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Moment-Method Calculations on Apertures 
Using Basis Singular Functions 

Tommy Andersson 

Abstract-The transmission properties of perforated perfectly con- 
ducting screens are of practical interest. The treatment of nonperiodical 
structures by numerical techniques, such as the method of moments, is 
very computer intensive. In this paper it is shown that using basis 
functions that incorporate the edge as well as the corner singularities, 
the number of unknowns can be drastically reduced. Advantages and 
limitations of the method are discussed. Numerical results are presented 
illustrating transmission properties of arrays of square and rectangular 
apertures. 

I. INTRODUCTION 

Perforated metallic screens and wire mesh screens are often 
used for electromagnetic shielding and filtering purposes. The 
reflection and transmission properties of infinite wire grids and 
periodically apertured screens have been analyzed by many 
authors in the past, e.g., [1]-[4]. However, the treatment of finite 
structures is also of practical interest. During the last decades 
different numerical methods, such as the method of moments 
(MOM) [5], have been successfully applied to aperture problems 
[6], [7]. An attempt to apply the MOM to an array of apertures, 
constituting one wire mesh covered aperture, was made in [8]. 
Truncated period structures have been considered by, e.g., [9] 
and [lo]. Recursive schemes have recently been suggested to 
handle finite, nonperiodic structures [ll], [12]. 

However, the performance of numerical methods seems to 
depend heavily on the ability to handle the singular behavior of 
the fields near the rims of the apertures. The MOM involves the 
expansion of the unknown function in terms of a set of basis 
functions. Basis functions with correct edge behavior have suc- 
cessfully been used to calculate the polarizability of electrically 
small apertures [13], [14]. In the treatment of the complementary 
problem, scattering by conducting strips and plates, the incorpo- 
ration of the edge behavior in the basis functions has become an 
established technique used even for more applied problems [15], 
[ 161. Recently, the scattering by a thin conducting square plate 
was treated by the author [17]. Basis functions with not only 
correct edge singularities but also with correct corner singulari- 
ties were used, giving greatly enhanced convergence. Here, this 
approach is applied to calculate the transmission properties of 
an array of rectangular apertures in an infinite, thin, perfectly 
conducting screen. 

In Section I1 the MOM approach and the basis functions are 
briefly described. In Section 111 numerical results are presented. 
The enhanced convergence, due to the singular basis functions, 
is illustrated and the limitations of the method are discussed. 
The transmission coefficients and transmission cross sections are 
calculated for different geometries varying the distance between 
the apertures. Finally, some conclusions are given in Section IV. 

11. METHOD OF MOMENTS APPROACH 
The diffracted electromagnetic field through apertures in a 

perfectly conducting, thin, plane screen can, according to 
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Fig. 1. The interior basis functions. The magnetic current is approxi- 
mated by rooftop functions. 

Babinet’s principle, be found by solving the complementary 
problem, i.e., the electromagnetic scattering by perfectly con- 
ducting plates in free space replacing the apertures. However, 
here we adopt the well known formulation using the equivalence 
principle and magnetic sources, i.e., the problem is formulated 
as an integral equation with the equivalent magnetic sources in 
the apertures as the functions to be solved for [6], [7], [MI. 

The Matrix Equation 

To obtain a matrix equation the MOM is applied to the 
integral equation. The magnetic surface current is expanded in 
terms of a set of vector basis functions f, with unknown 
coefficients up .  We use Galerkin’s method, i.e., we use testing 
functions that are identical to the basis functions. The integral 
equation formulation and the MOM approach are described in 
detail in [19]. 

The matrix equation can be expressed as 

Here S is the surface of the apertures in the screen, the 
operator Vks . represents surface divergence, k is the wave num- 
ber and G(r,r‘) is the free space Green function. Hi” is the 
magnetic field of the incident wave, w the angular frequency, 
and p the permeability of the surrounding homogeneous media. 

Basis Functions 

In [17] the scattering by a perfectly conducting square plate is 
calculated. At the edges and corners of a thin, perfectly conduct- 
ing plate the fields and source distributions have known singular 
behavior, see, e.g., [20]. It is shown in [17] that the use of basis 
functions with correct edge and corner behavior greatly enhance 
the convergence of the scattering problem compared to the use 
of ordinary “rooftop” functions. 

The aperture problem, as it is formulated in this paper, leads 
to an equation and to singular behavior of the fields that are 
similar to the scattering problem [17]. As a consequence of that, 
the singular basis functions used in [17] can be used also in this 
aperture problem. We give here just a short description of these 
basis functions, for more details cf. [17]. 

0018-926)</93$03.00 0 1993 IEEE 
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(a) (b) 

Fig. 2. The basis functions used to approximate the magnetic current tangential (a) and perpendicular (b) to an edge. 

