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1

Introduction

During the past few decades, there has been a dramatic increase in the
number of electronic devices that are connected to the power networks.
Computers, TV sets, and low energy lighting are significant residential
loads. Power electronics is also successfully used to control industrial
loads, like adjustable speed drives. These devices distort the wave form
of current and voltage of the supplied power.

While the power becomes more distorted, society becomes more de-
pendent on a supply of power of good quality. Power distortion leads
to increased losses and overheating of components and cables that re-
duces the capacity of the networks. It may also result in failure of
sensitive equipment.

Fortunately, power electronics also provides possibilities for more
sophisticated control of the networks. Active filters, thyristor controlled
series capacitors and shunt reactors, HVDC converters, and battery
chargers for electric vehicles can all be controlled to improve the power
quality. In order to exploit these new opportunities, there is a need for
model structures that not only result in efficient simulation, but also
are suitable for analysis and control design.

A major problem when modelling, analyzing and simulating distri-
bution networks is the huge number of components. Methods to reduce
the resulting large and complex models are necessary. Model reduction
of linear networks is straightforward, but for nonlinear networks an-
alytical solutions can often not be obtained.

This thesis presents an aggregated approach to modelling of non-
linear and switching loads for steady state harmonic analysis. It is a
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1.1 Outline of the Thesis

frequency domain method, with roots in the method of harmonic bal-
ance. The models, called Harmonic Norton Equivalents, are linearized
descriptions around the nominal voltage. The result is a linear relation-
ship between the deviations in the Fourier coefficients of the current
and the voltage. The linearization is justified by strict standards that
limits the allowed voltage distortion in distribution networks.

The linearization implies that aggregation of models and network
solving is a non-iterative procedure, using linear algebra. The model
structure can be interpreted as an extension of the Norton equivalent
for linear subnetworks. It facilitates a compact way to represent the
behaviour of a large nonlinear and switching network and it can be
obtained through simple experiments avoiding detailed modelling.

The structure of the Harmonic Norton Equivalents has been devel-
oped for the purpose of analyzing nonlinear and switching networks,
with respect to harmonic contents, periodic stability, and robustness.
They can also be used for improved load representation in time do-
main simulation programs. Furthermore, existing model libraries from
time domain simulation programs can be used to obtain the equiva-
lents, which means that frequency domain modelling of nonlinear and
switching loads is not necessary.

1.1 Outline of the Thesis

In Chapter 2 some background to computer simulation of power net-
works is given. The nodal formulation is shown to be suitable way for
getting a mathematical model for a network in an automatized way. It
is described how the nodal formulation is solved by dominating simula-
tion programs. Finally, it is shown how the special structure of periodic
signals can be used to solve nonlinear networks in steady state.

In Chapter 3 the Harmonic Norton Equivalent is presented. The
model for a light dimmer, is validated and shown to be suitable for
analysis of distribution network under normal operation. It is also
shown how aggregation of Harmonic Norton Equivalents and network
solving is performed.

In Chapter 4 a procedure is presented for obtaining Harmonic Norton
Equivalents from measurements or time domain simulation.
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2

Power Network Simulation

Power systems are very complex, they are widespread and contain nu-
merous components: lines, cables, generators, transformers and switch
yards, protective equipment like breakers and surge arresters, and con-
trol equipment such as capacitor banks, static var compensators, and
power system stabilizers. An enormous amount of different electric
loads are connetcted to the network. Computer methods for analysis
and simulation have been used in power system design for a long time,
as large scale experiments for security and economical reasons can be
performed only to a very limited extent.

Dominating programs for simulation of electric power networks,
like EMTP, are not designed for efficient simulation of networks that
contain a lot of switching electronic components. However, the strength
of these programs is their widespread use and the vast and thoroughly
validated model libraries, and they will continue to be the dominating
programs for a long time. Any method for analysis and simulation
of switching systems ought for this reason be developed for use in
combination with these programs.

In this chapter it is shown how nodal analysis is used to obtain
mathematical models of electrical networks. Nodal analysis facilitates
a simple way to get the models from graphical inputs, which is used by
modern simulation tools to automatize the modelling. It is also shown
how programs like EMTP solve the network equations. Finally, the
method of harmonic balance is described as a powerful way to derive
the steady state solution of networks with nonlinear and switching
components.
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2.1 The Nodal Formulation

i16> R Rs Q) I2

Figure 2.1 A small network with four resistors and two current sources.

2.1 The Nodal Formulation

A mathematical model of an electric network is conveniently obtained
by nodal analysis [Vlach and Singhal, 1994]. Kirchhoff’s current law
(KCL) which states that the sum of the currents that flow into each
node is zero, is used for every node of the system to describe the rela-
tionship between the node voltages.

As an example, the node equations for the network in Figure 2.1
are obtained using KCL for the three nodes, 1-3

il_B}Ul 1(01—02)———0
75 (U1 —v2) — 702 — (V2 —v3) =0,
3%2(02—03)+12_0.

The equation for node 0, the reference node, is left out to avoid an
over-determined system. The system can be rewritten to get the nodal
formulation

1 1 1 .
R TR TR, 07 [oa®) i1(2)
1 1 1 1 1 —
7 mtmtE R |20 =1 0
0 -3 = v3(?) 2109

The nodal formulation allows all linear resistive networks to be
described by a linear equation system

YV =1(), (2.1)
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Chapter 2. Power Network Simulation

where v/ (t) is a vector containing the node voltages, I(¢) contains the
external current sources, and the admittance matrix 9 is a matrix
built up by the resistive elements in the network.

To fit the nodal formulation, external voltage sources are trans-
formed to Norton equivalents. A Norton equivalent consists of a cur-
rent source and an impedance in parallel, and can be used to describe
the behaviour of any linear subnetwork as seen from two terminals.

The nodal formulation for a network can be obtained directly from
the network topology. The diagonal element Y;; of the admittance ma-
trix is the sum of the admittances connected to node i. The off-diagonal
element Y;; is the admittance connected between nodes i and j with
negative sign. Modern modelling tools use this structure to obtain a
mathematical model of a network from graphical inputs. It is easy to
add or remove components, even if this results in a changed topology
for the network. This is the reason for the popularity of the nodal for-
mulation for computer analysis of electrical networks, even if other
approaches may result in more efficient simulation.

2.2 Solving the Network

The node voltages of a resistive network are obtained by solving the
linear algebraic equation system (2.1). If the network contains dy-
namic elements, like capacitors and inductors, network solving is more
involved. The nodal formulation (2.1) is then a differential-algebraic
equation system (DAE-system).

Capacitive components can be included in the nodal formulation by
allowing the elements of the admittance matrix to include the differ-
ential operator. A linear capacitor is described by

dv
Ca = 1.

The admittance for a capacitor is thus

d
Y. =cZ
c Cdt’
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2.2 Solving the Network

or by using Laplace transforms
YC = Cs.
For inductors, the relation between current and voltage is

di
LE = 0.

To include inductive components, the nodal formulation must be mod-
ified to allow branch currents in the state vector.

Network Solving in EMTP

EMTP (Electro Magnetic Transients Program) [EPRI, 1989] is, to-
gether with some closely related programs like ATP and EMTDC,
the dominating program for analysis of electro-magnetic transients
in power systems. It was developed in the late 1960’ by Hermann
Dommel at Bonneville Power Administration.

The power of EMTP is the extensive model libraries, with thor-
oughly validated models for machines, transformers, cables, and trans-
mission lines. EMTP has been an industrial standard for a long time,
and has been used for numerous benchmark problems.

EMTP uses a simple approach to simulate the DAE-system. Each
time step, the dynamical components are integrated using the trape-
zoidal rule. For a capacitor this gives

o v(t) —v(t —At) i) +i(t — A?)
At B 2 ’

which gives for the current

) 2C
i(t) = —A—tv(t) + I(t — At),
where

I(t—At) = —i(t — At) — ?Agtv(t — At).
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Chapter 2. Power Network Simulation

I(t —A?)
L i(t) | < >

Ri|= &
—N\VN—
- | I(t — Af)
0 ( >
|| S
|| Re|= 2

Figure 2.2 Using the trapezoidal rule for integration, dynamic elements like
inductors and capacitors can be treated as resistors in parallel with a current
source.

This way, the capacitor can be interpreted as a resistor in parallel
with a current source, which serves as the memory of the dynamics,
see Figure 2.2. Similarly, an inductor is described by

. At
L(t) = —Z-Zv(t) -+ I(t — At),
where
I(t—At) =i(t—At) + —Aiv(t — At)
- 2L ‘

These models for the capacitor and the inductor are called companion
models.

