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A COMPARATIVE STUDY OF SUROPTIMAL FILTERS FOR
PARAMETER ESTIMATION

custaf QOlsson Jan Holst

ABSTRACT

Approximative filters, used to track unknown parametefs in
linear multivariable systems, are examined mainly from com-
putational aspects in this report. Three different filters
are compared and tested, an Extended Kalman predictor, an

Extended Kalman filter and a Single State Iteration Filter.

Two aspects are emphasized in the report, filter consistency

and filter convergence.

Cénsistency is examined in terms of ﬁarameter bias and vari-
ance. It is not a trivial task to judge the size of the
bias, and it is even more difficult to find relevant correc-
tion schemes. The sizes of bias and variance depend criti-
cally on the assumed artificial statistics of the unknown
parameters. The asymptotic filter properties are quite simi-

lar in this respect.

Convergence properties, however, are quite different for the
three filters, and it is demonstrated that the iterations are
important. It is, however, critical to choose an adequate

iteration accuracy.

Several numerical difficﬁlties arise when the parameter errors
are large. Those difficulties can be derived partly to the
integration scheme, partly to accuracy problems in the Riccati
equation. This means that filter divergence sometimes alsc

have been a result of numerical inaccuracies.

For a special first order case, filter convergence can be

analytically established and numerically confirmed.




TABLE ON CONTEMNTS

I-J

INTRODUCTION
1.1 General Background
1.2 Problem Statement

STRUCTURE OF THE PROCESS

Basic System Equations

|.._!

The Estimation Problem

2
.3 Linearization of the System Equations
4

[SCT LG T S

System Structure used in the Examination

THE FILTER EQUATIONS

3.1 The Extended Kalman Filters
3.1.1 Extended Kaiman Filter 1 (EKLl)
3.1.2 Extended Kalman Filter 2 (EKZ)
3.2 The Single .Stage Iteration Filtér (S51)
3.3 Consistency of the Estimate
3.3.1 Covariance Matching Technique
3.3.2 The e=-technigue
3

.3.3 Bias Correction

CHOICE CF TILTER CHARACTERISTICS

4.1 Principal Problems

4.2 Influence of the Artificial Noise Covariance
on Estimate Bias and Accuracy

4.3 Influence of Signal-to-Noise Ratio on Para-

meter Accurady

NUMERICAL STUDIES OF PARAMETER CONVERGENCE DUE TO

FILTER COEFFICIENTS

5.1 Convergence Rate in‘Deterministic Systems
5.1.1 First Order Test System
5.1.2 Third Order Test System

5.2 EK Filter Convergence in Stochastic Systems
3 88T Filter Convergence in Stochastic Systems

Page

10
11

18
18
18
19
20
22.
23
25
26

28
28

30

49

53
54
54
66
68
74



Page

NUMERICAL STUDIES OF PARAMETER CONVERGENCE DUE TO

LARGE PARAMETER INITIAL ERRORS 83
6.1 General Discussion 83
6.2 First Order Test System 85
6.3 Third Order System ' 89

6.3.1 Diagonal Representation 30

6.3.2 Observable Canonical Representation 92
6.4 Second Order System with Complex Poles 98
NUMERICAL PROBLEMS IN INTEGRATION 102
7.1 Numerical Stability 103
7,2 Plateau Formation 1086
NUMERICAL SOLUTION OF THE KALMAN EQUATIONS 11y
8.1 The Gain and Covariance Matrices 115

8.2 On the Choiece of Filter Covariagces in the |

Test of Deterministic Systems 122
8.2.1 The EKL Filter 122
8.2.2 The EK2 and SSI Filters 123

CONCLUSIONS 127
REFERENCES 129
APPENDIX 1 - Description of the Test Systems _ Al
APPENDIX 2 - Main Features of the Program Package Ag

. APPENDIX 3 - Evaluation of some Statistical Pro- .
_ perties of the Parameter Estimates All
APPENDIX 4 - Some Convergence Properties of the

EK2 and SSI Filters Alsg




1. INTRODUCTION AND PROBIFM STATEMENT

1,1. General Background

Tn this veport the problem of simultaneous state and parameter esti-~
mation will be treated,

Tt is well-known, that there is no general method for idenmtification of
non-linear and multivariable systems with time-variable parameters.
When the siructure of the system is determined, however, the unknown
pavameters in the proposed structure might be adjusted to measurement
data. This c¢an be done either off-line by calculating on the whole set
of data simultaneously, or on-line with some recursive technique.

In this work *three. - diffevent recursive schemes, all basicly based
on the extended Kalman filter are tested and compared.

The problem of recursive parameter estimation has gained much attention
for some years, first in the space program and then in industrial app-

lications.

Farth satellite orbit determination and reentry trajectory estimation
were two early application fields. A survey is found in {18} . Other
contributions ave . [29],[30],{373, [u48},[u0].

Examples of industrial applications are chemical reactors[ 351, [45]
nuclear veactors {173, 1331, oxygen furnace [486],and papenc
machiné head box contrel [39].

The recursive parameter problem can bé considered a filtering problem,
The unknown parameter vector is estimated as a part of an extended
state variable. '

This approach always leads to the solution of a non-linear estimation
problem. Generally truly non~linear filters are always infinite
dimensional, and a partial differential equation of, the conditional

_ probability for the state, given the measurements

p(le_t} : | (1.1}




has to be solved [ 71[9),[15],{2u)

The optimal filtering algorithm cannot be implemented on a computer,
except in special cases. Practical algorithms for nor~1inear filtering

mst be finite dimensional and consequently suboptimal.
Attempts have been made to solve the real non=linear filtering problem.

Tn [ 8] [10)the conditional probability (1.1) have been approximated
by discrete points. Special numerical techniques have been applied to
make the sclution reasonable, Another approach is shown in {11,

The probability functions have been evaluated as a finite sum of
Gaussian distributions. The resulting filter consists of a number

of parallel Kalman filters.

The most comon way to solve ‘the problems is by assuming the above
rentioned conditional probability Gaussian. )

The non-linearities are expanded into Taylor series around a nominal
trajectory or they are approximated by polynomial expressions, Linear
approximations result in the so called extended Kalman filter, Also
higher order filter, achieved by truncating the Taylor expansions,
can be derived. A lot of different schemes have been suggested in
the literature for different types of system, see e.g. [31,181 .61,
(131, F181, 0221, 0251, 0261, 0363,038], [u1], {u2], beal, [uy].

It has been shoun [25], that a higher order filter can behave worse
than a Jinearized one for special ron<linear systems.

In other cases [§ } it has been shown, that the added complexity of

a higher order filter does not always pay off in terms of better con-
vergence, All the filters, based on Taylor expansions, are stboptimal,
and therefore a consistent solution cannot be guaranteed.

The linearized filter, the extended Kalman filter,has been widely
discussed in many papers and used for many applications.




Apother filter, based on the extended Kalman filter involves a local
fi{epation algorithm, The filter is the o called single stage itera-
ﬁfion Filter [20] [u8]. The purpose of the iterations is to im-
5§rove the reference trajectory and thus the estimate, in the presence
of the non-linearities. The algorithm seems to have certain advantapes,
.:ﬂand there are few problems o implement it on a computer. Another
‘approach to an iterative Filter 1is fourd in 1271},

‘Tt ras been mentioned, that +he suboptimal filters do not give consis=
tent estimates. The {inearized Filters often give biased errors [5 1,
18] and correction terms are sometimes included, e.g. second order
rerms of the Taylor expansions. One way 1o check the estimate
consigtency is by making statistical tests of the residuals. The
£ilter characteristics and noise covariance are changed according to
these residual tests. Several different schemes are suggested in the

literature e.g. (26112811341},

1+ is very difficult to get a general comparison between different

suboptimal filters. The £31ter performance depends Very mich on the
actual eystem dynamics and noise characteristies. Simulation is the
most common tool for filter comparisons. This is of course time con-

suning, and it is often aifficult to understand the filter behaviour

conceptually.

Specific comparisons of suboptimal filters applied to special systems
have been performed by similations in [297 [301[#1]1148] and [u9].

1.9, Problem Statement

As shown in previous section it is very difficult to understand many
suboptimal filters. conceptually. Tt 'is difficult to evaluate their
perforience in general terms. Therefore, a filter compasion can only

he valid for a special system structure.

Tn the present work the system sfructure has been chosen linear with
unknown parameters. The report ia devoted to some principal problems

thet arise in the filtering process. Three different filters, two forms
of the extended Kalman filter and the single stage iteration fitter, have

been compared by numerical experiments.




. purpose of the report is twofold. As convergence cannot be estab-
shed gererally, this problem has been examined for some test systems.
¢ consistency of the estimates is another probliem. The filters are
red for some simple test systems and hias and parameter variances

s examined and compared to the assumed statistics,

There exist cther methods for single input- single output systems (3],
but the actual filters here can be used alsc for non-linear systems
and time variable parameters. The simple test systems are used in

der to get an easier insight into the essential properties of the

The system equations are congidered continucus, while the measurements

re made in discrete time,

Iri chapter 2 the system structure and the major approximations are
,éisplayéd. The filter equations are formulated in chapter 3, Three
ifferent filters are discussed, namely two forms of the Extended
“Kalnan filter (EK1 and FX2) and the Single Stage Tteration filter
(851).

