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1

Introduction

This thesis considers a control problem common in industrial packaging
machines for fluids. The problem is to move a package filled with liquid
from one position to another which is a key operation in the packaging
machine. It is essential that such operations can be performed fast and
in a well controlled manner.

Acceleration of the package induces motion in the liquid within the
package. This is referred to as liquid slosh or liquid vibration. Liquid
sloshing is a key factor in the movement problem. It is necessary to per-
form the movement such that the liquid does not splash out of the package
and contaminate the machine or on the sealing areas of the package.

Motion induced sloshing is a classical problem in control theory. It was
first encountered in control of guided missiles in the aerospace industry.
In this application it was found that sloshing in the fuel tanks could result
in instabilities. Similar problems have also been encountered in control of
airplanes, see [Graham and Rodriguez, 1952], [Crawley et al., 1989] and
[Bryson, 1994]. Liquid sloshing is also a severe problem when transporting
liquids both on sea and on land, see [Armenio, 1992] or [Sankar et al.,
1992]. Motion of liquid in large storage tanks induced by earthquakes
and different methods to dampen the oscillations are given in [Venugopal
and Bernstein, 1996].

Lately, movement of open containers containing fluid, e.g. molten metal
and various beverages, has been investigated. The main goal is then to
move the container as fast as possible without too much slosh, see [Fed-
dema et al., 1997], [Dietze and Schmidt, 1997], [Yano et al., 1999] and
[Dubois et al., 1999].

More details are given in this introductory chapter which is organized
as follows. In Section 1.1 the operation of the packaging machine is de-
scribed. Section 1.2 presents the problem formulation considered in this
thesis. The motivation for studying this problem is given is Section 1.3.
An outline of the thesis is given in Section 1.4.
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Chapter 1. Introduction

Folding

Filling

Sealing

Movement direction

Figure 1.1 Schematic picture of the packaging machine.

1.1 The packaging machine

There exist a large variety of packages machines where the packages are
moved horizontally or vertically, along straight or curved paths and in
continuous or stepwise operation. The packaging machine studied oper-
ates stepwise and the packages are moved horizontally along a straight
path.

The operation of a packaging machine studied in this work can be di-
vided into three independent subtasks: folding, filling and sealing. These
tasks are performed simultaneously on three packages. A schematic pic-
ture of a packaging machine is shown in Figure 1.1.

The folded carton package is placed in a holder which carries the pack-
age through the machine. The movement of the package is performed step-
wise between the subtasks. The same movement is applied in every step
simultaneously on all packages in the machine. The production capacity
of the machine is determined by the filling time, which is the slowest of
the sub tasks, and the time needed to move the package one step.

The movement of the packages is controlled by a servo system which
controls the positions of the packages. A block diagram of the motion
control system is shown in Figure 1.2. The movement is specified by the
desired acceleration of the package. The desired acceleration is integrated
to generate velocity and position references. The positions of the packages
are measured using a resolver or encoder.

10
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Acceleration
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control
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Figure 1.2 Block diagram of the motion control system.

The package contains liquid when it is moved after the filling station.
The motion of the package induces motion of the liquid within the pack-
age. This is referred to as slosh. The amount of slosh depends on how
the package is accelerated and the properties of the liquid. There is for
example a large difference between milk and yoghurt.

The machine construction is very stiff and the mass of the liquid is
small compared to the rest of the moving parts. Therefore the motion of
the liquid does not affect the motion of the packages. If the servo system
is well tuned the actual acceleration of the package is very close to the
desired acceleration.

1.2 Problem formulation

The aim is to increase the production capacity of the packaging machine.
This can be done by either decreasing the filling time and/or the move-
ment time. This thesis considers the problem of decreasing the movement
time. The filling time and the movement time is about the same so a 10%
decrease in movement time increases the production rate with 5%. Since
there is no measurement of the slosh in the packaging machine, open-loop
control through the acceleration reference is the only possibility to control
the slosh.

The problem is to find an acceleration reference that moves the pack-
age a certain distance as fast as possible taking all constraints into con-
sideration. The velocity of the package should be zero in the beginning
and in the end of the movement. The major constraint in this problem is
the liquid slosh. If there is too much slosh the liquid might contaminate
the packaging machine or the sealing areas of the package. If the sealing
areas are contaminated the package might not be properly sealed and
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Chapter 1. Introduction

possible not airtight.
When the packages are moved, the same acceleration reference is ap-

plied at each step. Therefore, the acceleration reference must be such that
the slosh constraint is not violated if it is repeated. One way to achieve
this is to ensure that the liquid is in the same state at the beginning of
each step. The natural choice of initial state is that the liquid is at rest,
since this is approximately the state after the package has been filled.

1.3 Motivation

The main motivation for our work is that faster movement results in
higher production capacity, and hence decreases the production cost of
each package. It is also of interest to understand the fundamental limi-
tations. This may influence the design of future packaging systems.

If the amount of slosh in the package can be decreased, the empty
space above the liquid in the package can also be decreased, and hence
the amount of packaging material is reduced. This results in lower ma-
terial cost and also environmental advantages, since a package with less
material consumes less natural resources and produces less waste.

A systematic method for calculating acceleration references also sim-
plifies the development process and reduces the development time and the
time to adapt to new products. This results in lower development costs
for the manufacturer since the tuning of the acceleration references today
are performed by expensive development engineers. A systematic method
for calculation of acceleration references together with the use of modern
servo systems make it possible to optimize the packaging machine for
different products in a simple manner.

1.4 Outline of the thesis

The outline of the thesis is as follows:

Chapter 2 presents the experimental setup and the measurement equip-
ment. The mechanical construction of the setup and the servo system
is described. The slosh measurement problem is also discussed and
several measurement methods are described. A description of the
external control system is also given.

Chapter 3 presents the slosh modeling problem. A review of the slosh
modeling problem is given and the governing equations and common
approximations are given. A linear model is also derived using the

12



1.4 Outline of the thesis

Laplace and Bernoulli equations. Experiments are presented that
show some of the phenomena encountered in the slosh. A simple
linear model of the slosh is presented that can be used for synthesis
of acceleration references.

Chapter 4 presents several different methods for calculation of accel-
eration references for horizontal motion. All methods are based on
optimal control and the simple linear model presented in Chapter 3.
The performance of the different acceleration references are also
evaluated using experiments in the experimental setup presented
in Chapter 2.

Some of the results in this chapter have or will be published in:

Grundelius, M. (1998): Motion Control of Open Containers with
Slosh Constraints. Lic Tech thesis ISRN LUTFD2/TFRT--3222-
-SE, Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

Grundelius, M. and B. Bernhardsson (1999): “Motion control of open
containers with slosh constraints.” In Proceedings of the 14th
IFAC World Congress. Beijing, P.R. China.

Grundelius, M. and B. Bernhardsson (1999): “Control of liquid
slosh in an industrial packaging machine.” In Proceedings of
the 1999 IEEE International Conference on Control Applications
and IEEE International Symposium on Computer Aided Control
System Design. Kohala Coast, Hawaii.

Grundelius, M. and B. Bernhardsson “Motion control of open con-
tainers with slosh constraints.” Accepted for publication in Con-
trol Engineering Practice.

Chapter 5 presents two methods that apply Iterative Learning Control
to the movement problem. The methods uses the simple linear model
of the slosh presented in Chapter 3 and data from one experiment to
predict the surface elevation in the next iteration. Optimization is
used to find the change in the acceleration reference that gives the
desired performance. The methods are evaluated in simulations us-
ing a linear and a nonlinear process model as well as in experiments
in the experimental setup.

Some of the results in this chapter have been published in:

Grundelius, M. and B. Bernhardsson (2000): “Constrained iterative
learning control of liquid slosh in an industrial packaging
machine.” In Proceedings of the 39th IEEE Conference on
Decision and Control. Sydney, Australia.
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Grundelius, M. (2000): “Iterative optimal control of liquid slosh in
an industrial packaging machine.” In Proceedings of the 39th
IEEE Conference on Decision and Control. Sydney, Australia.

Chapter 6 presents how rotation of the container can be utilized to
decrease the surface elevation relative to the container wall when
the container is accelerated horizontally. The simultaneous horizon-
tal and rotational acceleration references are derived using optimal
control and the simple linear model presented in Chapter 3. The
derived acceleration references are evaluated in experiments.

Chapter 7 presents the conclusions, the use of the results in industry
and some suggestions on possible future work.
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2

Experimental setup

This chapter describes the equipment used in the experiments. The exper-
imental setup has been constructed by Tetra Pak Research & Development
AB. The slosh measurement devices have been developed and tested in
collaboration with Tetra Pak Research & Development AB. The tilting
device in the experimental setup was constructed at the department of
Automatic Control.

The chapter is organized as follows: In Section 2.1 the mechanical
construction of the experimental setup is described. Section 2.2 describes
the servo systems used to control the position and angle of the package.
The slosh measurement problem is discussed in Section 2.3 and several
different measurement methods are presented. Finally in Section 2.4 the
external motion control system implemented in the Matlab/Simulink en-
vironment on a PC running the Linux operating system is presented.

2.1 The mechanical construction

The experimental setup consists of a carriage mounted on a rubber belt
driven by a standard servo system. See Figure 2.1 for a schematic picture
and Figure 2.2 for photographs of the setup. The coupling between the
motor and the belt determines the gear ratio; one revolution of the motor
axis moves the carriage 0.05 m. A carton holder for one-liter packages from
a packaging machine and the slosh sensor are mounted on the carriage.
At each end of the belt a mechanical safety switch is positioned that cuts
the power to the motor if the carriage should move past it. This ensures
that the mechanical construction does not take any damage if the carriage
goes out of control.

To enable tilting of the container a servo motor with gear box is
mounted on the carriage. An aluminum beam is mounted on the gear
box axle and the package holder is mounted on the beam. The vertical

15



Chapter 2. Experimental setup

Slosh sensor

Safety switch
Package with liquid

1.38 m0.36 m 0.36 m

Figure 2.1 Schematic picture of experimental setup.

position of the package can easily be changed to obtain a different posi-
tion of the rotational axis relative to the liquid. See Figure 2.3 for some
photographs of the tilting mechanism.

2.2 The servo systems

Horizontal motion

The motor is controlled by an Atlas DMC (Digital Motion Controller)
model DMC50720P manufactured by Atlas Copco, see Figure 2.2 for a
photograph of the controller.

The controller is of PID type with feedforward to improve the trajectory
following performance. The control loop is sampled with a period time of
one millisecond. The acceleration reference is stored in the memory and is
specified as a list of acceleration–duration pairs, where the acceleration
is given in resolver increments per square second and the duration in
milliseconds. The DMC program including the acceleration reference is
downloaded using the serial port of a PC with the transfer rate 9600 bps.
The time needed to download the program is about one minute.

The system can also be operated in open loop. A torque reference is
read from one of the analog-in ports with a sampling period of one mil-
lisecond. The position can be measured using an encoder fitted to the
motor axle with a resolution of 5000 increments per revolution. This is
used when the position is controlled using the external control system
described in Section 2.4

The servo motor is a four pole synchronous permanent magnetized AC
motor manufactured by ELMO. The control system feeds the servo motor
via a frequency converter with a switching frequency of 4 kHz.

