1if I < 100 then
S
s
S

D

:= concat(’00’, S)
e if T < 1000 then
= concat(’'0’, S);

el

St concat(sSt, ’.’, S);
end;
end;
(¥~ = = = = = = = = = = & m e e e e o e e e e e e = = = = = = e e e -
procedure Ax(X, Y : integer; B : boolean; Va : real);

(# Writes a number on the screen at a given position when the screen in
in graphical mode #)

var
St : string;

begin
MoveTo(X, Y);
StringIt(vVa, B, St);
wstring(St);

end;

(k= = = = = = = o - e s e e e s e e -

procedure Form(Full : integer);

var
J : integer;

begin
GrafMode;
FillScreen(Black);
for J := 20 to 270 do
begin
PlotDot(J, 10);
PlotDot(J, 170);
end;
for J := 11 to 169 do
begin
PlotDot (20, J);
PlotDot (270, J);
end;
MoveTo (30, 180);
wstring(’'Recursive identification’);
Ax(13, 0O, true, Full * 50);
Ax(103, O, true, (Full + 2) * 50);
Ax (203, 0, true, (Full + 4) % 50);
Ax(251, 0, true, (Full + 5) % 50);
Ax(0, 6, true, -2);
Ax (O, 86, true, 0);
Ax (0, 166, true, 2);
PlotDot (18, 10);
PlotDot (19, 10);
PlotDot (18, 90);
PlotDot (19, 90);
PlotDot (18, 170);
PlotDot (19, 170);
PlotDot (20, 9);
PlotDot (120, 9);
PlotDot (220, 9);
PlotDot (270, 9);
end;

(#= = = = = = = = = =& & & o e e e e e e - - - - -

begin
(¥ Main program. Asks questions. You answer. %)

Print := 'N’;
write(’Printer ?’);
readln(Print);
if (Print = 'y’) or (Print = 'Y’) then
begin
rewrite(Pri, ’PRINTER:’);
Print := ’'Y’;
end;
Ch := 'Y’
wvhile Ch

1l we

'Y’ do

begin

write(’Data file: ')
readln(Sgd);
Sgd := concat(Sgd, ’'.DATA’);
write(’Parameter file: ’);
readln(Sgp);
Sgp := concat(Sgp, ’'.DATA’);

write(’Manual or autostart?(M/A)’);
readln(Chl);

InitAl1(Chl = 'M’);

Channel;

InitAl12(Chl = 'M’);
writeln(’Available channels:’);

for I := 0 to 15 do
if Chanvecl[I] then
wvriteln(’Channel ', I);
wvriteln;
wvrite(’Input channel: ")
readln(Inp);
write(’Output channel: . H

readln(Outp);
for J := 1 to Np do
begin
if (T mod 250) = O then
Form(T div 50);
for I := 0 to 15 do
if ChanVeclI] then
begin
Get (Data);
if I = Inp then
Dt.U := Data*;
if T = Outp then
Dt.U := Data*;
end;
Recid(Dt);
Ax (230, 180, true, T + 1);
for I := 1 to Na do
begin
Gl := (16 - I)*10;
Ax (30, G1l, false, ThetalIl);

end;

if (((t + 1) mod 250) = 0) and (Print =
ShowCoeff;

for I := 1 to Na do

begin
Gl := trunc((ThetalIl + 2) * 40) + 10;

PlotDot ((T mod 250) + 20, G1);
end;

for Ja := 1 to Na do
begin
Apar* := ThetalJal;
Put (Apar);
end;

T := T + 1;
end;

IYI

) then

64

if ((T mod 230) <> 0) and (Print = 'Y’) then
ShowCoeff;

readln(Ch);
TextMode;
write(’Another identification? ’);
readln(Ch);

end;

close(Data);

close(Apar, lock);

end.

66

program List;

(# Lists out files of real, as real numbers, parameters
or data.

Author: Per Persson
Date: 15-AUGUST-1983 %)

var

Fil : file of real;

St : string;

Ch : char;

Chl : char;

I : integer;

J ¢ integer;

Ns : integer;

Mo : integer;

Noc : integer;
T T

procedure Help;
(¥ A help text is printed out at the command ’'H’'. %)

var
Ch : char;

begin

writeln;

writeln(’'Type r, p or d followed by the filename. The printing’);
writeln(’stops every 10 samples. To exit the procedure type’);
writeln('e or q, then you return to the commandline. To continue’);
writeln(’the listing type <ret>. Exit help by typing <ret>’);
readln(Ch);

writeln;
end;

(¥= = = = = = = = = & & = & & & e e e e o e e e e e e e e e e e e o

procedure Look;
(# Lists the file as a file of real numbers. %)

begin
I :=1;
reset(Fil, St);
while not eof(Fil) do
begin
writeln(I, ' ’, Fil*:9:4);
I :=1 + 1;
if (I mod 10) = O then
begin
write(’>");
readln(Ch);
if (Ch = ’E’) or (Ch = ’Q’) then
exit(Look);
end;
Get(Fil);

end;
readln;
end;

(%= = = = = = = = = - - - - & - - -

procedure ListPar;

(¥ Lists out the file as a parameterfile.

begin
reset(Fi1l, St);
Ns := trunc(Fil” + 0.2);

Get(Fil);
Mo := trunc(Fil+* + 0.2);
writeln(’'ns: ‘', Ns);
writeln(’'mo: ', Mo);
readln;
for I := 1 to Ns do
begin
write(I, ’:’);
for J := 1 to Mo do
begin
Get(Fil);
write(Fil*:9:4);
end;
writeln;
if (I mod 10) = O then
begin

write(’>’);
readln(Ch);

if (Ch = 'E’) or (Ch = ’'Q’) then
exit(ListPar);
end;
end;
readln;
end;

(%- - - - = = = = = = = - - = = - -

procedure ListDat;
(¥ Lists out the file as a datafile.
begin

reset(Fil, St);
Ns := trunc(Fil* + 0.2);

Get(Fil);

Noc := trunc(Fil* + 0.2);
Get(Fil);

Mo := trunc(Fil* + 0.2);
wvriteln(’ns: *, Ns);
wvriteln(’noc: ’, Noc);
writeln(’mo: ', Mo);
writeln;

readln;

for T := 1 to Noc do
begin

Get(Fil);

*)