Using companion models, the network becomes resistive. Every
time step, the current sources for the companion models are updated,
and then the resistive network is solved. A fixed time step is used,
which means that the resistors in the network are constant through-
out the simulation, and only the current sources are updated. The same
LU -factorization can be used for the whole simulation.

Nonlinear and Switching Loads

Nonlinear and switching devices do not fit in the nodal formulation.
In EMTP, nonlinear loads and control systems are treated as current

16




2.3 Steady State Simulation

sources. Every time step the linear part of the network is solved, and
then the current sources are updated with respect to the new node
voltages. The updating is performed by a separate simulation program,
called TACS (Transient Analysis of Control Systems), run in parallel
with EMTP. The separation of the system in a linear and a nonlinear
part implies that a delay of one time step is introduced. For slow dy-
namics, it may not be so severe, but for systems including switchings
and sharp nonlinearities, it is important to determine the switching
instants accurately. Thus very short time steps are required, which
leads to inefficient simulation.

For simulation of systems with multiple switchings, for instance
converter stations in HVDC networks, there is a need for some way to
allow more than one switching action at each time step. To accomplish
this, the whole switching sequence must be modelled in TACS. This
might be easy to do under normal working conditions, but it is hard to
foresee the switching sequence during a disturbance.

The trapezoidal rule is not good for simulation of switching sys-
tems, as it leads to numerical oscillations [Mohan et al, 1994|. One
way to avoid numerical oscillations is to use a more stable method
for the integration steps following every switch. The Critical Damp-
ing Adjustment (CDA) implemented in DCG/EPRI EMTP Version 3
uses the more stable backward Euler integration method for two half
time steps after every switch. The closely related simulation software
EMTDC, developed by Manitoba Hydro and Manitoba HVDC Research
Center especially for HVDC-studies uses interpolation to avoid numer-
ical oscillations. The use of interpolation gives the correct switching in-
stants and simplifies the treatment of multiple switchings. This makes
EMTDC more suitable for power electronics modelling and simulation.

2.3 Steady State Simulation

Programs like EMTP were originally designed for transient studies,
including line faults, load losses, and lightning phenomena. However,
these programs are frequently used for steady state analysis too. There
are a few problems with this. Networks with switching components
are, so called, stiff systems, with both fast and slow dynamics. The
slow dynamics imply that the system has to be simulated for a long
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Chapter 2. Power Network Simulation

time until it reaches steady state, whereas the fast dynamics require a
very short time step. The resulting simulation work is large. It might
also be hard to tell whether the system has actually reached steady
state.

Representation of Periodic Signals

A network is said to be in steady state if all currents and voltages are
periodic with period T'. This periodic nature of the signals can be used
to obtain efficient methods for network solving in frequency domain.
Periodic signals are well approximated by truncated Fourier series

N
i(t) = Z Ckejkwot,
k=—N
N

v(t) = Z cpe Pt

k=—N

where woT = 2r.

Let the current spectrum, I, and the voltage spectrum, V, be com-
plex vectors containing the Fourier coefficients of source current and
node voltage respectively,

I = [C—-N C_N+1 NN C__l C() Cl CN—I CN ]Ta
V = [C—N C_Nt1 - C-1 Co C1 e CN—1 CN ]T

For linear components, there is a linear relation between the cur-
rent spectrum and the voltage spectrum

I=YV, (2.2)

where Y is a matrix of size (2N + 1) x (2N + 1). For a resistor, an
inductor, and a capacitor, the Y-matrices are

. 1 1 1
YR _dlag(—R—,-E,... ,E)s

1 B 1 1 )
jNC()()L, ](N—l)a)oL,,]Na)oL ’
Yo = diag(—jNwoC,—j(N —1)0oC, ... ,iNwoC),

Y. = diag(—

18



2.3 Steady State Simulation

respectively, with @, denoting the fundamental frequency. The ma-
trices are diagonal, which means that there is no coupling between
different frequencies. This is due to the linearity of the components.

Assuming periodic signals, the time domain equation system in
Equation (2.1) is transformed to a relation between the spectra, I; and
V.. The solution for the linear network is obtained from the linear
algebraic equation system

Yi+Ys —Y, : 0 | rvi1 1L
~Yo Yo+Ys3+Yy -Y. Vo | = 0
. . L Vs | 15 |
e ~ v I
Y

The size of the equation system is M (2N + 1), where M is the number
of nodes in the network.

As the admittance matrices are diagonal, the different frequencies
are uncoupled, and can be solved for separately. Instead of solving a
system of M (2N + 1) equations, it is sufficient to solve 2N + 1 different
systems with M equations each.

Linear dynamic components, like inductors and capacitors, make
network solving in time domain much more involved compared to a
purely resistive network. In frequency domain, dynamic components
do not cause any problems. As only the steady state solution is wanted,
dynamic components can be treated in the same way as static ones. In
frequency domain, the DAE-system in Equation (2.1) is transformed
to a linear algebraic equation system, even if the network has dynamic
components.

Trigonometric Fourier Series

To avoid complex numbers and negative frequencies, the trigonometric
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Chapter 2. Power Network Simulation

Fourier series can be used

N
i(t) = Z A, cos koot + By, sin kot
k=1
N
v(t) = Z ay, cos kot + by, sin kwot,
k=1
with spectra
I=[A; B ... Ay Bn]|",
V=[as by ... ay by]"

Using the trigonometric Fourier series, the admittance matrix for a
resistor is still diagonal, but for an inductor and a capacitor the ad-
mittance matrices becomes block diagonal

v, — di 1 0o -1 1 0o -1 1 0 -1
L=\ LT l1 0| 20L |1 0] ~"NawL[1 0])°

) 0 1 0 1 0 1
YC:dlag<C()()C [_1 O},Za)oC L—l O:\,...,NCI)()C {_1 O:\ .

2.4 Harmonic Balance

For nonlinear and switching devices, the relation between I and V
in Equation (2.2) becomes nonlinear. This means that the network no
longer can be solved by LU-factorization. One way of solving nonlin-
ear networks is the method of harmonic balance. In harmonic balance,
the network is split into two parts, a linear network, and a collection
of nonlinear components. The currents through the nonlinear compo-
nents are derived with respect to the node voltages, and the linear
network is solved as described in the previous section, with the non-
linear components treated as harmonic current sources.
The resulting equation to be solved is the nonlinear equation

F(V)=9Y —I(V) =0, (2.3)
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2.4 Harmonic Balance

where 7 is the admittance matrix from the linear part of the network,
vV is a large vector built up by the voltage spectrum vectors, V;, at
every node, and I(‘//) is built up by the current spectrum vectors of
all external sources and nonlinear loads.

The nonlinear algebraic equation system, (2.3), can be solved in
a number of ways. In [Kundert and Sangiovanni-Vincentelli, 1986]
and [Gilmore and Steer, 1991]|, three different approaches are dis-
cussed, namely optimization methods, relaxation methods, and New-
ton’s method.

Optimization Methods

The optimization methods use an optimizer to find the voltage vector
7 that minimizes the quadratic error function (V) = F(V)*F(V)
where the asterisk denotes conjugate transpose. The optimal 7/ is the
least squares minimum of Equation (2.3). Most often, some quasi-
Newton method is used. Optimization is hard because of the large
number of variables and equations. When forming the error function,
all errors are added up and information about signs and location of the
errors in the network is lost.

Relaxation Methods

In relaxation methods, the network equation is solved iteratively
YU = (YU,

The node voltages from the j’th iteration are used to calculate the cur-
rents from the nonlinear components for the next iteration. This way,
the network equation is kept linear, and can be solved frequency by
frequency. The result is a fast method with little memory usage. The
method works well for small, near linear networks, but for large net-
works, with many nonlinear components, many iterations are needed.
Even with good initial values, convergence cannot be guaranteed.

Newton’s Method

Newton’s method applied to Equation (2.3) leads to the following iter-
ative scheme

YU = YU — gV UNTRY ),
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Chapter 2. Power Network Simulation

where

J(V) = 5—5 =9+ deE;/V) (2.4)

is the Jacobian of F(¥). The Jacobian is not diagonal, and the off-
diagonal elements define the coupling between different frequencies.
This means that the different frequencies cannot be solved for sepa-
rately. For large networks with many harmonics considered, the re-
quired memory and the computational effort are large. The conver-
gence for Newton’s method is superior to the one for the relaxation
methods. With good initial conditions, Newton’s method has quadratic
convergence. For networks with many and strongly nonlinear compo-
nents, the reduction in the number of iterations required may well
motivate the extra work at each iteration.