16



2.2 The servo systems

a)

b) c)

Figure 2.2 Photographs of the experimental setup. (a) Overview of the experi-
mental setup, (b) close-up on the cabinet with the Digital Motion Controller (DMC)
and power supply and (c) close-up on the container and the laser displacement
sensor.
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Chapter 2. Experimental setup

a) b)

c)

Figure 2.3 Photographs of the tilting mechanism on the experimental setup. (a)
Overview of the carriage with the motor and the package holder, (b) side view of the
tilted package and (c) close up of the servo system with, from left to right, encoder,
tachometer, motor and gear box.

Rotational motion

The servo motor and gear box is a Hi.T Drive from Harmonic Drive Sys-
tems of model HT-6006-T-E. The system consist of a DC motor, a gear
box with ratio 50:1, a tachometer and an encoder with a resolution of 800
increments per revolution of the motor axle. This gives 40000 increments
per revolution of the gear box axle where the package is mounted.

The motor is fed from a standard voltage controlled amplifier which
can deliver up to 2 A current.

The tilt angle is controlled using the external control system described
in Section 2.4.

18



2.3 Slosh measurements

Connections to the pressure sensors

Figure 2.4 Illustration of the pressure based measurement setup.

2.3 Slosh measurements

When this work started there were no of-the-shelf system for measur-
ing fast moving liquid surfaces and there were little to be found in the
literature.

The slosh measurement is crucial for modeling of the slosh phenom-
enon and for performance evaluation of the designed acceleration refer-
ences. Ultimately, one would like a measurement of the surface shape and
the flow velocity within the fluid. This is, however, not possible today.

The most important measure in this application is the surface eleva-
tion at the walls of the container. The largest oscillations appear there
and one of the control constraints is that the surface does not reach a
certain level on the wall.

The measurement problem turned out to be nontrivial. A number of
sensors were evaluated during a period of one year.

Pressure based measurement

The first attempt to get a measure of the surface elevation was to measure
the pressure below the surface. A setup with two aluminum pipes with
a diameter of 6 mm where put at each side of the container as shown
in Figure 2.4. The pipes where connected to pressure sensors by plastic
tubes.

This worked well when the surface was at rest, but when the surface
was moving the measurement did not reflect the actual surface elevation.
This was due to the fact that when the fluid is moving the pressure does
not only depend on the depth but also on the flow velocity. This is a well
known fact from hydrodynamics and now also known by us.

19



Chapter 2. Experimental setup

Connections to measurement electronics

Figure 2.5 Illustration of the capacitance based measurement setup.

Capacitance based measurement

This method uses the difference in permittivity between water and air to
measure the surface elevation. The capacitance between two conductors
depends on the permittivity of the medium surrounding them, i.e. the
height of water near the wall. The sensor is built up by two strips of 12
mm wide copper tape attached parallel to each other 5 mm apart on the
outside of the paper carton package as illustrated in Figure 2.5.

This gives a good measure of the surface elevation when the surface
is at rest. But when the surface is oscillating a thin layer of liquid is
formed on the package wall. This thin layer of liquid moves down much
slower than the surface of the liquid. This results in a very slow decay in
the measured surface elevation. The measurement device works well as
a sensor for the maximum slosh.

Ultrasonic based measurement

A standard ultrasonic distance sensor was also tried. It gave a good mea-
sure of the distance to the surface when the liquid was at rest or moving
slowly. But when the surface was moving to wildly the sensor was not
able to measure the distance.

Electrical contact based measurements

In this method the electrical conductivity of water is used to measure
the surface elevation. The sensor is built up by 14 pins mounted 5 mm
apart through the package wall and one ground plate as illustrated in
Figure 2.6.

The measurement of the surface elevation is generated as a sum of all
pins in electrical contact with the ground plate. This gives an output that
can take 15 different values.

20



2.3 Slosh measurements

Connections to measurement electronics

Figure 2.6 Illustration of the electrical contact based measurement setup.

The main drawback with this method is the low accuracy when mea-
suring small oscillations. There were also some minor problems with wa-
ter drops attached to the pins and the thin layer of water formed on the
package wall.

Infrared laser based measurement

A laser displacement sensor manufactured by Keyence Corporation, sen-
sor head model LB-11(W) with sensor controller LB-70(W), has been
tested and used to measure the surface elevation with good results.

The sensor uses an infrared laser emitter and a Position Sensitive
Detector (PSD) to determine the distance to the surface. An infrared laser
ray is emitted from the sensor and scattered when it hits the surface. If
the surface is highly reflective this sensor does not work. An infrared
camera observes the surface at an angle of 11○ relative the laser ray
and the displacement is determined by the mean of the light distribution
that hits the PSD, see Figure 2.7 for an illustration of the measurement
system.

The measurement range of the sensor is between 60 mm and 140 mm.
The response speed of the sensor can be set to 0.7 ms, 20 ms or 500 ms
giving a resolution of 180 µm, 40 µm and 10 µm respectively. The fastest
response speed, 0.7 ms, has been used in the experiments. The scattering
of the laser ray is poor for water and therefore the water was dyed with
white paint.

The sensor gives a good measure of the surface elevation and only
occasionally loses track of the surface. These instants are easily identified
since the output at these times saturates at the lower limit very rapidly.
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Photo Sensitive Detector

Laser ray
Laser ray

Lens

Liquid surface

Figure 2.7 Illustration of the infrared laser measurement setup used in this the-
sis. The left illustration is the side view and the right illustration is the forward
view.

Computer vision based measurement

The shape of the surface can be measured by a computer vision system.
A small color video camera manufactured by ELMO, model QP49H, was
mounted on the carriage. A rectangular window was cut in the top of
the paper carton and covered with transparent plastic film. The water
was dyed with red color to increase the contrast to the white carton. The
camera was mounted parallel to the surface and perpendicular to the
direction of movement, see Figure 2.8.

The signal from the video camera is recorded on a video tape. The
video camera shoots 50 half frames per second which are recorded as 25
full images per second by the video recorder. Hence, each captured image
contains two interlaced camera shots. A frame grabber is then used to get
a digital representation of the images in the computer, see Figure 2.9 for
an image from the video camera. The interlacing of the two frames can
be seen in the figure as the gray area in the middle of the picture where
there is liquid in one of the frames but not in the other.

The images are then processed in Matlab to extract the shape of the
surface, see Figure 2.10. The figure shows the two surface shapes ex-
tracted from the image.
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2.3 Slosh measurements

Video camera

Direction of movement

Figure 2.8 Illustration of the camera mounting in the computer vision system.

Figure 2.9 Image from the video camera. The interlacing of the two frames can
be seen in the figure as the gray area in the middle of the picture where there is
liquid in one of the frames and not in the other. The time between the frames is 20
ms.
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Figure 2.10 Extracted surface shapes from the image in Figure 2.9. The time
between the two figures is 20 ms.

2.4 External motion control system

The Digital Motion Controller works well, but it is quite cumbersome to
do experiments where you try different acceleration references since the
reference is stored in the memory of the DMC. Each time the acceleration
reference is changed the complete program needs to be recompiled and
downloaded to the DMC.

Also the DMC only controls the horizontal movement. If a combined
horizontal and rotational movement is desired the position and angle con-
trol need to be synchronized. Therefore, an external control system was
implemented on a PC running the Linux operating system in the Mat-
lab/Simulink environment. Simulink is made to run in real time using a
block that halts the simulation and waits until the next sampling instant.
There are blocks for analog-in/out and encoder-in signals that connect
Simulink to the I/O-card. Information about Linux in Control is avail-
able at (http://www.control.lth.se/~andersb/linux_in_control/).

The DMC is set to run in open loop reading a torque reference from
its analog-in port and the position is measured using the encoder, see
Section 2.2.

The Simulink block diagram of the motion control system is shown in
Figure 2.11. The system consists of five major functions each represented
by a subsystem in the Simulink model. The functions are:

ReferenceGeneration Generates velocity and position references by in-
tegrating the horizontal and rotational acceleration references.

Controller Controls the position and the angle of the package using PID
control with anti-windup and feedforward of the acceleration and ve-
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2.4 External motion control system

locity reference. The position controller does not use any measure-
ments or references used by the angle controller and vice versa.

System Contains the connections to the I/O-card and a safety net that
limits the outputs and sets the output to zero if the package moves
outside the allowed region or tilts too much. The block also con-
tains a simulation model of the system used for testing of the other
functions.

MotionObserver Kalman filter that estimates the position, velocity, an-
gle and angular velocity of the container.

SloshObserver Kalman filter that estimates the surface elevation and
rate of change in the surface elevation. The block also detects when
sensor faults occur and the estimator is set to run in open loop while
the fault occurs.

The system operates at two different sampling rates: the control runs
with the sampling period 1 ms and the acceleration references are defined
at a lower sampling rate typically 5 or 10 ms. The estimation of the surface
elevation is at the same sampling rate as the acceleration references but
the detection of sensor faults run at the fast sampling rate.

Both control loops are based on the following model of the servo motor
and mechanics

J ÿ+ D ẏ+ F sign ẏ = u (2.1)
where y is the position or angle, J is the inertia, D is the viscous friction,
F is the static friction and u is the torque input. The parameters J, D and
F are estimated using experiments, see [Lannegren, 1999].

The control law in both loops are

u = Kpe+ Ki

∫
e dt+ Kd ė+ J ÿr + D ẏr + F sign ẏr (2.2)

where e = yr− y and yr is the position or angle reference. Note that since
the position and angle reference is defined by the horizontal and rota-
tional acceleration both the first and second derivative of yr are available
and no numerical differentiation is necessary. The controller gains K∗ are
calculated using LQ-control with the model in (2.1) augmented with a
state for the integrated error.

If the true system is described by (2.1) and the control law in (2.2)
is used then there would be no control error and no feedback would be
necessary, hence y = yr. However, feedback is needed since there are
disturbances, modeling errors, a discrete-time controller implementation
etc.
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Chapter 2. Experimental setup
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Figure 2.11 Simulink block diagram of the external motion control system used
to control the package position and angle.
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2.4 External motion control system
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Figure 2.12 Simulink block diagram of the measurement error detector.

The Kalman filters are on the form

x̂(k+ 1hk) = Θ x̂(khk− 1) + Γu(k) + K
(

y(k) − Cx̂(khk− 1))
x̂(khk) = x̂(khk− 1) + K f

(
y(k) − Cx̂(khk− 1))

where Θ, Γ and C are obtained from zero-order-hold sampling of the mod-
els in (2.1) and (3.39). Since the position and angle are measured using
encoders there is essentially no noise in the measurement only quantiza-
tion errors, which are small, and when calculating the observer gains K
and K f the process noise is set much larger than the measurement noise
in the motion observer to obtain a fast observer. The surface elevation
observer is implemented only for horizontal acceleration.

When the sensor fails to measure the surface elevation the measure-
ment rapidly saturates at the lower level, typically in less than 5 ms.
The sensor faults are detected by differentiation of the surface elevation.
When the sensor fault occurs there will be a large negative peak in the
derivative. During the fault the derivative is zero and when the fault
ends there is a large positive peak in the derivative. The detection is built
using one differentiator, two comparators, one positive and one negative
flank detector and one SR-latch, see Figure 2.12 for the Simulink block
diagram.