67

14

writeln(’channelrecord no ’, I);
writeln(trunc(Fil* + 0.2));
Get(Fil);

writeln(trunc(Fil* + 0.2));
Get(Fil);

writeln(trunc(Fil* + 0.2));
writeln;

readln;

end;
for I := 1 to Ns do
begin

write(I, ':’);
for J := 1 to Noc do
begin
Get(Fil);
write(Fil*:9:4);
end;
writeln;
if (I mod 10) = O then
begin
write(’>’);
readln(Ch);
if (Ch = "E’) or (Ch = ’Q@’) then
exit(ListDat);
end;

end;
readln;

end;
(%-

begin
wvhile true do
begin

page(output);
writeln(’R list file of real’);

writeln(’P list parameterfile’);
writeln(’'D list datafle’);
writeln(’'E exit’);

writeln('’H help’);
GoToXY(0, 10);
write(’> ’);
read(Ch);
read(Chl);
if (Ch <> ’'E’) and (Ch <> ‘H’) then
readln(St);
St:=concat(St, ’'.DATA’);
cagse Ch of
'R’ : Look;
‘P’ : ListPar;
‘D’ : ListDat;
'E’ : exit(program);
'H’ : Help;
end;
close(Fil);

end;

end.

68

69

program ParCalc;

uses AppleStuff, TurtleGraphics;

(* Shows the identified parameters from a file,
and can also calculate meanvalue,

parameter distance etc.

Author : Per Persson
Date : 04 - JULY - 1983 x)

var
Apar : file of real;
J ¢ integer;
K : integer;
Ns : integer;
Mo ¢ integer;
Cha : char;
Ch : char;
St ¢ string;
(¥= = = = = = = = = = = = & & & & & . - = e e .- == - - -

procedure Dot(X, Y : integer);

(¥ Writes a dot on the screen at position x, y. %)

var D : boolean;
begin
DrawBlock(D, 1, O, O, 1, 1, X, Y, 15);
end;
(%= - = = = = = = = & & & & o e e e e e e = = = = = e = -
procedure StringIt(X : real; Int : boolean; var St : string);

(# Converts a real number to a textstring. #)

var
I : integer;
J : integer;
S : string;

begin
St := " ’;
if X < 0 then
St := concat(St, ’'-");
if abs(X) < 1 then
St := concat(St, ’'0’);
X := abs(X);
I := trunc(X);
str(I, S);
if I > O then
St := concat(St, S);
if not Int then
begin
X = X - trunc(X);
I := trunc(10000 % X);
str(I, S);

if I < 1 then

S := concat(’'000’, S)
else
if I < 10 then
S := concat(’'000’, S)
else if I < 100 then
S := concat(’00’, S)
else if I < 1000 then
S := concat(’0’, S);
St := concat(St, ’'.’, S);
end;
end;
(k= = = = = = = - - = - & - - & & & - - - .- - .-
procedure Ax(X, Y : integer; B : boolean; Val : real);

(¥ Writes the number val at position x, y. This is
necessary because APPLE in graphical Mode can not
write a number on the screen. #)

var
St : string;

begin
MoveTo (X, Y);
StringIt(Val, B, St);
wvstring(St);

end;

(= = = = = = = = = = = & = & - - - - - - - = - - - -

procedure NewScr(K : integer);

(¥ Writes a new form on the screen scaled from
k#3530 to (k + S)*%350 in x direction. The y -direction
can be decided from the program. #)

var
I : integer;

begin
GrafMode;
FillScreen(Black);
for I := 20 to 270 do
begin
Dot(I, 10);
Dot(I, 170);
end;
for I := 11 to 169 do
begin
Dot (20, I);
Dot (270, I);
end;
Ax(13, O, true, K * 50);
Ax(103, 0O, true, (K + 2) % 50);
Ax(203, 0O, true, (K + 4) % 50);
Ax(251, 0O, true, (K + 35) * 50);
Dot (18, 10);

Dot (19,
Dot (18,
Dot (19,
Dot (18,
Dot (19,
Dot (20,

10);
90);;
S0);
170);
170);
9);

Dot (120, 9);

Dot (220, 9);

Dot (270, 9);
end;

(%= = = = = = = = = = -

procedure ShowAP;
(# Show A - parameters.

var
I -
J -
L -
Gain
Y1l
Yh

integer;
integer;
integer;
integer;
real;
real;

s we we

begin
reset (Apar,
Neg :=
Get (Apar);
Mo := trunc(Apar® + O
wvrite(’Lower y-axis 1
readln(Yl);
write(’'Higher y-axis
readln(Yh);
Gain := trunc(160 / (
for I := 1 to Ns do
begin
if ((I Mod 250) = O
begin
if T <> 1 then
readln(Ch);
NewScr(I div 50);

St);

trunc(Apar* + O.

*)

S5);

.9);

imit: 7))

limit: *);

Yh - Y1));

) or (I = 1) then

Moveto (30,

173);

wstring('A-parameters’);

Ax (0O, 10, false,
Ax (0O, 835, false,
Ax (0, 165, false,
end;
for J :=
begin
Get (Apar);
Dot((I Mod 250) +
end;
end;
close(Apar);
readln(Ch);
end;

1 to Mo do

Y1);
Y1 + 0.5 *(Yh
Yh);

- Y1));

20, trunc((Apar* - Y1)

* Gain)

71

+ 10);

(%= = = = = = = = = - - - -

procedure ShowPD;

(*# Show parameter distance.

*)

var
Ar : array [1..10) of real;
I : integer;
Gain : integer;
J : integer;
Pard : real;
Yi real;
Yh real;
begin

page(output);
reset (Apar, St);
Ns := trunc(Apar”
Get (Apar);
Mo := trunc(Apar*
for I := 1 to Mo do
begin
write(’'ref a’, I,
readln(Ar[I]);
end;

write(’Lower y axis limit:
write(’Higher y axis limit:

Gain := trunc(l1l60 / (Yh -
for I := 1 to Ns do
begin

if (I =

begin

if I <> 1 then
readln(Ch);
NewScr(I div S50);

+ 0.5);

+ 0.95);

’: ’);

");readln(Yl);
");readln(Yh);
Yl));

1) or ((I Mod 250)=0) then

(Yh - Y1) / 2);

- Ar[J]1) * (Apar”

Moveto(30, 173);
wstring(’Parameter distance’);
Ax(O, 10, false, Y1);
Ax (0, 835, false, Y1 +
Ax(0, 163, false, Yh);
end;
Pard := 0;
for J := 1 to Mo do
begin
Get (Apar);
Pard := Pard + (Apar”
end;
Dot ((I Mod 250) + 20,

end;

close(Apar);

readln(Ch);
end;