The computational work can be reduced by using the same Jacobian
for several iterations. This results in an increase of the number of
iterations required, but the total computational effort is often reduced.

Another way to reduce the computational work can be applied to
networks with soft nonlinearities, that is almost linear components
where the coupling between different frequencies is weak. For these
components, the admittance matrix, Y, is almost diagonal. By set-
ting all off-diagonal elements to zero, the different frequencies remain
decoupled, and it is not necessary to solve for all harmonics simulta-
neously. This, in combination with not having to do time consuming
Jacobian calculations can lead to faster and more robust network solv-
ing.

Harmonic Balance and Power Networks

The method of harmonic balance has been applied to power networks
under various names. Newton’s method of harmonic balance is called
Harmonic Power Flow Study in [Xia and Heydt, 1982], it is called
Unified Solution of Newton Type in [Acha et al, 1989|, and Harmonic
Domain Algorithm in [Arrillaga et al, 1994]. Harmonic balance with
relaxation is called Iterative Harmonic Analysis in [Arrillaga et al.,
1987], and Newton’s method with a diagonal Jacobian is called A Mul-
tiphase Harmonic Load Flow Solution Technique in [Xu et al., 1991].
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2.5 The Goal of Harmonic Studies

Component Models

An important step in the method of harmonic balance is to calculate the
current through the nonlinear components for a known voltage, that
is the function I(/) in Equation 2.3. A problem is that there is often
no convenient way to represent the nonlinear components in frequency
domain. In this case, the nonlinear components have to be simulated in
time domain, using as input a time domain signal reconstructed from
the Fourier coefficients of node voltages and the Fourier coefficients of
the current are then obtained via FFT. This is particularly problem-
atic for the optimization methods, where numerous different operating
points must be evaluated. For Newton’s method, time domain models
for the nonlinear components imply that the Jacobian has to be derived
numerically. For efficiency and robustness, frequency domain models
must be used.

Frequency domain modelling of nonlinear and switching compo-
nents is often quite involved, and many papers have been written
about modelling of special components like transformers with nonlin-
ear saturation curves [Semlyen et al, 1988; Semlyen and Rajakovié,
1989; Acha et al.,, 1989], HVDC converters [Song et al., 1984; Arrillaga
and Callaghan, 1991; Xu et al, 1994] and static var compensators [Xu
et al., 1991].

Harmonic Balance and Distribution Networks

The method of harmonic balance is efficient for analysis of large net-
work with a few nonlinear components. The linear parts are aggre-
gated to small equivalents, which reduces the size of the models. For
distribution networks with numerous nonlinear and switching loads,
it is necessary to aggregate nonlinear components, and also to obtain
models for aggregated loads without detailed modelling.

2.5 The Goal of Harmonic Studies

In [Ranade and Xu, 1998] the authors state that the goal of harmonic
studies is to quantify the distortions in voltage and current waveforms
at various points in a power system. Harmonic studies can also deter-
mine the existence of dangerous resonant conditions and verify com-
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Chapter 2. Power Network Simulation

pliance with harmonic limits. The harmonic study consists of the fol-
lowing steps:

e Definition of harmonic-producing equipment and determination
of models for their representation.

e Determination of the models to represent other components in
the system including external networks.

¢ Simulation of the system for various scenarios.

With the possibilities for more sophisticated control of the networks,
which have been accomplished with the use of power electronics, the
soals of harmonic studies must be extended. As efficient control in-
creases the capacity of the network, the stability margins are tight-
ened. There is a need for robustness analysis that can tell not only
whether dangerous resonant conditions exist or harmonic limits are
exceeded, but also how close to such undesired states the system is.
When modelling networks, the goal should not only be efficient simula-
tion, but also models that can be used for analysis and control design.
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3

Harmonic Norton
Equivalents

In this chapter a model structure for nonlinear and switching loads in
distribution networks is presented. The models define an affine relation
between the Fourier coefficients of the voltage and the current. The
models are valid for steady state analysis.

The models facilitate a straightforward way of aggregating nonlin-
ear loads. It is a modularized approach to network analysis. A major
advantage with the models is that aggregated loads can be obtained nu-
merically from measurements or time domain simulation. This means
that detailed, often impossible, modelling work is avoided.

3.1 The Model Structure

For steady state analysis, periodic signals can be described by Fourier
series, as stated in Section 2.3. The trigonometric Fourier series is
used to avoid complex differentiation, which is complicated, if possible
at all. Furthermore, as all signals are real, it is more intuitive to work
with real numbers and positive frequencies. The advantage with the
complex Fourier series, that it gives diagonal admittance matrices, is
lost when modelling nonlinear components.

To fit the nodal formulation, nonlinear components must be de-
scribed as current sources. Therefore, it is desirable to have an explicit
expression for the current as a function of the voltage. If only small

25
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Chapter 3. Harmonic Norton Equivalents

deviations of the voltage are considered, this dependence between the
Fourier vectors of the current and the voltage

I=[A By ... Ay Bn]|",

V-—-[al bl ... QN bN]T,

is approximately linear. This observation leads to the following lin-
earized model structure

I=Io+Y(V—V0), (3.1)

where I, the nominal Fourier vector of the current, describes the cur-
rent at nominal voltage, with Fourier vector V.

The admittance matrix Y describes how the current spectrum is af-
fected by changes in the voltage spectrum. Each column in Y describes
the change in the current spectrum when a small cosine or sine compo-
nent of a certain harmonic frequency is added to the nominal voltage,

- oA oA 04,
dai ob4 v by
0By 0By 9By

8.[ das ob4 e by
y =2 _
ov :
0By 0By 0By
L Oaq 0b1 e Oby 4

Solving the network using these linearized models can be seen as
one iteration of Newton’s method of Harmonic Balance, with a natural
choice of initial values. The Jacobian is built up by admittance ma-
trices, like Y in Equation 3.1. The admittance matrices are fixed and
do not depend on the network configuration. The network can thus
be solved by successively aggregating the components. The Jacobians
can be precalculated or measured. This supports an object oriented
approach to network analysis, where model libraries can be composed
for reuse of aggregated load models.

A Norton Equivalent Interpretation

In Figure 3.1 it is shown how the models can be interpreted as Norton
Equivalents, that is, an admittance in parallel with a current source.
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3.1 The Model Structure

Figure 3.1 The model can be interpreted as a Norton equivalent, with an
admittance matrix, Y, and a current source, Ig.

The admittance is replaced by an admittance matrix, Y, and the har-
monic current source, Iz, is defined as

Ig =YVy—1I,.

The current I through the component is given as an affine function of
the voltage

I =YV —1Ig.

Because of the structure, frequency domain models used with Newton’s
method of harmonic balance have often been referred to as Harmonic
Norton Equivalents, [Xu et al, 1991; Acha et al, 1989].

The powerful property of the traditional Norton equivalent, how-
ever, is not its structure, but the fact that a simple model can equiva-
lently describe the performance of a large linear network.

The proposed model structure facilitates a simple way to aggregate
components for model reduction, which allows large networks at steady
state to be equivalently described by simple models. These models can
be estimated by means of simple experiments with measurements or by
time domain simulation, as described in Chapter 4. This way, detailed
modelling of large networks is avoided. The name Harmonic Norton
Equivalent is thus motivated.
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Figure 3.2 The current through a dimmer in series with a resistive load. The
dimmer is turned off for a time, d, after every zero-crossing of the voltage.

3.2 Validation of the Linear Structure

As all linearized models are accurate only in a neighbourhood of the
linearization point, it is of interest how large this neighbourhood is for
typical components.

A Model for the Dimmer

A dimmer is investigated to get an indication of the accuracy of the
model structure. The dimmer is a power electronic device used to limit
the power and thus dim the light from a light bulb. The current through
a dimmer is shown in Figure 3.2. The current works as an open circuit
for a part of each period, and thus blocks the current through the lamp.
The rest of the period, it works as a short circuit.

The harmonic spectrum of the current is shown in Figure 3.3. The
switching nature of the dimmer implies that there is a sharp discon-
tinuity in the current, which results in high distortion also at high
frequencies. The dimmer constitutes a good test device. It is simple,
but still has the problems associated with modelling and simulation
of power electronics. The dimmer is further described in Appendix A,
where also its Harmonic Norton Equivalent is derived.

It is shown in Figures 3.2 and 3.3 that the current is symmetric and
the spectrum contains thus only odd harmonics. This is because the
dimmer reacts identically on positive and negative voltages. As most
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Figure 3.3 A typical current spectrum for the dimmer. As the dimmer is sym-
metric, there are only odd harmonics. The fundamental frequency is dominating,
but the spectrum has considerable amplitudes also for high frequencies.

electrical components are symmetric, it is often enough to consider only
odd harmonics. To limit the size of the models, only odd harmonics are
considered in the derivation of the Harmonic Norton Equivalent for
the dimmer.

