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1. Introduction

During design of autopilots for ships it has been noticed that it is not sufficient
to use a fixed controller. The dynamics of a ship can vary considerable due
to e.g. weather conditions, different load and velocity. In fact, under certain
circumstances, not even stability can be guaranteed.

In this report an autopilot based on an adaptive controller is designed.
Wave disturbances are suppressed with a feedforward compensation term in
the controller. Simulations in the simulation language SIMNON are done.
The report is structured as follows. In Chapter 2 the basic equation of motion
for a ship is discussed. Chapter 3 is devoted to the design of the autopilot,
that is, regulator design and design of the feedforward compensation. Some
experiments are done in Chapter 4, where we use parameters from real ships.
In Chapter b there is a final discussion and conclusions are drawn. Some useful
references are given in Chapter 6. Finally, in Appendix the SIMNON program
used is listed.



2. Ship Steering Dynamics

A very simple mathematical model of ship steering dynamics, due to Nom-
oto, relating rudder angle, §, and disturbing torque, e, generated by waves, to
turning rate, r, and to heading angle, ¥, can be stated as a system of linear
ordinary differential equations (Kallstrom, 1979),

¢(t] [ T O] [¢(t]+[10( g] [6(2(;)1-)] (2.1)

where higher order dynamics are modelled as a time delay, 7, in the system, see
Figure (2.1). This model is a linearization of a more complex nonlinear model,
and the parameters, a, K, and C, will depend on the working conditions.
Eliminating r from (2.1) gives

Ke PT

( + a) oyt

B(t) = _.._C_)e(,) (2.2)

(p+ a

where p = d/dt is the differential operator.

Figure 2.1 Heading angle, 9, turning rate, 7, rudder angle, §, and disturbing
torque, ¢, generated by waves

Sampling (2.2) with sampling rate 1/h under the assumption that h > 7
yields

_ bid? +bsz+'53 614+C2 ) _
vik) = g9(g — 1)(g - a) M+ - 1)(g ~ a) (%) (23)

where the sampling period is used as time unit and ¢ is the forward shift
operator. The discrete time parameters a, b;, b2, b3, ¢1, and c3 can be expressed
as functions of K, a, 7, C, and h, but for our purposes it is sufficient to treat
the ship steering dynamics based on knowledge of the discrete time parameters
only.




3. Autopilot Structure

The autopilot is designed as an indirect self tuning regulator based on pole
placement. The regulator is composed of three parts, a parameter estimator,
a design calculation unit, and an implementation of the control law. In the
following two sections, the estimator and the regulator structure will be dis-
cussed. In Figure (3.1) a block diagram of the ship and the autopilot can be
seen.

e(t)
&1) ()
» Ship >
&0 0]
Regulator @,
-— .
o) &) Autopilot
Estimation
&) W)
e(t)

Figure 3.1 A block diagram of the system involving ship and autopilot

3.1 Parameter Estimation
When designing the estimator it is advantaguous to use all the a priori knowl-

edge possible. From Equation (2.3) we have structural knowledge of the sys-
tem. Equation (2.3) can be written as

(g — 1)(q — a)¥(k) = (brg® + bag + b3) (k) + (c1a® + c2q)e(k)  (3.1)



Rearranging (3.1) and introducing Ay(k) = (1 — ¢~ !)y(k) yields

(1 —ag™") Ay(k) = (b1g™" + bag™ + bsg™®) 6(k) + (c1q™" + caq™?) e(k)
(3.2)
Equation (3.2) can be written as

Ay(k) = o7 (k - 1)8 (3.3)

where we have defined the regression vector, ¢, and the parameter vector, 8,
as

o(k) = (Ap(k) 6(k) 8(k-1) 8(k-2) e(k) e(k-1))"

0=[a by by b3 ¢ cz]T .