(= = = = = = = = = = - - -

procedure Mean;

trunc((Pard - Y1l)#Gain)

- Ar[J1);

+ 10);

72

73

(# Computes the mean value of the A - parameters in an interval.)

var
Ub : integer;
Lb : integer;

I : integer;

Mv : array [1..10] of real;
begin

for I := 1 to 10 do

MvII) := O;
reset (Apar, St);
Ns := trunc(Apar”® + 0.2);
Get (Apar);
Mo := trunc(Apar*® + 0.2);
writeln(Ns, ’ points available’);
write(’'Lower time limit: ’);
readln(Lb);
vrite(’'Higher time limit:’);
readln{(Ub);
for I := 1 to Lb - 1 do

for J := 1 to Mo do

Get (Apar);

for I := Lb to Ub do

for J := 1 to Mo do
begin
Get (Apar);
Mv[J]l := MvI[J]) + Apar*;
end;
for I := 1 to Mo do
writeln(’mv a’, I, ": *, Mv[I] / (Ub - Lb + 1));
close(Apar);
readln;
end;
(¥= - = — = = = = = = - & & & & & o e e e e o e a e e e - e e - o -

procedure ListPar;

(* Lists the A - paramerters on the screen. #)
var
I : integer;
J : integer;
begin
reset (Apar, St);
Ns := trunc(Apar* + 0.2);
Get (Apar);
Mo := trunc(Apar* + 0.2);
writeln(’Ns: ’, Ns);
writeln(’'Mo: ', Mo);
readln;
for I := 1 to Ns do
begin
writeln(I, ' :’);

for J := 1 to Mo do

74

begin
Get (Apar);
wvrite(Apart*:7:5);
end;
writeln;
writeln;
end;
writeln;
close(Apar);
end;

(%= = = = = = = = & & & & - o - - oo oo e oo .o -

procedure ShowAPC;
(# Show A - parameters with a different x - axis scaling. #)

var
I : integer;
J integer;
L : integer;
Gain : integer;
K real;
Yh real;
Y1 : real;

.

.

begin

reset (Apar, St);

Ns := trunc(Apar”* + 0.5);

Get (Apar);

Mo := trunc(Apar® + 0.5);

if Ns < 250 then

begin
close(Apar);
ShowAP;

end

else

begin
write(’Lower y-axis limit: ’);
readln(Yl);
vrite(’Higher y-axis limit: ’);
readln(Yh);
Gain := trunc(160 / (Yh - Y1));
NewScr(0);
Moveto (30, 173);
wstring(’A-parameters’);
Ax(0, 10, false, Y1);
Ax(0, 85, false, Y1 + 0.5 ¥ (Yh - Y1));
Ax (0O, 165, false, Yh);
Ax (13, O, true, 0);
Ax (103, 0O, true, (Ns div 5) * 2);
Ax (203, 0O, true, (Ns div 5) % 4);
Ax (231, 0O, true, Ns);

for I := 1 to Ns do
for J := 1 to Mo do
begin

Get(Apar);

page(output);
reset (Apar, St);

Ns := trunc(Apar* + 0.5);
Get(Apar);
Mo := trunc(Apar” + 0.5);
if Ns > 250 then
begin

for I := 1 to Mo do

begin

write(’'ref a’, I, ': ’);

readln(Ar[(I]);
end;

write(’'Lower y Axis limit:

readln(Yl);

write('Higher y axis limit:

readln(Yh);

Gain := trunc(l160 /

NewScr(0);
ax(13, 0, true,
Ax (103, 0, true,
Ax (203, 0, true,
Ax (241, 0O, true,
Moveto (30, 173);

’);

I);

®* 2);

* 4);

wstring(’Parameter distance’);

Ax(0O, 10, false,
Ax (0, 83, false,

(Yh - Y1));
0);
(Ns div 5)
(Ns div S)
Ns);
Yl);
Yl + (Yh -

Ax (0, 1635, false, Yh);
for I := 1 to Ns do

begin
Pard := 0O;

Y1)

/ 2);

75

K := I;
K := K * 250.0;
K := K / Ns;
Dot (trunc(K) + 20, trunc((Apar”® - Y1) % Gain) + 10);
end;
close(Apar);
readln(Ch);
end;
end;
(= = — = = = = = = - - - & & - - - - - - - - - - - = -
procedure ShowPDC;
(* Show parameter distance with a different x - axis scaling.
var
Ar : array [1..10] of real;
I : integer;
J ¢ integer;
Gain : integer;
Pard : real;
K ! real;
Yl ¢ real;
Yh : real;
begin

¥)

en
cl
re
end
else
begi
cl
Sh
end;
end;
(%- -
begin
Cha
wvrit
read
St
whil
begi
Te
pa
wr
wr
wr
wr
wr
wr
wr
wr
wr
re
ca

en
end;
end.

76

for J := 1 to Mo do
begin

Get (Apar);

Pard := Pard + (Apar”® - Ar(J]) * (Apar”* - Ar(J1);
nd;
. I;
:= K * 250.0;
K / Ns;
trunc(K) + 20, trunc((Pard - Yl) % Gain) + 10);

ORXRXXRD

ot(
d;

ose(Apar) ;
adln(Ch);

n
ose(Apar);
owPD;

:: 'Bl;
e(’Examine file: ’);
In(St);

t= concat(St, ‘.DATA’);

e Cha <> ’'E’ do

n

xtMode;

ge(output);

iteln(’Available commands’);
iteln(’l: =show a-parameters’);

iteln(’2: show parameter distance’);

iteln(’3: meanvalue of parameters’);

iteln(’4: 1list parameter values ’');

iteln(’5: show a-parameters compressed’);
iteln(’'6: show parameter distance compressed’);

iteln(’10: exit ’);
ite(’Command nr:’);
adln(K);
se K of
¢ ShowAP;
: ShowPD;
: Mean;
: ListPar;
ShowAPC;
: ShowPDC;
O : Cha := 'E’;
14

QDAL WN -

program PrSet;

(* Sets the epson printer in american mode.
Author : Per Persson
Date : 04 - JULY - 1984 «x)

var
‘Fil : file of char;

begin

rewrite(Fil, ’'PRINTER:’);

writeln(Fil, chr(27), chr(82), chr(0));
end.

77

program Sample;
uses AppleStuff, ClockStuff;

(%
Collects data from max 16 channels.