To validate the Harmonic Norton Equivalent for the dimmer, it is
investigated how a distortion in the voltage affects the current. For the
dimmer model, derived in Appendix A, only odd harmonics up to order
11 are considered. The turn on time, d, for the dimmer is chosen so that
the dimmer is turned on two third of the time, that is, d = T'/6 where
T is the cycle time. The lamp resistance is R4, = 600 Q. For compar-
ison, a nonlinear time-domain model for an ideal dimmer is simulated
to steady state. For the time domain modelling and simulation, the
object oriented modelling language Omola and the simulation environ-
ment OmSim are used. Omola and OmSim are described in [Mattsson
et al., 1993],|Andersson, 1994].

In Figure 3.4, a voltage distortion of the third harmonic frequency
is added to the fundamental frequency voltage. The plots show how
the Fourier coefficients of the current are affected when a cosine or

29




Chapter 3. Harmonic Norton Equivalents

B B
0.05— : 0.05—2

0 '«v-eeee-e.r;beeeaem

0
As
"0;005.05 —0;005_05 0 0.05
By
0.05 0.05

0
Aqq
%o 'O'-Oo‘r’.os 0 0.05

Figure 3.4 The plots show the deviation of the first six Fourier coefficient of
the current through the dimmer, due to a third harmonic voltage disturbance.
Each plot shows the result of a cosine disturbance and a sine disturbance. As
the dimmer is linear with respect to a cosine disturbance, there is a perfect fit
between the linear model (o), and the nonlinear time domain model (+). For a
sine disturbance, however, the result of the linearization is obvious. The larger
the disturbance, the larger the misfit of the model.

sine disturbance is applied to the voltage, that is

v(t) = al cos ot + a3 cos Swot, or

v(t) = al cos wot + 33 sin 3wyt.
1

For each frequency, the deviation in the sine coefficient of the current,
B, is plotted against the deviation in the cosine coefficient, A;. This
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Figure 3.5 Plots showing the deviation from the nominal Fourier vector of the
current at a seventh order voltage distortion. The result is similar to that of a
third order distortion.

way, both phase and amplitude of the deviation is shown is one plot.
The distortion amplitude, @3 and 53, range in steps of 2% from —10%
to +10% of the nominal voltage, af = 230 - v2V. The fundamental
frequency is wg = 27 - 50rad/s.

For the linear model, that is, the Harmonic Norton Equivalents, the
plots show equally spaced points on straight lines. A doubled voltage
distortion amplitude results in a doubled amplitude for the current de-
viation, whereas the phase is the same. The calculations in Appendix A
show that the dimmer is exactly linear with respect to a cosine distur-
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bance. The reason for this is that a cosine disturbance does not affect
the zero-crossing of the current, which determines the turn off time
for the dimmer. This is shown in the plots, where there is a perfect
fit for the linear model compared with a nonlinear model. For a sine
disturbance, however, the result of the linearization is clearly seen.
The larger the amplitude of the disturbance, the larger the deviations
from the linear model.

Figure 3.5 shows the result of a voltage distortion of the seventh
harmonic frequency. The accuracy of the Harmonic Norton Equivalent
for this disturbance is similar to that of a third order disturbance.

A disturbance with an arbitrary phase can be seen as a superposi-
tion of a cosine disturbance and a sine disturbance. Thus for a dimmer,
the worst case is a pure sine disturbance. It is shown that the linear
model is a reasonably good approximation for amplitudes of the dis-
tortion limited to 6 % of the fundamental amplitude regardless of the
phase of the disturbance.

Harmonic Norton Equivalents in Distribution Networks

The increasing use of power electronics has led to an increase in voltage
distortion. This has given rise to a need for standards on allowed dis-
tortion levels, to guarantee a good power quality and also to determine
how the responsibility for keeping the quality should be shared. In a
proposal from STRI, see Appendix B, the maximum allowed distortion
in Swedish distribution networks, is 4% for each harmonic component,
and 6% total harmonic distortion (THD), for the voltage. These small
allowed deviations from the nominal voltage justifies the linear rela-
tion, and indicates that the Harmonic Norton Equivalents are valid for
analysis of networks under normal conditions.

3.3 Aggregation of Loads and Network Solving

The use of linearized models implies that aggregation of loads and
network solving are non-iterative procedures using linear algebra. This
results in fast solving without convergence problems. Furthermore,
the Harmonic Norton Equivalents do not depend on the surrounding
network. This means that aggregated models can be reused in other
applications without being recalculated or measured.
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Figure 3.6 Two Harmonic Norton Equivalents in parallel are equivalently
described by an aggregated model.

Aggregation of Two Parallel Loads

Aggregation of nonlinear loads is a straightforward procedure using
Harmonic Norton Equivalents. As the voltage is the same across the
two loads in parallel in Figure 3.6, the total current becomes

I=Y1V—11E+Y2V—12E Z(Y1—|—Y2)V—(11E+12E).

The aggregated model for the two Harmonic Norton Equivalents in
parallel is thus achieved by simply adding the admittance matrices
and the harmonic current sources respectively.

Yog =Y1+ Yo,

3.2
ligg =lig+ I2E. (3-2)

Aggregation of Load and Net Impedance

Line losses affect the voltage across the components, and thus the
current. It is possible to aggregate the line and the component. With
the net impedance in series with the load, as in Figure 3.7, the voltage
across the load is

Vi=Y1(1I+1Izg).
The current thus becomes

I =Y, (V—=V1) =Y, (V-Y (I +1Ig)).
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Figure 3.7 Line losses can be included in the Harmonic Norton Equivalent of
a load.

Multiplying from the left with Y} and gathering all I-terms yields
(Y 4 Y, )=V -Y s,
which gives for the current

I=('+Y, )7 V(Y 1+Y;}) Y Uz

net

= (YY) TV - (YY T 4 YY) s

net

The aggregated model for a nonlinear load connected in series with a
line impedance is thus
Yoo = (Id+YY, )Y,
IagE = (Id + YY—l)_IIE,

net

(3.3)

where Id is the identity matrix, and Y,,.; is the admittance matrix for
the net impedance. If the impedance is linear, Y,,; is block diagonal,
as stated in Chapter 2.

Solving a Small Network

The steady state solution of a network can be obtained by repetitive use
of the rules for aggregation (3.2) and (3.3). This is used to calculate the
total current, I, in the small network in Figure 3.8, with two dimmers
in parallel, and small net impedances.

The two dimmers, with resistive loads of 20 Q, are represented by
Harmonic Norton Equivalents, (Y1, I1 ) and (Ys, Iog). The reason for
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chosing Rj,,, = 20Q instead of a R, = 600Q as in Section 3.2 is
to get high enough currents, so that the voltage too gets distorted. The
chosen R,n,, can be interpreted as 30 normal dimmed light bulbs at
the same place in the network.

The net impedances, modelled as a resistor and an inductor in
series, are represented by matrices, Y,.;1 and Y, 2. The net resis-
tances are R,.;1=0.75Q and R, =0.25Q, and the inductances are
L,.;1=0.0024 H and L,,;2=0.0008 H, respectively. The voltage source
is purely sinusoidal, with RMS value 230V and frequency 50 Hz.

The amount of distortion of the current through the dimmer is de-
pendent on the turn on time, d, for the dimmer. If d = 0, the dimmer
is on all the time, and it is thus linear and there is no current distor-
tion. The longer the turn on time, the larger is the distortion. When
d =T /2, where T is the cycle time, the dimmer is always off. To see if
the accuracy depends on the level of distortion, the dimmer was sim-
ulated with the turn on time varying from zero to half a period. In
Figure 3.9, the resulting current vector, 17, is compared with the cur-
rent obtained in a time domain simulation using OmSim. The plots
show that the method works well for all d.

dimmer_circuit
0 Yaer 11, Yae2
——LH T H3 o 10
S Ly

j(1"'1,:11;@:) i(i’vz,:fziE)

Figure 3.8 A small circuit with two dimmers, (Y1, I1g) and (Y, Iy g), and
line losses, Y ;1 and Y9
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Figure 3.9 Plots showing the linearized and simulated Fourier coefficients for
the current, I1, in the circuit in Figure 3.8 as a function of the turn on time for
the dimmers. When d/T' = 0.5 the dimmer is permanently turned off.