The consistency of the filter estimates are discussed briefly.

Because the state of the system has been extended with the unknown -
. parameter vector scrme artificial noise has to be constructed., The
influence of this noise is discussed in chaoter U. Tt will affect
both the bias and the estimaticn accuracy. Chapter b ends with a
discussion of the importance of the input signal amplitude.
Sowe nurerical compérisans of estimate convergence are made in
chiapter 5. The initial ervcr of the parameter is small ard conver-
gence ratas are cogpraved for the three filters on some test systems.

Both deterministic ard stochastic systems are considered.




Cfilters are alse examined for large parameter errors, and bounda—
ies for filter convergence are studied and compared in chapter 6.

Tata is generated from deterministic test systems.

+'is shown, that the $SI filter is superior, because the iterations

*ompensate for the non-linearities.

X is also shown, that e.g. sampling time, position of the unknown
parameter in the system matrix and noise characteristics are crucial
‘or the parameter comvergence.

Gevéral numerical problems arise in the filter algorithms, especially
of_ektremely large errors of the initial values of the parameters.
uch nurerical inaccuracies may cause filter divergence. Therefore,
it is mandatofy to decide, whéfher filter divergence occurs due to
numerical problems.or due to the suboptimal character of the filter.

“'The numerical error sources are discussed in chaptér 7 and 8.

.Finally, in chapter 9, the resulis ave summarized,




GRUCTURE OF THE PROCESS

é?brt is devoted to the examination of the filter behaviour for
ameter and state estimation in linear systems. The suboptimal filters
h;“however, be applied also to general non-~linear systems. As the

éte vector is extended with the unknown parameter vector, also a linear
ystem with unknown parameters results in a non-linear filtering problem,
érefore the derivations and equations ave shown for the general case
of a.non-linear system with additive noise. The unknown parameter

ector may also be time variable.

_Tﬁe hasic system equations and the nbise,assump%i@nSTa?é“prESQhrédTdﬂ
.1, The main assumtions of the estimation procedure are described

2.2. In section 2.3 the linearizations of the system equations are
_pérformed. Finally, in 2.4, the special system structure, used in the

Pregent report, is motivated and presented.

2.1, Basic System Fquations _ L

The problem consists of estimation of the state z and the unknown

parameter vector « of the system.
z{t+1) = F1(z€t),a(t}$ u{t)) + wq(t} (2.1)

vhere z is the state vector (dimension nq)
u is the comtrol veotor (dimension nu)

o 15 the unknown parameter vector (dimension n

27

The noise term v, is a sequence of nq=dimensional, zero mean, indepen-

dent, Gaussian random variables with covariance matrix.

ek
E(W1(L)W1(t)§3 R;(t) {(2.2)
The function F1 is the solution at time t4+1 of the differential equation

g%-: fq(z(t),a(t),u(t)) 2.9




ith the state z given at time t. The control is considered constant
over one sampling interval,

“The estimation is bhased on noisy measurements at discrete times t
Sy(t) = 6,(z(1) () ,ult)) + e(r) (2.4

The additive noise is a sequence of nv-dimengional Zero~mmean, indepén~
dent, Gaussian random variables. The covariance function is

Ele(t)el()) = R, (t) €2.5)

The measurement noise is also assumed indeperdent of the process

ise W, .
noise wy

Tﬁe initial state z(0), is assumed to be a Gaussian rardom variable,
E(z(@0)) = m | : (2.8)
R(2(0) 7' (0)) =K

The noise terms w, and e are independent of z(0)

The unknown parameter is assumed to be governed by a difference
equation '

a(t+1) = alt) + wg(t} (2.7

The term W, is an artifieial noise. It is assumed to be a nzwdimen~

sicnal seguence of zerc-mean, independent, Caussian random variables
with covariance function

T e 11
E(wg(t)WQCt)) = R1(t) (2.8)
The parameter may well be time variable. Tt has been shown [47]

earlier by numgpical experiments, that the artificial Zer0¢@ean-,
noise w, takes care of time variations of the unknown parameter.




The initial value of « i1 unknown, As the filter does not converge
if the initial parameter error is too large, the choice of ol0)

e crucial. This probiem ie discudsed more in chapter 6.

he covariance of the initial value of o is of course also UNKNOWTL -
This value is, however, not as orucial as the mean value. It can be

guessed in a standard manner, as shown in chapter 1 (and 6).

The noise level of w, (Rg) is a measure of the assumed variability
of the parameter, It is enphasized, that the choice of artificial
noise characteristics is difficult and is a crucial etep of the

Filtering procedure (cf chapter b and 5).

Tn, order toiformilate the state and pavameter estimation problem to
4 state estimation problem the state vector 2 ig extended by the

pavaneter vector a. The esctended vector x is defined
(239)

The extended system matrices can now be expressed by the enlarged
vector X

x{t+1) = Ple(t), ult)) + wit) (2.10)
y{t) = 6(x(t), ult)) + eltd (2.11)

The matrix functions T and G are extended accondingly from (2.1),
ﬂ? » * » 3 + i
(2.4) and (2.7). The measurement noige e is identical with the

nodss term in (Z.H).

The function F is considered the solution at time t+1 of the differen-
tial equation

ax ,f,{.{'zﬁuﬁu)
57 = flout) = “~=“E““*¢ (2.12)

given the state at time t.




The vector Function 6 (2.11) is a transformation of G’t (2.1

with the same dimension but different arguments,

extended noise

-
5

W

tt

W
w7,

is considered a sequence of zero-mean, independent, Caussian random

variables with covariance function

W, ()

Ew(t)w (1)) = E c:w',fctz w'é‘ctaz' .

() .

Ew,] ('t}w?(t) E&L' (t)w?(t)\ i R',: R

i

= R‘E (t) (2.18)
T T 21 o
Elu () (1) Bay(Duy(t)) \R' ®




16.

The matrix R, is ma-dimensional, where n = n, +mn,. For generality

it is not assumed block diagonal. The matrices R%Qand Ril ave

thus considered non-~zerc,

2.2. The Estimation Problem

_ As already mentioned in the introduction, the problem of estimating
the state in a non-linear system like (2,10) - (2.11) is a difficult
task. In order to get a finite-dimensional description some .approxima-
tions must be made.

Three different state estimation problems are considered. let
x(3§Y,) (sometimes written x(j [ik)) denote the estimate of x(3) based

on measurements y{o), y(1),..., y(k). Then the following estimates
are computed

x(]Y,)
x(t]¥,_4)
(-1 f'Yt)

If the estimation criterion is to minimize the mean square error,
then the solution is given by the conditional mean [20 ]

E(x(j)]Yk) = f x(j)p(x(j)[f{k)dx(j) (2.14)

Now two crucial assumptions are made concerning the noise. The fivst
is, that the conditional probability

p(x(j}lYk)
ig Gaussian with a known mean value
X(5{K) = EG(3)]Y, ) (2.15)

and known covariance P,

This is true only if the system is linear with linear measurements fuir20].




11.

The second approximation is, that x(k), x(k-1) and vk}, y (k=13
are jointly Gaussian, This is gener*ally not true for non-linear
systems,

In the next section the linearization procedure of the system
dynamics will be shown., The two assumptions of the noise and the
linearization procedure makes the problem fit into the assump-
tions of the Kalman-Bucy filter [23 7.

2.3. Linearization of the System Eduations

The extended Kalman Filters and the Single Stage Tteration filter
are derived by linearizing the non-linear equation.around a nominal
trajectory x . This type of linearization procedure is shown elsew-
where, e.g. [ 20} 48 ],

For clarity the notation T in the following is used-For the gampling
interval, when the equations are not written in dlfference equation
form.

The linearized system equations can now be stated. The function
£{¢5u) is linearized over every sampling interval around a nominal
trajectory determined by an initial condition vector }f(’t).
Linearizing (2,7?) we have

ED s (x"(1),0) +[_g:§,<x<?),u<T>> L*m o - ) e

- * - [} ) - -
The function x (1) is the nominal trajectory and satisfies

%

3 & .

LD £ o ute)) ) (2,47
x('t[Yt) for EK1 filter

with the initial condition x (t) = (2.18)

x(t[Y, ) " EK2 “filter




12.

Further is assumed, that ulr) = u(t),r €1, t+7] i.e. that the control
vector is constant during the sampling interval. The Jacoblan

(%%} ig defined as the matrix

af.
i

T (2.19)
]

i3
The conditional mean is simply achieved from (2.16) by caloulating

‘the conditional expectation.

dxlt) _
S T b

,: o3 5 ~ ¥
‘“‘fgf‘:{‘z%f<x*<x>gu> o] A(ulo) () =% ()

T ax 4 o=

x {1)
(2.20)
Y, can also be replaced by Y, ,, see (2.18). '
The initial condition of (2.19) is
{;(titui) for TX1 filter

®x(t) = (2.21)

(i) for EK2 filter

Now (2.20) can be solved at time T . The notation T is used to mark,

that the last measurement {at.t+T or at t} has not yet been regictered.

