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1. Matlab algorithms for geometric computations

This section gives a brief overview of some algorithms that have been imple-
mented in Matlab, see page 25. [Bengtsson] has also written algorithms like
these but used QR-factorization for the basic calculations, the algorithms in
this paper will use the SVD-factorization instead. Note that some of the al-
gorithms have also been implemented for symbolic calculations in Macsyma,
see [Holmberg]. Symbolic calculation is however only possible for low order
examples.

Representations of linear subspaces
There are two possible representations of a linear subspace A :

Im — form: A =1Im (4,)
Ker — form : A = Ker (4,)

A is spanned by the columns in A; and is orthogonal to the rows in A,. In the
following the notation A := A; and AL := A, will be used. It is important to
separate between AL which is the subspace orthogonal to A and AL which is
a matrix representing A in Ker-form.

Example The one-dimensional subspace to R3 spanned by the first unit
vector has the two representations

1
b o )= xer ([0 o 1)

Using the matlab-routines on page 24 a transformation from Im to Ker-form
would be

A2 = imtoker([1,0,0],3)

Exercise 1 Assume that A= Im (4:) = Ker (4;). Prove that the orthogo-
nal complement of A, denoted A1, has the representations A+ = Im (AT =

Ker (AD).
The SVD-decomposition

The SVD is a numerically stable way to transform a matrix 4 to diagonal
form using two orthogonal transformations U and V

S 0 VT
. T _ 1
A=UXV _(U1 Uz] [0 o] [ zT]

See figure 1 for a clarifying picture. In practice a user specified tolerance is
used to distinguish which elements of ¥ are zero.



N(A) = R(A)

R(A) = N(A)
=R(U)

Figure 1. Very clarifying picture

Basic operations on linear subspaces

If the vectors describing the subspace are not linear independent, then the
subspace can be described with a fewer number of vectors. These can be com-
puted through row compression or column compression. Using the SVD also
gives a numerically stable way to transform between the two representations.

Most operations on linear subspaces can be directly implemented using the
SVD.

Row compression

UTa = w7 - [SVIT] « full row rank
0

Column compression

AV =UX = ( U;:8 0 ] (full column rank)

Im-form to Ker-form

Im (4) = Ker (U])

Ker-form to Im-form Suppose a SVD for the ker-form AL is AL — ﬁEVT,
then

Ker (A1) = Im (V3})



Calculation of A+ B, ANB, AB, A 'B, ACB
A+B= Im([A B))
4

ANB = Ker([gl])

AB = Im (AB)
A"'B = Ker (B*4)
ACB : ra,nk([A B]):rank(B)

Exercise 2 Show that A™'B = {z | Az € B} = Ker (B A).

2. A-invariant Subspaces

Definition Let 4 be a square n X n matrix and V a subspace of R", then V
is A-invariant iff AV C V.

In control theory terms: V is A-invariant iff

Tip1l = A:Et , &g € % B Ty € YV Vit

Note that completing V to a basis for R" and rewriting 4 in this basis, that is
T=(v &), 4=T"'AyT

will give A the following structure:

Ann Arp
A_[ 0 Azz]

Examples of A-invariant subspaces are the controllable subspace and the non-
observable subspace. Compare with Kalman’s decomposition theorem.

Definition If V = Im (V;) is A-invariant, where Vi is column compressed,
then the restriction A; of A to V is given, uniquely, by

AV1 = V1A1
The eigenvalues of A restricted to V can be calculated as
eig( A1) = eig(V;H AV;)

where Vl+ is the pseudoinverse of V3.



Maximal A-invariant subspace in S, V*(S) (e.g. S = Ker ()

”Unobservable subspace when inputs are known? (old stuff)”.

Introduce the class

VS)={V|vcsS & AV cvi={v|vc(Sn4a v}

It is easy to show that V(S ) is closed under summation, that is, if two vector
spaces are in V(S) then so is their sum. We conclude that the subspace

V*(S) = sum of all elements in V(S)

is in V(S) and by construction it is maximal. The maximal subspace is also
unique.

Here is a constructive algorithm for V*(S) :

Vo=S8
Vi+1 =8N A_1Vi (1)

Let V* be the first V, such that Vor1 = Vo

Assume that S = Ker (C). By exercise 2 in section 1, we can express the
algorithm by

(Vo = Ker (C)

Vi1 = Ker (C)NA~1V; = Ker ( f VfA ] ) = [induction]
\ Vi
4 C ¢ @)
C ) CA
= Ker ( ; % ) = Ker ( : )
) CA? ) C A1

We therefore see that it is the usual algorithm for calculating maximal unob-
servable subspace. Also note that

Vi={z| z,A4=,...,A'z € §} (3)

Figure 2. Illustrates algorithm (1)



THEOREM 1

Algorithm (1) converges in at most dim(S) steps to a V* that is the maximal
A-invariant subspace in S.