The system is operated from the Matlab command line through func-
tions that set the parameters in the Simulink model using the set_param
command. The motion is executed by starting a simulation of the model
with the sim command and the resulting data are obtained from the out-
put variables of the function.
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3

Modeling of slosh

This chapter covers different aspects of the slosh modeling problem. The
purpose of the model is controller synthesis using optimal control. There
is a tradeoff between model accuracy and model complexity since the op-
timal control problems become harder to solve for a more complex model.
Therefore, the aim is to find a simple, preferable linear, model that de-
scribes the fluid motion within the container.

In different packaging machines there is a large variety of movements
of the packages containing liquid. Typical examples are horizontal move-
ment along a straight or curved path, vertical movement, rotations or
combinations of these. Here, only horizontal motion along a straight path
combined with rotation in the vertical plane aligned with the movement
direction is studied.

Models are obtained both from the equations governing the fluid mo-
tion and from system identification on data obtained from experiments.
The theoretical models are derived with the assumption that the oscilla-
tion is small.

In Section 3.1 the equations governing the flow in a fluid is described.
A model of the liquid in a horizontally accelerated container is also de-
rived. Section 3.2 presents some numerical and analytical solutions to the
flow problem found in the literature. An experimental investigation of the
slosh phenomenon is presented in Section 3.3 when the container is both
accelerated horizontally and tilted. In Section 3.4 measurements of the
surface profile using the vision system described in Section 2.3 is used to
analyze the slosh phenomenon. The chapter is concluded in Section 3.5
where two simple models are presented: one for horizontal acceleration
only and one for simultaneous horizontal and rotational acceleration.
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3.1 Fluid dynamics

3.1 Fluid dynamics

This section gives a brief description of different mathematical descrip-
tions of fluid flow, for further details see [Shen, 1993], [Baldock and Bridge-
man, 1981], [Coulson, 1955] and [Lamb, 1945].

Within the fluid

Fluid motion within the fluid is described by the Navier-Stokes equations.
This is a set of nonlinear three dimensional partial differential equations.
The first equation describes the conservation of mass

Vρ
V t
+∇ ⋅ (ρv) = 0 (3.1)

where ρ is the density of the fluid and v = (vx, vy, vz) is the flow velocity
vector field in the fluid and (x, y, z) is the spatial coordinates. Equation
(3.1) is referred to as the continuity equation in continuum mechanics.

The conservation of mass gives only one equation, but has four un-
knowns. Therefore, additional conditions are needed, unless the density
ρ is known and the problem is one dimensional. The conservation of mo-
mentum (i.e. Newton’s second law of motion) gives three more equations.
For a so called Newtonian viscous fluid the conservation of momentum
gives the equation

ρ
(Vv
V t
+ (v ⋅∇)v

)
= −∇p+ (λ + µ)∇(∇ ⋅ v) + λ∇2v+ ρf (3.2)

where p is the pressure, λ the factor of volume compression, µ the viscosity
and f = ( fx, f y, f z) is the external force vector field. The equations (3.1)
and (3.2) are called the Navier-Stokes equations.

If the fluid is incompressible (λ = 0) and inviscid (µ = 0) the Navier-
Stokes equations become the Euler equations.

∇ ⋅ v = 0 (3.3)
Vv
V t
+ (v ⋅∇)v = − 1

ρ
∇p+ f (3.4)

Inserting the vector identity (v ⋅∇)v = 1
2∇hvh2 + (∇� v) � v in (3.4) and

assuming that the external force field has a potential (f = −∇V ) gives

Vv
V t
+ 1

2
∇hvh2 + (∇� v) � v = − 1

ρ
∇p−∇V (3.5)
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Chapter 3. Modeling of slosh

The assumption that the force field has a potential excludes forces gener-
ated by rotational acceleration of the container.

The pressure and the external forces can be eliminated from the equa-
tions by taking the curl of both sides of (3.5), since the curl of a gradient
is zero. This gives

Vω
V t

+∇� (ω � v) = 0 (3.6)

where ω = ∇ � v is called the vorticity of the flow. Now the equations
(3.3) and (3.6) describe the velocity field.

If ω = 0 everywhere at any time then also Vω
V t = 0 everywhere and ω

will still be zero everywhere in the future. Hence, ω = 0 is a solution to
(3.6). A flow satisfying ω = 0 is irrotational and is called a potential flow.
For potential flows there exists a potential φ such that

v = ∇φ (3.7)

Insertion of (3.7) in (3.3) gives

∇ ⋅∇φ = ∇2φ = 0 (3.8)

which is known as Laplace’s equation. Insertion of (3.7) and ∇ � v = 0
in (3.5) and integrating with respect to space gives

Vφ
V t
+ 1

2
h∇φ h2 + p

ρ
+ V = C(t) (3.9)

where C(t) is an arbitrary function of time. This equation is known as
Bernoulli’s equation.

Further approximations can be made if the width of the container is
much larger then the depth of the liquid. The horizontal flow velocity in
a fluid element is then assumed to be independent of the vertical position
of the fluid element. This gives the Shallow Water Equations.

On the fluid boundary

The fluid boundaries in the problem considered are the container walls,
bottom and the free surface of the fluid. On the container walls and bottom
the boundary condition is that the velocity of the flow at the wall is zero
in the normal direction of the wall. This gives

n ⋅ v = 0 ; n ⋅∇φ = 0 (3.10)

where n is the normal direction of the wall.
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3.1 Fluid dynamics

a

h

xc

η

Figure 3.1 Illustration of the container.

On the fluid surface z = η(t, x, y) there are two boundary conditions:
one dynamic and one kinematic. The dynamical condition arises from the
external forces acting on the surface. For a potential flow this can be
expressed with Bernoulli’s equation

Vφ(t, x, y,η)
V t

+ 1
2
h∇φ(t, x, y,η)h2+ p(t, x, y,η)

ρ
+V (t, x, y,η) = C(t) (3.11)

The kinematic condition states that a fluid particle originally on the free
surface will remain on the free surface forever and is for a potential flow
expressed by

Vη
V t
+ Vφ
V z
Vη
V x

+ Vφ
V y
Vη
V y

= Vφ
V z

(3.12)

Fluid flow in a horizontally accelerated open container

A container with rectangular cross section with length a, width b and
liquid depth h is accelerated horizontally along a line parallel to two of
the walls, see Figure 3.1.

Since the movement is parallel to two of the walls it is assumed that
the flow velocity is zero in the direction perpendicular to the movement.
The problem can then be reduced to two dimensions. Two coordinate sys-
tems are used: one fixed (x̄, z̄) and one that moves along with the con-
tainer (x, z). The relation between the coordinates are

x = x̄ − xc , ex = ex̄

z = z̄ − h, ez = ez̄
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Chapter 3. Modeling of slosh
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Figure 3.2 Illustration of the two coordinate systems.

where xc is the position of the container and e∗ are the corresponding base
vectors. Figure 3.2 illustrates the relation between the two coordinate
systems.

The fluid in the container is further assumed to be incompressible and
inviscid and the flow is assumed to be irrotational. The surface eleva-
tion above the point (x, 0) is given by η(t, x). The forces that act on the
fluid is gravity and the horizontal acceleration. Gravity gives the force
field fn(x̄, z̄) = −nez̄ and the horizontal acceleration gives the force field
fa(x̄, z̄) = −ẍc ex̄. Transformation to the coordinate system of the container
gives the following force field and potential

f (x, z) = −nez − ẍc ex , V = nz+ ẍcx (3.13)

The equations (3.8), (3.10), (3.11), (3.12) and (3.13) give the following
description of the fluid flow in the container

∇2φ(t, x, z) = 0 (3.14)
Vφ(t, x, z)

V t
+ p(t, x, z)

ρ
+ 1

2
h∇φ(t, x, z)h2 + nz+ u(t)x = C(t) (3.15)

Vη(t, x)
V t

+ Vφ(t, x, z)
V x

Vη(t, x)
V x

= Vφ(t, x, z)
V z

(3.16)
Vφ(t, 0, z)
V x

= 0 ,
Vφ(t, a, z)
V x

= 0 ,
Vφ(t, x,−h)

V z
= 0 (3.17)

where (3.15) and (3.16) are evaluated on the free surface (i.e. z = η(t, x))
and u(t) = ẍc is the horizontal acceleration of the container.
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3.1 Fluid dynamics

The flow problem is solved using separation of variables. Insertion of
φ(t, x, z) = T(t)X (x)Z(z) in (3.14) gives the equation

T(t)X ′′(x)Z(z) + T(t)X (x)Z ′′(z) = 0

this gives
X ′′(x)
X (x) = −

Z ′′(z)
Z(z) = −λ (3.18)

The following equations is obtained from (3.17) and (3.18)
X ′′ + λ X = 0

X ′(0) = 0

X ′(a) = 0

(3.19)

{
Z ′′ − λ Z = 0

Z ′(−h) = 0
(3.20)

Nontrivial solutions to (3.19) and (3.20) are only obtained for λ ≥ 0.

λ = 0 ;
{

X (x) = a1x + a2

Z(z) = b1z+ b2

Insertion of the boundary conditions gives
X ′(0) = a1 = 0

X ′(a) = a1 = 0

Z ′(−h) = −b1 = 0

;
{

a1 = 0

b1 = 0

This gives the mode shapes

X0(x) = a0(t) , Z0(z) = b0(t) (3.21)
Solving (3.19) and (3.20) for λ > 0 gives

λ > 0 ;
{

X (x) = a1 cos
√

λ x + a2 sin
√

λ x

Z(z) = b1 cosh
√

λ z+ b2 sinh
√

λ z

Insertion of the boundary conditions gives
X ′(0) = a2

√
λ = 0

X ′(a) = a1

√
λ sin

√
λa+ a2

√
λ cos

√
λa = 0

Z ′(−h) = −b1

√
λ sinh

√
λh+ b2

√
λ cosh

√
λh = 0
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Chapter 3. Modeling of slosh

which has the solutions

a2 = 0

λn = n2π 2

a2 , n = 1, 2, . . .

b1 = b2
cosh

√
λnh

sinh
√

λnh

This gives the following mode shapes

Xn(x) = an(t) cos
nπ
a

x , Zn(y) = bn(t)
cosh nπ

a h
sinh nπ

a h
cosh

nπ
a
(z+ h) (3.22)

The potential is now given by (3.21) and (3.22) which gives

φ(t, x, z) = T0(t) +
∞∑

n=1

Tn(t) cos
nπ
a

x cosh
nπ
a
(z+ h) (3.23)

where all constants are lumped togheter in Tn(t).
The functions Tn(t) can now be found from (3.15). It is assumed that

the flow velocity is small and that the quadratic term in (3.15) is small.
It is also assumed the the pressure is equal everywhere on the surface,
setting C(t) = p(t, x,η(t, x))/ρ gives

Vφ(t, x,η(t, x))
V t

+ nη(t, x) + u(t)x = 0 (3.24)

Differentiation of (3.24) with respect to time gives

V2φ(t, x,η(t, x))
V t2 + V

2φ(t, x,η(t, x))
V tV z

η̇(t, x) + nη̇(t, x) + u̇(t)x = 0

Insertion of (3.16) and neglecting all nonlinear terms and assuming that
the surface elevation is small (η(t, x) � 0) gives

V2φ(t, x, 0)
V t2 + nVφ(t, x, 0)

V z
= −u̇(t)x

Insertion of the potential in (3.23) gives

T ′′
0 (t) +

∞∑
n=1

(
T ′′

n (t) cosh
nπ h

a
+ Tn(t)nπn

a
sinh

nπ h
a

)
cos

nπ
a

x = −u̇(t)x
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3.1 Fluid dynamics

Expansion of the right hand side with the base functions cos nπ
a x gives

−u̇(t)x = −u̇(t)a
(

1
2
+ 2

∞∑
n=1

(−1)n − 1
n2π 2 cos

nπ
a

x

)

The uniqueness of the cosine expansion gives the following differential
equations for Tn(t)

T ′′
n (t) +ω 2

nTn(t) =


−a

2
u̇(t), n = 0

bnu̇(t), n odd

0, n even

with

ω n =
√

nπn
a

tanh
nπ h

a
, bn = 4a

n2π 2 cosh nπ h
a

(3.25)

Note that the applied horizontal acceleration only excites the odd num-
bered modes.