EGt+T ) [¥,) = ELF(x(),u()) + (0] ¥,) (2.22)
according to (2.10) Yt—l may replace Yt as in {2.20)
The fact that

(2.23)

I
o

E(w(t)[Y{) = B(w(t)|Y, )

makes




x(i}T")_lY_E) = E(F(x(t}au{t})l‘ft)

hus

) T7) = EGUET Y)

is considered an approximative solution to (2.20)

let us define

;c(‘mT") = R(t+T) : 2.9

In the calculations x(t+T ) thereiore, is determined as the solu-

tion at time 4T of

g7 = fxGa), ule)) &0

with the initial condition x(t) = x(t)




T,

1{ ig possible tc write a solution of the linearized equation (2.16)

1n +he form
CR(EAT) - X (BFT) = $(T,Dx(E) - ¥ ()] (2.25)

where ¢ is the fundamental matrix, satisfying

=

slrt) = [«ﬁfi’-‘—(—l‘ifif—)’ . Hl0,1) (2.28)

ax % (1)

5y

~where t < 1 < t4T

and x*(1) defined by (2.17) - (2.18).

. 'The initial condition for ¢ at time t is

[

How, it can be shown (48], that the propagation of the ervor covariance
o P(t), which is pavt of the filter equations, contains this ¢-matrix.
This is discussed in 3.1 and 3.2.

The measurement function G(#®) (2.11) can be linearized around a
*
nominal state x ()

YOO w G (1) ,u(t)) +

‘ [ggfﬂt)ﬂ(f} ) XE) =N + elt) (2.27)

' ()

vhere the Jacobian (g%) is defined
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~matrix has the dimenzion ny X (n’: + ng)

¢ystem ctructure used in the Pxamination

v

Ala)z(t) + Blodul(t) A (2.29)

__;Cz(t) + e{t) . (230)

where C is a n, x1, matrix.

n +n2
A( l
o) l U. ”
i it 0.3
6 o ' ! o
i )

The nolse characteristics are the same as for the ron=-linear case.
The non-linearities in the extended differential equation (2.12) are

quadratic in the state variables, i.e. of the form aizj.




lsi

Tn most test examples the E matrix is assumed to be krown. If only B

entains the unknown parameter, then the estimatior problem gets

simple, This is the case, hecause u(t} is Jnown. Therefore no non-

iinearities appear, and thus the filter i linear.

in the present paper also the C-matrix is assumed known. It is no
' principa1 problem to consider C unknown. In this examination, however,
i+ has been found, that the most interesting problems occur, when

the unknown parameters in the A-matrix are calculated. Moreover, for
many systems one can find the € parameters much easier a priori com-

- pared to the A parameters.

The fundamental matrix (2.28) is achieved from the equation

: * i .*

g.,ﬂ(f,-t) o [Ala (9 DGz CODE e 4y C(2.32)
0 | 0 e
~+ n1 e }";2'9*

. * *
vhere z and a are the two subvectors of the nominal trajectory
at time 1, t < t© < t+T. Observe, that wlt) = «lt),

#* . .
The n, x ng-dimensional matrix D{z ) is a matrix with elements 0 or Zj‘

1

The fundamental matrix can be expressed in the form

i " A -

o H

eA T ! H n,i

0 | 1 *

gy

+n1 +-€-1‘12+ .;-
where T is the sampling time and H is a n, x n,-matrix. Generally H

1 2
cannot be simply expressed in z and «o.

The measurement matrix & (2.28) is simply achieved from the C-matrix

by adding n, colums of zeroes.

The problem of identifiability naturally occurs in comnection with
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papameter estimation problems [3 1, In the present paper this
problem is not considered. If a parameter would not be identifiable,
the filter will not converge or it will diverge, In the third order
diagonal system (section 6.3.1.) this fact is demonstrated.




18.

3, THE FILTER EQUATTONS

The assumptions of the noise in 2.2 and the linearizations in 2.3
make it possible to directly apply the Kalman-Bucy filter for the

estimoticn problem.

The equations of the extended Kalman filters and the SSI filter are
derived elsewhere [20], [48 1. For reference purposes, however, the
filter equations are written down here. In 3.1 the two different
evtanded Kalman filters FK1 and EK2 are given. In the filter FKI
the conditicnal mean ;(tit~1) is calculated, while in the filter
EK2 %(tlt) is computed.

In the following section 3.2 the SSI filfer is presented. In section

3.3 the problem of consistency is discussed.

3.1. The Extended Kalman Filters

The system is given by (2.10) - (2.11) and the progess and measure-

ment noise terms are characterdzed hy (2.13) and (2.5) respectively.

3.1.7. Extended Kalman Filter 1 {(EK1)

The estimated state at time t+1 is a conditional mean of the state x
at time t+1, conditioned on measurements until time t. The filter

equations are

REHE) = % (+1) + KO [y(e) - 8()x(tit=1)] (3.1)
where
. . -1 L
K(t) = $P(1)e [BP(t)8™ + Rz] {3019
P(t+1) = [§ ~ K(D6IB() + R, (3.3)
pt ] P 12
- _ . O { O s
P(tO) = COV{X(tO)} = PO = ;?1—1— —'—t.—- (d.Lf-)
p
o | ‘o




19.

The matrices ¢ and 0 are defined in (2.26) and (2.28), while the
covariance matrices FH and R2 are given by (2.13) and (2.5) respec-

tively.

The matrices in {3.2) - (3.3) are time variable in the following sense

s s etLTY s 6 = sty T B Ry = Ry

%(t+1) is defined in (2.24) as the solution of (2.20} with the
initial condition x(tit-1).

The P matrix is the error covariance matrix

Pe) = B(Ix(t) - x(tlt=1)1Ix(t) = xCtle=1)11) (3.5)

anden the condition that ECu(t) = x(tlt-1)) = E x(tlt-1) = 0

It should be noted, that the bain matrix K{t) and the error covariance
P(t) camnot be caleulated in advance. contrarv to the linear Xalman
filter. The reason is, thaté is not known 3 pricri-because it is

achieved by linearization around the last estimate,

3.1.2. Extended Kalman Filter 2 (EK2)

This filter is based on the same system equations as the EK1 filter.
The estimate is

;(t+11t+?} = X(E+1) + KD [yCee1) = a(t+D)x(e+1)] (3.6)
where

K(est) = S(t+1)ﬁT(£+1){aS(£+1)eT + Rz]"1- (3.7)
S(E+1) = ¢ « P(E) + ¢ + R, (3.8)
P{L) = 5(t) - K(1)e(LIS(L) (3.9)
Pt) = cov(x(t D) = P (3.10}
where

Ry = R, (t+1), R1 = Rﬁ(t+1), $= o(t+1,t), 8= a(t+1).
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The variables have the same definition as for the FK1 filter. One
aifference, however, is that x(t+1) (see (2.24) has the initial
condition x(tlt).
The matrix P(t) is defined
pt) = ELIx(E) = xCEIIIx(E) - x(t1t)1 1)

see [3].

3.7. The Single Stape Tteration Filter (SS8I)

The meaning of the iteration is, by using the & priori probability
. density of the state, to make a less poor approximatiocn of the non-
linear filtering problem. The filter is alreadv presented in g1,

why only the final equations. are stated here.

Tn (3.6) an estimate ;(t+1[t+1) was achieved by using the initial
condition x(tlt). Now, including one more measurement y{t+1} in the
filter, more information is available, and,;(t¥t+f$ can be estimated,
i.e. a smoothed value, which ought to be a more accurate estimate of
x at the time t. This new estimate is used as a new initial value of

S

a new estimate X(Q)(tit+1). A new smoothed estimate of x is calculated
based on ;(2)(t{t+¢)‘ At iteralion number i the estimate is thus
g(l)(tlt+11. The calculations continue lteratively for this single
sampling interval until the error

S

e = 1 ety = @ eyt (3.11)
is small enough. We could also have considered the criterion
e = YD ety - xS e (3.13)

but from the parameter identification point of view the two criteria
are equivalent because of the parameter difference equation (2.7).

Then the estimation continues to the next sampling interval.

The smoothing formilas can be derived quite anaiogousiy to the esti-
mations, e.g. by using projecticn technique for normal stochastic
variables (see [4] chapter 7 or [20] chapter 7). At iteration stage

i the interpolation is
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1400 (g1or1) = X cerea) + peoygT oF [ost(eande ¢ R (ea)] T

oty - 05 (o] (3.12)

.Heaning of Q(i)(t+1), S(l), are the same as in section 3.1 and
o B (11,0

= e(i)(t+1)

[L R

[y(ts+i) - a(i)i(i)(t+1)]

,\
[
—t
~~
ot
+
—_
—
1

Al t

D1y = oD np@eT P e, ety + R, (t+1)

(3.14)
iltering part ((f) denotes final)

x(e+lEs1) = F e 4 K(t+1)§(f?(t+1)

[k

KO+ S(f)(t+?)UK(f)(t+1)

I

per) = s 1) - ke erns e

(to) = cov[x(to)1 z Po

:Thus the converged values of ;(i)(tit+1) arnxd S(i) are used for the new
filter estimates . ;{t+1!t+1) and P(t+1)., Note that, when no
 iterations are performed the SSI filter is identical to the EKZ
filter. Observe, that there is no general procf of convergence.
Practical applications, however, have shown the_validity of the

-filters in different systems.
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It is found by numerical experdiments [ 20}, [48] that the

filter behaves quite favourably in the presence of non-linearities.
Tt is found, that the parameter estimate converges much faster due
.té the iterations. The SSI filter also tolerates larger initial
papameteP errors than the EK filters. Questions of this nature will

be discussed in chapter & and 6.