Proof:  From (3) we see that V;1; C V; and that V* C V;. Since the dimension
of Vi can not decrease for ever there will have to be a ¢ < dim(S) such that
Vot1 = Ve, so the algorithm has converged. It is now easy to show that this
V, € V(S) :

Vo=Vo1 =8N A7,

Exercise 3 Show that if S = Ker (C) then o=observability index of (4, C)
as defined in [Kailath]. How is dim(V;) related to all the observability indices
and the ”Crate 2”-diagram in [Kailath] ?

MATLAB : The function maxainv(A,S) described in the appendix returns
the maximal A-invariant subspace in § (S given in Im-form).

3. (A,B)-invariant Subspaces

Definition: V is (A, B)-invariant iff AV C V + B.

Consider the system
z¢p1 = Aze + By,
(4)
zo €V

V is (A, B)-invariant iff there is a control signal u; such that z, € V, Vt. Of
course it is easier to be (A, B)-invariant than A-invariant.

The next theorem says that this control signal can be implemented as constant
feedback from the states (which are supposed to be measurable).

THEOREM 2
AVCV+B <« 3F (A+BF)VycCV

Proof: <= is trivial since BFY C B

= Choose a basis {v1,...,v,} in V. From AV C V + B we know that there
3 w; € V, z; € U such that

Av; = w; + Bz;

Let F be a feedback matrix such that

Fvo;, = —2;



This is always possible since {v;} is a basis. We then get
(A+ BF)y;=w; €V

which concludes the proof.

MATLAB: The function feedb(A,B,V) (B and V in Im-form) returns a feed-
back matrix such that (A4 BF)V C V.

Which feedback matrices work ? The answer is given by the next theorem :

THEOREM 3

Suppose Fyp is such that (A + BF;)V C V then

(A+BF)YVCV & B(F-F)VcCV

Proof: Exercise, or see [Bengtsson| theorem 3.2.

V; are said to be compatible if there exists a common F that works, that is
(A+ BF)Y; Cc W Vi

It is an unsolved problem to find necessary and sufficient conditions for arbi-
trary subspaces to be compatible. Some results are shown in [Bengtsson].

Maximal (A,B)-invariant subspace in S, V*(S)

”Unobservable subspace with unknown inputs ?”

The maximal (4, B)-invariant subspace in S is larger than the maximal A-
invariant subspace in S.

Introduce the class
W(S):{VIVCS & AVYCV+B}={V|VC (SﬂA_l(V+B))}

One can show that W is closed under summation and we conclude as before
that the subspace

V*(S) = sum of all elements in W

is in W and by construction maximal. The maximal subspace is unique. For
historical reasons we use the same notation V* for maximal A-invariant and
(A, B)-invariant subspaces. The context will determine which is meant.



Here is a constructive algorithm for V*(S) :

Vo=8
Viri=8NnAY(V; + B) (5)

Let V* be the first V, such that V,; =V,

Exercise 4 Show that
Vi={zo| Juo,...,u;—1 such that 2, € S, Vt=0,...,i} (6)

Conclude that if § = ker (C) then z € V; <= O;z C Im (T};) where

C 0 0 0 0
CA CB 0 0 0
0;= | CA? 7 — CAB CB --. 0 o (7)
E : T S
CA* CA*'B ... CAB CB 0

(see p. 80 [Kailath] or [AK]).

THEOREM 4

Vi in (5) converges in at most dim(S) steps to a V* that is the maximal (4, B)-
invariant subspace in S.

Proof: (6) shows that Viy1 C V; and that V* C V; (since for € V* (6) should
be valid for all 7). Since the dimension can not decrease for ever there has to
be a o < dim(S) such that V,41 = V,, and the algorithm has converged. It is
now easy to show that this V, C W(S)

Vo =Vor1 =S8N A™Y(V, + B)

MATLAB : The function maxabinv(A,B,S) returns the maximal (4, B)-inva-
riant subspace in § (B and S given in Im-form).