3.4 Structure of the Admittance Matrix

For switching and dynamic components with memory, like the dimmer,
there is no obvious structure in the Y -matrix. The matrix for a dimmer
is shown in Appendix A.

If the nonlinear component is described by a static differentiable
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relation, that is, if

i(t) = @), V¢

where f(v) is differentiable, then the Y -matrix can be shown to have
a special structure. Recall

N
i(t) = Ajcos koot + By sin koot = f (v(t))
k=1
N
v(t) = Z ay cos kot + by, sin kawot,
k=1

The Fourier coefficients of the current, A, and B;, are defined as

9 t+T
-2 / F(v(t)) cos kat dt,
t

9 t+T
Bi= / £(v(2)) sin koot dt,
t

where T = 2%
@Wo

coefficients are

is the cycle time. The partial derivatives of the cosine

0A, 2 [T df dv
55; — _/ 7 aal cos kot dt
= __/ — cosla)otcos koot dt

t+T f
= __/ —(cos (k + Dot + cos(k — )wot) dt
=hu(k+1)+tu(k—1).
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The other elements of the Y-matrix are obtained similarly

84, 2 [*Tdf
b, -T/t I sin [yt cos kot dt
t—l—T f
_ _/ L (sin( + Dot —sin(k — Doot) dt
= h19 k—f-l) -I-Iflz(k—l)
T g
aBk = / —-]i cos lwot sin kwot dt
5&[

t+T f
_1 / 7 (sin(lk + oot + sin(k — Doot) dt
= h21 k -f-l) —|—t21(k —l)

t+T
%_BZ;_k — —72;/ j—]; sin lwot sin kwot dt
! t

t+T f
= _-/ — —cos(k—|—l)a)0t—|—cos(k—l)a)0t) dt
= hgz(k + l) + tgg(k — l)

The derivatives are functions of 2 + [ and & — [. The Y-matrix can
thus be written as the sum of a block Hankel matrix, H, and a block
Toeplitz matrix, T,

dI
vy=-2% _g
av +T,
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This structure reduces the number of measurements required when
estimating the models experimentally in Chapter 4.

3.5 Summary

The Harmonic Norton Equivalent has been presented as a compact
way of describing the harmonic behaviour of aggregated loads in dis-
tribution networks. The linearization has been validated for a dimmer
for acceptable distortion levels in distribution networks under normal
operation. Aggregation of loads has been shown to be a straightfor-
ward non-iterative procedure. How aggregated loads can be obtained
through real measurements, thus avoiding involved detailed load mod-

elling, is shown in Chapter 4.
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A4

Harmonic Norton
Equivalents from
Measurements

An important feature of the Harmonic Norton Equivalents is that they
can be obtained from measurements. Detailed, complicated frequency
domain modelling is avoided by obtaining aggregated models experi-
mentally. A procedure for numerical estimation of Harmonic Norton
Equivalents through measurements or time domain simulation is pre-
sented in this chapter.

4.1 An Estimation Procedure

A procedure for obtaining the models from sampled time domain sig-
nals is proposed in four steps:

1. Determine the nominal current, iy(¢), by applying the nominal

voltage, v(t) = agcos wot, where ap is the nominal amplitude,
and o is the fundamental frequency.

2. Measure current and voltage for, at least, 2N different small
periodic distortions from the nominal wave shape of the voltage.
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For example

v(¢) =aocosa)0t+§kc?ska)ot h—12.. . N (4.1)
v(t) = ao cos wot + by sin kwot

. Use the Discrete Fourier Transform to calculate current and volt-
age spectra from the sampled time domain signals. The nominal
spectra are called Iy, and V), respectively, and let I, and V,
represent the spectra from the kth distorted measurement.

. The admittance matrix Y is obtained through the linear equation
system

YV =1, (4.2)

where

Finally, the harmonic current source, Ig, is derived

Ig =YVy—1I.

4.2 Some Comments on the Procedure

Step 1

The current through a nonlinear component contains harmonics, and
if the voltage source is not stiff, the voltage across the component will
also contain harmonics. This means that the behaviour of the compo-
nent for small distortions around the nominal voltage is not measured,
but the behavior around a distorted voltage, vy. This is the same as
linearizing around another linearization point. If vy and vy are close,
the linearization is still valid, and the Y -matrix can be used to derive
the nominal current spectrum

Iy = TO + Y(VO — ‘70)
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X-h x X-i.-h

Figure 4.1 Estimating the derivative using the forward difference
(dash-dotted) and the central difference (dashed).

Steps 2 & 4

To get good numerical accuracy, the matrix V in Equation 4.2 needs
to be well conditioned. This is obtained by distorting only one of the
Fourier coefficients of the voltage for each measurement, aiming for a
diagonal V.

Just like in Step 1, with a weak voltage source, the distorted voltage
will not contain only the two frequencies, @y and k@y. In order to get v
well conditioned, these two frequencies should dominate. This, together
Xvith measurement noise, sets a lower limit on the amplitudes a; and
by, in Equation (4.1).

The elements in Y are derivatives of the current Fourier coefficients
and describe the local behaviour in the neighbourhood of the nominal
voltage. Increased voltage deviations imply poorer estimates of these
derivatives and, thus, poorer estimates of the elements in Y.

Better estimates of the derivatives are obtained if the central dif-
ference is used

d h) — —h
instead of the forward difference
d .\ fE+h) —f@)
< pwy = LEEN=TE L o),
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However, this requires twice as many measurements. For the voltages
in Equation (4.1), both positive and negative values of the distortion

amplitudes, ap, and bk, are required. Using the central difference, \%
and I in (4.2) becomes

V=[Vi—V Vo—V ... Vox—Vooyl,
T=[I1-141 I,—I5 ... Ioy—1I_on].

The advantage of using the central difference is shown in Figure 4.1.
Even with a large A the derivative is well approximated, at least if the
nonlinear functions are approximately quadratic, like for the dimmer
in Section 3.2.

Another problem with a non-stiff voltage source is that all frequen-
cies that are apparent in the voltage must be considered in the es-
timation experiment. This means that even though the configuration
of the network implies that, for instance, there cannot be a fifth har-
monic component in the signals, this frequency has to be considered
in the model during the estimation procedure. The model can be re-
duced afterwards, to exclude the fifth harmonic, by means of model
reduction techniques. However, when estimating parameters it is nec-
essary to have a model that includes all frequencies that appear in the
measurements. Unfortunately, more measurements are then needed
as there are more parameters to estimate.

A more straightforward way would be to use the natural variations
in harmonic voltage distortion, to obtain the N measurements. This
does not guarantee that the V-matrix becomes well conditioned, but
the model will probably be accurate the kind of disturbances that are
common, and thus used in the estimation.

Step 3

The Discrete Fourier Transform (DFT) facilitates a way to obtain the
Fourier coefficients of a signal from finite time sampled data. The DFT,
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X (%), of a sampled signal, x(n), is defined as

N-1 ok
Xk+1)= x(n+1)e ¥,
n=0
o (4.3)
x(n+1)= 5> X(k+ 1)e/ ¥,
k=0

A popular and efficient implementation of the DFT is the Fast Fourier
Transform (FFT) [Oppenheim and Schafer, 1989]. The FFT is used by
tools like Matlab.

The DFT assumes a periodic extension of the finite data series.
If the signal contains frequencies that are not within the basis set

{ e/ 275\?”} of the DFT, the periodic extension becomes discontinuous. The

discontinuities affect all Fourier coefficients X (k). This is called spec-
tral leakage. To avoid spectral leakage, the sampled data series is mul-
tiplied with a window function that makes the periodic extension of the
signal and its derivatives continuous.

The choice of window for the Fourier transform depends on sev-
eral factors, for instance noise and disturbances, and also how close
to perfect periodicity the signals are [Harris, 1978]. The importance of
windows to avoid spectral leakage when measuring Harmonic Norton
Equivalents is obvious, as the fundamental frequency is very domi-
nant. The amplitudes of the harmonic frequencies are normally just a
few percent of the fundamental frequency amplitude. Thus, the spec-
tral leakage between harmonic frequencies must be much less than one
percent. As multiplication of a window in the time domain is equiv-
alent to a convolution with the Fourier transform of the window in
the frequency domain, this means that the amplitude of the Fourier
transform of the window must be small for frequencies @ = +maw,,
where m is an integer.