.3.3. Consistency of the estimate

The major question concerning suboptimal filters is that of consisten-
¢v. The filters treated in this report are all based on a Taylor
.Series expansion of a nonlinear function as well as some crucial
statistical assumptions. The assumptions are valid in a sufficiently

_small neighbourhcod of the true parameter values,

':As the filtering problem is inherently nonlinear it is generally
impossible to find a sufficient statistics [23] of the conditional

density by using a finite number of moment equations.

LB

Some important assumptions are necessary to make concerning the statis-

tical properties of the filters. The residuals r are defined as
r{tlt-1) = y{¥) - E(y(t)lYt_1) : (3.15)
for the EK1 filter as well as the EK? filter

The residuals are assumed to be a sequence of independert, normal

stochastic variables with zero mean and covariance
T, : g5
E(o(tit-Dr (tit~1)) = 6()P{t)e (L) + RQ(t) (3.18)
for the EK1 filter and
T T
E(r(tit-1) v (t1t=-1)) = a(t)S(t)e"(t) + cht) (3.17)
for the EK? filter respectively.

The two expressions (3.16), (3.17) can be given .exactly the same

interpretation.
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The residuals gatisfy these equations only in the case, that the
filter is truly optimal in the mean square sense. The residuals
therefore can be used as & detection of the goodness of the approxi-
:ﬂ@tion. If the filter paramefters are corrected according to the real
data e.g. by using the residuals the filter is called adaptive. This
ig, however, not the only way to define the idea of adaptive filters,
cee [28]. Here some basic ideas of adaptive filters are pointed out.
Tn this report, however, they are not examined further. For more

detailed treatments of adaptive filters, see also [20y, [28], [28].

3,3.1. Covariance matching technique

i

The covariance - matching technique is used by some authors [201, [281.
Congider, e.g., the sequence r(t) (3.15} which'has the theoretical
covariance (3.16 - 3.17). If it is found. that the empirical covariance
of r(t) is sienificantlv avger than the vaiue (3.16 ~ 3.17) given bv
the filter. then the covariance R1 should be increased. i.e. in‘our
case the artificial pavameter noise covariance should primarily be
chaneed. This change also affects the-value of P and brings the
theoretical residual covariance closer to the empirical cne (3.16 -
3.17), The empirical covariance usually is_apppociﬁated by

, M P
= £ r{tir (t) (3.18)
1

where m 1s chosen by experience.

let us discuss the EKt filter case. The EK2 filter follows trivially.

An equation for Ry is obtained by using (3.16)

B(LIP(1T(E) + Ry(t) = B(rr') (3.19)
or

8 CE) [ (3 (£ yt-1)-K(£-1)8 (t=1IP(E-1)¢" (E,t-1) + Rl}e'6%> + R, = E(ril)  (3.20)
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o

p(ORE(D) = B T = Ry = 8(£)(p(t,t-1) - K(t-1)0(t-1))P(t-100" (t,t=1)8" ()

(3.21)
Eq. (3.21) does not give a unique solution of R, unless the rank of
C8(t) is n. In our case the vank of &(t) is always less than n,
because of the special structure (2.13), (2.32) of the system. ‘The
product

172 T
R 8
T | 1 1 (3.22)
pR. 0™ = (B
l l! ------—-...f._.,-T.’_- RO —
PRy 0
!

[ - .
is dndependent of Riz, Ril, and Ry . Therefore eq. -(3.20) has to be

developed further, so that P(t~1) is expressed in P(1~-2)

eét)[(¢<t,t~1) - K(t-Da{t-1)) P(t—1)¢T(t,t~1) + RlIeT(t) + R2 =
= e@{(o(t,t-1) ~ K(t-1)8(t-1)) [CH(t-1,t-2) ~ Kit~2)6(t=2)) P(t~2)¢T(t~l,t~2) +

+ Ry 16 Gt + R 36T + R, = Bor)

Then

6T=

5(t) 1R, + (o(t,t-1) ~ K(t-D)e(t-1)) Ry 3,17 ]
= -0(t) {(o(t,t-1) - K(t-1)a(t-1)) (¢(t-1,t-2) - K(t~2)8(t~2)) P(t-2)¢(t-1,t-2)%

e T(t,0-1) 9 (L) - R, + E(rr) (3.23)
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: 12 527 : ‘
hen a;so Ry Ry and R, can affect the residuals. o

£ the number of unknowns in R, is restricted, a unique
olution can be obtained. Notice, however, that the ob-
tazned result is only approxlmate gince P(t-1) and P(t-2)
do not represent the actual error covariances when the true
values of R, ( and perhaps R,) are unknown. For this reason,
‘the addition of the covariance matching technique does not

necessarily fuarantee any convergence of the filter.

;3.3.2 The e~technique

" The problem of adaptivity can also be treated from another
point of view, model error sensitivity. A system model 'is
always an approx1matlon of the physical world, and the

- model error can be sometimes large, sometimes negl;glble.
This type of structure errors exist even if all parameters
are considered known. In the parameter estiﬁétion model
there is still another model efror, because of the un-
known pérameters. This occcurs also forrsimulated.data. There-
fore the filter model is not exact and it will degrade the
filter performance. The sensitivity for model errors is
high, when the noise levels are low, as the filter then

can learn the state very accurately. This sensitivity

might cause filter divergence. One simple attempt To handle

this problem is to increase the covariance matrix.

An idea of this type is the so called e~technique [40i].
The covariance P is increased with the diagonal matrix
e * I which is chosen empirically according to the model
inaccuracy, thus assuring that the filter gain does not
go to zeroc too Quickly. This technique, however, is not
very successful in this application. It i shown e.g. by
the gain equation (3.2). If the equation is partitioned

into two parts, we get
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K o. . 18 P | p 6
= —-1— = .._.:E.:l_.l._.’]_.z__. .._-_11_._..4__12 + T __1_ #
K? 8] | I PQ'? l 922 G
0 £
K K
b ( ) 1 = __1__ 4 __.’]_......
0 >
KZ K2

The terms K? and Kg are the additional terms, caused by
€. By simple multiplication it is found that K; = 0, The
value of K2 is not affected until next time step.

The covariance matching technique 1is a more advanced
version to correct P or the residuals than the e~technique.
However, as the parameter noilse is artificial, still no

- 1
general method exists to learn the valus of R.I .

Other me{hods, which have been used extensiQely, use over-—
weight inh some way of recent measurements. Exponential
weighting and moving window techniques are described
elsewhere [H3]

3.3.3., Bias correction

Generally the estimate %(0) is biased because of the unknown
parameters., If the mean value of the estimate error X=X 1is
non~zerc, the mean value of the residuals will also be non-
zero. Thus mean value check of the residuals is a detection
of parameter bigs. The filter equations are derived under the

assumption, that
E{x-x) = 0
and thus P represents the error covariance. If the mean:wvalue

is non-zero, then P instead is the second order moment. More

details are discussed in 4.l1..
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There are several methbds to correct for bias. The Taylor
expansion (2.16) can be extended to second order terms,
as in [ 51. This procedure will decrease the bias, but
not necessarily to zero, and it complicates the filter

equations. It ensures that

E(y(t) - y(xlt=1)) = 0
up to second order.

Filter convergence is still not established, as remarked

in chapter 1.

In the present report no bias correction is introduced.
Instead the size of the bias for some test systems and
different filters will be examined (See section 4.2).

Some obvious necessary conditions to detect and avoid bia-
sed residuals can be stated. From (3.1)‘anﬁ'(3.8) it is
easy to realize, that a necessafy condition for parameter
convergence is that the gain K is non-zero, in the sense
that the product

K{y = )

is small in mean only if the residuals are small in mean.
The covariance matrix R,i g?.13) should therefore assure
¥ non-zero. However, if R1 {(2.13) is chosen too large
other problems occur {(see chapters 5 and 6), which make

convergence difficult.
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y, CHOICE OF FILTER CHARACTERISTICS

TIn the calculations it has been assumed that the characte-~
ristics of the real process noise and the measurement noise
are known. The filter calculations are performed to examine
t+he consequences of the choice of the artificial noise para-
meters Ri' (2.8), P(OY'' (3.4), (3.10), and initial mean
value Ea{0). The covariance terms will influence both con-
vergence rate, accuracy of the parameter estimate, and para-
meter bias. In .1 the principal questions concefnlng the
artificial noise are discussed. The size of Rl and the

- covariance matrix P are .compared to the true parameter
cstimate variance. Some numbpical results are given in H.2.
The parameter estimate properties under different conditions
will be discussed, especially the bias problems. The initial
parameter errors are assumed to be zero. Convergence problems

R

will be discussed in chapters & and 6.
If the input signal amplitude is decpeaqed for unchanged
disturbance levels the parameter accuracy will be decreased.