Solution to the general static feedforward problem

We are now able to solve a non trivial problem using rather elegantly using
the theory we have developed so far. Suppose we have the system

{ L1 = A:Ut + B’U.t + G’Ut g = 0 (8)
ye = Cz;

with the static feedforward-feedback law :

ut:F:ct—}-H'ut



Is it possible to choose F, H so that the disturbance v; in

{zt+1 =(A+BF)z;+ (G+ BH)vy z¢=0

ye = Cz,
does not effect the output y,? Since z¢ = 0 this is equivalent to

Ty = (A+ BF):B:
u=Cz,=0 Vit Ve, € Im(G+BH)

The maximal subspace M for which 3F such that z; € M = z, € Ker (0),
Vi is M = V*=maximal (4, B)-invariant subspace in Ker(C). So :

THEOREM 5

The feedforward-feedback problem is solvable iff there is a map H such that
Im (G+ BH) C V*
this condition is equivalent to

Im (G)CV*+B

Proof:  All that remains to prove is the equivalence. |} is trivial since BH C B
ft Take vectors {v;} such that {Gv;} spans Im (G). Then there is z; such that
Gv; = v* 4 Bz;, where v* € V* and we can choose H such that Huy; = z; which
gives (G + BH)v; = v*.

Warning There is no guarantee that the system (4 + B F) is stable.

Exercise 5 Construct an exercise that illustrates this theorem.

Disturbance decoupling problem (DDP) (v, not measurable)

If v; is not measurable we must set H = 0 above and the problem is to find F

such that with u, = Fz, the output is unaffected by the disturbance v,. We
obtain the following result

THEOREM 6
(DDP) is solvable <= Im (G) C V*.

Proof: Just put H = 0 in theorem 5.



4. Controllability Subspaces
”Which z can be reached from 0 in such a way that z; € Ker (C), vt
In this section we denote the controllable subspace with (4 | B). So
(A| B)= Im (B, AB, ..., A™'B)
The following results should be kept in mind
Exercise 6 (A+ BF|B)=(A|B)

Exercise 7 (hard) If {4, B} is controllable and b € Tm (B),b # 0 then there
is a F such that {A+ BF,b} is controllable. (It is theoretically only necessary
with one control signal + feedback.)

Definition
R is a controllability subspace <= 3IF,G : R=(A+ BF | Im (BG))

It is possible to obtain a definition with only F' as unknown :

THEOREM 7

3F,G : R=(A+BF| Im(BG)) <= 3F : R=(A+BF|BNR)
Proof = Put B = Im (BG). Since 5 C R and B C B, it follows that
BCBNR. So
R=(A+BF|B)c (A+BF|BNR)
Since (A+ BF)(BNR) C (4 + BF)'R C R we conclude that
(A+ BF|BNR)CR

Putting this together we conclude that R = (A + BF | BNR)
<= Let b; be the i:th column in B and let ry,. .. ,Tq be a basis for BNR. Then

T = E 9ijb;
i=1
for suitable g;;. Let G = {g;;}. Then BNR = Im (BG).

Exercise 8 Show that every controllability subspace is a subspace of the
controllable subspace (4 | B).

10



Here is an algorithm to check if a subspace R is a controllability subspace.
Note that no construction of F is needed :

R is (A, B)-invariant, that is AR C R+ Bif R = R,, where

Ro=0 (9)
R,'Z'R,ﬂ(AR,'_1+B) t=1,...,n

Proof: This follows from algorithm (11) below by putting S = R.

Maximal controllability subspace in S, R*(S) (R* C V¥)

Using algorithm (9) one can show that the class of controllability subspaces
is closed under subspace addition. It can also be shown that the space {R |
R is contr. subsp. & R C S} is closed under addition. Hence it will, as
before, have a maximal element, R*(S). A proof of the following result can
be found in [Bengtsson] theorem 4.3.

THEOREM 8

R*=(A+BF|BnV*)
where V* = maximal (4, B) — invariant in S
and F is chosen such that

(A+BF)V CV* (& (A+BF|V*) =V

Proof: See [Bengtsson] theorem 4.3.

Remark. Compare this result with the decomposition in theorem 7.6.2 in
Kailath (also discussed in the next section). As we will see later, R* is the
space giving the last elements in the "suitable choice of basis” such that

Ay 0 0
Ay = N - B, = N
2 [A:sz Aas] : [Bs]

and (10) say that {Aas, B3} is controllable. If R* = 0 there will be no Aas
and Bj. Also note that Im (B3) = Bn Vv~

Here is a constructive algorithm for the calculation of maximal controllability
subspace in S :

Ro =0
Ri=V*N(AR;-1 + B)
Let R* be the first R, such that R, = Rot1

(11)

Proof:  This is proved partly in [Bengtsson] and in full in [Wonham] theorem
5.6.