It is now straightforward to apply the recursive least mean square algorithm
to (3.3). The recursive least mean square algorithm can be written as

Gk) = 0k - 1) + K (k) (A9(k) ~ o7 (k)B(k ~ 1))
K (k) = P(k — 1)p(k) (A + o7 (k) P(k — 1)p(k)) (3.5)
P(k) = (I - K(k)pT (k) P(k — 1)/

where ) is a forgetting factor. In the basic recursive equations problems are
associated with the covariance matrice when there are long periods with no
excitation. To make sure that the covariances stay bounded an extended algo-
rithm can be used for estimation of the parameters (Astrom and Wittenmark,
1988)

B(k) = Bk - 1) + a(k) K (k) (Aw(k) - T (k)A(k - 1))

K(k) = P(k - 1)p(k) (1 + ¢T(k)P(k — L)p(k) + 20T (k)p(k)) "
P(k — 1)p(k)p" (k)P(k — 1)

P(k) = P(k - 1) - a(k)3 T T (k) P(k — 1)g(k) + cpT (k)p(k) (3.6)

P(k) = Clﬁ%) + cal
a(k) = { a, if |Ay(k) - T (k)a(k - 1)| > 26

0, otherwise

In this algorithm the parameters should be choosen such that ¢; > 0, ¢; >
0,2 >0and @ € [0.1...0.5]. § is an estimate of the magnitude of the
noise. Compared to the standard implementation of the recursive least squares
algorithm with forgetting factor (3.5), the extended method (3.6) leads to
slower convergence for the parameter estimates, but the conditional updating
gives a security against P matrix explosion, which may occur in the standard
algorithm if excitation is poor for a long period. Hence, if we use (3.5) until
we get good estimates and then switch algorithm to (3.6), we avoid both
slow convergence and P matrix explosion. If we choose a(k) = 1, & = 0,
¢; = trP(k), and ¢; = 0 in (3.6) we get (3.5) with A = 1, that is, with no
forgetting factor. Thus, it is simple to implement the switching technique.



3.2 Regulator Structure

The process to be controlled can be described by the equation

A(q)¢(k) = B(q)b(k) + C(g)e(k) (3.7)

where the polynomials A(q), B(q), and C(q) are given by (3.1). We postulate
a linear control law of the form

R(q)b(k) = T(q)éc(k) — S(q)¥(k) + F(q)e(k + 7) (3.8)

where €(k + 7) is a estimate of e(k + 7). Eliminating the control signal, §(k),
in (3.7) and (3.8) yields

BT 5 (k) 4~ (BFe(k+1) + RCe(k))  (3.9)

Y(k) = AR 55t 1g + BS

where the argument in the polynomials have been suppressed. The problem
is now to select the polynomials R(q), S(q), T(g), and F(g). In the first
subsection below the polynomials R(g), S(g), T(gq) will be chosen according to
a pole placement procedure. How to select the feedforward polynomial F(gq),
is then discussed in the next subsection.

Regulator Design

Here we only concentrate on the first term on the right hand side of (3.9).
The purpose is to select the regulator polynomials such that the closed loop

system is
Bm(9)

Am(q)

where the polynomials B,,(¢) and A,,(g) have to be chosen by the designer.
Equations (3.9) and (3.10) give the Diophantine equation

Y(k) =

bc(k) (3.10)

A(9)R(q) + B(q)S(q) = Ao(9)Am(q) (3.11)
and A1
T(g) = ﬁ{-}m@) (3.12)

where the observer polynomial 4,(g) has been introduced, and also has to be
chosen by the designer. Demanding a causal regulator and using the fact that
the time delay in the closed loop system cannot be less than the time delay
in the open loop system results in the polynomials (Astrom and Wittenmark,
1984)
As(q) = ¢ + 014® + 802 + a3
An(9) = ¢ + am19® + am2q + am3
Am(1)
m(q) = ———8B 3.13
Bna) = F7B (@ (3.13)
5(g) = 30¢® + 519> + 329 + 3
R(g) = (¢-1)(¢" + rog + 1)

where we have avoided cancellation of process zeros and forced an integration
action on the regulator. The regulator polynomials are then given as the

6



solution of the Diophantine equation (3.11) with polynomials as in (3.12) and
(3.13).
It is advantaguous to make the specifications in continuous time and then
transform the polynomials into discrete time. Here we use
AS(3) = (9 4 Amwm )(8% + 2Umwms + w2)

and the relations

@m1 = p3+ N
am2 = pPap; + P2
am3 = P3ap2
with —
p1 = —2e~ ¢k cog(\/1 = 2w, h)
pz — e-zﬁmwmh
p3 = _e—amwmh