‘Some numerical results are presented in 4.3,

4.1 Principal Problems

. . . 1t L] .
In this section the influence of R, (1), P(0)y and Eq (0) will
be discussed qualitatively. It has already been remarked, that
1
R} illustrates the variability of the unknown parameters. If

1
a rapidly changing parameter has to be tracked, corresponding
t
elements of the submatrix Ry have to be large. Obszerve, how-
ever, that one has to consider a compromize between the track-

ability and the fluctuations of the estimate [471.

In a system with constant but unknown parameters the sub-
H
matrix R1 determines the parameter convergence rate fr

the initial value to the final one. A large value of R1
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generally causes a faster convergence than a small value,

Oon the other hand the estimate trajectory is smoother for

a small R;'. This is shown in 4.2. If R;, is toc large the
filter may even diverge for a certain initial parameter

value, see chapter 5.

[3)
The choice of P{0) is not as crucial for the convergence
i

'y
as the choice of R1 Generally speaking P(0) shall be large

for large initial parvameter errors.

A discussion based on linear theory can be made to illus
3
strate the choice of P(0). P(t) is defined by (3.5). The

mean value of the error vecter

N - m, ()
Ex{t) = E{x(t) - x{(t)) = m{t) =f — — =

m, (t),

is mostly non-zero already from the beginning in our pro-
blem. Generally the filter estimates get biased and there-
fore P(t) illustrates the second moment instead of the co-

variance. Thus the covariance P* is

p*(t) = P(t) - mm.

The matrix P* satisfies the same discrete Riccati equation

as P, but the initial eonditions are different,
P¥(0) = P(0) - m(0) m(0)F (4. 1)
Now, if P converges to zeroc, both P* and m will converge

to zero. In the linear case the initial parameter error

is assumed

m (0) = EG(0) = Efa(0) - @ (D)1

If the error of the mean of the physical state is zero, then
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_ ol o }n
p(0) = P¥(O)Y + | —f — g} 1 (4.2)
61 mm, by
2

. the vector my is unknown, the only thing one can do
s to increase P*(D) with a suff3c1ent1y large submatplx,

'on51st1ng of the dyad muemz.

n the general case the value of m, (0) is unknown. However,
n the test cases, 1n order to examlne the influence of
(G} the pight value of m (0) has sometimes been inserted

Iy ¥
into P(0). Sometimes P(0) was chosen standardwize 1.0 = I
2

' I :
or 10.0. *“n_, The parameter convergence properties are

'z
approximately the same. This will be discussed more in

“chapters 5 and 6,

A major question in this examination is how the parameter
'1n1t1a1 value 1nf1uences on the fllter behaviour. It is
_clear that a large inditial erpror (or a large parameter
change) will cause convergence problems, because of the
Taylor expansion of the nonllneapzi¢e54 Partlcularly for

large errors the choices of R and P(D) are important.
1 1%

4,? Influence of the artificial noise covariance on estimate

bilas and accuracy

A number of noisy systems with constant but unknown para-

meters have been simulated. Refer to app., 1 for a descrip=
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" yion of the systems. The purpose has been 1o find the size
-of the bias and the influence of qu on the parameter esti-
mate. The sample mean and covariance of the estimate based
on 400 samples have been computed. Thus the sample covarlu

ance gf the estimate (o%) may be compared with both ?(O)
and R1 , The initial value of the parameter error Was

chosen equal to zero.

As the system is forced by stochastic processes it should
be necessary to consider a large number of estimate rea-
1izations in order to judge the filter performance. In this
case especially the parameter bias will be considered. In
order to overcome the problem of a large number of reali-
zations, the variance of the parameter estimate mean value

has been calculated according to formulas given in Appendix 3.

The EX1 and EK2 filters have been compared in the respectis
discussed above. Also the S8I filter was tried out in some
cases in opder to verify the fact, that the iterations can-
not improve the filter performance, as soon as the parameter

values are close to the trie values.

Taple 4.1 A-E describes the estimates of the system parar
meter of the first order system with different noise terms
added. Generally speaking, the accuracy in terms of para-
meter variance is practically the same for the EK1 and EK2
filters. The’ ‘measupement information is approximately the
same. The last measurement, which comes into the EK2 filter,
does not affect the sample varisnce significantly. The mean
values of the estlmates however, are quite different for the
two fil-eps, as shown by the tables.

The results verify the statement, that a small- value of R:
decreases the variance (but causes a slower convergence, as
will be shown in chapter 5J}. However3the pavameter sample vari-
‘ance 02 decreases slower than R1 . In the case when process
noise and no measurement noise is present (table 4. 1 A,B)
the value of 02 decreases a factor of 3 - b while R1 de-

creases a factor of 10. In the case of only measurement
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A

noise (table 4.1 C,D,E) the corresponding decrease of o

is only 2 - 3.

The value of 02 can be both less than and greater than the
3}
assumed value R1° According to the discussion in 4,1 (valid
3
for linear systems) the value of P should be thought of as

the error variance or the second moment of the parameter,

It is, however, demonstrated by the computations that the
value of P" has little to do with the real variance or
second moment. This stetement just illustrates the fact
that RH

1
value of the unknown parameter is constant. Moreover, the

is chosen arbitrarily. In the test cases the true

initial value is chosen equal to the true value. Therefore
a relevant value of R: should be zero, to describe the vari-
ability. Then, however, the filter cannot track.the para-

meter at all. In a realistic situation therefore, the value
of R;’ is overestimated. This also causes too a large value

of P. The mean value error also increases thé P value.

The initial value of Pmay have some influence on the para-
meter accuracy. The term ?(0)“ might be small in this case,

because the parameter initial value is good.
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he EX1 and FKZ filters in stochastic

mparison between T
The filters esti-

+h different artificial noise.

ystems wi
~0.5) of the continuous system

.te the parameter ol=

It

oz U

1.4, 1.5 and 1.6 in ApPp. 1). The systen

(system 1.2, 1.3,
has been sampled with AT = 1.0 and discrete noise has been

added.

ommon_data
'+ PRBS sequence of unit amplitude

lumber of samples = 400

Ez(0) =0
_(U) = -0,5 (=true value)

_ [t
a oo
: 1DH5 0
P(0) =
' i} 1.0

ntegration step length = AT/H

ritten in the format .XXX-X. Thus

23-4 means 0.123.107 .

:Eloating nunbers are W

ulated aocordiné to Appendix
exponential

he values of var (a) are calc

3, either with real numerical values or for an

tandard case.
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TARBLE 4.1 A System 1.2

0,00632 (corresponding to continuons noise with covariance 0.01 dt)

ryq T
R2 = 10#6 (no measurement ncise’
3 - 4 an
PQE 1.0 0.1 0.01 q,001
_ EK 1 - - W77 ~.499 -.508
41
FK 2 -, 487 ~ Lol - h07 - 512
EX 1 - L 259~1 . 753~2 L2187
ozzvaf(a)
EK 2 . BOi=1 L 2H3=1 LBiZ-2 L271=2
. EK1 - . 1671 , 8681 LubT7-1
a. ' :
K 2 L 2u6 158 La01-1 L70-1
\I ) ~JEK 1% - J12-1 L 912 L50-2  *) (standard
n =Wwarla) approxima-~
B pE# =1 c12=1 . 82-72 ,59=-2 tion)
%Y caloulatx
value
L OEK - .220 3151 . 686-2
P
EK 2 1.085 A1 4501 1772
Bias 1 EK.1 0,100 ~0.010 0.176
(e-u) gy g 0. 110 ~0.0370 +0.0790 +0. 240
Bias ¢ EX 1 - ~1.9n ~0.1n 1.un
(o= @)

K 2 —-7.4n =0, 5n 4+, 9n 2.0n




TABLE 4.1 B Systeﬁ_1‘3

K, = 107 (no measurement noise)

35,

= 0.632 (corresponding to contimuous noise with covariance 1.0 dt)

Ty, 1.0 0.1 n.01 0,001
EX 1 ~ -.329 -, 153 - 477
o
EK 2 - 721 ~.603 ~.§20 -, 488
EXK 1 - .75 371 L1271
oL avan(s)
EK 2 .957 172 431-1 151
EX 1 - 418 .209 113
o
EK 2 .978 415 .208 107
n:ﬂvap<&§* . 5= . 31-1 L2721 i1 *) (standar
approxima-
EK 1 - . 507 .t . 383~1 tion)
11
P
FK 2 1,030 ,288 106 . 2861
Biss 1 K 1 - -0 ~0.230 -0.200
(o) . N . N
EK 2 0.230 0.2b0 0.0960 =0, 120
Bias 7 EX “ - ~5.5n ~2.1n -1, 61
(a-a)d
EK 7 4.0%n 3.3n 0.9n -0.9n
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TABLE 4.1 C System 1.4

= 10™° (no process noise)

11
e
R, = 10
oo 1.0 0.1 .01 0.001
FK 1 - -, 497 ~,505 -, 506
a
EK 2 -.50? -, 510 -,509 -, 507
K1 - 220 L 510-2 , 133~2
ﬂz_‘ i ~
o =zvar{a
EX 7 .733~1 .231-1 .508-2 , 1352
TK 1 - 151 L7101 . 3651
o |
EK 2 274 152 L713=1 L3671
n=4vapt&)* IR 111 T2 A47-2  *) (standar
approxima-~
y - - =2
K 1 , 245 , 3391 B65-2 i
i3]
P
EK 2 1,087 119 . 518~4 L B31-2
Bias 1 w1 - ~0. 060 0,070 0.120
(o=0)
EK 2 +0.007¢  0.07¢ 0.130 0.1%
Bias 2 EK1 - -0, 81 0.7n 1.3n
(o~
EK 2 0.74n G.9n Te2n t.5n




TABLE 4.1 D System 1.5

Ty = 107> (no process noise)

37.