11



MATLAB : The function maxcs(A,B,S) returns the maximal controllability
subspace in § (B and S in Im-form).

Spectral assignability

THEOREM 9

If R is a c.s. then for every symmetric set A of dim(7R) complex numbers there
3F such that (A4 BF)R C R with o[(A+ BF) |g] = X

Proof: According to theorem 7 we can choose Fy and G such that Ay =
(A+ BFo) |r and By = BG (where Im (BG) = BN R). We then have
(Ao | Be) =R
and application of exercise 7 yields the existence of Fy,b such that
R = (Ao + BoFi | b)

and the scalar _theorem on spectral assignability gives an f such that o(Ao +
BoFy +bf) = A. Putting all feedbacks together concludes the proof.

A characterization of R*(S)

THEOREM 10

R*(S) is exactly the « that can be reached from 0 in such a way that ¢, € S V¢

Proof: This follows by induction from algorithm (11). Note that V* is exactly
the z that can be kept in §, Vt. The problem with continuous time is treated
in [Bengtsson] theorem 4.5.

Duality

The following intriguing result can now be obtained:

THEOREM 11

R* =V nW,

where W} = max(A7T, C7T)-invariant subspace in Ker BT.

Proof:  Rewriting (5) we get a recursive algorithm for W,:

W() = B
Wit1 = B+ A(W;n Ker C) (12)

Let Wi, be the first W, such that Weoi1 = W,

It is enough to show that

Riy1 = V' nW;, Vi (%)

12



where R; are the subspaces given in (11). Since Ry = V*N B and Wy = B it
is true for 7 = 0.

The algorithm for R is
Rit1 =V'N(AR: + B)
Assume now that (*) above is true for i — 1, then
AR; = A(V'n Wi_1)
But in the limit of the V*-algorithm we have
V* =kerC N (A7Y(V* + B))
so that
AR;+ B=(Aker CN(V*+B)NAW;_;1) + B
= ((V* + B)n A(W;_1 NkerC)) + B
= (V' +B)Nn{A(Wi_1NKerC) + B}) + B

=(V'+B)NW)+B=VNnW;+B
Since B € W; we now get

Ripa =V'NnW, +V*NB=V*NW,;

5. State-space form

”Kailath chap 7.6 etc”

The notion of maximal (A4, B) invariant subspace and maximal controllability
subspace in Ker (C) enables us to extend Kalmans standard form, see p 133
[Kailath] or p 105 [AK]. We will investigate the controllable-observable sub-
block further for extra structure. So let us assume that (4, B, C) is minimal.

We know that by using just feedback A — 4 + BF we can not loose con-
trollability. Further the zero locations are unaffected by any feedback that
does not affect the minimality (exercise 6.5.4). By putting as many poles as
possible "under” the zeros we will thus obtain maximal unobservability. This
will exploit the zero structure of (4, B, C)more extensively. Note that it is not
enough to put a pole “under” a zero to increase unobservability, they have to
be “at the same place” in the matrix. A minimal realization can have poles
and zeros at the same place in the complex plane.

A question connected with maximal unobservability is: When can we from
knowledge of just y(t) (u(t) unknown) calculate the initial state zo ? This is
called ”"perfect observability”.

13



Kailath theorem 7.6.2

Suppose (4, B,C) is minimal. Let V* be the maximal (A, B)-invariant sub-
space in Ker (C). Choose feedback F such that (4 + BF)V* C V*. Choose
a basis in state-space with the last basis elements in V*. Then we will have

H
)=l ) (3 (3)
zi, 21 A z B,
21
yi=[C 0) [:cf]

Note that (if V* # R™ so there is a Zu-block) B; # 0 (otherwise (A4, B) would
not be controllable). So by a column compression (= we dont use extra input
signals) on B; we can write

() e () om= (5, 5]
-B2 (3 B2 1 le FZ (3

The column compression can be seen as transformation of the input: « = G7.
Since B; now has full column rank we can perform a state transformation

LY R

T:[}I{ 3] A->TATY BTB C - CT!

so that by proper choice of X (e.g. X = —F21F1+ will do) we get a zero in

the By; position. Note that the structure of A and C is unaffected. Any extra
feedback will have to be on the form

Fi; 0 ]
F =
[ Fy1 Fy

not to destroy the maximal unobservability structure.