The corresponding relations are also valid for the observer polynomial A,(q).
The control law (3.8) can be written as

R*(g7")é(k) = T*(g7")dc(k) — S*(q " )w(k) + F*(¢")e(k +7)  (3.14)

where we have used the reciprocal polynomials. A practical implementation
of the control law (3.14), which compensates for antireset windup, is given by
(Astrém and Wittenmark, 1988)

Azo(k) = T*6.(k) — S*p(k) + (4] — B*) 6(k) + Fa(k + )
8(k) = sat(v(k))

Feedforward Compensation

If e(k + 7) is a good estimate of e(k + 7) and if the major energy of the waves
is centered around the frequency wp, the wave disturbance influence on the
heading angle can be made small by selecting the polynomial F(q) in a proper
way. In the following we will assume that the above holds and that wp and
€(k + 7) are at our disposal. Taking account of the time delay in the control
signal and using (3.9), gives the condition

B(q)F(q) + R(q)C(q) =0 (3.15)

Using the fact that the disturbance is almost periodic, with known frequency,
gives that (3.15) can be simplified to

B(e“)F(e?) + R(e")C(e") =0 (3.16)

that is, we only demand perfect fitting at the frequency wg. Setting real- and
imaginary parts of (3.16) equal zero, with F(q) = fog® + fi14?, vields

Re{B(e")}Re{F(e"")} — Inl{B(e‘“’")}Im{F(e':“’" )}
Re{R(e"?)}Re{C(e"")} — Im{ R(e™*) Im{C(e™*")} = 0
Im{B(e™")}Re{ F(e")} + Re{B(e™)Hm{F(e"")}+
Im{R(e**)}Re{C(e™")} + Re{R(e™*)Hm{C(e"*)} = 0

Solving (3.17) for fo and f; gives the solution. The solution is a rather com-
plicated expression, and it is programmed in Appendix.

(3.17)



Solution of the Diophantine Equation

The design method used is pole placement. To solve the Diophantine equation

A(g)R(q) + B(9)S(q) = Ao(9)Am(q)

is the same as solving a set of linear equations. If there are common factors in
the A and B polynomials it is necessary to eliminate them to get a solution.
The design of the regulator will be exactly the same but the degree for the A,,
A, S, and R polynomials will be reduced with 1 for every common factor.
This means tedious calculations for the special cases when b3 = 0, b3 = 0 and
bz = 0, etc.



4. Experiments

In this chapter the autopilot, designed in Chapter 3, is used on different ships,
in order to establish the robustness of the design method. In the following
experiments are done with a minesweeper and a cargo ship. Both regulation
with and without feedforward is treated. The ship velocity is 10 m/s. The
values we have used in the experiments are

e Minesweeper { = 55,a = —0.14,and b = —1.4.
e Cargol{=161,a=0.19,and b = —1.63.

The corresponding relationship between these parameters and the param-
eters used in Chapter 2 are

_ua

)
u?b

=7

where u is the ship velocity. This corresponds to a scaling of the parameters.
In these experiments, a high amplitude square wave is exciting the system in
open loop in the first 20 time units. This is done to avoid large transients in
the heading angle. In a real situation reasonable parameters might be known,
and could be used as start values in the estimation. Another possibility is to
let the ship be manually steered, with the estimation turned on, until good
parameters are available, and then switch on the autopilot.

The results of simulations of a minesweeper are shown in Figures (4.1)
and (4.2). Figure (4.1) shows a simulation without feedforward from waves,
and Figure (4.2) shows a simulation, with the same wave disturbance acting
on the ship, with feedforward compensation. As can be seen, the feedforward
gives much better performance on the heading deviation. As can be expected,
from the nature of feedforward, the control signal contains a high frequency
component, but has a lower amplitude in general.