The sampletime is controlled with
a delay loop and the variable m.

Author : Per Persson

Date : 83-3july-04

*)
const
Kilo = 1024;
Slot = 5;
type
Offsets = (a0, al);
AnVec = packed arrayl(aO..all of char;
AdrType = (number, address);
var
AdRec : record
case Select : AdrType of
Number : (NumAdr : integer);
Address : (PtrAdr : *AnVec) ;
end;
Conv ¢ record
case integer of
1 : (Num : integer);
2 : (Pac : AnVec);
end;
Sl1ltPtr : *“AnVec;
SlotBas : integer;
Chnr ¢ integer;
GainCode : integer;
Interv ¢ integer;
I : integer;
M : integer;
Vx1l : integer;
J t integer;
Nf ¢+ integer;
Ns : integer;
Ic t integer;
Noc ¢ integer;
Mo : integer;
S1 ¢ integerl[101];
S2 : integeri103];
Re ¢ integer(10];
Til ¢ integerf101];
Mil ¢ integerf101];

Sel : integer(101];

78

79

TiZ2 ¢+ integerl[101];
MiZ2 : integerl[101];
Se2 ¢ integerl[101];
Tid : integer(121];
Temp t file of AnVec;
Dat : file of real;
Pri : file of char;
InFile : file of char;
OutFile : file of char;
Chan : array [0..15] of

record

Collect : boolean;
GainCode : integer;

end;
Range ¢ array [0..7,1..2]1 of real;
Vxf ¢ string;
Sg ¢ string;
St : string;
Ch : char;
Idp ¢ boolean;
Trans ! boolean;
Print : boolean;
Fast ¢t boolean;

(#= = = = = = = = = = = = 4 & - &t e o e e e e e e e m e e e e e e e e

procedure ADSlot;
(¥ Initializes variables and hardware AD conversion #)

var
I : integer;

begin
SlotBas := 48 % Kilo + 16 * (8 + Slot); (* Tricky Pascal-programming %)
AdRec. Select := Number;
AdRec. NumAdr := SlotBas;

AdRec. Select := Address;
S1ltPtr := AdRec.PtrAdr;

Rangel0O, 11
RangelO, 21
Rangell, 1]
Rangell, 21
Rangel2, 11
Rangef{2, 21
Rangel3, 11
Rangel 3, 21
Rangel4, 1]
Rangel 4, 21
Rangel5, 11
Rangel 5, 21
Rangel6, 11
Rangel6, 21

4 oo o8 o
%e ws wa we

u

we %a we we (O ve
-e

.OI-‘D-'NLHI-'0.0000I-'OUI
[

4]

Rangel7, 11 0.2;

Rangel7, 21 0.1;
rewrite(Pri, ‘PRINTER:’);
rewrite(InFile, ’'REMIN:’);
rewrite(OutFile, ’‘REMOUT:’);

for I := 0 to 1S5S do
begin
Chan[I].Collect := false;
Chan[Il.GainCode := 0O;
end;
end;
(= = = = = — = = = =& = & & - & e oo - = .- -

procedure SlowScan;

(¥ For sampling in slow mode #)
(¥* The Bit-Pattern of the signal is saved on a
(* temorary file Temp #)

var
Val : integer;
J ¢ integer;

begin
for J := 0 to 15 do
if Chan[Jl.Collect then
begin
Val := Chanl[Jl.GainCode;
S1tPtr~[AO) := chr(J + 16 % Val);
Temp#* := S1tPtr*;
Put (Temp) ;
end;
end;

(%= = = = = = = = = - & - - & - ..o e . oo

procedure FastScan;

(¥ For sampling in fast mode #)
(¥ The Bit-Pattern of the signal is saved on a
(¥ temorary file Temp *)

var
J : integer;
begin
for J := 0 to Noc - 1 do
begin
S1tPtr~lAO] := chr(J + 16 % GainCode);
Temp”® := S1ltPtr*;
Put(Temp);
end;
end;
(= = = = = = = = = - - - = - = = = = = = = =« =
procedure Pack(St : string);

(¥ Reads the tewmporary file Temp and converts it
(¥ a '"file of real’)

¥)

*®)

a0

(¥ this is done to speed up the sampling-rate %)

var
I ¢ integer;
J : integer;
K ! integer;
R1 : real;

R2 : real;

begin

St := concat(St, ’'.DATA’);
if not Fast then
begin

Noc := 0;

for I := 0 to 15 do

if Chanl[Il.Collect then
Noc := Noc + 1;

end;
rewrite(Dat, St);
reset(Temp);
I := 2; (# default systemorder x)
Dat® := Ns;
Put (Dat);
Dat* := Noc;
Put(Dat);
Dat* := I;
Put(Dat);
if Fast then

begin
for J := 0 to Noc - 1 do
begin
Dat* := J;
Put(Dat);
Dat* := GainCode;
Put(Dat);
Put(Dat);
end;
Rl := RangelGainCode, 11;
R2 := RangelGainCode, 21;
for I := 1 to Ns do
for J := 0 to Noc - 1 do
begin

Conv.Pac := Temp*;
Dat* := Conv. Num;

Dat” := (Dat* # R1) / 4096;
Dat* := Dat~ - R2;
Put (Dat);
Get (Temp);
end;
end
else
begin

for J := 0 to 15 do
if Chan(JJ].Collect then
begin

Dat? := J;
Put(Dat);
Dat* := Chanl[J).GainCode;
Put(Dat);
Put(Dat);
end;
for I := 1 to Ns do

for J := 0 to 15 do
if Chanl[Jl.Collect then

begin
K := Chanl[J].GainCode;
Conv.Pac := Temp*’;
Dat* := Conv.Num;
Dat* := (Dat” * RangelK, 11) / 4096;
Dat* := Dat* -~ RangelK, 2];

Put(Dat);
Get(Temp);
end;
end;
close(Dat, lock);
close(Temp);
end;

(%= = = = = = = = = - - - - - - - - - - - - -

procedure Vx(Ch : char);

(¥ Sends the character Ch to the VAX %)
(* and echoes it on the screen #)

begin
OutFile* := Ch;
Put(OutFile);
if Ch = chr(27) then
writeln
else
write(Ch);
end;

(- - - = = = = = - - & - - - - - - 4o oo

function Gt : char;
(# Get one character from the VAX #%)

begin
Get(InFile);
Gt := InFile*;
end;