(a) (b) 

Fig. 3. The corner basis functions used to obtain the correct magnetic singularity. The Cartesian components of the basis 
functions for the radial magnetic current are illustrated. 

(a) (b) 

Fig. 4. The corner basis functions used to obtain the correct electric singularity. The Cartesian components of the basis 
functions for the tangential magnetic current are illustrated. 
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Fig. 5. Convergence of the transmission coefficient T for two square 
apertures, each with length of side a = O.lh. Normal incidence. Each 
aperture is divided into N X N “subsquares.” The convergence is shown 
for different distances d between the apertures. The polarization of the 
incident magnetic field is (a) transverse; (b) parallel to the row of 
apertures. 
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Fig. 6.  The dominant component of the magnetic current density in 
one of two adjacent square apertures. Normal incidence. The mean 
values of the current density on “subsquares” in the middle row parallel 
to the row of apertures are shown. The length of the side of each 
aperture is O.lh. The apertures are divided into 11 X 11 “subsquares.” 
The polarization of the incident magnetic field is (a) transverse; (b) 
parallel to the row of apertures. 

Subdomain basis functions are used, i.e., basis functions with 
support only in subsections of the domain. Due to simplicity we 
have chosen rectangular subsections. This limits the adaptation 
to apertures of rectangular shape. However, the implementation 
of the main ideas to more general triangular subsections is 
possible. To assure continuity of the magnetic current density in 
the direction of flow an overlapping technique is used. This 
prevents fictitious magnetic line charges at the boundaries of the 
subsections. 

In the interior of the domain the current is approximated by 
ordinary rooftop basis functions, cf. Fig. 1. At the edges two 
kinds of basis functions are used, cf. Fig. 2. The magnetic surface 
current tangential to an edge is expanded in basis functions with 
the singularity 1/ a, where d represents the perpendicular 
distance to the edge, but have rooftop character in the direction 
of flow. The current flowing perpendicular to the edge is approx- 
imated by basis functions that go to zero as a near the edge, 
which agrees with the singularity 1/ for the magnetic charge. 
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Fig. 7. The transmission coefficient for a row of square apertures 
versus the distance between the apertures. Normal incidence with the 
polarization of the magnetic field transverse (a) and parallel (b) to the 
row of apertures. The length of the side of each aperture is 0.1A. 

At the comers the electric and magnetic fields have different 
singular behavior. We use two kinds of basis functions corre- 
sponding to these two singularities. 

The first kind is used to expand the magnetic current flowing 
in the radial direction towards the corner. The singularity of the 
related accumulated magnetic charge density r y -  corresponds 
to the singular behavior of the magnetic field. Here r denotes 
the distance to the corner and the approximate value v = 0.30 
according to [20]. The x and y components of these magnetic 
current basis functions are shown in Fig. 3. Note the correct 
edge behavior and the linear parts used to connect the comer 
subsection with the adjacent edge subsections. 

The second kind of comer basis functions expands the tangen- 
tial magnetic current near the comer. This current has the same 
singularity as the electric field, r T - ' .  The approximate value of 
the exponent is given by [20] as T = 0.82. Besides the correct 
corner and edge behavior these basis functions are also 
solenoidal. Hence, no magnetic charge is accumulated which 
otherwise would influence the expansion of the magnetic field. 
The tangential current basis functions are illustrated in Fig. 4. 
The discontinuity of the current density that can be seen in Fig. 
4 is due to computational considerations, cf. [17]. 

Numerical Treatment of the Matrix Equation 

The use of complicated basis and testing functions like those 
described above, makes it essential to find numerically efficient 
methods to calculate the matrix elements given by (1). A multi- 
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Fig. 8. The transmission coefficient for a row of square apertures 
versus the distance between the apertures. Normal incidence with the 
polarization of the magnetic field transverse (a) and parallel (b) to the 
row of apertures. The length of the side of each aperture is 0.5A. 

pole expansion technique to calculate the non self-patch terms 
of the matrix elements is described by the author in [17] and 
[21]. The translation properties of the spherical scalar wave 
functions [22] imply that the matrix elements can be expressed 
as a series of multipole moments. Moreover, this technique can 
be used to calculate the right-hand side of (1) and the diffracted 
field. This subject is, however, not pursued in the present paper. 
The reader is referred to the above mentioned references. 

111. NUMERICAL RESULTS 

In the following section we consider plane wave incidence. 
This is due to simplicity, the described method allows any 
incident field. 

Transmission Quantities 

The far diffracted field, the transmission cross section and the 
transmission coefficient are conveniently computed using the 
multipole technique, cf. [17], 1191. 