The surface elevation in the point xm can now be calculated from
(3.24), this gives

η(t, xm) = −1
n

(Vφ(t, xm, 0)
V t

+ u(t)xm

)
where it is assumed that the surface elevation is small (η(t, x) � 0).
Insertion of the potential φ(t, xm, 0) gives

η(t, xm) = −1
n

(
T ′

0(t) +
∞∑

n=1

cn(xm)T ′
n(t) + u(t)xm

)

with

cn(xm) = cos
nπ xm

a
cosh

nπ h
a

Combining the input and output equations gives the model

η(t, xm) = 1
n

a
2
− xm −

∞∑
n=1, n odd

bncn(xm)p2

p2 +ω 2
n

 u(t)

where p is the differential operator d
dt . Insertion of bn and cn(xm) gives

η(t, xm) = 1
n

a
2
− xm −

∞∑
n=1, n odd

4a
n2π 2 cos

nπ xm

a

(
1− ω 2

n

p2 +ω 2
n

) u(t)
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Chapter 3. Modeling of slosh

The first term of the sum is the cosine series of a/2 − xm and hence the
surface elevation above the point xm for a rectangular container is given
by

η(t, xm) = 4a
nπ 2

 ∞∑
n=1, n odd

1
n2 cos

nπ xm

a
ω 2

n

p2 +ω 2
n

 u(t) (3.26)

Validity of assumptions

The assumption that the fluid is incompressible is valid for liquids but not
for gases. The approximation that the viscosity is negligible is however
more questionable. For water it is valid but not for yoghurt. Irrotational
flow is a solution to the Euler equations and therefore possible in a math-
ematical sense. However, any flow has a non zero viscosity and a nonuni-
form density, which always causes rotation of fluid elements. However,
in many cases the vorticity is so weak that the flow can be considered
irrotational. The surface tension has also been neglected in the modeling.

The approximations used when deriving the response to horizontal
acceleration are all based on the fact that the surface elevation is small
and that the rate of change of the surface elevation is small. The validity
of these approximations depends on what the model is used for. Hence,
if the model is used for synthesis of acceleration references the resulting
surface elevation and rate of change must be small to obtain the expected
behavior.

3.2 Related work

This section describes some previous work on modeling and simulation of
motion induced liquid slosh.

Numerical approaches

In [Armenio and La Rocca, 1996] the fluid is modeled in two dimensions
by both the Reynolds Averaged Navier-Stokes Equations (RANSE) for
a incompressible flow and the Shallow Water Equations (SWE). Both
problems are solved numerically with different finite element methods
(FEM). The numerical solutions are compared with experiments which
show that the RANSE model is closer to the real measurements than the
SWE model.

The free surface flow problem with moving boundaries is described
in [Kelkar and Patankar, 1997]. A numerical method is proposed which
handles two fluid flows where both fluids are incompressible or where one
of the fluids is compressible and the other one is incompressible. Moving
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3.2 Related work

grids are used to accommodate the motion of the domain boundaries.
The volume-of-fluid (VOF) technique is used to track the free boundary
between the two fluids.

In [Romero and Ingber, 1995] the flow is described as a potential flow
using the Laplace equation. The dynamic boundary condition on the free
surface is the so called damping modified Bernoulli equation. The damping
in the Bernoulli equation is a simple way to include viscosity in the model.
The problem is solved using a boundary element method (BEM). The
boundary on the free surface is updated to track the motion of the free
surface.

Analytical approaches

The flow problem is solved analytically in [Venugopal and Bernstein,
1996]. The flow is described by the Laplace equation and the dynamic
boundary condition on the free surface is described by the Bernoulli equa-
tion. The problem is solved in the same way as in Section 3.1 and the
result is a linear state space model.

In [Miles, 1976] the flow problem is solved using an approach based
on Lagrange mechanics. The fluid is modeled as a potential flow by the
Laplace equation. The solution for a rectangular container with width a
and liquid depth h is that the surface elevation above the point xm is
described by

η(t, xm) =
∞∑

n=1

qn(t)ψ n(xm) , ψ n(x) =
√

2 cos
nπ
a

x (3.27)

The functions qk(t) are given by the following nonlinear differential alge-
braic equations (DAE)

∞∑
m=1

(
amnq̈m +

∞∑
l=1

blmnq̇l q̇m

)
+ nqn = cnu , n = 1, 2, . . . (3.28)

where amn and blmn are functions of q = (q1, . . . , q∞) and u is the applied
horizontal acceleration. The coefficients are given by

amn = δ mnan +
∞∑

l=1

almnql + 1
2

∞∑
j=1

ajlmnqj ql + . . .


blmn = 1

2

(Vamn

Vql
+ Vanl

Vqm
− Valm

Vqn

)
cn = −1

a

∫ a

0
xψ n dx = a

√
2

1− (−1)n
n2π 2
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Chapter 3. Modeling of slosh

with

δ mn =
{

1, m = n

0, m �= n

an = n
ω 2

n
, ω n =

√
nπn

a
tanh

nπ h
a

almn = Clmn − Dlmnaman

ajlmn = −Djlmn(am + an) + 2
∞∑

i=1

Djmi Dlniaiaman

The coefficients C∗ and D∗ are given by

Clmn = 1
a

∫ a

0
ψ lψ mψ n dx

Dlmn = 1
a

∫ a

0
ψ l
Vψ m

V x
Vψ n

V x
dx Djlmn = 1

a

∫ a

0
ψ jψ l

Vψ m

V x
Vψ n

V x
dx

Note that cn = 0 for even n which means that the horizontal acceleration
does not directly excite the even numbered modes. However, they are
excited by the nonlinear coupling with the other modes. Linearization of
this model around the equilibrium point q = 0 results in the same model
as derived previously given in (3.26).

3.3 The slosh phenomenon

This section presents a number of experiments that illustrate some of
the behavior encountered in the slosh phenomenon. In all experiments
presented in this section a container with width a = 0.07 m and liquid
depth h = 0.2 m was used.

Repeatability

The repeatability of the slosh phenomenon was investigated by running
the same experiment several times. The acceleration reference given be-
low was run five times, with umax = 3 m/s2.

u(t) =


umax 0 ≤ t < 0.15

−umax 0.15 ≤ t < 0.30

0 0.30 ≤ t

(3.29)

Figure 3.3 shows the results of the experiments. When the measurements
from four of the five different experiments are plotted on top of each other
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Figure 3.3 Results from experiments with the acceleration profile in (3.29) with
umax = 3 m/s2. The upper plot shows measurements from one experiment, and the
lower plot shows the measurements from four different experiments plotted on top
of each other. The discontinuities at time 0.77 etc. are due to measurement faults.

it is seen that the measurements are very close. The figure shows that
even the measurement faults occur at almost the same time instants.

To get a measure of how close the experiments are, the standard devi-
ation is calculated for each time instant. The calculation of the standard
deviation σ (t) is given by

σ (t) =
√√√√1

4

5∑
i=1

(si(t) −m(t))2 , m(t) = 1
5

5∑
i=1

si(t)

where si(t) is the measured surface elevation of experiment i = 1, . . . , 5
and m(t) is the average of all experiments. The standard deviation σ (t)
is shown in Figure 3.4.

The figure shows that there are some very large peaks for t < 0.5.
These are due to the measurement faults which do not occur at exactly the
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Figure 3.4 The standard deviation from the five experiments. The left plot shows
the standard deviation for all values of t and in the right plot those instants when
the standard deviation is greater than 0.2 are removed.

same time instants. In the right plot the time instants when the standard
deviation is larger than 0.2 was removed (27 points were removed). This
shows that the standard deviation is about 0.1 cm in the beginning (i.e.
for large oscillation amplitudes) and about 0.01 cm in the end (i.e. for
small oscillation amplitudes). The standard deviation is small compared
to the measured value shown in Figure 3.3 and the conclusion is that the
repeatability of the slosh is very high.

Linearity

To investigate the linearity of the slosh phenomenon the following accel-
eration reference was used for different values of umax.

u(t) =



umax 0 ≤ t < 0.4
−umax 0.4 ≤ t < 0.8
0 0.8 ≤ t < 1.8
−umax 1.8 ≤ t < 2.2
umax 2.2 ≤ t < 2.6
0 2.6 ≤ t < 3.6

(3.30)

Figure 3.5 shows experiments with the acceleration reference in (3.30) for
nine different values of umax. If the slosh phenomenon was linear, then the
response normalized with umax should be independent of umax. Figure 3.6
shows the normalized surface elevation for some values of umax, where
the normalized surface elevation is defined as

sN = Surface elevation
umax
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Figure 3.5 Results from experiments with the acceleration profile given in (3.30)
for different values of umax. The measured surface elevation (solid) and the simu-
lated surface elevation (dashed). The simulation is done using the model in (3.31)
with the parameters in Table 3.1.

The normalized slosh is the same for umax < 1 m/s2, but for larger values
the responses are very different. Thus the slosh phenomenon is nonlinear.

The slosh is an oscillation phenomenon, therefore a simple model
would be a poorly damped second order linear system. The parameter-
ization of the transfer function is given below

G(s) = Kω 2

s2 + 2ζ ω s+ω 2 (3.31)

The parameters of the transfer function in (3.31) was fitted using numer-
ical optimization to the data from the experiments with different values
of umax. Simulations of the estimated models are shown in Figure 3.5
for different values of umax. The estimated parameters are shown in Ta-
ble 3.1. The figure shows that the simulated surface elevation is very
close to the measured surface elevation. In the table it can be observed
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Figure 3.6 The normalized surface elevation; the upper plot shows umax = 0.25
m/s2 (dotted), umax = 0.50 m/s2 (solid) and umax = 0.75 m/s2 (dashed); the lower
plot shows umax = 0.25 m/s2 (dotted), umax = 1.25 m/s2 (solid) and umax = 3.00
m/s2 (dashed).

umax (m/s2) K ω (rad/s) ζ
0.25 0.263 21.2 0.024

0.50 0.252 20.9 0.014

0.75 0.251 20.8 0.012

1.00 0.251 20.7 0.008

1.25 0.252 20.6 0.007

1.50 0.251 20.5 0.008

2.00 0.258 20.3 0.013

2.50 0.267 20.0 0.021

3.00 0.286 19.8 0.031

Table 3.1 Estimated parameters of the transfer function (3.31) for different values
of umax. The experiments indicates that ω is amplitude dependent.

that the estimated value of ω decreases with increased amplitude of the
input umax. This indicates that the oscillation frequency of the slosh is
amplitude dependent.
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Figure 3.7 The free oscillation when the acceleration profile in (3.29) is used with
umax = 3. The measurement faults are removed and the measurement is low-pass
filtered.