R2 = {3.25
Yoo _ 1.0 0.1 0,01 0.001
K 1 - ~,520%) -.512 ~.501  *) 100 samp
- les
{
EK ¥ -, 529 -,575 ~.533 -.509
EK 1 - L94g-1%) L2471 . 885-2
o =varia}
EK 2 .BO2 169 .250-1 . 735=2
TK 1 - L 308%) 157 TR
TK 2 .776 . 330 158 . 8571
n=Vvar(a) EK 1%%) - 231 L16-1 \37-2  *%) (stan-~
Kz LB . 36~1 .22-1 q5eq  Gand appro-
<imation)
EK 1 - L5T77%) 117 .230~1 +) calcula-
Pﬁ ted value
EX 2 1.356 527 , 12 L211-1
Bias 1 FK 1 - 0.090%) 0.08c 0.010
{(a~a)
EK 27 0,470 0.23cu 0.203 0.08%¢
Biag 2 EK 1 - 0.8%n 0.8n 0.3n
(c~a)
EX 2 1.86n 2.7 1.5n 8.6%
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TABLE 4.1 £ System 1.8

RZ = 1.0
T, 1.0 0.1 0.0 0.001
EX 1 - ~.585 -.600 -.576
a
FK 2 -, 961 -, 720 -.630 -.583
EK 1 - .170 B07-1 . 110-1
g =varf{a)
EX 2 1.142 LA71 4381 .113-1
EK 1 - 412 L2072 105
G ot
EK 2 1.069 R 212 L1086
n:dvar(&)* . 581 .21 L21-1 L13-1 *) {(standard
approxima-
) EK - T 112 32671 o
P
FK 2 8.49 . 876 ,132 L 325~
Bias 1 BK 1 - 9.216 0.500 0.726
()
EK 2 0.430 - 90.53¢ 0.6%0 0.780
Bias 7 FK 1 - 2.7 It 8n 5.8n
(oo )

EK 2 7.97 7.90 6.2n 6.Un
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The bias problem nas been considered. It has been iliustrated
from two aspects. The variance of the parameter mean vaiue
(varie)) has been calculated according to app. 3. The bias

{called bias 2) is significant, alsc for small values of X,.

From a practical point of view the value of 'bias 1" is
intevesting. If the variance of the estimate is large, then
a pbias of the estimate is less important. From the tables one
can conclude that the bias 1 value is acceptable in most
cases.

#H
Finally, when R1 decreases, the absolute value of the bias

decrcases.,

The filters have also bean arplied to a third order system
(system 3, appendix 1) with one, two or three unknown para-
meters in the A-matrix (table 4.2). The same conclusions as
for the first order system can be made. However, some additio-
nal remarks also can be stated. Not only thé artificial noise
but also the position of the parameter in the A matrix is

important.
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TABLE u,2 A - (

Comparison between the EK1 and EK?2 filters in a third order
stochastic system. The filters estimate one, two or three

parameters a; in the continuous system

i
e 4 1 0 0
gﬁ = e, g Tz #H 0 ju
at
an, 0 0 3

(system 3.2 in App. 1). The system has been sampled with

AT = 0.3 and measurement noise has been added.

Common data

u = PRBS sequence of unit amplitude
§OD

i

Number of samples

E z(0) = (0, 0, 0)"

a(0) = True value
Integration step length = AT/U

The concepts of "lower'" and "upper'" limits for
\ = . X .
var{(a} are discussed in appendix 3.
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TAGLE 4.2 A System 3.2, one urknown
e

o . - ) ~5
'1. = diag (10 53 0 7, 10 7, 522)

p(o) = diag (o™, 107, 1670, 1.0)

&) urknown (=-6) %5 urinovn (=~11) By unknown (==6)
0.1 0.01  0.001 0.1 0.01  0.007 0.1 0.01  0.001
6,410 -B.354 -6.231 - - - -5.805 -5.847 =5.908

£6.330 -6.365 ~-6,239 ~11.273 ~-11.2u6 -11.353 =~5.867 ~5.848 ~5.908

.532  .182  .870-1 - - - L3548 ,798-1 178+
610 .165  L87u~1 76K .230 J729=-1 407 L7971 L1801
L7290 408 285 - - - 595 .282  .13u
.781 406 286 L87u 480 .269 638 .282 . 134

it .043  .022 016 .0ug 026 015 .035 018 . 007

it 42 060 043 .013 071 .OMO .09 D2 020
2.280 .51 .47 - - - 1,952 .519  .126

2.160  .506 U7 2.50 .B01 175 1.887  .508 125
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iday Tabla n.2A, which shows the estimetion oi one pa-
rametsr 2t a Time in the system. The accuracy of g i ge-
rallv rmueen better than rhat of a,, if the variance is
)

£

onsiderad. Also the bias, measured in o or by Vvar(za),
1

3
nd 1,, and the Ay estimate is better in the senses man-

tioned.

fn Table Y.ZB the yvesults of estimation of two parameters

simultaneously is disnlayed. Compare the variances
3

for r,, = 10 7. These values give an indication how accu~

?
rate the parameter can be estimated. Then a, is again the

most accurate one, while o, and w, are approximately the

same and not so good as sy

A similar conclusion can be made from Table 4.2C, where

three unknowns are estimated.

y ¢

The parameter variances depend on r,ns as mentioned before.

it is worth noting, however, that if r,, decreases e.g.
&

~

frem .1 to 0.0081, the corresponding changes of ﬂz(aj) are

quite different. When o is changed a factecr of 1020, the

]
£
parameter variances are changed a factor as follows:
i

o"(ay) v 6 - 12

UQ(GZ) v 7 -

i

62(a3> v 20 46

Thus, o, is more sensitive to changes in r,, than the other

3
parameters. This can also be iliustrated by Fig. 4.1,

The accuracy of the estimated parameters seems to be almost
the same if one parameter at a time is estimated or if two
or three are estimated simultaneously. Consider the case

PP 18—3 in the Tables 4.2A-~C.




An,

107 Y- R
i { L
' e w1t 10f Ry

-+

Fig. 4.1 ~ The sample covariance as function of the assunmed
values of r,5;. “he values are taken from Table

filter.

4,20 and are shown for the

The empivrical accuracy can b combare’ wil

formation matrix, calculated from off-11

116
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_There the loss function is defined

y{e) = é[ym - y{6)] dt

where 9 = unknewn parameter vector
Y = measured output
y(8) = model output

The matrix Vee is calculated for the deterministic system

3 for the ecase three unknown parametfers.

[ 0.uu6 ~0.299.-107%  -0.33Y4
v, s ~0.299.1p" % 0.335 6.228.107 %
-~ [-0.33y 0.228-10"% 1,173

(L

The elements of this matrix should not changé for diffe-
rent number of parameters. The parameter accuracy is pro-
portional to the diagonal elements of the inverse, and
these elements may change considerably for different or~

ders,

In this case most of the off-diagonal elements are quite
small. The inverse of the (1,1) element is 2.24. Corre-
sponding inverse of the upper left 2x2 submatrix of V. is-
2,24 2,00107"
b

St e

2.00-10 2.99

and the accuracy of «, is the same as pefore. In the three

parameter case the inverse is

12,85 ~,.530~7 L81h
vV 'z {-,530-2 2.99 -~ 588-2
| .81 -.133-2 1,084

!
i
I
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The diagonal element covrresponding fto «, is thus slightly

changed to 2.85.

The variances of the parameters are estimated as in {2]

o2(ay) =k » 2,85
02(a2) = k ¢ 2.89
ﬂziag) =k « 1.08

This calculation shows at least qualitatively, that o, is

more accurate than the other two parameters.

Consider the bias e.g. for r,, = 1833 and compare the
Tables 4.2A, B, C, The bias for oy is about the same if
of 1s estimated alone or together with other parameters.
The estimate of o4 is better than the other oy also in
terms of bias, measured in absolute value or normalized
with ¢ op Yvar(a)
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3. Influence of Signal-to-Noise Ratio cn Papameten

Accuracy.