4.3 Comparison with Estimation of Linear Loads

For linear systems, a single frequency input results at steady state in
an output of the same frequency. Different frequencies can be treated
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separately, and the resulting output is a superposition of all frequen-
cies in the input. For nonlinear systems, this is not the case. A si-
nusoidal input will at steady state give an output with not only the
same frequency, but harmonic frequencies, and possibly sub-harmonic
frequencies, too. When linearizing the system around the nominal volt-
age, it is measured how a small voltage superimposed to the nominal
one affects the nominal current spectrum. A small voltage distortion
of a harmonic frequency affects all current harmonics and not just the
current component with the same frequency as the added voltage. Fur-
thermore, the current variations depend on both frequency and phase
of the superimposed voltage.

When sampling a continuous time signal, an anti-aliasing filter
must be used to avoid aliasing problems. The sensors used for the
measurements may also be low pass filtering. The filters affect the am-
plitude and the phase of the signals. When estimating linear systems,
this does not cause any problems, because both inputs and outputs are
affected in the same way, as the different frequencies are considered
separately. With nonlinear loads, however, the signals contain many
frequencies at the same time. As the filter effects are different for
different frequencies, the dynamics of the filter must be known and
compensated for.

4.4 An Example: The Dimmer

In this section, the procedure described in Section 4.1 is used to mea-
sure the model parameters for a light dimmer. The model is validated
by applying a perturbed voltage to the dimmer, and comparing the cur-
rent predicted by the model with the measured current. The predicted
current matches the validation data almost perfectly. The result shows
that the method has a great potential.

The Process

The dimmer was briefly described in Section 3.2, and in Appendix A,
there is a more detailed description of how it works. A dimmer is
a simple but highly non-linear component and serves as a good test
component to validate our method.
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Figure 4.2 A schematic of the experiment setup.

Shaping the voltage

The experiment setup is shown in Figure 4.2. A switched voltage con-
verter is used to produce a PWM waveform. The pulse width is pro-
portional to a reference signal, which is calculated and output from a
PC. The converter switching frequency is 4 kHz. To get rid of the high
frequencies generated by the switching, a low pass LCL-filter with a
bandwidth of 3 kHz is used to smooth the voltage.

Measurement Equipment

The Dagbook Data Acquisition System from IO-tech, [IOtech, 1995], is
used to measure voltage and current. The current is measured with a
current probe (LEM HEME PR 30). It is filtered through an analog
anti-aliasing filter (DBK 18 Filter Module from IOtech, with a band-
width of 1 kHz). To avoid damage of the equipment, the voltage is mea-
sured with a high voltage insulation unit in the Dagbook. This voltage
insulation unit low pass filters the voltage, with approximately the
same bandwidth as the current (~ 1kHz). The frequency responses
of the two filters, obtained using a Solatron frequency analyzer, are
shown in Figures 4.3 and 4.4, and the results are used to compensate
for the filters in the estimation experiments for the dimmer model.
The Dagbook samples at a maximum frequency of 100kHz and
measures up to 256 analog signals. For the experiments, a sampling
rate of 23.810kHz is used, and the duration of each measurement is
1s. The reason for the fast sampling rate is that the documentation of

46




4.4 An Example: The Dimmer

DBK-18 Low Pass Filter Card, ch000

amplitude

100 T F P SN b

phase

200 R O T S I

00

—400 ; i H H I S i | N i H PR S | " 1 i1ag
10 10 10 10
Hz

Figure 4.3 The Bode plots of the anti-aliasing filter used to filter the current
signal. The bandwidth is 1 kHz.
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Figure 4.4 The Bode plots of the voltage insulation unit. The bandwidth is
approximately 1kHz.
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amplitude

Figure 4.5 The Bode plot for the current probe. The bandwidth of the probe
is much higher than the frequencies considered in the model.

the Daqbook does not say that the voltage insulation unit is low pass
filtering. To avoid aliasing of the voltage, the sampling frequency is
chosen as fast as possible without being a multiple of the fundamental
frequency of the voltage. The latter avoids high frequency harmonics
to be folded down exactly at lower frequency harmonics. As mentioned
before, a frequency analysis of the insulation unit showed that it indeed
low pass filters the voltage, which means that the sampling rate is
unnecessarily high.

The Bode plot for the current probe was also obtained using the
Solatron frequency analyzer, see Figure 4.5. The plot shows that the
bandwidth of the probe is much higher than the frequencies we con-
sidered, and the dynamics of the probe is therefore neglected in our
experiments. The phase is not constant, probably due to resonances.
However, the maximum phase shift is less that 10 degrees.
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4.5 The Estimation Procedure

Step 1

The use of the DC generator and the low pass filter results in a weak
voltage source. The current and the voltage, when the voltage refer-
ence is a clean 50 Hz sinusoid, is shown in Figure 4.6. The plots show
that there is a considerable amount of distortion also in the voltage.
However, the measurement data show a very good periodicity, and a
very low noise level. According to the comments in Section 4.2, this
means that the voltage source can still be used.

500

051 current [A] ' voltage [V]
0 0
~0.5} _ 500
0 001 002 003 0048 0 001 002 003 0048

Figure 4.6 Measured current and voltage from a light dimmer.

Step 2

As the dimmer is approximately symmetric, like most electric loads,
only odd harmonics are considered. Figure 4.7 shows that the voltage
contains a fair amount of odd harmonics up to order 13. Therefore, the
estimated model includes these frequencies. To get V well conditioned,

the amplitudes of the added voltage distortions, a; and b;, are set to
be 5% of the nominal voltage. The condition number of the matrix is
6.8, which must be considered acceptable.

A close look at the current plot in Figure 4.6 shows that the dimmer
is not exactly symmetric. When the dimmer is turned off, and the
current is approximately zero, the shape of the curve is not exactly the
same for positive and negative voltage. This results in harmonics of
even order, which, however, are being considered in the model. There
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Figure 4.7 The current and voltage spectra from measurements on the dim-
mer. The spectra are obtained using a Kaiser window.

are also low amplitude harmonics of order higher than 13.

Step 3

Matlab’s Signal Processing Toolbox [Mathworks, 1996] is used to an-
alyze the sampled signals. The signals shows a very low noise level,
and a good periodicity. The only criteria for the choice of window, is
thus that the spectral leakage between harmonic frequencies shall be
minimized, and the peaks detected accurately. In the analysis below,
a Kaiser window with L = 1263, and S = 5.48, is used. It is chosen
so that the Fourier transform of the window has dips for f = +£50 Hz,
and f = £100Hz, to minimize spectral leakage, see Figure 4.8.
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50 100 150 HZ

Figure 4.8 Fourier transforms of a Kaiser window with L = 1263 and
[ = 5.48. The window has been chosen to have minimal spectral leakage for
periodic signals with frequency 50 Hz.
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4.6 Validation of the Dimmer Model

4.6 Validation of the Dimmer Model

In order to check whether the procedure gives accurate models, the
estimated dimmer model is validated by comparing predicted current
spectra with measured spectra for three different voltage distortions.

The validation series Data 1 and Data 2 consist of measured volt-
ages and currents from the experiment setup. Data 3 has the line
voltage from a wall socket as source. All series show a level of distor-
tion that is higher than what is allowed in distribution networks. The
voltage distortions from the three measurement series are shown in
Figures 4.9 and 4.10.

400
200
0
-200

_4000 0.01 0.02

Figure 4.9 The different voltage distortion used to validate the estimated
model. The nominal voltage is dotted, Data 1 is solid, Data 2 is dashed, and
Data 3 is dash-dotted.

0.1 0.1 0.1
0.05 0.05 0.05
0

1 3 5 7 9 1113 O135791‘!13 0135791113

Figure 4.10 Amplitude spectra for the voltage distortions used to validate the
estimated model. The amplitudes are normalized with respect to the nominal
voltage amplitude.
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Chapter 4. Harmonic Norton Equivalents from Measurements

Data 1

Data 1 has most of its distortion in the third harmonic and a total
harmonic distortion (THD) of 9%. The result from the validation of
the model is shown in Figure 4.11. The upper plot shows the deviation
from the nominal current, shown in Figure 4.6. The estimated devi-
ation is solid, whereas the measured one is dashed. The lower plots
show amplitude and phase of the deviation from the nominal current
spectrum. The left plot shows the amplitude of the deviation in per-

0.1t current [A]

0.05}
0
-0.05¢
—-0.1}

0015 002 0025 s

3 amplitude [%] phase [rad]
6 ® o ° o
Q @
4 ® ol @ @
@ ® ® @
2 —2
@
OO 200 400 600 Hz O 200 400 600 Hz

Figure 4.11 Validation of the model using Data 1. The upper plot shows the
deviation from the current due to the voltage distortion. The estimated current is
solid, whereas the measured current is dashed. The lower plots show amplitude
and phase of the Fourier coefficients of the current. Estimated values are marked
with rings, (o), and measured values with a plus, (+). There is an almost perfect
match between estimated and measured current.
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4.6 Validation of the Dimmer Model

cent of the nominal fundamental frequency component. The right plot
shows the phase of the deviation in rad/s. The values estimated with
the models are marked with a ring, (o), and the real measured values
are marked with a plus, (+). For Data 1, there is an almost perfect
match between the estimated and measured current.