(%= = = = = = = = = = =& - & & & - & - - - - -

procedure SetUp;

var
I : integer;
J : integer;

Chl : char;

Ch2 : char;

Out : boolean;

A : array [1..14] of

82

packed array [1..2] of char;

(% - = = = - = - & & - - - .- o oo oo

procedure DeCode;

procedure ReadChan;
begin
read(I);
if (I < 16) and (i > -1) then
begin
Chanl[Il.Collect := true;
readln(BGainCode) ;
Chan[I).GainCode := GainCode;

end
elgse if I »= 100 then
Chan[I - 1001l.Collect := false;
GoToXY (0, 10);
writeln(’

GoToXY (0, 10);
for I := 0 to 15 do
if Chanl[Il.Collect then

write(’ ’, I, ’, ’, ChanlIl.GainCode);
writeln;
GoToXY (2, 21);
writeln(’ ')
end;
procedure ReadLog(var B : boolean; Pos : integer);
begin

read(Chl);
readln(Chl);
if Chl = 'Y’ then
B := true
else
B := false;
GoToXY (23, Pos);
if B then
writeln(’Yes’)
else
writeln(’No ’);
end;

procedure ReDelWr(var N : integer; Pos : integer);
begin

readln(N);

GoToXY (23, Pos);

writeln(’ s

GoToXY (23, Pas);

writeln(N);
end;

procedure ReadStr(var S : string; Pos : integer);
begin

read(Chl);

readln(S);

GoToXY (23, Pos);
writeln(’ ")
GoToXY (23, Pos);
writeln(S, "#’);
end;

begin
case J of
1 : ReadStr(St, 0);
2 : begin
ReadStr(vxf, 1);
Vxl := length(Vxf);
end;
ReDelWr(Ns, 2);
ReDelWr (M, 3);
ReDelWr (Nf, 4);
ReadLog(Print, 9S5);
ReDelWr(Interv, 6);
ReadLog(Idp, 7);
ReadLog(Trans, 8);
ReadChan;
begin
Out := false;
GoToXY (23, 11);
wvriteln(’Executing’);
end;
12 : ReDelWr(GainCode, 10);
13 : exit(program);
14 : begin
readln(Noc);
if (Noc < 17) and (Noc > 0) then
begin
GoToXY (23, 9);
writeln(’ ")
GoToXY (23, 9);
writeln(Noc);

PP UONOUOHSHW

= 0O

end;
end;
15 : begin end;
end;
end;
(- - = = = - = = = - = - o =« - - = - - - & - - - -
procedure Header;
begin
if Print then
begin

writeln(Pri, ’'- - - = = = - - - = - - - - - - -
ReadTime;
writeln(Pri, ’'Start at: ’, Month, ’'-
writeln(Pri, * ", Hours, '’
writeln(Pri, ’‘Applefiles: ’, St, '#%
if Trans then

wvriteln(Pri, ’'Vaxfiles : ’, Vxf, '%*’);
writeln(Pri, Nf, ’ files will be created.’);
writeln(Pri, ’'- - - = = = = - - - - - - - - - -

*, Date);
', Minutes,
);

.
.
’

s ¥

r

84

end;
end;
(¥~ = = = = = = = = = = - 4 4 - - - .- - - - .-
begin
page (outPut);
writeln(’AF applefile: ")
A2[11 := ’AF’;
writeln(’VF vaxfile: ')
A2[2]1 := 'VF’;
writeln(’NS number of samples:’);
A2[3]) := ’'NS’;

writeln(’DE delay: S
A2[4]1 := 'DE’;
writeln(’'NF number of files: ')
A2[3]1 := 'NF’;
writeln(’PR printer: 0

A2[6]1 := 'PR’;
writeln(’CI collectinterval: ‘)3
A2071 := 'CI’;

wvriteln(’ID idpac: ")
A2[8] := ’'ID’;
writeln(’TR transmit: ')

A2[9]1 := 'TR’;

if Fast then

begin
writeln(’NC number of channels:’);
A2[14]1 := 'NC’;

writeln(’GC GainCode: ")
A2[012]1 := 'GC’;

end

else

begin
writeln(’IC inchannel: ")

A2[10]1 := *IC’;
writeln;

end;

writeln(’EX execute: ")
A2[11] := ’EX’;

A2[13]1 := 'QU’;

Out := true;
while Out do
begin
GoToXY(O, 15);
writeln(’ ')
GoToXY (0O, 15);
write(’> 7);
repeat
read(Chl);
until Chil<>’ ’;
read(Ch2);
J = 15;
for I := 1 to 14 do
if (Chl = A2[I1[1]) and (Ch2 = A2CI1[2])) then
J = 1i;
DeCode;

end;

Header;

end;
(#- -

procedure Transmit;

(¥ Transmit a file to the VAX #)

var
I
Ch
S

(%- -

function Dig(I : integer)

begin
Dig
end;

(%- -

integer;
char;

packed array [1..801]

:= chr(ord(’0’

procedure SendVax;

var
I :

begin
for

integer;

I :=1 to 8 do

begin
OutFile?* := SI[I1;
Put (QutFile);

end;

CutFile”

Put(
end;

(%= -

OutFile);

procedure Convert(R

.
.
.
-
.
"

RaHTDEC

begin

I :=

real;
real;
integer;
integer;
integer;

1;

if R < O then
begin

SI
I

P ?,

I] =
+ 1;

3= I

)

:= chr(27);

+ I)

we

real);

86

end;

J

t= trunc(abs(R));

if J < 1 then
begin
end

else if J < 10 then

begin

end
else if J < 100 then
begin
S[I1 :
I :=1+ 1;
SCI1
I :=1I+ 1;
end
else
S[I1 := ’'."’;
I :=1+ 1;
L
wvhile I < 9 do
begin
L := L % 10;
K := trunc(l);
SI[I]1 := Dig(K);
I :=1+ 1;
P := K;
L := L - P;
end;
end;
(#- = = = = = = = =
begin

reset (Dat,

S[I] := Dig(J);
I =1+ 1;

= Dig(J div 10);

= Dig(J mod 10);

writeln(’Something is wrong.'’);

:= abs(R) - trunc(abs(R));

Get(Dat);
Get (Dat);
for I := 1 to Noc * 3 do

Get(Dat);

GoToXY(0, 17);
writeln(’
ReadTime;

if Print then
begin

writeln(Pri, Hours,

writeln(Pri,

end;