With some numerical experiments it is illustrated, how the
emphirical value of the parameter variance is influenced

by the input amplitude.

The result is shown in Table 4.3. Consider the values of

;2. For a smail valueAgf Yoo (which i1s the most relevant
choice) the value of o increases up to a finite value for

w = 0. On the other hand, when Tony = 1.0, some other ef-
fects dominate. The(reasom is, that Yoo ig assumed so large,

. 2. ; . .
that corresponding ¢ is very large. Therefore its value

does not change very much as a function of [u!.

Notice, that P" iz also depending on ju{. The reason is,
+hat P cannot be calculated in advance. Rather it is a

function of x, so the parameter estimates alsc are reflec-




Table 4.% - Influence of input amplitude ju} on parameter
e=timate for the LK2 filter.
The filter estimates the parameter a (= -0.5)

ir the continuous system

az

e T R R ¥

at |
y ¢z

(system 1.2 in App. 1J.

Number of samples-: 4o0.
0.00632 0
R‘l = . ‘
0 Y22
- ~6 e
R, = 10
(107> 0 )
P(3) =
lO 1.0

Integration step length = AT/4.

(The values for ju| = 1 coincides with those
of Table u4,14)
The o« estimates are illustrated with their ¢

limits in Fig. 4.2,




] 4.0 L 7,21 ¢ 001
i S wE7 emgn w307 =512
w57 ' _a70 -.852  ~.587  -.551
1077 ~, 854 -, ol - 5UT - 47
073 —.s9s -~ 71a -.B00 526
0 -.813 572 =570 =TT
i BOu-4 Lau3-1 L.8i2=2 .221-2
107" 824 158 ,333-1 7697
var(a) 1w? 1002 159 386-1 171
1670 1.7 159 392-1 .132-1
0 .54 172 58%-1 2261
1 46 156 901-1 .70~
107" .908 387 182 8771
1077 1,001 339 196 . .108
1078 .07 .399 198" 15
0 .970 415 241 150
1 1.085 111 u50-1 L7772
T 2.313 . 361 . 832-1 .293~1
1072 1.60 .317 .938-1 3521
1073 u.086 ,538 4721 -1
0 1,781 578 187 14531
1 ~0.q%  -0.037 0,079 0.24
Bias 1 107" 5.9 0,40 0.53 0.58
o - Tn 1972 p.3u 0.37 0.2 ~0.24
(%0) 1670 0,37 0.55 0.51 0.23
0 0.32 0.1 n.29  ~0.16

51.




[E9]

b

~0.5+

-0.6~

by the EK2 filter as func-

., 4.7 -~ Estimation of a (o)

input. amplitude.

tion of

_ -3
In all cases Typ = 10 7.
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NUMERICAL STUDIES OF PARAMETER CONVERGENCE DUE T0
FILTER COBFFICIENTS

The derivation of the filters are based on local Taylor expan-
sions of the non-linear functions around the nominal estimate.
Tf the parameter error is small enough, the higher order terms
of the Taylor expansion can be neglected, and the filter does
not diverge. Numerical problems are in general quite reason-

2ble in this case (see further chap.7 and 8).

7+ will be illustrated numerically that the choice of artifi-
cial parameter noise also affects the divergence properties

of the filter. The convergence is discussed out of three
aspects. Convergence for small parameter errors wWas discussed
in chapter 4.1. Typically, it does not pay off very much to

perform iterations in the SSI filter.

A +

Convergence for large pavameter errors is discussed in this

chapter. For such errors it still pays off to do iterations.

In chapter & filter divergence due to parameter initial values

iz discussed.

The choice of the filter parameters was discussed gqualitatively
in 4.1. In this chapter some quantitative results will be

shown concerning the convergence rate.

A major result ocut of this examinatioﬁ may be the fact that the
881 filter is powerful for large parameter errors. With the. .
451 filter it is possible to combine a high convergence speed
of the estimation with a small variance of the final estimate.
This result copresponds in a sense to that of adaptive filters.
Theve the covariance matrix is large in order to get a fast
convergence and small to achieve a small parameter variance,

¢




4.

peterministic systems are considered in 5.1, while stochas-

ie svstems are discussed in 5.7 and 5.3 for EX filters and

for 5SI filtewvs respgetively.

5,4, Convergence Rate in Deterministic Systems.

et et

The section is divided into twe parts. In 5.1.%1 a ftest sys-
tem of first order and with one unknown parameter is discussed.

tn 5.1.2 a third order system with one, two or three un-

known parameters is considered.

5,1.1, First order test system.

Some numerical experiments have been performedon the first

order system 1.8 (see App. 13,

The discrete~time noise is assumed to be

107° 0
R, = (5.1)
0 )
=8
R, = 10 (5.2)
167° o
POy = (5.3)




o
]
.

shere v and Py determine the artificial noi

The influence of r and Py can be illustrated by a number
of figures. All of them show the parameter estimate as

funetion of time until the relative parameter error is

less Tthan 1Q'u

rig. 5.1A,B show the regult of the EK1 filter. LIt is clear
" fpom several runs, that a small v gives a smoother parame-
.feP trajectory than a large r. On the other hand, the time
' for convergence is longer for a small r. If P is too large,

as in Fig. 5.1A, the filter can diverge.

The Figs. 5.1 also illustirate, that the size of Py domi. -
nates over ¥ in the beginning, as the difference between
the FPEjectO”leS is not clear until t = 3, The influence
of pg is illustrated by comparing Figs. 5.1 and 5.2. In

Al v

the former case o ig chosen
. T
Py = m
and in the latter case pgy ~ 1.0.

Also observe, that no coppection takes place at t = 1. This
depends on the matrix partitions, and the value of the pa-

[

pameter Kalman gain is always zero at t = 4. This can easi-

iy be verified by Eq. (3.2).

As py directly affects the Kalman gain a too large value of

Py ean give such a large correctlon5 that divergence follows,

The sampling time is important, a fact, that will be dis-
cussed further in chapter 8. Fig. 5.3 illustrates the con-
vergence for sampling time T = 1.0 for the sanme gsystem as
previously (system 1.1). The influence of r is, nhowever, neg-
ligible in this case. An initial error of, 10.0 will cause

filter divergence for this sampling time.
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A similar exanminaticn can alsoc be done for the EX2 and S51
filters. For these filters the convergaence rafte i5 mach
higher for deterministic systems when The parameter ervor

is large, because x(%t|t) is used instead of x(tlt-1). This

will be illustrated further in chapter b.

Figs. 5.4A,B show the convergence from 10 for the 55T fil-
r. The curves should ke compared vo Pig. 5.1 A and B. The

iterations make the convergence very fast.

in the figures there is no obvious difference between dif-
ferent choices of r in the first part of the éstimation
tpajectory. There the iterations have more influence on
the convergence than the choice of r (convergence in the
iapge). When the estimate has approached the true-value,
the number of iterations is small (convergence in the small).
Then the convergence rate 1s determined by r qnly. Also here

t is true, that convergence rate is small for small values

If no iterations are made in the SSI filter the EK2 filter
ig achieved. In Figs.5.5A,B the parameter convergence for
this filter and the same test system as before is shown. In
5.5B there is an overshoot in the estimate depenﬁing on
the value of P(0). The S88I filter is more insensitive to

the choice of P(0), e.g. illustrated by 5.4B.

It is interesting to compare the number of calculations of
Y(tlt) in the EK? filter with the total number of calcula-
tions of x(t[t+1) and x(t+1|t+1) in the 58I filter. If the
tables in Figures 5.4 and 5.5 are compaved, it is shown
that the 881 filter needs wore calculation time, due to

the extra iterations in the [ivst time stepa.

The number of iterations is intimately connected o the

choice of ¢ (3.11). It determines when to.accept the diffe-

stimates az zevro.

o]

rence between Two succesgive Lierative




pare Fig. 5.4%. By making & larger (eq.(3.11)) the num-
'hand, the number of time steps might increase. This

“is no process or cutput noise.

Max number of

Total number of calculations of

Number of time .4 .jations of

steps x(tft+t) pgg{iigirgéep
. 10 3
6 13 5
5 16 S0 7
6 21 9
X - 11
. 20 13
6 37 16

e 5.1 - Number of steps to convergence and number of
calculations of X(t]t+1) as a funection of e

for system 1.7. The parameter has converged
when the relative error is léess than Wﬂts. Ini-
tial value of the parameter +10.0.

PCOX" = 1.0

‘iteprations will be smaller in each time step. On the

Qustrated for the first order system 1.7 in Table 5.1,
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0.001
, 3 =
N
20
1 - Parameter estimates & of the EK1 filter for the
first order system 1,8.
5,14 107 0 107° o
P(D) = o Ry = r=1.0, 0.1, 0.01, 0.001
0 10,57 0 T

The arrows aliong the time axis indicate when the

parameter estimate has converged within the rela-

tive error 1074, » = 1.0 gives a divergent filter.
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Fig. 5.3 - Parameter estimates & of the EX1 filter for

=

the first order system 1.71.