We define the transmission cross section T, cf., e.g., [61, as 

where Hd is the diffracted field at the observation point ( r ,  0, 4) 
( 2  > 0). 
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Fig. 9. Transmission cross section of an array of four apertures ori- 
ented along the x axis. The plane of incidence is equal to the x-z plane 
and the incidence angle is 45". The polarization of the magnetic field is 
parallel to the y axis. The length of the side of each aperture is O.lA.  

Fig. 10. Transmission cross section of an array of four apertures 
oriented along the x axis. The plane of incidence is equal to the x-z 
plane and the incidence angle is 45". The polarization of the magnetic 
field is perpendicular to the y axis. The length of the side of each 
aperture is 0.1 A. 

We define the transmission coefficient T of an array of 
apertures as the ratio of the power transmitted through the 
apertures to the power incident on the apertures, cf. [23]. 

Convergence 
To check the validity of the method we first study the conver- 

gence of the transmission coefficient T for a configuration 
consisting of two square apertures and normal incidence. The 
length of the side of each aperture is O.lh. The results are highly 
dependent on the polarization of the incident wave. We assume 
in the following that the apertures are placed in the x-y plane 
along the x axis. 

When the incident magnetic field is polarized in the 9 direc- 
tion, the convergence is fairly independent of the distance be- 
tween the plates, cf. Fig. 5(a). At zero distance the transmission 
coefficient agrees completely with the transmission coefficient of 
a corresponding, single, rectangular aperture. The magnetic cur- 
rent distribution, which corresponds to the tangential electric 
field in the aperture, is illustrated in Fig. 6(a). As the distance 
between the apertures vanishes, the singular behavior of the 
magnetic current flowing along the adjacent rims of the two 
apertures should disappear. However, as seen in Fig. Ha), the 

singular source distributions prescribed by the basis functions 
cause nonphysical oscillations. Still, using singular basis func- 
tions the convergence of the transmission coefficient is, as seen 
from Fig. 5,  greatly enhanced compare to the use of ordinary, 
linear basis functions. 

A different situation arises when the incident magnetic field is 
polarized in the x̂  direction. When the apertures get close to 
each other the convergence becomes very slow, cf. Fig. 5(b). This 
is due to the increasing edge singularities of the sources as the 
distance between the apertures decreases. The corresponding 
phenomenon has recently been reported in the literature when 
calculating scattering by strips [12]. This type of phenomena is, 
however, not mentioned in [8] for an aperture with a wire grid. 
The magnetic current distribution is shown in Fig. 6(b). Notice 
that the curves representing the distances d = 0 and d = 0 . 0 2 ~  
are not valid, since the convergence at these distances is too 
slow, while the other curves correspond to convergent solutions, 
cf. Fig. 5(b). The current distribution of the limiting case, a 
single rectangular aperture, is also shown. Obviously, the slow 
convergence at small distances may cause misleading results. 
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Fig. 11. Transmission cross section of an array of four apertures 
oriented along the x axis. The plane of incidence is equal to the x-z 
plane and the incidence angle is 45”. The polarization of the magnetic 
field is parallel to the y axis. The length of the side of each aperture is 
0.5A. 

We have also made some studies of the convergence of the 
transmission coefficient at higher frequency a = 0.5h. The above 
described characteristics seem to remain, although less accentu- 
ated. It is conjectured that this is due to the decreased influence 
from the singular magnetic charge distribution at higher fre- 
quencies, cf. the term Vs .fp Vs .fq in (1). We therefore refrain 
from depicting this higher frequency case since the main fea- 
tures of the problem are illustrated at low frequency. 

Numerical Examples 
The fast convergence achieved with the singular basis func- 

tions makes the described method well suited for calculating the 
transmission properties of arrays of apertures. As just a few 
unknowns are needed for each aperture to obtain reasonable 
accuracy, configurations with multiple apertures can be treated 
with limited computational effort. (All computations presented 
have been carried out on a Sun 3/80 work station.) 

Figs. 7 and 8 illustrate the variation of the transmission 
coefficient T as the distances between apertures, arranged in a 
row, are varied. In the computation each aperture was divided 
into 7 X 7 “subsquares.” Note that the transmission coefficient 

- d=O. 1 a 

_______-..----._______ 

Fig. 12. Transmission cross section of an array of four apertures 
oriented along the x axis. The plane of incidence is equal to the x-z 
plane and the incidence angle is 45“. The polarization of the magnetic 
field is perpendicular to the y axis. The length of the side of each 
aperture is 0% 

shows a small maximum for the transverse polarization, while it 
is a monotonic function for the parallel polarization at the lower 
frequency a = O.lh. 