GoToXY(0, 17);
write(’$ ’);
vx(’'C’);
vX('R’);
vX(’'E’);
vx(’A’);

concat (St,

Sg, ’'.DATA’));

l);

"+’, Minutesg, ’:’
Vaxfile created’);

’

Seconds) ;

a7

as

vx('T’");
vx(’'E’");
vx(’ ");
for I := 1 to vxl do
Vx(Vx£f[I]);
if Ic < 10 then
Vx(Dig(Ic))
else
begin
Vx(Dig(Ic div 10));
Vx(dig(Ic mod 10));
end;
Vx(’.’);
Vx('T’);
Vx(chr(27));
repeat
Ch := Gt;
until Ch='$";
for I := 1 to Noc # Ns do
begin
Get(Dat);
Convert(Dat*);
GoToXY(O, 18);
SendVax;
repeat
Ch := Gt;
until Ch='%"’;
end;
Vx(chr(S0 - 64));
repeat
Ch := Gt;
until Ch="%"’;
GoToXY(O0, 17);
writeln(’ ')
GoToXY(0, 17);
writeln(’Control-2’);

ReadTime;

if Print then

begin
writeln(Pri, Hours, ’:’, Minutes, ’':’, Seconds);
writeln(Pri, ’Applefile ’, concat(St, Sg, ’'.data’), ’ transmitted to VA
write(Pri, ’ Vaxfile: ’, Vxf);

if Ic < 10 then
vrite(Pri, Dig(Ic))
else
begin
wvrite(Pri, Dig(Ic div 10)
write(Pri, Dig(Ic mod 10)
end;
writeln(Pri, '.T’);
end;
close(Dat);
end;

(%= = = = = = = = - & & - - o o o o m oo e e e e e e e e e e e e o -

)
)

procedure Idpac;

89

(¥ Starts a command-procedure on the Vax which starts IDPAC %)

var
I : integer;
Ch : char;

function Dig(I : integer) : char;

begin
Dig := chr(ord(’'0’) + I);
end;

begin

write(’'s ');

Vx(’);

V(’'I’);

Vx(’D’);

Vx('P’);

V(' *);

for I := 1 to Vx1 do
Vx(Vxf[I1);

if Ic < 10 then
Vx(Dig(Ic))

else

begin
Vx(Dig(Ic div 10));
Vx(Dig(Ic mod 10));

end;
Vx(’.’);
Vx(’'T’);
Vx(chr(27));
repeat

Ch := Gt;

until Ch='%"’;
writeln(Ch, Gt);
ReadTime;

if Print then

begin
writeln(Pri, Hours, ‘:’, Minutes, ’:’, Seconds);
writeln(Pri, * Idpac called’);
end;
end;

(B= = = = = = = = & m o e e o e e m e e o e e e e e - e e - -

procedure GetData;
(¥ Carries out the sampling #)

var
I : integer;
J : integer;

begin
ReadTime;
Til := Hours;

Minutes;
Seconds;
ReadMs;

I :=1+to
begin end;
if Fast then
FastScan
else
SlowScan;
end;
ReadTime;
Ti2 := Hours;
Mi2 := Minutes;
Se2 := Seconds;
Re ReadNMs;
S2
if Print then
begin
writeln(Pri);
writeln(Pri,
writeln(Pri,
writeln(Pri,
writeln(Pri,
writeln(Pri,
writeln(Pri,
end;
end;
(%~
begin
page(outPut);
vrite(’Fast or
readln(Ch);

M do

'File number: ’, Ic, ’ of ', Nif);
Til, ’:*, Mil, ’':’, Sel);
’ Sampling started’);

Mi2, ’:’, Se2);

Tiz2, ’':’,

Sampling finished’);

’ Sample interval: '

slow scan?

');

, (82

if Ch = ’'F’ then
Fast := true
else
Fast := false;
AdSlot;
ClockSlot(3);
SetUp;
for Ic := 1 to Nf do
begin
rewrite(Temp, ’'SIM:TEMP.DATA’);
repeat
ReadTime;
GoToXY (O, 16);

writeln(Hours,
:= Hours # 60 + Minutes;
((Tid div Interv)

Tid
until
GetData;
GoToXY (0, 20)

P,
L

.
’

writeln(’Sample interval:

str(Ic, Sg);

’

’

Minutes, ’:’,

¥ Interv - Tid)

Seconds) ;

0;

(S2 - S1) div Ns,

- 81)

’

90

Re + Sel * 1000 + Mil * 60000 + Til ¥ 3600000;
1l to Ne do

:= Re + Se2 % 1000 + Mi2 * 60000 + Ti2 * 3600000;

div Ns,

ms’);

L

ms’);

Pack(concat(St, Sg));

if Trans then
Transmit;

if Trans and Idp then
Idpac;

if Print then

writeln(Pri, ’'- - - -

end;
if Print then
begin

writeln(Pri);
writeln(Pri);
writeln(Pri);
writeln(Pri);
writeln(Pri);

end;

end.

91

92

program Stat;
uges TurtleGraphics;

(# Computes statistics from a datafile
Plots histograms etc.

Author : Per Persson

Date : 04-JUL-1984 «)

var
Data : file of real;
A ¢ array [0..15,0..19) of integer;
Ns ¢ integer;
Mo : integer;
Noc : integer;
Noc : integer;
ChVec : array [0..15] of
record
Collect : boolean;
sd : real;
Mv : real;
Kvs : real;
Max t real;
Min : real;
end;
Ch : char;
St ¢ string;

(#= =

procedure Dot(X, Y : integer);
(¥ Plots a dot at position x y. %)

var
D : boolean;

begin
DrawBlock(D, 1, O, O, 1, 1, X, Y, 15);
end;

(%= = = = = = = = = = & =& - -~ o - e - - - - -

procedure StringIt(X : real; Int : boolean; var St : string);

(# Converts a decimal number to a textstring. #)

var
J : integer;
I : integer;
S : string;

begin
St =’ ’;
if X < 0 then
St := concat(St, '-’);

if abs(X) < 1 then
St := concat(St, '0’);

93

X := abs(X);
I := trunc(X);
str(I, S);
if I > O then
St := concat(St, S);
if not Int then
begin
X := X - trunc(X);
I := trunc(10000 * X);
str(I, S);
if I < 1 then
S := concat(’000’, S)
else if I < 10 then
S := concat(’000’, S)
else if I < 100 then
S := concat(’00’, S)
else if I < 1000 then