Better performance is obtdined with feedforward than without, doing ex-
periment with a cargo ship. The results are not as good as with the mine-
sweeper, though, see Figure (4.3) and (4.4). Even here a high frequency com-
ponent is involved in the control signal.
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5. Conclusions

Design of an adaptive autopilot for ship steering is discussed in this report.
The autopilot is designed as an indirect adaptive regulator based on pole place-
ment with feedforward compensation for wave disturbances. Our approach is
different from the usual way of treating this kind of problem. It is custom-
ary to use a LQ-controller, since a lossfunction can be derived from physical
properties. Severe simulations show that the basic self-tuning regulator is very
robust and performs well for a wide range of operating conditions. The reg-
ulator’s ability to compensate for wave disturbances is good. Performance is
increased with feedforward, particularly for the minesweeper.

The experience with the simulation language SIMNON has been both
positive and negative. The good properties are that differential- and difference
equations simply can be written in this language, the ability to connect systems
has also been valuable for the structure of our program. We are used to work
with high level languages, so we find it remarkable that it is not possible to
write a slatement on several lines. We also miss a high level programming
utility such as the simple i{-then-else construction.

12
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Appendix SIMNON program

MACRO MacShip

let n.noisel = 3
let nodd.noisel = 13191

let ni.delay = 0O
let n2.delay = 2
let space.delay = 7000

SYST delay noisel Wave Ship STR Con
STORE degpsi[Ship] degdel[Ship] degm[STR]

SIMU 0 500 0.1
SPLIT 3 1

ASHOW degpsi

TEXT ’psi [deg]’
ASHOW degdel

TEXT ’delta [deg]’
ASHOW degm

TEXT ’e [deg/s/s]’

par dt: 1

par stdevi[noisel] : 1 "Wave disturbance

par stdev2[noisel] : 1 "Measurement noise of wave
par stdev3[noisel] : 1 "Measurement noise

END .



CONNECTING SYSTEM Con

TIME t

td1i(delay] =
ul[delay] =
delta[Ship] =

e[Wave] =

t-tau " Delay control signal
delta[STR] " delta(t-tau)
yildelay] "

el[noisel]

mpred [STR] = m[Wave]/wscale+e2[noisel]/nscale

td2([delay] =
u2{delay] =
m[STR] =
m[Ship] =
deltac([STR] =
pei[STR] =

omega[STR] =
omega[Wave] =

tan : 0.6
h 1
omega : 0.2

wscale : 3000
nscale : 6000
END

t-tau " Delay wave
mpred [STR] " disturbance
y2(delay] "

m[STR]

0 " Rudder command signal

y[Ship]+e3[noise1]/1000

omega " Frequency of
omega " wave disturbance

16



CONTINUOUS SYSTEM Ship

"Model of ship steering dynamics
"

"d [ r(t) ] [-alfa O0J[ r(t) J [K c][delta(t-tau)]
e | 1=[ 1L 1+( 1t ]
"dt [psi(t)] [ 1 0] [psi(t)] [0 O]J[ m(t) ]

" psi = heading angle

"r = turning rate

" delta = rudder angle

"'m = disturbance torque from waves

" K, alpha, C = parameters specific for different ships

" tau = time delay
INPUT delta m

OUTPUT y

STATE r psi

DER dr dpsi

dr = -alpha*r+K+delta+ C*m
dpsi = r

y= psi
degpsi = 180%psi/pi
degdel = 180*delta/pi

alpha = u*a/l
K = usu*b/(1%1)

pi = 3.1415926536

1l : B5 "Ship 1eng¥h [m]

u: 10 "Ship velocity [m/s]
a: -0.14

b: -1.4

c:1

END

16



CONTINUOUS SYSTEM Wave
" Waves modelled as white noise filtered through

" 8 + 2*zeta*omega*s + omega

INPUT e omega
OUTPUT m
STATE mi m2
DER dm1 dm2

dmi = -2xzeta*omega*ml+m2+e
dm2 = -omega*omega*mi
m=mi

zeta : 0.1

END

17



DISCRETE SYSTEM STR

"An indirect self tuning regulator based on pole placement
"with feedforward compensation for wave disturbances.

"A time switch makes it possible to switch between two
"different estimation algorithms, the standard recursive
"least squares method and a method with conditional
"updating.