T 0) [19“5 0
P(0) = R1 =
: 0 1 0 r
= 1.0, 0.001

Ho visual difference appears for different r
and a(0) = 0.5,

A small difference for different r can be seen
for a(0) = - 1.5,
Rﬁeﬁtmamshaﬁcmm@mgdwﬁhh1ﬂfuat

N =z 11.

pet
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5

T

= Parameter astimatas o of e

for the

first owre

-5 \ -5

f1e7” o ) f1077 o)

Pg) = gt Ry = I
LG 10.57) Lo v

ro= 1.0, 0.1, 0,91, C.001
? (Eq. (3.11)). The

arrows along the time axis indicate when the

Filter parameter ¢ = 1§

T -y .
parameter has converged within 10 from the

right value.

Number of estimate calculations at each step.

r N1 2 3 4 5 6 7 8 9 190

1.0 o2 11 a

0.1 A

0.01 ¥ o2 1 11

g.000 4 2 1 1 1 1 1 1 1 A
A A 10

-~
—
—

1
W o0 0.001




10

1
0.001

N
0.01

0"}

3.0

P{0)

e

G,001

i)

Il o
o

1.0, 6.1,

at

rimate calculations

.

Number

of es

TN

l”'

P

*

a.01
0.0461

Y




By,

0.004

10

3
0.001

T
0.0

04

13
L0

10

estimates « of the EK?

lter for the

. 5.1, R1 and P{Q) are the s

CUAL

s

fi

Parameter

me

ol

18

.

from F

system

Wy

o}
Mal

s

[
Ll

0




&

T
0.001

Ol

i

001
{
g,
B - ‘R,J and P(0) are the same as in Fig. 5.u4B.

i

.

Lo
" U,,wmmm e

e




66,

Third order test system.

he third order test system 2.1 (see App. 1) it owill
shown, that the position of the unknown pavameter in
A matrix is important not only for accuracy bu*t also

convergence Yate.

o EK1 filter has been used to egtimate the parameters

r the continuous deterministic system 3.1.

a 1 a}l 0
o 0 11z + (0]u ‘ ' (5.4)
{oq 0 U} 5

EN|
!
-
e
Eain
3y
.
(4]
o

5.6 11lustrates the convergence, whnen one parameter
__time is unknown. As z, is measured divectly, the a4
rameter is influenced earlier than the a, parameter. It
however, interesting to note, that o4 gets its final

alue after fewer steps than o, and oj,.




-0, 24

10 1B M

»

9.6 ~ Parameter estimates o of the LK1 filter in the system 3.1

(5.3}, One parameter at a time is assumed unknown with

a(B) - ¢ = Ag = -1.0

i
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2. EK Filter Ceonvergence in Stochastic Systems.

The two different questions on accuracy and convergence
1111 now be discussed together. In 4.3 it was demonstrated,

that a small R¥ improves the accuracy and in 5.1 it has

Lhe=n shown that a small R# causes slow convergence, at

least in deterministic systems.

Tne general conclusions are analogous to those of chapter U
but different types of problems occur, when iterations are
-involéed, Therefore the discussion is devoted to the EK1
and EXK? filters in 5.2 and to the 531 filter in 5.3.

The first order system has been used as a test system,
either with process noise  (system 1.2) or ocutput noise {(sys-

tem 1.5).

As the purpose is to find out the influence of REVOn the conver-
gence rate the initial value of P has been ¢hosen small, in

order net to interfere too much

P(O) = diag(10”%, 107"

he first test system i3 system 1.5 with additive ocutput

R, = 0.25% {5.6)

he process noige is

-

%= diapg(107°, 1)

whare v has been given different values.
ig. 5.7A~C show the EK1 filter performance for different

choices of r, while the lower figure is an expanded version

of the three upper figures.
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For a small r the convergence is siow but the final

estimate is relatively good.

In Figs. 5.8 corresponding curves for the EK2 fil-

ter dare shoun. It is clearly demonstrated that after the
Mipansient” period the realizations of the estimates are
very similar in the EXt and EX2 filters for the same T
value. This fact was also noted in 4.3. The only major
difference is, that the realization in the EK1 filter
{;(t|t~1)3 is delayed one sampling interval compared to
the EX2 Filter [x(t]t)].

‘During the "transient" part of the realization the EK2 fil-
ter converges faster than the EK1 one. This was also found
in 5.1.1.

The next test system is system 1.2, disturbed by process

noise but not by output noisge,

. ¥
¢

= diag(0.00832, )

- -5
_RZ = 10

.Pig. %.9 shows a number of realizations of the parameter
“estimate in the EK1 filter. Fig. 5.70 contains corresponding
:estimates with the EK? filter. Also for this system the pa-
;rameter "tpansients” are faster for the EKZ system. The la-
. tér parts of the curves, however, look similar for corre-

sponding values of r.
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Fig. 5.10 =~ EX2 filter parameter estimates of the stochastic
system 1.2 with R, = diag(0.00632, r).
The lower figure is an expanded version of the

three upper figures.
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5,3, 85I Filter Convergence in Stochastic Systems,

Tn 5.1 it was shown that the iterations in the 551 filter
make the convergence in the deterministic systems faster
than for the EK filters. In this section it will be shown

+hat this ig true also for stochastic systems,

There are, however, some additional problems, which occur
in the stochastic systems. They have. to do with the choice

of the iteration parameter e (3.7171).

The increasing ability of tracking the parameter that was
“demonstrated in 5.1 with decreasing ¢ may lead to a larger
variance of the parameter estimation. See Fig. 5.11 where
the variance is caleculated on the 100 last parameter esti-
mates. A small e also results ir many iterations per samp-
ling interval and the iterations occur not ley in the be-
ginning of the estimation. This is illustrated in Fig. 5.12
and 5.13C for the First order system with output noise.
Note that the variance of the parameter estimate does not
change very much when & is changed from 0.1 to 0.01 but
the computing time is much bigger in the latter case. Some
more examples illustrating the above discussion iz found
in [191.

Still another effect of a small ¢ is illustrated in Fig.
5.13 for system 1.5. ¢ ig chosen to 10"2. The other filter
constants are the same as in Figs. 5.7B, C and §.88B, C. The
parameter "transient" is all the time very fast, and it is
worthwhile to make some iterations in every.sampling inter-

val.

The filter in Fig. 5,13 is, however, very sensitive to re-
siduals making the difference between two successive itera-
-~ tive estimates larger than s. Especially when Rq is small

this effect is striking. The change of the parameter per
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Fig. 5.11 - Empirical variance 52 of the parameter estimate

in system 1.4 for different values of ¢ at dif-

ferent times.Rg = 1.0

A~y

o’ is ealculated for the last 100 time steps.
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12 gl 21

- Mean number cf iterations per sampling inter-
val in estimation of the parameter in system

1.4 for different values of e.




77.

sampling interval is then small as long as no iterations
are made. But here the value of ¢ is too small. Thus the

fiilter is forced to make relatively many iterations.

Figure 5.12C shows the number of calculations of x(t|t+1)
step by step. Whenever the curve in Fig, 5.13B has a large

step it corresponds to many iteraticns.

The estimation can be made much better by changing & to
1

10 .
Thereby the filter is less sensitive, but still some ite-
rations are performed. For this case the parameter esti-
mates are plotted in Fig. 5.14A, B, C. The corresponding
number of iterations for the case » = 1Guq is plotted in
Figure 5.14D. The comparison shows that the }agt estima-
tion (with r = TGMM} in many respects 1s nétter than all
previous estimations. However, the convergence vate 1s re-

latively low.
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The results discussed can be verifie

processg noise.

In Fig. 5.15 the SSI Ffilter estimatez are shown, and they
correspond to the curves from the other filters in Figs.
5.9 and 5.10. ¢ has been chosen 1072, The estimates in
Fig. 5.15 are not very good depending on too a small &,
If ¢ is made larger, hOWGVﬁT; the estimates get superior.

In Fig. 5.16 e is chosen 107, Again,‘however, the convep-

gence rate in Fig. 5.16C is relatively low.

The discussion on the choice of e illustrates a principal
difficulty with the SS8I filter. Because of the iterations
it is possible to choose a small R1" and still achieve a
rapid "transient®. The problem of choosing R1", however,

is now replaced by another problem, to .choose e.
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Fig. 5.13 - 8SI filter parareter estimates of the system 1.5 with

-2

0.25, Ry = diag(10™0, £), ¢ = 10

The figure C shows the number of iterations step by step
~i

10 .

The lower figure is an expanded version of the two upper

when

figures.
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Fig. 5.14 - SS8I filter pavameter estimates of the system 1,5 with

Ry = 0.25, R, = diag(10 ",n), e = 107,

The £fipure D show as the number of iterations at every
step when r = ‘iO

The lower flgUI"—" is an expanded veps:mn of the three
upper figures.
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55T filter parameter estimations of the system
1

with Ry = diag(0.00632, r) and R, = 1070
1072,
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The lower figure is an expanded version of the
two upper figures, A