Nonlinearities

An easy way to identify the oscillation frequency is to study the free os-
cillation. The oscillation is started by applying the acceleration reference
in (3.29), with umax = 3 m/s2. Figure 3.7 shows the free oscillation from
the same experiment as the data in the upper plot of Figure 3.3, the mea-
surement faults are removed and the measurement is low-pass filtered,
with a bandwidth of 100 rad/s.

The oscillation frequency can be calculated from the time between the
zero crossings of the surface elevation. If Tk is the time of the kth zero
crossing then the oscillation frequency of the kth half period is given by

ω k = 4π
Tk+1 − Tk

The amplitude of the kth half period is calculated as

Ak = max
Tk<t<Tk+1

hs(t)h

where s(t) is the surface elevation. Figure 3.8 shows Ak as a function
of Tk for the same experiment as shown in Figure 3.7. In the figure the
amplitude of the positive and negative half periods are drawn as two
separate lines, this shows that the amplitude of the positive half periods
is larger than the amplitude of the negative half periods. This illustrates
another nonlinear phenomenon of the slosh, the asymmetric oscillation.

The amplitude dependent oscillation frequency indicated in Table 3.1
can also be seen from the free oscillation. First the amplitude Ak and the
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Figure 3.8 The oscillation amplitude as a function of time, positive half periods
(solid) and negative half periods (dashed). The oscillation is asymmetric for large
amplitudes.

oscillation frequency ω k are made smoother by taking the mean over four
half periods to form Āk and ω̄ k.

Āk = 1
4

3∑
i=0

Ak+i , ω̄ k = 1
4

3∑
i=0

ω k+i

Figure 3.9 shows ω̄ k as a function Āk. The figure clearly shows that the
oscillation frequency decreases with increased oscillation amplitude. A
solution of the free oscillation problem in [Miles, 1976] gives the following
dependence between the amplitude and oscillation frequency

ω = ω 1

√
1+ π 2 A2

32a2 (9T−4 − 12T−2 − 3− 2T2), T = tanh
π h
a

(3.32)

For the container used here this becomes

ω = 20.98
√

1− 503.6A2

The theoretical dependence between the amplitude and oscillation fre-
quency is also shown in Figure 3.9. The figure shows that the experi-
mental result is reasonably close to the theoretical. One reason for the
difference is that the theoretical dependency is calculated for a stationary
oscillation but the experiment is for a decaying oscillation.

Rotational acceleration

When the container is tilted it is obvious that the stationary surface el-
evation relative to the container wall is changed. The relation between
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Figure 3.9 The oscillation frequency as a function of the oscillation amplitude.
The solid line shows the theoretical dependence from (3.32) and the crosses shows
the experimental values.

the angle of the container, θ , and the stationary surface elevation on the
backward side of the container, s0, at the wall is

s0 = −a
2

tanθ

where a is the container width. The stationary surface elevation on the
forward side is the same but with opposite sign.

The response to rotational acceleration is examined for different posi-
tions of the rotational axis. The rotational axis is positioned in the center
of the container horizontally and the distance yr from the liquid surface
vertically.

The following rotational acceleration ur is applied for different values
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of umax and yr

ur(t) =



umax 0 ≤ t < 0.1
−umax 0.1 ≤ t < 0.2
0 0.2 ≤ t < 1.0
−umax 1.0 ≤ t < 1.1
umax 1.1 ≤ t < 1.2
0 1.2 ≤ t < 2.0
−umax 2.0 ≤ t < 2.1
umax 2.1 ≤ t < 2.2
0 2.2 ≤ t < 3.0
umax 3.0 ≤ t < 3.1
−umax 3.1 ≤ t < 3.2
0 3.2 ≤ t < 4.0

(3.33)

Figure 3.10 shows the results of the experiments for umax = [10, 20, 40]
rad/s2 and yr = [0,−1, . . . ,−6] cm, where 0 is on the surface and a neg-
ative value is below the surface. The figure shows that the smallest os-
cillation is obtained for yr = −3 cm and that the response is relatively
independent of umax. For yr = −3 cm only a small oscillation is visible and
the change in surface elevation is mostly due to the tilting of the container.
Note that the surface elevation is measured relative to the container.

To simplify the modeling it is desirable to have a decoupling between
the rotational acceleration and surface oscillation. This can be obtained
if the position of the rotational axis is chosen such that rotational accel-
eration gives the least excitation of the oscillation. Hence, the position of
the rotational axis is chosen to be 3 cm below the liquid surface.

To explore if the response to simultaneous horizontal and rotational
acceleration is linear, experiments were performed when the container
was moved and tilted simultaneously. The horizontal acceleration uh(t)
in (3.34) and the rotational acceleration ur(t) in (3.35) were applied for
amax = [0, 0.5, 1] m/s2 and rmax = [0, 5, 10] rad/s2. The rotational axis was
positioned 3 cm below the surface during the experiments.

uh(t) =



amax 0 ≤ t < 0.4
−amax 0.4 ≤ t < 0.8
0 0.8 ≤ t < 1.8
−amax 1.8 ≤ t < 2.2
amax 2.2 ≤ t < 2.6
0 2.6 ≤ t < 3.6

(3.34)
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Figure 3.10 The surface elevation when the container is rotated using the ro-
tational acceleration in (3.33) for different values of umax and different vertical
positions for the rotational axis yr . The surface oscillation is very different for dif-
ferent rotational centers. The smallest oscillation is obtained when the rotational
axis is 3 cm below the liquid surface at rest.

47



Chapter 3. Modeling of slosh

ur(t) =



rmax 0 ≤ t < 0.1
−rmax 0.1 ≤ t < 0.3
rmax 0.3 ≤ t < 0.4
−rmax 0.4 ≤ t < 0.5
rmax 0.5 ≤ t < 0.7
−rmax 0.7 ≤ t < 0.8
0 1.2 ≤ t < 1.8
−rmax 1.8 ≤ t < 1.9
rmax 1.9 ≤ t < 2.1
−rmax 2.1 ≤ t < 2.2
rmax 2.2 ≤ t < 2.3
−rmax 2.3 ≤ t < 2.5
rmax 2.5 ≤ t < 2.6
0 2.6 ≤ t < 3.6

(3.35)

The previous investigation with only horizontal acceleration showed that
the system behaves linearly only for small values of the excitation and of
the oscillation amplitude. Therefore, only relatively small values of amax

and rmax were used.
The results of the experiments are shown in the figures 3.11 and

3.12. Figure 3.11 shows the surface elevation when the container is ei-
ther moved or tilted and Figure 3.12 shows the surface elevation when
the container is both moved and tilted simultaneously. Figure 3.12 also
shows the superposition of the responses to only horizontal and rotational
acceleration for comparison with the response when the corresponding
references are used simultaneously. Figure 3.12 shows that the measured
surface elevation when the references are used simultaneously is very
close to the superposition of the responses when either amax or rmax are
zero. Hence, the response to horizontal and rotational acceleration can be
considered to be independent if uh(t), ur(t) and the oscillation amplitude
are small.

A simple way to model the surface elevation oscillation is using a sec-
ond order poorly damped linear oscillator. The excitation of the oscillator
is chosen as the horizontal and rotational acceleration. The surface ele-
vation is then given as a sum of the oscillator output and the stationary
surface elevation depending on the container angle. This gives the follow-
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Figure 3.11 Surface elevation when the horizontal and rotational acceleration
references in (3.34) and (3.35) are used for different values of amax and rmax. The
position of the rotational axis is yr = −3 cm.
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Figure 3.12 Surface elevation when the horizontal and rotational acceleration
references in (3.34) and (3.35) are used for different values of amax and rmax. The
dashed line is the superposition of responses when the container is either moved or
tilted with the corresponding acceleration reference. The simultaneous response is
very close to the superposition of the responses with either amax or rmax equal to 0.
Hence, the response to horizontal and rotational acceleration is independent.50
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rmax amax (m/s2)
(rad/s2) 0 0.5 1

0

ω = 20.9
ζ = 0.409E-3
Kt = 3.49E-3
Kr = −

ω = 20.7
ζ = 6.75E-3
Kt = 2.89E-3
Kr = −

5

ω = 20.3
ζ = 25.6E-3
Kt = −
Kr = 2.51E-6

ω = 20.9
ζ = 5.47E-3
Kt = 2.85E-3
Kr = 39.2E-6

ω = 20.8
ζ = 8.26E-3
Kt = 2.77E-3
Kr = 10.2E-6

10

ω = 20.1
ζ = 22.3E-3
Kt = −
Kr = 2.35E-6

ω = 20.9
ζ = 5.68E-3
Kt = 2.89E-3
Kr = 19.9E-6

ω = 20.7
ζ = 12.2E-3
Kt = 2.82E-3
Kr = 8.71E-6

Table 3.2 Estimated parameters for the model in (3.36) for the experiments shown
in the figures 3.11 and 3.12. The control inputs used are given in (3.34) and (3.35)
for amax and rmax given in the table.

ing system description
ẍ

ẋ

θ̈
θ̇

 =

−2ζ ω −ω 2 0 0

1 0 0 0

0 0 0 0

0 0 1 0




ẋ

x

θ̇
θ

+


Ktω 2 Krω 2

0 0

0 1

0 0


[

uh(t)
ur(t)

]

s(t) = x(t) − a
2

tanθ (t)

(3.36)

The parameters ω , ζ , Kt and Kr in (3.36) were estimated using the Sys-
tem Identification Toolbox in Matlab for the different experiments. The
estimated parameters are presented in Table 3.2.

The table shows that the estimates of ω , ζ and Kt are relatively con-
sistent for all experiments and Kr is consistent for the experiments with
only rotational movement. When the container is simultaneously moved
and tilted the estimates of Kr are very inconsistent. This is probably be-
cause the oscillation caused by the horizontal acceleration is much larger
than caused by the rotational acceleration.

To explore if the response is independent for other vertical positions
of the rotational axis, experiments were made for the vertical positions
yr = [−2,−3,−4] cm with rmax = 10 rad/s2 and amax = [0, 1] m/s2. The
surface elevation response is shown in Figure 3.13 which also shows the

51



Chapter 3. Modeling of slosh

amax yr (cm)
(m/s2) −2 −3 −4

0

ω = 21.2
ζ = 16.0E-3
Kt = −
Kr = −22.3E-6

ω = 20.1
ζ = 22.4E-3
Kt = −
Kr = 2.35E-6

ω = 20.9
ζ = 16.0E-3
Kt = −
Kr = 26.6E-6

1

ω = 21.0
ζ = 11.2E-3
Kt = 2.85E-3
Kr = −20.7E-6

ω = 20.7
ζ = 12.2E-3
Kt = 2.82E-3
Kr = 8.71E-6

ω = 20.6
ζ = 10.2E-3
Kt = 2.94E-3
Kr = 29.4E-6

Table 3.3 Estimated parameters for the model in (3.36) for the experiments shown
in Figure 3.13. The control inputs used are given in (3.34) and (3.35) for rmax = 10
rad/s2 and amax as given in the table. The experiments are performed for three
vertical positions of the rotational axis as given in the table.

superposition of the responses to only horizontal and rotational acceler-
ation. The figure shows that there is a large difference in the response
to only rotational acceleration for the different positions of the rotational
axis which was concluded previously in this section. The response to si-
multaneous translation and rotation is close to the superposition of the
responses to only translation and rotation except when yr = −2 cm where
a small difference can be seen. However, the difference is not significant
and the response to uh(t) and ur(t) seems to be quite independent.