Data 2

Data 2 has most of its distortion in the seventh harmonic and the THD
is 12%. Figure 4.12 shows a little larger deviations than for Data 1,
but still the result is very good. The phase is still very good, but there
are small errors in amplitude. One explanation for the mismatch can
be that the forward difference was used for estimating the derivatives

0.1t current [A]

0.05
ot
-0.05
—-0.1}

0.015 002 0.025 s
amplitude [%] phase [rad]
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oC)

2000 400 600 Hz O 200 400 600 Hz

Figure 4.12 Validation of the model using Data 2.
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Chapter 4. Harmonic Norton Equivalents from Measurements

in the model, and that the dominating voltage distortion (7th order)
has negative amplitude. The central difference would almost certainly
give a better result for Data 2, as discussed in Section 4.2. However,
considering the high level of distortion, the result is still very good.

Data 3

The voltage in Data 3 is almost distortion free, but compared to the
nominal voltage used in the estimation procedure, there is a consider-
able amount of distortion in all harmonic frequencies, and a THD of
9%. What is interesting with this data series is that there are large de-
viations also for harmonic frequencies of order higher than 13. A good
result justifies the use of truncated Fourier series. The result from the

0.1t current [A]

0.05}
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—-0.05}
—-0.1}

0015 0.02 0.025 s

3 amplitude [%)] phase [rad]
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: - R
0
0 2000 400 600 Hz O 200 400 600 H=z

Figure 4.13 Validation of the model using Data 3.
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validation using Data 3 is shown in Figure 4.13. The plots show that
the result is very good, even though the distortion level is high.

4.7 Discussion

A procedure for estimation of Harmonic Norton Equivalents has been
presented. The procedure uses sampled data from measurements or
from time domain simulations. A model for a simple light dimmer
is obtained from real measurements to describe the procedure. The
validations show that the resulting Harmonic Norton Equivalent is a
very good description of the dimmer even at high voltage distortion
levels.

The experiments were made in a lab environment, with little noise
and almost periodic signals. In real applications, the results are prob-
ably dependent on proper signal processing. To decrease the variance,
the sampled signals are split into smaller segments. The length of each
segment is equal to the length of the window. Each segment is Fourier
transformed, and the mean value of all segments is chosen as the final
result. The more segments there are, the smaller is the variation. This
means that it is desired to have as short windows as possible. Short
windows, however, result in wide main lobes and thus poor resolution.
The final choice of window must be a compromise.

The worst source of error is probably the voltage source used in the
estimation process. The power electronic devices used to convert di-
rect voltage to the desired shape are very temperature dependent. The
voltage source is also weak, which results in a considerable degree of
distortion even for high order harmonics. With a more suitable voltage
source, the result would most certainly be even better.
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5

Conclusions and
Future Work

Many power electronic devices can, if properly controlled, be used to
improved the quality of the supplied power. A novel approach to mod-
elling of electric loads has been presented in this thesis. The aim has
been to obtain simple, low order models, suitable for stability and ro-
bustness analysis and control design.

The proposed Harmonic Norton Equivalent is a linearized descrip-
tion of the relation between current and voltage in frequency domain.
The linearization implies that aggregation of loads and network solving
is performed using linear algebra. Common iterative frequency domain
methods are avoided, and thus any convergence problems associated
with the iteration. Rules for aggregation of loads have been derived,
and the aggregated models show a good accuracy.

A procedure for experimental estimation of models has been pre-
sented. It can be used either for real measurements or for obtaining
models using time domain simulation. The procedure reveals a number
of difficulties with estimation of nonlinear models.

The light dimmer has been used as an example throughout the the-
sis. The Harmonic Norton Equivalent for a dimmer with ideal switch-
ing was derived and used to show that the accuracy of the model struc-
ture is satisfying under voltage distortions within the allowed limits.
The model for a real dimmer was estimated using the proposed proce-
dure. The obtained model shows a good agreement with the validation
data.
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Future Work
Future work includes the following:

e error analysis: How are the errors introduced by the linearization
and the truncation affected by the aggregation of loads?

e stability analysis: How can ideas from stability analysis of linear
systems be used to analyze the proposed models?

e resonances: How are resonance problems detected and solved?

e filter design: How should filters for harmonic mitigation be de-
signed?

e transient analysis: The model structure is derived for steady state
analysis. Is it possible to use it for transient analysis too?

e improved experiments: Are there more simple ways to obtain the
models from measurements?
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A

The Light Dimmer

Rlamp

-&

24 triac

v A

cC—— diac

Figure A.1 A circuit diagram of a dimmer.

A dimmer is a device used to limit the power and thus dim the light
from a light bulb. A circuit diagram of a dimmer is shown in Figure A.1.
The basic component of a dimmer is a triac, a semiconductor device
that works like two anti-parallel thyristors. The triac can conduct and
block the current in either direction and is used to regulate AC current.

When the current through the triac crosses zero, it is turned off and
blocks the current. The triac is turned on again by a gate signal. Typ-
ically, a gate current of 50 mA and a gate voltage of 1.5V are required
to turn on the triac.

The diac is, just like the triac, a symmetric switch. It is not con-
trolled externally but starts to conduct when the voltage across it is
+(20-40) V. The RC -circuit works as a timer. When the voltage across
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Chapter A. The Light Dimmer

the capacitor is high enough, the diac starts to conduct and signals the
triac. The turn on time is adjusted with the variable resistor.

A.1 Analytical Calculation of the Equivalent for a Dimmer

The Harmonic Norton Equivalent is now derived for a dimmer, mod-
elled as an ideal switch. If Ry, is purely resistive, then after every
zero-crossing of the voltage, the switch will be off for a time d. This
means that the current through the dimmer is

'(t) 0, to <t<tg+d,
l ==
205ty rd <t <ty
lamp

where ¢y and #; are two subsequent voltage zero-crossings. The dim-
mer is symmetric, that is, it behaves equally for negative and positive
voltages. For a symmetric component, if the voltage is half-period anti-
symmetric

v(t+ z) = —v(¢),
2
then so is the current. The Fourier series of signal that is half-period
anti-symmetric contains only odd harmonics. For a network with only
symmetric components, it is therefore sufficient to consider only the
odd harmonics. Voltage and current are then written as

v(t) = Z ap cos kot + by, sin kwot,

kodd
(A.1)
i(t) = Z Ay cos kwot + By, sin kwot.
kodd
At nominal voltage
a; = al,
vo(t) = alcoswpt = ap=a)=0, k>1, (A.2)

b,=09=0, k>1,
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A.1 Analytical Calculation of the Equivalent for a Dimmer

there will be two zero-crossings per period. The time instants for these
are obtained through

T
v(t%) = al cos wot® = 0 - wot® = 5 + nrw.

Starting at ¢ = 0, the first zero-crossing occurs at

/4
9= —"—.
1 2(00
For small deviations from the nominal voltage

ap = ag +Eik,
b, = bg + by,

there will still be two zero-crossings per period. The time for the first
crossing is at

t1 =19+ 1,
where #; is small if @, and Ek are small. Linearization gives

v(t1) = Z ap, cos kot + by sin kot

kodd

= 3" ap coskao(t) + 1) + by sin ka (5 + 71)
kodd

= af(—wot1) + ) @k(——l)%;1 +O(a; + 3,%)) =0,

kodd

where it has been used that for £ = 7/2w,

0, k odd,
(=1)%, %k even,

k—1

(-1)=z, k odd,

, k even.

cos kot = {
(A.3)
sin ka)oto = {
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Chapter A. The Light Dimmer

Neglecting higher order terms gives

= 3 bu(-1)'7 (A4)

The cosine coefficients for the current are obtained from the defini-
tion, utilizing the symmetry. For simplicity, E;qpn, 1s set to 1.