"

"Input and output parameters

INPUT psi deltac m mpred omega

OUTPUT delta

"State and New Declarations

"Symmetrical P-matrix, covariances for parameters
STATE pii pi2 pi3 pl4 pl5 pl6 p22 p23 p24 p25 p26
STATE p33 p34 p35 p36 p44 p4b p46 p5sb pb6 p66
NEW ni1 ni2 ni3 ni4 nl5 n16 n22 n23 n24 n256 n26
NEW n33 n34 n35 n36 n44 n45 n46 nb5 nb6 n66

"Temporary P-matrix

STATE temppll temppl2 temppl3 temppl4 temppl5 temppil6
STATE tempp22 tempp23 tempp24 tempp25 tempp26 tempp33
STATE tempp34 tempp35 tempp36 tempp44 tempp4b tempp46
STATE tempp55 tempp56 tempp66

NEW tempnil tempnl2 tempnl3 tempni4 tempnl5 tempnié
NEW tempn22 tempn23 tempn24 tempn25 tempn26 tempn33
NEW tempn34 tempn35 tempn36 tempn44 tempn4b tempn46
NEW tempn55 tempn56 tempn66

"Phi vector, regression vector
STATE f1 £2 £3 f4 £5 £6
NEW nfl nf2 nf3 nf4 nfb nf6

"Theta vector, parameter vector
STATE thl th2 th3 th4 th5 thé
NEW nthl nth2 nth3 nth4 nth5 nthé

"Filter variables

STATE psil psi2 psi3 deltal delta2 delta3 ml m2 m3

NEW npsil npsi2 npsi3 ndeltal ndelta2 ndelta3 uml nmn? nm3
STATE v1 v2 v3 deltacl deltac2 deltac3

NEW nvi nv2 nv3 ndeltac! ndeltac2 ndeltac3

"Time and Sample Declarations
TIME t
TSAMP ts

"Start of estimation

18



"Residual epsilom
e= psi-psil-thixf1-th2*f2-th3*£3~-th4*f4-thb*xf5-th6*f6

"K (Column Vector)= P*Phi

ki= pl1*f1+pl2+£24p13+f3+p14*f4+pl5+E5+p16%£6
k2= p12#f1+p22+£2+p23+f3+p24+£4+p26+£5+p26+16
k3= p13*f£1+p23+f2+p33*f3+p344f4+p36*£5+p36*£6
k4= p14#f14p24+f2+p34*£3+padrfa+pa5+EE+pa6+L6
k5= p15%f1+p26+f2+p35*E3+pA5+£4+pEE+L5+p56+£6
k6= pl6*xf1+p26+f2+p36+£3+p46+f4+p56+L5+p66+£6

"Denominator (Scalar)= 1+Phi*P*Phi+cbar*Phi*Phi, cbar >= 0
tempff= f1*f1+f24%£2+f3*£3+£4*£4+L5*%f5+£6%f6
d= 1+f1*k1+f2*k2+f3*k3+f4*k4+f5*k5+f6*k6+cbar*tempff

"Update Theta values (Row vector)
nthi= thil+xatkl*e/d
nth2= th2+xa*k2*e/d
nth3= th3+xa*k3*a/d
nth4= th4+xa*k4+*e/d
nthb5= thb+xa*kb*e/d
nth6= th6+xa*k6*e/d

"Update temporary P-matrix, xa= O when residual < ediff
tempnll= (temppll-xaxkl*k1/d)
tempnl2= (temppl2-xa*ki*k2/d)
tempnl3= (temppl3-xa*kl*k3/d)
tempni4= (temppl4-xarki*k4/d)
tempni5= (temppl6-xa*kl*k5/d)
tempnl6= (temppl6-xa*ki*k6/d)
tempn22= (tempp22-xa*k2*k2/d)
tempn23= (tempp23-xa*k2+k3/d)
tempn24= (tempp24-xa*k2+k4/d)
tempn26= (tempp25-xa*xk2+k5/d)
tempn26= (tempp26-xa*k2*k6/d)
tempn33= (tempp33-xa*k3*k3/d)
tempn34= (tempp34-xa*k3+*k4/d)
tempn36= (tempp35-xa*k3*k5/d)
tempn36= (tempp36-xa*k3*k6/d)
tempn44= (tempp44-xaxk4*k4s/d)
tempn45= (tempp4b5-xa*k4+*k5/d)
tempn46= (tempp46-xaixk4xk6/d)
tempn56= (temppb5-xa*k5+k5/d)
tempn56= (tempp56-xa+kb+k6/d)
tempn66= (tempp66-xa*xk6xk6/d)