So we have Kailaths theorem 7.6.2. :

‘L'}+1 An + B1Fy 0 B, 0 z}
el | = | Aar+ BoFay Anm+ BoFoy 0 By 2} (13)
Yi C1 0 0 0 U;

Here {A1; + Fan,Fl,Cl} is perfectly observable, that is :c(l) can be deter-
mined from knowledge of {y;,i < 0} irrespective of what the inputs {u;} are
(if there were a {A11, B;} invariant subspace in Ker (C) we could obtain a
larger V*, contradiction). Note that Fyy, Foy, Fys can be chosen freely.

Let us dissect {74—22,?2} further. We know from the spectrum assignability
theorem that the controllable subspace of {Ajy, By} is exactly R* so we can,
by a suitable choice of basis arrange that

Ap= |22 AN, 7,=(2 14
2 Azp |Asg ’ Bs (1)

where {433, B3} is controllable. So the unobservable modes can be divided
into those of {Z33,§3} which can be put anywhere in the complex plane, and
those of Ay, which are fixed. We will in the next section see that these fixed
zeros equals the transmission zeros (given by €;(s) = 0)

14
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6. The relation to the Smith form and zeros

Definition The transmission zeros are the zeros of ¢(s) in the Smith-
McMillan form of H(s), see 446 [Kailath]. If » < min(n,,n;), where 7 is the
normal rank of H, we say that H(s) has zeros everywhere in the complex
plane.

To study the zeros further we put
€1(s)
£(s) = 0 (no X ny)

0 0

and introduce the pencil

Pls) = [sI_—CA 13]

It is shown in [Kailath] p. 448 (22) that for minimal systems (4, B,C) we

have
0~ (0 o) 15)

Definition The invariant zeros are those s for which P(s) looses normal
rank. If normal rank P(s) < min(n,,n;) one say that P(s) has invariant zeros
everywhere in the complex plane.

From (14) we see that:

THEOREM 12

For minimal systems

transmission zeros = invariant zeros

A SISO-system cannot have zeros everywhere in the complex plane. To see
this we use the appendix in [Kailath] to write

det [ ‘SI——CA (b) ] = det(s] — A)c(sI — A)—lb _ a(s)g'((-z_)) — b(s)

so P(s) will have full normal rank (this means full rank except for a finite

number of 5). For MIMO-systems this is not necessarily true.

Remember (p. 449) that if P(s) looses column rank for s = s this means that

there 4 [ o ] such that
Uo
{ sol—-A B To _
—C 0 Ug N <
u(t) = upe®t = Iz such that y(t)=0 t>0

15



We will now show that for minimal systems P(s) has less than full column
rank everywhere in the complex plane exactly when Aa3 # 0, that is exactly
when R* #0 :

We used only feedback and change of basis in input- and state-space to ob-
tain (12 & 13). Since these transformations do not change the Smith- (or
Kroenecker-) form we can use (12 & 13) to calculate the Smith form of P(s).
To show that the Smith form do not change with feedback we write

sI-(A+BF) B _(sI—-A B] I 0

-C 0) -C 0 -F I
Note by the way that this proves that the invariant zeros are not affected
by state-feedback. In the same way we can prove that input or state-space

transformation do not change the Smith form of P(s) either. So we have
proved (p. 545):

THEOREM 13

(s — Ay By 0
31 32 33 3
. 0 0 0 0
(s] — All B1
Cl 0
~ —221 0 sI — ng
\ _Z.'Sl 0 —Zaz SI s 2-33 Bg

By using unimodular transformations we can go further (the structure at in-
finity will be destroyed however). Since {As3, B3} is controllable

(s7-Zw Bs) ~ (7 0)

This is the PBH test in Smith form see e.g (40) p 366. Moreover we have
(exercise or see [Kailath] 544)

[SI—A11 Bl] [I]
Cy 0 0

so we obtain the Smith form (see p 545) :

THEOREM 14

Io
From this we immediately see as promised that P(s) has less than full column
rank for all s iff {Z33,F3} # 0 and that the eigenvalues of A5y are the s for
which P(s) looses normal column rank, that is the invariant zeros which are
the same as the transmission zeros since we assumed a minimal system. Note
that these can be calculated as the eigenvalues of (4 + BF)

V'/R" .