S := concat('0’, S);
St := concat(St, ’'.’, S);
end;
end;
(= = = = = = = o ;o ;o o o0 & 0 = = m e m e e e e e = e e e e e
procedure Ax(X, Y : integer; B : boolean; Val : real);

(# Writes a number at a given position on the screen when it is
graphic mode #)

var
St : string;

begin
MoveTo(X, Y);
StringIt(vVal, B, St);
wstring(St);

end;

(%= = = = = = = = & & - 4 e D m e e e m e e e e = === - -

procedure StartFile;
(¥ Dpens a file rand reads its head. #)

var
I : integer;

begin
reset(Data, St);
Ns := trunc(Data* + 0.5);
Get(Data);
Noc := trunc(Data* + 0.5);
Get(Data);
Mo := trunc(Data” + 0.5);
for I := 1 to Noc do
begin
Get (Data);
ChVecltrunc(Data” + 0.5)1.Collect := true;
Get(Data);

94

Get (Data);
end;
end;

(B= = = = = = = = & & e D e - 4D D s m s - - == e - - -

procedure Init;
(# Initializes variables used in the statistical routines. #)

var
I : integer;
J : integer;

begin
write(’Name of data file: ’);readln(St);
St := concat(St, ‘.DATA’);
for I := 0 to 15 do
begin
ChVeclIl.Max := -1el0;
ChVeclIl.Min := lelO;
ChVeclIl.Collect := false;
ChVeclIl.Mv := 0O;
ChVeclIl.Kvs := 0;
end;
for I := 0 to 15 do
for J := 0 to 19 do
ALI,J] := 0;
end;

(%= = = = = = = = = = & =& 4 D & e e m e e e e e e e — -

procedure Statistics;

(¥ Computes statistics. %)

var
Hlp : real;
I ¢ integer;
J : integer;
begin
for I := 1 to Ns do
begin
for J := 0 to 1S5S do
if ChVecl[Jl.Collect then
begin
with ChVecl[J] do
begin

Get (Data);

if Data” > Max then
Max := Data*;

if DPata” < Min then

Min := Data*;
Mv := Mv + Data*;
Kvs := Kvs + Data* % Data*;
end;

end;
end;

for I := 0 to 15 do
if ChVeclIl.Collect then

begin
ChVeclIl.Mv := ChVecl[Il.Mv / Ns;
Hlp := ChVec(Il.Mv % ChVeclIl.Mv / Ns;
Hlp := ChVeclIl.Kvs - Hlp;
Hlp := Hlp / (Ns - 1);
ChVecl[Il.Sd := Hlp;

end;

end;

(%= = = = = = = - - & - - - - - - - - - - -

procedure Count;

var
Delta : array [0..15] of real;
I ¢ integer;
J ¢ integer;
H : integer;
begin
for I := 0 to 15 do
DeltalI] := (ChVeclIl.Max - ChVeclIl.Min) 7/ 19;
for I := 1 to Ne do
for J := 0 to 15 do
if ChVecl[Jl.Collect then
begin
Get(Data);
H := trunc((Data® - ChVeclJ1.Min) / DeltalJl);
A[LJ,H]1 := A[J,H] + 1;
end;
end;
(= = = = = = = - = - & e e e e e e e e e e - - - - -
procedure Histogram(I : integer);

(¥ Computes and plots a histogram of channel i. #)

var
J ¢ integer;
H : integer;
Mx : integer;
Pl : integer;
Ph : integer;
Px : integer;

Hlp : real;
Sr : string;

Ch ¢ char;
begin
if ChVeclIl.Collect then
begin
Mx := 0;
GrafMode;
FillScreen(Black);
for J := 50 to 250 do

Dot(J, 20);

96

for J := 20 to 180 do
begin

Dot (30, J);

Dot (230, J);

end;
str(I, Sr);
Sr := concat(’Channelnumber: ', Sr);

MoveTo (50, 182);
wstring(Sr);

for J := 0 to 19 do
begin
if A[CI,J]l > Mx then
Mx := AILI,J]);

Dot(J % 10 + 50, 19);
Dot(J % 10 + 350, 18);
end;
Dot (250, 19);
Dot (250, 18);
Ax (20, 20, true, 0);
Ax (20, 175, true, Mx);
Ax (30, O, false, ChVeclIl.Min);
Ax (230, 0O, false, ChVec[Il.MNMax);
for J := 0 to 10 do
begin
Dot(48, J % 16 + 20);
Dot(49, J * 16 + 20);
end;
for J := 0 to 19 do
begin
if (J < 19) then
begin
Hlp := ALI, JI1;
Hlp := Hlp # 160.0 / Mx;
Pl := trunc(Hlp);
Hlp := AILI, J+13];
Hlp := Hlp % 160.0 / Mx;
Ph := trunc(Hlp);
if A[I,J] < AILI,J+11 then
for Px := Pl to Ph do
Dot((J + 1) » 10 + 350, Px + 20)
else
for Px Pl downto Ph do
Dot ((J + 1) % 10 + 50, Px + 20);

end;
Pl := J % 10;
Ph := Pl + 10;
Hlp := AILI,J]1;
Hlp := Hlp * 160.0 / Mx;
Px := trunc(Hlp);
for H := Pl to Ph do
Dot(H + 50, Px + 20);
end;
readln(Ch);
TextMode;
end;

end;

(¥= = = = = = = = = e - m - e e m - e - e e - - -
procedure ShowStat(I : integer);
var
Ch : char;
begin
with ChVeclI] do
begin
if Collect then
begin
writeln;
writeln(’Channel: r, I
wvriteln(’Max-value: ‘, Max:9:4);
wvriteln(’Min-value: ’, Min:9:4);
writeln(’Mean value:’, Mv:9:4);
writeln(’Variance: ', 5d:9:4);
writeln;
readln(Ch);
end;
end;
end;
(%= = = = = - - - - - - - - - - - & - - - - - - - -
begin
Init;
StartFile;
Statistics;
close(Data);
StartFile;
Count;

close(Data);
while true do
begin
page(output);
writeln(’'H <chnr> histogram of channel chnr’);
writeln(’S <chnr> statistics of channel chnr’);
wvriteln(’A statistics of all channels’);
writeln(’E exit’);
wvriteln(’availlable channels:’);
for C := 0 to 15 do
if ChVeclCl.Collect then
write(’ ’, C);
writeln;
writeln;
write(’'>’);
read(Ch);
if (Ch="H’) or (Ch=’'S’) then
readln(C);
case Ch of
"H’ : Histogram(C);
'S’ : ShowStat(C);
'E’ ¢ exit(program);
"A’ : for C := 0 to 15 do
if ChVecICl.Collect then

end;
end;
end.