"Update P-matrix, xcl > 0

trP= tempnli+tempn22+tempn33+tempn44+tempnbb+tempnt6
nli= if t>chtime then xcl*tempnll/trP+xc2 else tempnil
nil2= if t>chtime then xcl*tempnl2/trP else tempni2
ni3= if t>chtime then xcil*tempni3/trP else tempni3
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ni4= if t>chtime then xcl*tempnl4/trP else tempni4
ni5= if t>chtime then xcl*tempnl5/trP else tempnilb
n16= if t>chtime then xcil*tempnl6/trP else tempnlé
n22= if t>chtime then xci*tempn22/trP+xc2 else tempn22
n23= if t>chtime then xcl*tempn23/trP else tempn23
n24= if t>chtime then xcl*tempn24/trP else tempn24
n2b= if t>chtime then xcl*tempn25/trP else tempn25
n26= if t>chtime then xcl*tempn26/trP else tempn26
n33= if t>chtime then xcl*tempn33/trP+xc2 else tempn33
n34= if t>chtime then xcl*tempn34/trP else tempn34
n36= if t>chtime then xcl*tempn35/trP else tempn35
n36= if t>chtime then xcl*tempn36/trP else tempn36
n44= if t>chtime then xcl*tempn44/trP+xc2 else tempn44
n45= if t>chtime then xcl*tempn45/trP else tempnédb
n46= if t>chtime then xcl*tempn46/trP else tempn46
nb5= if t>chtime then xclitempn55/trP+xc2 else tempnbs
nb6= if t>chtime then xcl*tempnb56/trP else tempn56
n66= if t>chtime then xcl*tempn66/trP+xc2 else tempn66

"Update filter variables

nvl = v
nv2 = vi
nv3 = v2

npsil= psi
npsi2= psil
npsi3= psi2

ndeltal= delta
ndelta2= deltal
ndelta3= delta2

ndeltacl = deltac

ndeltac2 = deltacl
ndeltac3 = deltac2
nmi= m

nm2= mil

nm3= m2

"Update Phi vector
nfl= psi-psil

nf2= delta
nf3= £2
nf4= £3
nfb=m
nf6= f£5

"Discrete time model polynomial
slaskm = sqrt(l-zetam*zetam)*omegamkh
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slaskmi
slaskm?2
slaskm3
aml
am2
am3

-oxp (-alpham*omegam*h)
-2*exp (-zetam*omegam*h) *cos (slaskm)
exp (-2*zetam+omegam*h)

slaskmi+slaskm?
slaskml*slaskm2+slaskm3
slaskmi*slaskm3

"Discrete time observer polynomial
slasko =

slaskol
slasko?2
slasko3

sqrt(1-zetao*zetao)*omegao*h
-exp(-alphao*omegao*h)
-2*exp(-zetao*omegao*h)*cos (slasko)
exp(-2*zetao*omegao*h)

aol = slaskol+slasko2

ao2
ao3

slaskol*slasko2+slasko3
slaskol*slasko3

"Process parameters

a = th
bl = th
b2 = th
b3 = th
cl = th
c2 = th

1
2
3
4
5
6

"Solve Diophantine equation

AoEvala
AocEvall
AmEvala
AmEvalil
BEvala

BEvall =

slaskO
slaskl
slask?2
slasgk3

a*akataol*a*xa+tao2*a+ao3
1+aol+ao2+ao03
a*a*a+taml*a*at+am2*a+am3
1+ami+am2+am3
bl*a*a+b2*a+b3
b1+b2+b3
axb2+ak(2+a)*bi
ao2*am3+ao3kam2+ax (2+a)* (2+a)
a*(2+a)*(aol+aml)+(am2+aol*aml+ao2) *a
slaskl+slask2-a*(1+2%a)