16



7. MATLAB and MACSYMA examples

Boiler example

The following example shows some of the geometrical calculations and illus-
trates the use of theorem 14 for calculation of transmission theory using geo-
metric theory. The transmission zeros are the eigenvalues of A+ B F restricted

to V*/R*.
> a
a =
-0.1290 0 0.0396 0.0250 0.0191
0.0033 o ~0.0001 0.0001 ~0.6210
0.0718 [0} -0.1000 0.0009 -3.8600
0.0411 o 0 -0.0822 0
0.0004 0 0.0000 0.0000 -0.0743
>> b
b =
o] 0.0014
0 0.0000
0 =0.0099
0.0000 o]
] 0.0000
>> ¢
C =
1 0 o] V] 0
(o] 1 0 o] 0

>> s=kertoim(c)
s=

[o 2N~ i o o]
o O OoOOo
2 0 O0O0CO0C

>> vstar=maxabinv(a,b,s)
vstar =
0.0000 o]
0.0000 0.0000
~0.9930 -0.1180
0.1180 -0.9930
0.0017 0.0010

>> rstar=maxcs(a,b,s)
rstar =

0

>> f=feedback(a,b,vstar)
£ =
1.0e+04 =*

0.0000 0.0000 -3.1081 -2.1641 0.0073
0.0000 0.0000  -0.0028 -0.0018 0.0000

>> abf=a+bxf
abf =

-0.1290 0.0000 0.0000 0.0000 0.0192
0.0033 0.0000 =0.0011 -0.0006 -0.6210
0.0718 0.0000 0.18156 0.1786 -3.856086
0.0411 0.0000 -0.7739 -0.6211 0.0018
0.0004 0.0000 0.0002 0.0001 -0.0743

>> subset(ebf+vster,vstar)

ans =
1
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>> eig(pinv(vr)+abf+vr)

ans =
-3.6805120370676346-01
-6.467761190094627e-02

>> tzero(a,b,c,[0 0 ;0 0])

ans =
3.910687938947270e+30 + 1.0626721897686866+09i
5.486100474083862e+07 - 3.430418706706532e~031i
-5.4861023409622996+07 - 3.430433891841253e-031i
-3.6806120380368726e-01
-8,467761189940564e~02

Note that MATLAB:s function tzero also give the zeros at infinity. The results
corresponds very well.

Transmission zeros 2

This shows a typical example of calculation of transmission zeroes with a
nontrivial R*. We start with a matrix on Kailath standard form, see p. 542.
> a
a =

1 o} 0 0
1 2 (¢} 0
1 (o] 3 0o
(o] (o] [0} 4
>0
b =
1 (o]
(o} [0}
0 [¢]
o] 1
> ¢
c =
1 o] 0 0
0 1 o 0
> d
d =
(o] (o]
0 0

>> s=kertoim(c)
s =

o= OO0
» O 0O

>> vstar=maxabinv(a,b,s)
vstar =

o »r OO
= O O o

>> rstar=maxcs{a,b,s)
rstar =

= O o0 oo

>> f=feedback(a,b,vstar)

18



0 0 0 -2.0000

>> abf= a+tbsf

abf =
1.0000 (4] (o] (o]
1.0000 2.0000 [o] (o]
1.0000 (] 3.0000 (4]

o] o] o] 2.0000

>> subset(abf*vstar,vstar)
ans =

1

>> vr=over(vstar,rstar)
vr =
(o]
[¢]
-1
o]

>> eig(pinv(vr)+abfevr)
ans =
3

>> tzero(a,b,c,d)
ans =
0,0000
3.0000

Transmission zeros 3

This shows another example of calculation of transmission zeros with a non-

trivial R*. It also shows that tzero in MATLAB can give extra zeros at an
arbitrary position.

>> a
a =
2 3 2 b
1 2 o] 0
1 0 3 0
4 2 [} 9
>> b
b =
1 0
0 (o}
o] o]
0 1
> ¢
c =
1 0 (o] 0
(o} 1 0 o
>> d
d =
0 (o]
[o] o

>> s=kertoim(c)

o = OO0
= O 00
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>> vstar=maxabinv(a,b,s)
vetar =

O OO
= 0 0 O

>> rstar=maxcs(a,b,s)
rstar =

= O O O

>> f=feedback(a,b,vstar)

£ =
0 0 ~2,0000 -5.0000
[o] 0 =3.0000 ~4.5000

>> nbf=a+bf

abf =
2.0000 3.0000 (o} [o]
1.0000 2.0000 0 [
1.0000 0 3.0000 [

4.0000 2.0000 3.0000 4.56000

>> subset(abf*vstar,vstar)
ans =

1

>> vr=over(vstar,rstar)
vr =

(0]

o]