ShowStat(C);

98

program Vax;

uses AppleStuff;

(%

Author Per Persson
Date 83-july-04 x)
var
Fil ¢ file of real;
InFile : file of char;
OutFile : file of char;
Ch : char;
St ¢ packed array [1..80]1 of char;
L ¢ integer;
I integer;
Ns integer;
Noc ¢ integer;
S1 string;
s2 : string;
S ¢ string;
(= = = = = = = = = = =« = = = = = = = = =
procedure Vx(Ch char);

(¥ Writes a

begin
OutFile~*

character on the port REMOUT:

:= Ch;

Put (OutFile);

end;
(%- - - - -

function Gt

¢ char;

(¥ Reads a character from the port REMIN:

begin

Get(InFile);

Gt :=
end;
(%- - - - -

procedure Convert(R :

(* Converts a real number in the interval
to a ASCII text string.

var
: real;
: real;

RGaHTIC

function Dig(I :

InFile*;

real);

integer;
: integer;
¢+ integer;

integer) : char;

*)

*®)

Transfers a datafile generated by SAMPLE

99

to VAX.

J-100, 100t

Eight characters are used.

*)

100

(¥ Convert a digit to its ASCII equivalent. #)

begin
Dig := chr(ord(’0’) + I);
end;

begin

I :=1;

if R < 0 then

begin
StI[I]
I :=1

end;

J := trunc(abs(R));

if J < 1 then

’

.
14

1

.
+ n
-e

begin
end
else if J < 10 then
begin
St[I] := Dig(J);
I :=1+ 1;
end
elgse if J < 100 then
begin
St[I] := Dig(J div 10);
I := 1+ 1;
St[I]] := Dig(J mod 10);
I :=1+ 1;
end;
St[I]l := ’."’

| we

L := abs(R)
I :=1 + 1;
wvhile I < 9 do

trunc(abs(R));

begin
L := L % 10;
K := trunc(L);
StlI] := Dig(K);
I :=1I + 1;
P := K;
L := L - P;
end;
end;
(= = = = = = = = = = = = & & & - o = = == == - = - = - -

procedure SendVax;
(# Send the number string to the VAX from the port REMOUT: #)

var
I : integer;

begin
for I := 1 to 8 do
Vx(Stl[Il);
Vx(chr(27)); (# Use ’'ESCAPE’ as line terminator #)
end;

101

(= = = = = = = = = = = & - - e - e D e - == - -
begin
writeln(’Transmission of datafiles. ’);
writeln(’APPLE - > VAX’);
rewrite(InFile, ’‘REMIN:’);
rewrite(OutFile, ’‘REMOUT:’);
wvhile true do
begin
write(’Transmit file without extension: ’);
readln(Sl);
wvrite(’VAX - file with extension IS I
readln(S2);
S1 := concat(S1, ’'.DATA’);
reset(Fil, S1);
Ns := trunc(Fil* + 0.5);
Get(Fil);
Noc := trunc(Fil* + 0.5);
Get(Fil);
write(’$ '); (¥ Use the VMS command CREATE to create a file on the VAX
Vx(’'C’);
VX(’R’);
Vx('E’);
Vx(’A’);
Vx('T’);
Vx('E’);
V(' 7);
for I := 1 to length(S2) do
Vx(S2[11);
Vx(chr(27)); (# Use ‘ESCAPE’ as line terminator %)
repeat
Ch := Gt;
until Ch='s$"’;
for I := 1 to 3 * Noc do
Get(Fil);
for T := 1 to Noc ¥ Ns do
begin
Get(Fil);
Convert(Fil*);
SendVax;
repeat
Ch := Gt;
until Ch=’'s$’;
end;
Vx(chr(90 - 64)); (% Close the VAX file with a control-z »)
writeln(’Control-2’);
close(Fil);
end;
close(InFile);
close(OutFile);
end.

program VaxCom;

(% Sets up communication between APPLE and VAX.
This program allows the apple to be used as

a simple

terminal. The vax/vms command

SET TERMINAL/SPEED=300/NOPARITY

must be given before the program can be used.
To terminate the program give the command

Author :

Per Persson

Date : 04 - JULY - 1984 x)

var
InFile file of char;
OutFile : file of char;
Esc char;
Ch : char;
L : integer;
I ¢ integer;
J : integer;
S string;
(- - = = = = = = = = = = = = = - = =« =« = = - =
procedure Vx(Ch : char);

(# Puts a character on the port REMOUT: #)

begin
OutFile* :

= Ch;

put (OutFile);

end;
(- - - - =
function Gt

: char;

(¥ Gets a character from the port REMIN: ¥)

begin

Get(InFile);
Gt := InFile*;

end;
(%- - - - -

procedure GetCom;

(¥ Reads a line from the keyboard and puts it in

a string

*)

begin
readln(S);
if S = 'SLUT’ then
exit (program);
end;
(= = = = = = = = = = = = = = =& = - - - = - o~ -

procedure SendVax;

(¥ Sends a string on the port REMOUT: %)

var

'gslut’.

102

103

I : integer;
begin

for I := 1 to length(S) do

Vx(SI[I1);

Vx(Esc);
end;
(¥= = = = = = = = = = = - & - e e m e e e - e e e o e e s e e e == e o -
begin

Esc := chr(27);

rewrite(InFile, ‘REMIN:’);
rewrite(OutFile, ‘REMOUT:’);

Vx(Esc); (¥ Use 'ESCAPE as line terminator. *)
(# APPLE and VAX interprets CR *)
(¥ differiently. %)
Ch := Gt; (#* Search for a the VAX-prompt ’'$’ %)
repeat
Ch := Gt;
until Ch = '$’;

write(Ch, Gt);

while true do
begin
GetCom; (¥ Get a commandline *®)
writeln;
SendVax; (¥ Send it to VAX x)
repeat (¥ Take care of the echo. #)
Ch := Gt;
until Ch = ’$’;
repeat (# Write the output from VAX on the termina.
Ch := Gt;
if Ch = chr(10) then
writeln
else
write(Ch);
until Ch = ’'$’;
Ch := Gt;
write(Ch);
end;
close(InFile);
close(0OutFile);
end.