Estimation of the parameters in (3.36) was made similarly as for the
previous experiments and the results are presented in Table 3.3. The
estimated parameters are very consistent except for Kr when yr = −3
cm which were also seen in the previous experiments. When yr = −2 cm
or −4 cm the estimates of Kr are more consistent since there is more
excitation of the oscillation through the rotation.

3.4 Analysis of vision data

Using the vision system presented in Section 2.3 a measurement of the
surface shape can be made.

The data obtained from the vision system is the function S(t, x) sam-
pled both in time and in space, where S(t, x) is the surface elevation at
time t in the horizontal position x relative to the container. The sampling
interval is ht = 20 ms in time and hs = 0.133 mm in space for this particu-
lar experiment. The container is 0.07 m wide which gives 526 data points
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Figure 3.13 Surface elevation when the horizontal and rotational acceleration
references in (3.34) and (3.35) are used for different values of amax and yr with
rmax = 10 rad/s2. The upper plot shows the response when amax = 0 rad/s2 and
yr = −2 cm (dotted), −3 cm (solid) and −4 cm (dashed) the three lower plots show
the response when amax = 1 rad/s2 where the dashed line is the superposition of
response to only horizontal and rotational acceleration. 53



Chapter 3. Modeling of slosh

and the duration of the experiment is 4 s which gives 200 data points.
This gives the sampled surface elevation S(kht, lhs) with k = 0, 1, . . . , 199
and l = 0, 1, . . . , 525.

Figure 3.14 and Figure 3.15 show the surface elevation shape sampled
in time with the sampling period 40 ms, hence twice the period time of
the vision system. The acceleration reference used is given in (3.30) with
umax = 2.0 m/s2. The figures show that the surface shape is quite irregular
and far from a tilting plane or the first order mode cos π

a x.
The models given in (3.26), (3.27) and (3.28) are based on separation

of variables and describes the surface shape by

S(t, x) =
∞∑

n=1

cn(t) cos
nπ
a

x

where a is the width of the container. The behavior is then given by a
system of differential equations in cn.

Using the vision system a measurement of the surface shape is ob-
tained and the coefficients cn(t) can be calculated for the actual surface
shape. The coefficients are calculated using the following discrete approx-
imation of the integral cn(t) = 2

a

∫ a
0 s(t, x) cos nπ x

a dx

cn(kht) = 2
526

525∑
l=0

S(kht, lhs) cos
nπ l
525

(3.37)

Figure 3.16 shows the amplitude of the six first modes as a function of
time for this experiment. The figure shows that the first mode has the
largest amplitude and that the amplitude decreases for the higher modes.
For the linear model in (3.26) only the odd numbered modes are excited.
However, the figure shows that all modes are excited. In Table 3.4 the
maximum amplitude of the eight first modes normalized with the maxi-
mum of the first mode is given. The maximum amplitude decreases quite
fast, approximately in the order of 1/n2, which is the same as for the
linear model in (3.26).

In Figure 3.16 the oscillation of the first mode is not asymmetric which
means that the asymmetric oscillation is caused by the excitation of the
even numbered modes. Particularly the second mode which is the largest
and mostly positive will raise the surface elevation on both sides of the
container.
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0 40 80 120 160

200 240 280 320 360

400 440 480 520 560

600 640 680 720 760

800 840 880 920 960

1000 1040 1080 1120 1160

1200 1240 1280 1320 1360

1400 1440 1480 1520 1560

1600 1640 1680 1720 1760

1800 1840 1880 1920 1960

Figure 3.14 The surface profile when the acceleration reference in (3.30) is used
with umax = 2 m/s2. Each frame shows the surface viewed from a direction per-
pendicular to the direction of movement, see Section 2.3. The number in the frame
shows the time in milliseconds from the beginning of the movement. The scaling is
equal in the x- and y-axis. The frame rate is 25 frames per second and the movement
continues in Figure 3.15.
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2000 2040 2080 2120 2160

2200 2240 2280 2320 2360

2400 2440 2480 2520 2560

2600 2640 2680 2720 2760

2800 2840 2880 2920 2960

3000 3040 3080 3120 3160

3200 3240 3280 3320 3360

3400 3440 3480 3520 3560

3600 3640 3680 3720 3760

3800 3840 3880 3920 3960

Figure 3.15 See Figure 3.14 for description.

n 1 2 3 4 5 6 7 8
max hcn(t)h
max hc1(t)h 1.00 0.28 0.12 0.10 0.06 0.06 0.04 0.04

Table 3.4 The maximum of the amplitude for the eight first modes calculated
using (3.37). The maximum amplitude decreases fast as n is increased.
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Figure 3.16 The amplitude of the six first modes given by (3.37). The amplitude
is largest for the first mode and decreases for the higher modes. Note the different
scales on the y-axes.
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3.5 A simple usable model

Previously in this chapter models have been derived using fluid dynamics
and using system identification. In this section the results are summa-
rized and condensed into a simple model that can be used for controller
synthesis.

The theoretical model in (3.26) is an infinite sum of oscillators with
decaying gains and the analysis of the surface profile using the vision
system shows that the amplitude of the higher order modes are decaying
relatively fast. In the theoretical model in (3.26) only the odd numbered
modes are excited. In the model derived by Miles in (3.28) the even num-
bered modes are excited through the nonlinear coupling with the other
modes.

The examination of the surface profile using the vision system showed
that the first mode has the largest amplitude and that the second mode
is about one fourth and the third about one eight of the first mode, see
Table 3.16.

The system identification performed in this chapter has shown that
it is possible to get a good fit using a second order linear model for both
horizontal and rotational acceleration.

Horizontal acceleration

The slosh response to horizontal acceleration is modeled by a second order
poorly damped linear system with the states chosen as: x2 – the surface
elevation at the backward wall of the container and x1 – the rate of change
in the surface elevation divided by the oscillation frequency. This gives the
following state space representation of the slosh model[

ẋ1

ẋ2

]
=

[−2ζ ω −ω
ω 0

] [
x1

x2

]
+

[
b1

0

]
uh(t) (3.38)

where ω is the oscillation frequency in radians per second, ζ the relative
damping and uh(t) is the applied horizontal acceleration. The parameter
b1 can be determined by studying the stationary gain of the system. If the
applied horizontal acceleration is equal to n the force field affecting the
liquid is rotated 45○ relative to the horizon. In stationarity the surface is
flat and orthogonal to the force field. The stationary value of the surface
elevation is then a/2 where a is the width of the container. Insertion of
the stationary values in (3.38) gives[

0

0

]
=

[−2ζ ω −ω
ω 0

] [
0
a
2

]
+

[
b1

0

]
n =; b1 = aω

2n
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h

a

x2

x4

Figure 3.17 Illustration of the container corresponding to the model in (3.39).

The motion of the container is modeled by a double integrator. It is
assumed that the motion control system follows the acceleration reference
exactly. This gives the complete container model for horizontal accelera-
tion 

ẋ1

ẋ2

ẋ3

ẋ4

 =

−2ζ ω −ω 0 0

ω 0 0 0

0 0 0 0

0 0 1 0


︸ ︷︷ ︸

A


x1

x2

x3

x4

+


aω
2n
0

1

0


︸ ︷︷ ︸

B

uh(t)

[
s

p

]
=

[
0 1 0 0

0 0 0 1

]
x

(3.39)

where x4 is the container position and x3 the container velocity. The out-
puts of the model are the surface elevation relative to the container wall, s,
and the container position, p. See Figure 3.17 for an illustration of the
container.

For a rectangular container with liquid depth h and width a the oscil-
lation frequency is given by (3.25)

ω = ω 1 =
√
nπ
a

tanh
hπ
a
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Chapter 3. Modeling of slosh

The container used in the experiments has h = 0.2 m and a = 0.07 m
which gives the theoretical value ω = 21.0 rad/s. This is approximately
the same value as the experiments showed for small oscillation ampli-
tudes, see Table 3.1 and Figure 3.9. The theoretical value of the damping
is ζ = 0 but the experiments showed that the damping is about 0.015.

Horizontal and rotational acceleration

The previous examinations of the response to rotational acceleration show-
ed that the response depends on the position of the rotational axis and
that the coupling to the response from horizontal acceleration is small.

The slosh is modeled in the same way as for only horizontal acceler-
ation with a second order linear system. With the inputs horizontal and
rotational acceleration and the states are chosen as: x2 – the surface el-
evation relative to the horizon at the backward wall of the container, x1

– that rate of change in surface elevation divided by the oscillation fre-
quency, x4 – the container position, x3 – the container velocity, x6 the
container angle and x5 – the angular velocity. The container angle, x6,
changes the stationary surface elevation relative to the container wall as

s0 = −a
2

tan x6

This gives the complete container model for horizontal and rotational ac-
celeration

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



−2ζ ω −ω 0 0 0 0

ω 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0


︸ ︷︷ ︸

A



x1

x2

x3

x4

x5

x6


+



aω
2n b2

0 0

1 0

0 0

0 1

0 0


︸ ︷︷ ︸

B

[
uh(t)
ur(t)

]

 s

p

θ

 =
 0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 x +
− a

2 tan x6

0

0


(3.40)

where the same values of ω and ζ as for the model for horizontal acceler-
ation applies, uh(t) is the applied horizontal acceleration and ur(t) is the
applied rotational acceleration. The parameter b2 depends on the position
of the rotational axis and can take both positive and negative values, see
Table 3.3. The outputs of the model are the surface elevation relative to
the container wall, s, the container position, p, and the container angle, θ .
See Figure 3.18 for an illustration of the container.
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h

a

s

x2x4

x6

Figure 3.18 Illustration of the container corresponding to the model in (3.40).
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4

Horizontal motion

This chapter describes different methods of calculating an acceleration
reference that meets the specifications using optimal control and the sim-
ple linear model in (3.39) presented in Section 3.5.

Section 4.1 describes how the problem has been approached in indus-
try. Related work is presented in Section 4.2. The problem is formulated
as an optimal control problem in Section 4.3. Minimum time solutions are
given in the sections 4.4 and 4.5. However, these acceleration references
prove to work for small slosh amplitudes only. Therefore, as an alternative
approach, a minimum energy solution is given in Section 4.6. In Section
4.7 an analytical solution is given to a modified version of the minimum
energy problem. Each of the previous mentioned sections contains exper-
imental evaluations of the described acceleration strategy. In Section 4.8
some implementation issues are discussed and in Section 4.9 the mini-
mum energy problem is solved for the discrete time case. The chapter is
summarized with the conclusions in Section 4.10

4.1 Industrial practice

The acceleration references have traditionally been implemented using
mechanical devices such as gear boxes and cam discs. This has resulted
in very inflexible systems where the acceleration reference cannot eas-
ily be altered. Therefore, the acceleration references have been designed
such that they fulfill the specifications for a whole range of products and
production rates. Since the fluid dynamics are very different for different
products (compare for example skim milk with yoghurt) this has lead to
conservative and non-optimal acceleration references, i.e. slow movement
and reduced production capacity.