-1

0

>> eig(pinv(vr+abf*vr)
3

>> tzero(a,b,c,d)

ans =
3.451039687098236e+17
65.4966439919969266+00
3.000000000000000e +00

>> tzero(m+b*rand(2,4),b,c,d)
ans =
~2.882511903229958e-02
-1.367140837864369%-16
3.0000000000000006 +00

>> tzero(a+b*rand(2,4),b,c,d)
ans =
65.061333569801671e+00
2.81347865658642380+00
2.999999999999999e+00

The result of the last three calculations should be the same. As seen MATLAB
gives different answers. This is because of the non trivial R*.
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Smith form for the previous example

The following shows the calculation of the Smith form for the previous exam-
ple. Note that (compare (22) p. 448 in Kailath)

Iy 0]

Pls) ~ [ 0 &)

so this will again explain the zero structure.
(c1) loed(*ulf.mac");

(d1) ulf.mac

(c2) m:matrix((2,3,2,51,(1,2,0,01,(1,0,3,0] ,[4,2,6,9]);

2 3 2 5
1 2 00
(42) 1 0 3 0
4 2 6 9
(¢3) b:matrix([1,0],(0,0],[0,0],[0,11);
10
0 o0
(d3) o o
01
(c4) c:matrix([1,0,0,0],[0,1,0,01);
1 0 00
(a4) [0 1 0 0]
(cB) gic . (s*ident(4)-a)~*(-1) . b;
il -. : 5_;134-;: :.g ‘-::’.l_ssai- 39 W71 c:" ::;&zas‘;-r-_aana. —39
(a5) [ 8% —121427 51—16 ]

a% 1647 $5442 —388—30 29— 1085 +04s7—38s—230
(c8) smith(g);

a—3
(d6) ¥ —162% 45447 =384—230 0
0 0

Note that P(s) has normal rank 5 although the system is both controllable

and observable. This is a direct consequence from having a R* # 0, compare
with (16) p. 545.
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Tzero in Matlab can give ’strange’ answer
This example shows that when P(s) do not have full rank, then MATLAB can

give extra transmission zeros anywhere.

An example of transformations to Kailaths 7.6.2-form

First step: determine V:

1.0000 3.0000 1.0000
7.5000 0.0484 1.1129
2.5000 1.6968 2.7268

2.0000 3.0000
0 -1.7600
1.0000 -2.0000

0 0
1 [¢]
0 1

>> vstar=mexabinv(a,b,s)

vstar =
o] 4]
1 ]
(V] 1

Compute feedback matrix that makes V& (A+BF)-invariant:

>> f=feedb(m,b,vstar)

f =
0 -1.3624 -1.2263
0 -0.0984 0.4842
>> aO=atb¥f
a0 =

1.0000 0.0000 0.0000
7.5000 0.2208 0.2656
2.5000 0.4412 0.6311
First step in Kamilaths procedure finished.

Let us now transform B:

>> b

22



2.0000 3.0000
0 -1,7600
1.0000 -2.0000

>> bo=b*[1 -1.6 ; 0 1] (input-trans. to zero b(1,2))

bo =
2.0000 4]
0] -1.7600
1.0000 -3.5000
> T (state-trans. to zero out b0(3,1:2))
T =
1.0000 o] (o]
(o] 1.0000 ]
~0.6000 (o] 1.0000
>> b1=T*b0
bl =
2.0000 0
(o] -1.7500
(4] ~-3.5000

>> cl=c*inv(T)

cl

1 o] 0

>> a1=T+aOinv(T)

al

1.0000 0.0000 0.0000
7.6328 0.2206 0.26686
2.2668 0.4412 0.6311

>> rstar=maxcs(a,b,s) (determine contr.subs.)
rstar =
o]
0.4472
0.8944
dha there is a controllability subspace:

Bow transform to see uncontrollable block

>> T1=[1 00 ; 0 -2 1; 0 0 1]; (exercise)

>> b2=Ti*bi1
b2 =
2.0000 (o]
o] 0
0 -3.5000

>> a2=Ti%al*inv(T1)

a2 =



1.0000 0.0000 0.0000
-13.0000 0.0000 0.0000
2.2668 -0.2206 0.7517
Kailaths form 7.6.2 !
By the way lets check the zeros with matlab:
>> tzero(e,b,c,d)

ans =

1.3114e-16
correct !
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8. Program documentation