In Figs. 9-12 a series of numerical computations of the 
transmission cross section is given for four apertures oriented 
along a line. Oblique incidence is considered and both polariza- 
tions are depicted for two different frequencies ( a  = O.lh and 
a = 0.5A). 

Figs. 13 and 14 show transmission cross sections for a more 
complicated configuration consisting of six rectangular aper- 
tures. The size of each aperture is 0.5h X l h  and the distances 
between the apertures are 0.25A. Both polarizations at oblique 
incidence are illustrated. Notice the excellent convergence, actu- 
ally even the most coarse discretization gives good results. 

IV. SUMMARY AND CONCLUSIONS 

We have presented a moment method approach to calculate 
the transmission properties of arrays of rectangular apertures in 
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Fig. 13. Transmission cross section of a configuration of six apertures. 
The size of each aperture is 0.5A X I h  and the distances between the 
apertures are 0.25h. The results of three different discretizations of the 
apertures are illustrated. The plane of incidence is equal to the x-z 
plane and the incident angle is 45”. The polarization of the magnetic 
field is parallel to the y axis. 

a perfectly conducting screen. Basis functions with correct singu- 
lar behavior were used to enhance the convergence and thus 
reducing the necessary truncation size of the moment method 
matrix. Numerical results were presented illustrating the perfor- 
mance of the method. 

The method is less suited when treating apertures very close 
to each other, due to the special singular behavior of the source. 
in those cases. Thus, an attractive extension of the techniquc 
would be to incorporate this behavior into the basis function< 
Another approach, would be to combine the presented methoc, 
with some recursive techniquc, and thus, possibly, further reduce 
the computational costs. 
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solutions to this integral have been sought. This paper considers an 
exact solution to this integral which is completely general and indepen- 
dent of the usual restrictions involving the wavelength, field point 
distance, and dipole length. The generalized exponential integral has 
traditionally been evaluated numerically or by making certain conve- 
nient but restrictive assumptions. The exact series representation pre- 
sented in this paper converges rapidly in the induction and near-field 
regions of the antenna and therefore provides an alternative to numeri- 
cal integration. Two method of moments formulations are considered 
which use the exact expression for the generalized exponential integral 
in the computation of the impedance matrix elements. It is demonstrated 
that, for very thin straight-wire antennas, an asymptotic expansion can 
be used to obtain a numerically convenient form of the generalized 
exponential integral. 

I. INTRODUC~ION 

Numerical methods for the analysis of cylindrical wire anten- 
nas of arbitrary shape have become increasingly important since 
the advent of high speed computers. These numerical techniques 
often require the evaluation of certain types of integrals which 
are associated with mutual impedance or interaction effects. 
One of the most common of these integrals is a generalized 
exponential integral [I], [2]. 

An exact solution to a related integral was found by 
Weinbaum [3]. The approach which was used to evaluate this 
integral involved finding an associated differential equation and 
solving it by the method of power series expansion. This proce- 
dure resulted in a double infinite series representation of the 
integral. Wait [4] and King [l]  expressed the generalized expo- 
nential integral in terms of three integrals. The first of these 
integrals has a closed form solution while the second and third 
are equal to tabulated generalized sine and cosine integrals, 
respectively. Various forms of generalized sine and cosine inte- 
grals have been tabulated in [5] and [6]. Harrington [7] discusses 
several useful approximations to the generalized exponential 
integral which are valid for different conditions on the field 
point location and dipole length. These approximations are 
based on Maclaurin series expansions of either the exponential 
contained in the integrand or the integrand itself, followed by a 
term-by-term integration of the resulting series. Similar expres- 
sions for a related integral have been studied by Preis [8]. 

An exact method of integration for the vector potential of a 
uniform current infinitesimally thin dipole antenna was recently 
found by Overfelt [9]. Wemer [lo] extended this method to 
include cylindrical dipole antennas of arbitrary nonzero radii. 
This was accomplished through the use of an exact expression 
for the cvlindrical wire kernel which was first derived by Wang 
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[ l l ]  and iater modified by Werner [lo]. Also introduced in [lo] 
are exact expressions for the generalized exponential integral 
and higher-order associated integrals. Of particular significance 
is the exact solution obtained for the generalized exponential 
integral because of its rapid convergence in the induction and 
near-field regions of the antenna. Specific forms of this exact 
solution which are numerically convenient to evaluate will be 
emphasized in this paper. In order to demonstrate their useful- 
ness, an application of these expressions to two different method 
of moments formulations for very thin straight-wire antennas is 
considered. 

11. THEORY 

In this section an exact solution to the generalized exponen- 
tial integral associated with a uniform current thin-wire vector 
potential will be introduced which is useful for computational 
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