The introduction of servo systems to control the movement offers an
increased amount of flexibility. It is now possible to use different accel-
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4.2 Related work

eration references for different products and production rates. This has
given rise to an increased interest in systematic methods for calculation
of acceleration references for the movement.

The solution, up till now, has been to use a predetermined structure
of the acceleration reference with a few parameters that have proven to
work and is easy to implement using the mechanical devices. The param-
eters are tuned using experiments and the experience of the development
engineers. This procedure is very time consuming and expensive and of-
ten leads to a conservative design, since the easiest way to decrease the
slosh if it is too large is to slow down the movement.

4.2 Related work

In this section some related work is presented. The major difference be-
tween previous work and the work presented in this thesis is that here
a large amount of slosh is allowed and the goal is to move as fast as
possible.

In [Yano et al., 1996] the problem is approached using optimal con-
trol and H∞ control theory. The slosh is modeled as a pendulum with
damping. A reference trajectory for the position and the surface eleva-
tion is calculated by solving a nonlinear optimal control problem. An H∞

feedback controller designed for the linearized model is used which mea-
sures both the position and the surface elevation in the container. The
H∞ controller is used because there are large differences in the behavior
for different liquid depths and the H∞ controller is believed to also be
able to deal with other model uncertainties.

The method is evaluated in experiments with good results. The oscil-
lation frequency of the liquid in the container is between 11.3 rad/s and
15.1 rad/s depending of the liquid depth. The maximum acceleration for
the experiments are 2 m/s2, the movement time is 3 s, the movement
distance is 1 m and the ratio between maximum surface elevation and
the container width is 0.1.

A notch-filter solution to the slosh-free movement problem is suggested
in [Feddema et al., 1997]. The approach is based on a second order linear
slosh model, similar to the one described in Section 3.5. The acceleration
reference is obtained by filtering an acceleration reference which is deter-
mined to move the container as fast as possible without any constraints
on the slosh. This acceleration reference is given by the bang-bang signal

u(t) =


umax 0 ≤ t < ts

−umax ts ≤ t < 2ts

0 2ts ≤ t

(4.1)
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where ts =
√

L/umax. The acceleration reference in (4.1) is then filtered
through the following notch-filter

Gf (s) = σ 3

ω 2

s2 + 2ζ ω s+ω 2

(s+σ )3

where ω and ζ have the same values as in the slosh model given in (3.39).
The idea is to avoid excitation of the oscillatory mode of the liquid.

The acceleration strategy is evaluated in experiments with good re-
sults. The oscillation frequency of the container is 10.6 rad/s, the maxi-
mum acceleration is 0.75 m/s2, the movement time is 2.3 s, the movement
distance is 0.5 m and the ratio between the maximum surface elevation
and the container width is 0.04.

Figure 4.1 shows simulations with this acceleration strategy applied
to our system for some different response speeds of the filter, with ω =
21.0 rad/s, ζ = 0, movement distance 0.2 m. The figure shows that the
movement time is considerably increased for σ = 30 rad/s and σ =
54 rad/s gives a very large maximum acceleration.

The primal objective in the two approaches presented in [Yano et al.,
1996] and [Feddema et al., 1997] is to have as little slosh as possible and
ultimately no slosh at all. Therefore, the strategies are only evaluated
at slosh levels much smaller than considered in this thesis. Compared to
our case the ratio between the maximum surface elevation and container
width is small, 0.1 and 0.04 respectively compared to 0.5 in the case
considered here. In order to suppress the slosh even more, movement
strategies where the container is tilted are examined in [Feddema et al.,
1997], [Yano et al., 1999] and in Chapter 6.

In [Dietze and Schmidt, 1997] the problem is solved using optimal
control techniques and the same slosh model as presented in Section 3.5.
In the optimization the control signal is discretized and the cost function

α 2

2
[s2(T) + ṡ2(T)] + β 2

2

∫ T

0
u2(t) dt

where s is the surface elevation and u is the acceleration, is numerically
minimized for different values of α and β with constraints on hu(t)h and
trajectory constraints on s(t). This approach is very similar to the one
presented in Section 4.6. No experimental results are presented in the
report.

In [Dubois et al., 1999] the slosh is modeled by the linearized Shallow
Water Equations. It is shown that the surface can be parameterized by
the horizontal coordinate of a particular point in the system, the fully
flat output, and a periodic function. It is also shown that the system is
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Figure 4.1 Simulations with the notch-filter acceleration reference. Response of
the bang-bang acceleration (dotted), σ = 54 rad/s (dash-dotted), σ = 42 rad/s
(dashed) and σ = 30 rad/s (solid). The circles in the position diagram show when
the position is 0.198 m for the different values of σ . The movement time is increased
for small values of σ and the peaks in the acceleration reference is increased for
large values of σ .

not controllable but it is possible to control the system from one steady
state to another steady state. The acceleration reference is obtained by
finding a control that connects two steady states. The calculated acceler-
ation reference is simulated using the nonlinear model, which works for
small slosh amplitudes but the performance degrades as movement time
is decreased and the slosh amplitude increases. The use of the shallow
water equations limits this solution to containers where the liquid depth
is much smaller than the container width and the method is therefore of
limited practical use.

Another field that is closely related is anti-swing control of overhead
and rotary cranes, see [Mårtensson, 1972], [Gustafsson, 1995] and [Lee
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et al., 1997]. The swinging load is typically modeled as a pendulum. Lin-
earization of the pendulum gives the same model as the one presented
in Section 3.5. The main difference is that the angle of the pendulum is
often measured and used for feedback.

4.3 Optimal control

Several different methods for calculation of acceleration references are
presented in this and the following sections. All methods are based on
optimal control of the simple linear slosh model presented in Section 3.5.
The proposed optimal control problems are solved either numerically or
analytically. The calculated acceleration references are evaluated using
experiments.

The control problem

The problem is to move the container from the filling station to the sealing
station of the packaging machine. This movement is performed repeatedly
where the same acceleration reference is applied in every step. The num-
ber of movement steps is typically between 3 and 5. Between each move-
ment step the package must be standing still while the package is filled.
During the movement the surface elevation at the walls of the package
must be below a certain level.

This problem can be solved using optimal control techniques although
it is not straight forward since the control input is repeated several times.
Also the acceleration reference will depend on the number of steps and the
time between the movement steps. Hence, if the filling time is decreased
the acceleration reference needs to be recalculated.

By introducing additional constraints the acceleration reference can be
made independent of the number of steps and the time between the steps.
By ensuring that the slosh is at rest in the beginning of each movement
step the slosh response will be the same in all steps. If the slosh is at rest
at the end of each step it will also be at rest at the beginning of the next
step. This will result in a standard optimal control problem.
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4.3 Optimal control

The constraints

The constraints used when solving the optimal control problems are

C1. Acceleration: hu(t)h ≤ umax

C2. Surface elevation: hx2(t)h ≤ smax

C3. Initial state: x(0) = [ 0 0 0 0 ]T

C4. Terminal state: x(T) = [ 0 0 0 L ]T

where T is the movement time for one step and L is the length of one
step.

The movement distance L = 0.2 m is used in all simulations and
experiments. The maximum surface elevation smax = 0.035 m is used
where nothing else is mentioned. This corresponds to a 45 degree surface
elevation angle relative to the horizon.

Stored internal slosh

A measure of the energy stored within the oscillation is introduced and
denoted the stored internal slosh.

DEFINITION 4.1
If s(t) denotes the surface elevation and ṡ(t) its time derivative the stored
internal slosh si(t) is defined as

si(t) =
√

s(t)2 +
(

ṡ(t)
ω

)2

=
√

x1(t)2 + x2(t)2

The stored internal slosh represents the amplitude of the oscillation at
time t when u = 0 and ζ = 0 for the model in (3.39).

Proof: When u = 0 and ζ = 0 the the surface oscillation can be written
as s(t) = A sinω t where A is the oscillation amplitude. Differentiation
gives ṡ(t) = ω A cosω t. This gives the stored internal slosh

si(t) =
√

A2 sin2 ω t+ A2 cos2 ω t = A

hence the surface oscillation amplitude.
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4.4 Minimum time solution

The natural approach is to solve a minimum time problem since the goal
is to move a fast as possible. The minimum time acceleration reference
is found by minimizing the following cost function J with respect to T
subject to the constraints C1–C4 and the slosh model in (3.39), where

J =
∫ T

0
1 dt

Numerical solution

A numerical solution to the optimal control problem is obtained using the
Matlab toolbox RIOTS (Recursive Integration Optimal Trajectory Solver),
see [Schwartz and Polak, 1996].

RIOTS can only solve fixed time optimal control problems. Therefore,
the variable-time minimum time problem has to be transformed to a fixed
time problem. This can be done by augmenting the system with a constant
state that scale the dynamics and represents the terminal time. The sys-
tem now becomes

ẋ(t) = (Ax(t) + Bu(t))z(t)
ż(t) = 0

and the cost function becomes

J = z(T)

If this problem is solved with T = 1 the minimum time will be Topt = z(T).
The numerical minimum time solution is shown in Figure 4.2 for three

values of umax and the movement times are given in Table 4.1. The solu-
tion is of bang-bang type where the acceleration switches either between
four different values ±umax and ±ucon when umax is greater than ucon

or otherwise between ±umax, where ucon = 2smaxn/a is the acceleration
needed to keep the surface elevation on the boundary of the constraint
C2.

Calculation of switching times

Experience shows that if umax ≥ 2smaxn/a then the time optimal acceler-
ation profile can be divided into five independent operations:

1. Bring the surface up to the level smax as fast as possible with ṡ = 0
at the end.

2. Keep the surface at level smax.
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4.4 Minimum time solution

umax (m/s2) Topt (ms)
4.90 433

9.81 383

19.62 353

∞ 286

Table 4.1 The minimum movement times from the solution of the minimum-time
problem, L = 0.2 m, smax = 3.5 cm and ω = 21.0 rad/s. Simulations of the solutions
are shown in Figure 4.2.
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Figure 4.2 Numerical solution of the minimum time problem, with umax = n/2
(left), umax = n (center) and umax = 2n (right). The movement distance is L = 0.2
m and the maximum allowed surface elevation is smax = 3.5 cm. The resulting
movement times are T = 433 ms, T = 383 ms and T = 353 ms respectively.
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Chapter 4. Horizontal motion

3. Move the surface from smax to −smax as fast as possible with ṡ = 0
at the end.

4. Keep the surface at level −smax.

5. Bring the surface to 0 as fast as possible with ṡ = 0 at the end.

The acceleration profile can be parameterized as

u(t) =



umax 0 ≤ t < t1

−umax t1 ≤ t < t2

ucon t2 ≤ t < t3

−umax t3 ≤ t < t4

umax t4 ≤ t < t5

−ucon t5 ≤ t < t6

umax t6 ≤ t < t7

−umax t7 ≤ t < T

where ucon = 2smaxn/a is the acceleration needed to keep the surface
at the constant level smax. The switching times can be parameterized as
t1 = d1, t2 = t1 + d2, t3 = t2 + d3, t4 = t3 + d4, t5 = t4 + d4, t6 = t5 + d3,
t7 = t6 + d2 and T = t7 + d1. Now the durations d1, d2 and d4 can be
obtained from the solutions of the differential equation

ẋ =
[

0 −ω
ω 0

]
x +

[
aω/2n

0

]
u (4.2)

where the damping is neglected (ζ = 0).
Solving (4.2) with the boundary values x(0) = [ 0 0 ]T and x(t2) =

[ 0 smax ]T gives

d1 = 1
ω

arccos
(

2 cos(2d2) − umax + ucon

umax

)
− d2

d2 = 1
ω

arccos
(

4u2
max + 2umaxucon + u2

con

4u2
max + 4umaxucon

)

Solving (4.2) with the boundary values x(t3) = [ 0 smax ]T and x(t5) =
[ 0 −smax ]T gives

d4 = 1
ω

arccos
(

umax

umax + ucon

)
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4.4 Minimum time solution

The duration d3 is obtained by solving ÿ = u with the boundary values
ẏ(0) = 0, y(0) = 0 and ẏ(T) = 0, y(T) = L, which gives

d3 = 1
ucon

(
umax(d2 − d1) − ucond4 + [u2

max(d2 − d1)2+

umaxucon(d2
2 − 2d1d2 − d2

1 + d2
4) + u2

cond2
4 + ucon L] 1

2

)
The calculated switching times correspond well with the numerical

solutions of the problem.
Now the theoretical minimum movement time if there is no constraint

of the control signal can be calculated. The limit of d1, d2, d3 and d4

can be calculated as umax tends to infinity. This gives d1 = 0, d2 = 0,
d3 =

√
L/ucon and d4 = 0.