Summary of functions

Im-form should be used in all function calls, except kertoim. Answers will be
in Im-form, except imtoker. The following functions have been implemented:

Representations

colcomp(4) Computes a column compressed A (matrix with full col-
umn rank)

rowcomp(A) Computes a row compressed A (matrix with full row
rank)

imtoker(4,dim)  Im-form to Ker-form (gives eye(dim) as answer when A
is empty)

kertoim(A,dim) Ker-form to Im-form (gives eye(dim) as answer when A
is empty)

Basic operations

cup(4,B) Gives the sum of A and B, (4 + B)

cut(4,B) Gives the intersection of A and B (4N B)

invim(4,B) Computes the inverse image of B under A (47!B).

subset(4,B) 0 if A is a subset of B, 1 otherwise (AC B)

over(4,B) Computes representation for A over B (A/B/

orth(A,dim) Calculates the orthogonal complement (A1) (answer will

be eye(dim) when A is empty)

Geometric computations

maxainv(A,S) Maximal A-invariant subspace in S
maxabinv(4,B,S) Maximal (A,B)-invariant subspace in S
feedb(4,B,S) Calculates F such that (A+ BF)S C §
maxcs(4,B,S) Maximal controllability subspace in §

Matlab functions, documentation

function C=colcomp(A)
% function C=colcomp(4)
% computes a column compressed version of A
% AV = US  where A=USV’ is the svd-decomposition of A
bigeps=1e6*eps;
[U,S,V]=svd(4);
r=rank(S,bigeps);
if >0
C(:,1:1)=UxS(:,1:1);
else
c=01;

end;
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function C=cup(4,B)

4 C=cup(a,B)

% calculates the union of two vector spaces given on
% Im-form

% C = colcomp([A B]);

C=colcomp([A B]);

function C=cut(4,B)
% C=cut(A,B)
% calculates the intersection of two vector spaces
% given on Im-form
% C=kertoim([imtoker(4) ; imtoker(B)]);
/ Some care has to be taken for empty matrices
if size(A)==0 ! size(B)==
c=[1;
else
[ar,ac]=size(A);
C =kertoim([imtoker(4,-1) ; imtoker(B,-1)],ar);
end;

function F=feedb(A,B,V)
% function F=feedb(A,B,V)
% calculates a feedback vector F such that (A+BF)V C V
% B and V should be given in Im-form
% Note: One must have AV C V+B
if subset(a*V,[V B])
[vr vcl=size(V);
[br bcl=size(B);
XZ=pinv([V B])*(A*V);
Z=XZ(vc+1:vc+be, :);
F=-Zx(pinv(V’)?);
else
disp(’Warning: V is not (4,B)-invariant’);
end;

function B=imtoker(A,dim)
% B=imtoker(A,dim)
% transforms an Im-form given by A to a Ker-form
% given by B
h ker(U2’) = Im(A)
% Warning: imtoker([],dim)=eye(dim)
if size(A)==0
B=eye(dim) ;
else
bigeps=1e+6*eps;
[U,S,V]=svd(4);
r=rank(S,bigeps);
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if r<size(U)
B(1:size(U)-r,:)=U(:,r+1:size(U))’;
else
B=[1;
end;
end;

function C=invim(4,B)

% function C=invim(4,B)

% calculates the inverse image A~(-1)B , that is all
% y such that Ay is in B

% B should be given on Im-form, C will be in Im-form
% C=kertoim(imtoker(B)*A)

[ar,ac]l=size(4);

C=kertoim(imtoker(B,ar)*A,ac);

function B=kertoim(A,dim)
% B=kertoim(A4,dim)
% transforms an Ker-form given by A to a Im-form
% given by B
% Im(V2’)=ker(4)
% Warning: kertoim([],dim)=eye(dim)
if size(A)==
B=eye(dim) ;
else
bigeps=1e+6%eps;
[U,S,V]=svd(A);
r=rank(S,bigeps) ;
if r<size(V)
B(:,1:size(V)-r)=V(:,r+1:size(V));
else
B=[];
end;
end;

function V=maxabinv(4,B,S)
% function maxabinv(4,B,S)
% calculates maximal (A,B)-invariant subspace in S.
# B and S should be given i Im-form, V will be
% in Im-form
4 Alg. (12) p. 18 in Gunnar Bengtssons report
7% (1974) is used
V0=S;
Vi=cut(S,invim(4,cup(V0,B)));
while ~ subset(V0,V1)
Vo=V1;
Vi=cut(S,invim(A,cup(V0,B)));
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