2 T 4 T/2
A== / i(£) cos kot df = — / i(£) cos kot dt
0 0

T T
4 T/2 t1+d
= — / v(t) cos kot dt — / v(t) cos kot dt
T 0 5]
4 t9-+¢14+d .
=ap — — ay oS Wot
T tg-{-/ﬂ ( '

+ Z a; cos lwot + gl sin la)ot> cos kot dt

lodd (A5)

4 [titd
= az +ap — T / a? COS Wot cos kot dt
t

4 [+h
+ = /0 a’ cos ot cos kwgt dt
tl

4 t9+¢1+d
1 kot d
- a1 COS Wot cos RWot at
t9+d
4 ti+atd

—_— R Z a; cos lagt + gl sin lwyt | cos kwot dt.
T Ju+s, lodd

The terms in the last expressions can be linearized or simplified as
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follows, using (A.4) and (A.3) and that w,T = 2r,

4 t(l)-l—d
a — 7 al cos wot cos kot dt = AY,
9

0+t
T/ a’ cos wot cos kwot dt = o),
9

4 [itd+h
Y kawotd
T a1 €os Wol cos kot at
t9+d
4

= Ttlal cos wo(t2 + d) cos ka (t3 + d) + O(£3)

== Z bi(—1) sin wod(—1)"7 sinkwod + O(2),
Zodd

g+t1

zﬁfw(

Summarizing, this gives

4 L‘0+t1+d N
Al / Z a; cos lwot + by sinlwgt | cos kwot dt
£ lodd

a; cos lwgt + gl sin la)0t> cos kaot dt + OG?%)
lodd

A=A+ G, + = Z( 1) b; sin wod sin kaod
lodd

0 vd ~ (A.6)
— — / al cos gt + b sinla)ot> cos kaot dt.
lodd
The sine coefficients are obtained in the same way as
B, = B} +b,— 2 Z(— )kHbl sin wod cos kwod
T
lodd
(A.7)

t9+d
— = / Z a; cos Lot + bl sinlwot | sin kwyt dt.

lodd
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The elements in Y are the partial derivatives of the Fourier coeffi-

cients of the current (A.6) and (A.7)

4 t(l)—[—d
%%f = Op; — T/o cos Lwot cos kgt dt,
tl

%% _ %(_1)% sin @od sin kood
[

4 [titd
_ T/ sin lwot cos kwot dt,
0
t (A.8)

OB, 4 t9+d
Oa; T £

2 +
8Bk — 5kl . ;(_1)%_[ sin a)od COS ka)od

by

cos lwot cos kot dt,

4 [titd
—_ 51— /to sin [wot sin kwgt dt.
1

To obtain analytical expressions for I, and Y, the integrals in (A.6),
(A.7) and (A.8) must be derived analytically. Using trigonometric re-
lations this means that the following integrals must be solved, with

m=I[l+korm=1-—k.

-1 m/2
f+a _ (Z1) sin mwod,

tg—I—d 1
/ cos mwot dt = [sinmaot], =
£ mag 1 may
t(l)—i—d 1 0 1 m/2
/ sin mwot dt = [—cos ma)ot]ifd = (=1 (1 — cos mwod),
0 mao 1 may
(A.9)

1

where m # 0. For m = 0 the integrals become

t9+d t9+d
/ cos mwot dt = / 1dt =d,
0 0
t h (A.10)

1
t9+d

t9+d
/ sin mwot dt = / 0dt=0.
t

0 0
i 41
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The elements of I, are obtained from (A.6) and (A.7) using (A.9)
and (A.10). For k=1

2a9 1
A(l) = a(l) _ (—— sin 2m0d + cood) ,
T 2
2a% 1
B) = —715(1 — cos 2mod),

and for odd £ > 1

209 ((=1)F (D7
0 _ _ 4% _
A; = po ( T sin(k + 1)wod + - sin(k — 1)wod |,
o (1%
B) = —276;1 <(k1—3 T (1 —cos(k + 1)wod)

+ (_1)17 (1 —cos(k — 1)a)0d)> :

The elementsin Y, withm = [+k,n = [—k, and Ry, = 1, become
forn =20

% _ % <ﬂ . (_?Jn/z sin mwyd — a)od> ,

%%]3 _ % <_ (_amﬂ (1 — cos mwod + 2 sin wod sin ka)od)> ,

%gs_ _ 7_1z_ <__ (_?lmﬂ (1 —cos ma)od)) :

%—Izlk _ % (ﬂ n (_1)m/2 (sin maod + 2 sin wod cos koyd) — a)od> ,
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and for n # 0
_1\m/2 —1)7/2
B_Ak 1 <_&, sin m@oyd — ( 1) sin na)od> R
oa; T m n
_1\ym/2
88_‘2’3 % <_( 2 (1 — cos mwod + 2 sin wyd sin kwod)
!
—_1\7/2
_{ 2 (1—-cosna)od)>,
_1)ym/2 —1)7/2
% % <———‘—( 2 (1 — cos mwod) + =) (1 _Cos’w)od)> ;
!
_1\m/2
%% — % <( 2 (sin mwod + 2 sin wod cos kwyd)
!
_1\/2
_( i) sin na)od> .

The Harmonic Norton Equivalent for R;,,,, 7# 1 is obtained by di-
viding Y and Iy by Rjgmp.

To show some numerical values, the Norton Equivalent for the dim-
mer used in Section 3.2 is presented. It is linearized around the nom-
inal voltage

with
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A.1 Analytical Calculation of the Equivalent for a Dimmer

The harmonics up to order 7 are shown.

1

Iy = ST [ 273.530 81.169 70.294 40.585 23.431 —40.585
lamp

0.804 —0.239 0.207 0.597 0.069 —0.597

0.239 0.804 —0.358 -0.207 0.119 0.345

0.207 —0.358 0.667 0 0.103 0.179

1 0.119 0.620 0 0.115 —0.298 0.724

R Rlamp 0.069 0.597 0.103 ~0.776 0.639 0.525

—0.119 0.345 0.179 —0.103 0.048 0.970

—0.034 0.418 0.041 —0.310 0.138 0.239

|l —0.060 —-0.241 —0.072 0.372 0.239 -0.138

Ig=YVg-Ip=[ 0 0 0 0o 0o 0 0 0 0 0 0

~11.716  —20.292 ]
—0.034 0.418
—0.060  —0.241
0041  —0.0712
0167  —0.455
0138 —0.239
0239 —0138
0686  —0.443
0.034 0923 |

o .

The reason why Iz = 0 is that for an undistorted voltage, the cur-
rent is proportional to the voltage amplitude. Thus, [ is proportional
to the first column of Y. This is, however, not true for all power elec-

tronic components.
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B

Standards on Harmonics
Limits

The interconnection of networks owned by different companies, and
the deregulation of the power market, implies that there is a need for
rules on how the responsibility for keeping the distortion within ac-
ceptable limits is shared between power producers, network owners,
distributors, and consumers. To get to grips with the problem of in-
creasing distortion, organizations like IEEE and IEC have come up
with standards that limit the allowed distortion level.

To quantify the harmonic distortion of the power, the standards use
two definitions, relative harmonics content, and total harmonic distor-
tion. The relative harmonics content, RHC, is the effective value of one
harmonic divided by the effective value of the fundamental harmonic

Vo I

RHC, = —, RHC; = =,
Vi L
for voltage and current respectively.

The total harmonic distortion, THD, is sometimes also called the
total relative harmonics content. It is derived as the square root of
the quadratic sum of the relative harmonics content for all harmonic

frequencies. For the voltage this gives

o] 2
THD, = |y G%) .
1

n=2
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System RHC (%)
Voltage Odd harmonics no.
3-9 11 13 15-17 19 21-25 >25
V. <1kV| 4 35 3 2 15 15 02+13%
MV  <40kV | 3 25 2 1.5 1 1 0.2+0.8%
HV >40kV | 1 1 1 1 1 0.7 02+052%
RHC (%)
Even harmonics no. THD (%)
24 6 810 >10
LV <lkV | 1 05 05 0.2 6.0
MV <40kV | 1 05 0.2 0.2 4.5
HV  >40kV | 0.5 05 0.2 0.2 1.5

Table B.1 Target limits for voltage harmonics in the Swedish power network,
according to STRI.

System RHC (%)
Voltage Harmonics no.  THD (%)
n<l13 n>13
v < 1kV 6 3 7
MV < 40kV 6 3 7
HV  >40kV 4 2 5

Table B.2 Target limits for current harmonics in the Swedish power network,
according to STRI.

In a proposal, [Friman, 1994], STRI (the Swedish Transition Research
Institute) have come up with limits on the voltage and current har-
monics. These are almost identical to other organizations standards,
only adjusted to fit to Swedish conditions. The distortion limits are
gathered in Tables B.1, and B.2.

The distortion of the voltage is normally not that severe. For the
current it is much worse. In office buildings, where computers, air
conditioning and low energy lighting dominates the loads, 40% THD
in the current is not unusual, [Key and Lai, 1993].
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