83 = ao3*am3/b3

slask4
slaskb
slask6
slask7
slask8
slask9

L]

slask3-b2*s3-slaskO*AmEvall*AoEvall/BEvalil
slask4+slaskO*s3
a*axaxAmEvali*AoEvall/BEvall
slask6-a*a*a*s3+s3
slask7-AmFvala*AoEvala/BEvala
slask5/(a*bl-slask0)-slask8/ (axax(a-1))

slask10 = (b3-slask0)/(a*bl-slask0)-(a+1)/a
s2 = slask9/slaskl10

sl
s0
r0
rl

slaskb5/ (a*bl-slask0)-(b3~-slask0)/(a*bl-slask()*s2
AmEvali*AoEvall/BEvall-s1-s2-s3

2+ataol+aml-bl*s0

(b2#53+b3*52-a02*am3~ao3*am2) /a

slaskll = AmEvall/BEvalil
t0 = slaskil
t1 = slasklilx*aol
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t2
t3

slaskil*ao?2
slaskii*ao3

"Calculate Feedforward compensation term

ReC = cl*cos(2*omega)+c2*cos(omega)

ImC = cl*sin(2*omega)+c2*sin(omega)

ReB = bil*cos(2*omega)+b2*cos (omega)+b3

ImB = bixsin(2+*omega)+b2*sin(omega)

ReR = cos(3*omega)+(r0-1)*cos(2%omega)+(ri-r0)*cos(omega)-ri
ImR = sin(3*omega)+(r0-1)*sin(2*omega)+(ri-r0)*sin(onega)
ReHL = -ReR*ReC+ImR*ImC

ImHL = -ReR*ImC-ReC*ImR

FFslaskl = ReB*cos(3*omega)-ImB*sin(3*omega)

FFslask2 = ReB*cos(2*omega)-ImB*sin(2*omega)

FFslask3 = ImB*cos(3*omega)+ReB*sin(3*omega)

FFslask4 = ImB*cos(2*omega)+ReB#sin(2*omega)

FFslask5 = ReHL*FFslask3-FFslask1*ImHL

FFslask6 = FFslask2*FFslask3-FFslask1*FFslask4

ff1 = FFslask5/FFslask6

£0 (ReHL-FFslask2*ff1)/FFslaskl

"Compute control signal with anti-windup

aorl = aol-r0+1

aor2 = ao2-ri+r0

aoxr3 = ao3+rl

AoRdelta = aorl*deltal+taor2*delta2+aor3+*delta3

Tdeltac tO*deltac+ti*deltaci+t2*deltac2+t3*deltac3d
FFmpred ffO*mpred+ff1i*(mi+tauk (m-mi)/h)

Spsi = sO*psi+sl*psil+s2*psi2+s3*psi3d

v = -aol*vl-ao2*v2-ao3*v3+Tdeltac+FFmpred+AoRdelta-Spsi

"

di
y

if mod(t,10)<5 then 0.5 else -0.5 " Generate square
if t<20 then di else v " wave

delta=if y<dlow then dlow else if y<dhigh then y else dhigh

"Update sampling time
ts= t+h

"Initial Values and Constants

h: 1 "Sampling time
tau : 0.5 "Time delay in control signal

"Parameters for dead zone

"estimation algorithm

ediff: 0.001

slaskxa = if abs(e) > ediff then abar else 0

xa= if t<chtime then 1 else slaskxa

slaskxcl = if tempff<0.000001 then 1 else 100/tempff
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xcl= if t<chtime then trP else slaskxcl
xc2=0.,001

cbar: 0O

abar: 0.1
: 260

chtime

degdc
degm

dlow :
dhigh :

zZetam

omegam :
alpham :

zetao

omegao :
alphao :

tht:
th2:
th3:
th4:
thb:
thé:

QO oo OO
aonna oo

temppll:
tempp22:
tempp33:
tempp44:
temppbb:
tempp66:

END

180*deltac/3.1415926536 "Command and wave i
180*m/3.14165926536 it

0.5236
0.5236

S O =
[<2 B,

-

100
100
100
100
100
100

" Corresponds to a maximum/minimum
" rudder angle of +-30 degrees

Continuous time model

specifications

Continouos time observer
specifications

n degrees
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