Figure 4.3 shows the movement time for different values of umax. The
minimum movement time for movement disregarding the slosh is also
shown. The figure shows that when umax is greater than 5 m/s2 only a
small decrease in movement time is achieved if umax is increased.

Experimental evaluation of the minimum time strategy

Practical evaluations of the minimum-time strategy in the experimental
setup have shown that the strategy only works well for small values of
smax and umax. For larger values the surface is not a rest at the end of
the movement and the maximum slosh is much larger than smax. Since
we want to evaluate the strategy when the slosh constraint is active, smax

is chosen such that ucon = umax this gives smax = a
2numax. The movement

times for the different acceleration references are shown in Table 4.2.
Typical results of the experiments are shown in Figure 4.4. The fig-

ure shows that for small values of umax the slosh roughly corresponds
to the calculated slosh shown in Figure 4.2 except for a high frequency
oscillation. However, as umax is increased the performance is drastically
degraded.

One reason for this could be the amplitude dependent oscillation fre-
quency, see Section 3.3. To explore this, experiments were done with ac-
celeration profiles calculated for different values of ω . However, this lead
to no improvements.

Insight into why the performance degrades can be obtained by studying
the stored internal slosh si shown in Figure 4.2. The figure shows that in
the middle of the movement, si is first increased and then decreased. This
pumping of energy in and out of the system requires a very accurate model
to be successful. From Figure 4.4 we also see that the largest deviations
appear in the middle of the movement.
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Figure 4.3 The minimum movement time for different values of umax with L =
0.2 m, smax = 3.5 cm and ω = 21.0 rad/s; taking the slosh into account (○) and
disregarding the slosh (�). The dotted line shows the value of ucon and the dashed
line shows the value of the theoretical minimum movement time T = 2

√
L/ucon =

286 ms when umax = ∞ taking the slosh into account. See also Table 4.1.

umax (m/s2) 0.5 1 1.5 2 2.5 3 3.5 4

T (ms) 1361 991 827 729 662 613 575 544

Table 4.2 The minimum movement times for the different values of umax, with
L = 0.2 m, smax = aumax/(2n) and ω = 21.0 rad/s.

4.5 Modified minimum time solution

To avoid the problems experienced in Section 4.4 an additional constraint
is added. The excessive peaking of the stored internal slosh can be limited
by adding the constraint

C5. Stored internal slosh: si(t) =
√

x2
1(t) + x2

2(t) ≤ imax

The same cost function as in the original minimum time problem is now
minimized subject to the constraints C1–C5 and the slosh model in (3.39).
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Figure 4.4 Data from experiments with the minimum-time acceleration profile
for movement in several steps for varying values of the maximum acceleration. The
dotted lines show ±smax = ± a

2numax. Each plot shows two experiments, one with the
sensor in the front and one with the sensor in the back of the container. The results
are good for small values of umax but for larger values of umax the performance
degrades. See Table 4.2 for the movement times.
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umax (m/s2) imax (cm) T (ms)
3.5 436

4.90 3.75 435

5.5 434

3.5 390

9.81 3.75 387

5.5 383

3.5 368

19.62 3.75 364

5.5 354

Table 4.3 The minimum movement times from the numerical solution of the modi-
fied minimum time problem, L = 0.2 m, smax = 3.5 cm and ω = 21.0 rad/s. Compare
with the movement times from the original minimum time problem in Table 4.1. The
constraint on the stored internal slosh leads to a slight increase in the movement
time.

Numerical solution

The modified minimum time problem is solved in the same way as the
original minimum time problem. The numerical solutions are shown in the
figures 4.5, 4.6 and 4.7 for three different values of imax. The movement
times are shown in Table 4.3.

Compared to the original minimum time problem the movement times
are only slightly increased. When imax = 3.5 cm the peaks in the stored
internal slosh are eliminated and the movement times are the longest. The
movement times are increased with 0.5 %, 1.8 % and 4.2 % respectively
with umax = n/2, n and 2n.

Calculation of switching times

The modified minimum time acceleration profile is built up by the same
five independent operations as the original minimum time acceleration
reference when umax ≥ 2smaxn/a and imax ≥ smax, experience shows that
each operation is divided into sub operations to deal with the extra con-
straint:

1. Bring the surface up to the level smax as fast as possible with ṡ = 0
at the end.

i Bring the stored internal slosh up to imax.

ii Keep the stored internal slosh at imax.
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Figure 4.5 Numerical solution of the modified minimum time problem, with
umax = n/2 (left), umax = n (center) and umax = 2n (right). The movement dis-
tance is L = 0.2 m, the maximum allowed surface elevation is smax = 3.5 cm and
the maximum allowed stored internal slosh is imax = 3.5 cm. The resulting move-
ment times are T = 436 ms, T = 390 ms and T = 368 ms.

iii Bring the surface up to smax and the stored internal slosh down
to smax.

2. Keep the surface at level smax.

3. Move the surface from smax to −smax as fast as possible with ṡ = 0
at the end.

i Bring the stored internal slosh up to imax.

ii Keep the stored internal slosh at imax.

iii Bring the surface down to −smax and the stored internal slosh
down to smax.

4. Keep the surface at level −smax.
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Figure 4.6 Same as Figure 4.5 with imax = 3.75 cm.

5. Bring the surface to 0 as fast as possible with ṡ = 0 at the end.

i Bring the stored internal slosh up to imax.

ii Keep the stored internal slosh at imax.

iii Bring the surface up to zero and the stored internal slosh down
to zero.

The modified minimum time acceleration reference can be parameter-
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Figure 4.7 Same as Figure 4.5 with imax = 5.5 cm.

ized as

u(t) =



umax 0 ≤ t < t1

ui(t) t1 ≤ t < t2

−umax t2 ≤ t < t3

ucon t3 ≤ t < t4

−umax t4 ≤ t < t5

ui(t) t5 ≤ t < t6

umax t6 ≤ t < t7

−ucon t7 ≤ t < t8

umax t8 ≤ t < t9

ui(t) t9 ≤ t < t10

−umax t10 ≤ t < T

where ucon = 2smaxn/a is the acceleration needed to keep the surface
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at a constant level and ui(t) is the control signal needed to keep the
stored internal slosh si at a constant level when the surface is moving.
An expression for ui(t) is obtained from the time derivative of the stored
internal slosh.

ṡi(t) = 1
si(t)

(
s(t)ṡ(t) + ṡ(t)s̈(t)

w2

)
Since we are interested in the case when si(t) is a non-zero constant and
hence ṡi(t) = 0 we get

s(t)ṡ(t) + ṡ(t)s̈(t)
w2 = 0

Insertion of s̈ = −2ζ ω ṡ−ω 2s− aω 2u/(2n) gives

− 1
nω

ṡ(t)(4ζ nṡ(t) + aω u(t)) = 0 ; ui(t) = 4ζ nṡ(t)
aω

since ṡ(t) �= 0. This shows that the control signal necessary to keep the
stored internal slosh at a constant level depends on the surface elevation
velocity and the relative damping.

The movement switching times are symmetric and can be parameter-
ized as t1 = d1, t2 = t1+d2, t3 = t2+d3, t4 = t3+d4, t5 = t4+d5, t6 = t5+d6,
t7 = t6 + d5, t8 = t7 + d4, t9 = t8 + d3, t10 = t9 + d2 and T = t10 + d1. It
might happen that ti+1 = ti. For the case when imax = smax and ζ = 0
the switching times can be calculated in the same way as for the original
minimum time problem and are then given by

d1 = 2
ω

arctan

(
ucon√

4u2
max − u2

con

)

d2 = 1
ω

arccos
(

ucon

2umax

)
d3 = 0

d4 = 1
2ucon

(−2umaxd1 − ucond6+

[4u2
maxd2

1 − 4umaxucon(d2
1 + 2d1d2) + u2

cond2
4 + 4ucon L] 1

2 )
d5 = 0

d6 = π
ω

The switching times when imax > smax and when ζ �= 0 are harder to
calculate analytically.
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4.6 Minimum energy solution

umax (m/s2) 1 2 3 4 5 6 7 7.5

T (ms) 995 734 618 550 503 468 441 430

Table 4.4 The minimum movement times for the different values of umax for
the modified minimum-time acceleration profiles, with L = 0.2 m, imax = smax =
aumax/(2n) cm and ω = 21.0 rad/s. The movement time is only slightly increased
compared to the movement times for the original minimum-time problem in Ta-
ble 4.2.

Experimental evaluation of the modified minimum time strategy

The evaluation of the modified minimum time acceleration references was
done in the same way as for the original minimum time acceleration ref-
erences, with smax = imax = a

2numax to ensure that the constraints are
active. The minimum movement times are shown in Table 4.4 and typical
results from the experiments are shown in Figure 4.8.

A comparison with the experimental results with the profiles obtained
from the original minimum-time problem, shown in Figure 4.4, reveals
that larger values of umax and smax can be used before the performance
degrades.

In an attempt to improve the performance, acceleration profiles cal-
culated for different values of ω were tested. However, this lead to no
improvements.

A conclusion that can be drawn is that limiting the stored internal
slosh has a positive effect and the minimum movement times are only
slightly increased compared to the original minimum-time problem. The
acceleration profiles are however still useless for fast movements.

4.6 Minimum energy solution

One way of making the acceleration reference smoother is to solve an
minimum energy problem instead. The cost function

J =
∫ Topt+∆

0
u2(t) dt

is minimized subject to the constraints C1–C4 and the slosh model in
(3.39). Here Topt is the movement time from the solution of the minimum
time problem and ∆ is the extra time allowed for the movement.

Numerical solution

The problem was solved numerically with RIOTS and the result is shown
in Figure 4.9 for different values of ∆ and umax. The figure shows that
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Figure 4.8 Data from experiments with the modified minimum-time acceleration
profile for movement in several steps for varying values of umax. The dotted lines
shows ±smax = ±imax = ± a

2numax . Each plot shows two experiments, one with the
sensor in the front and one with the sensor in the back of the container. Compared
with Figure 4.4 larger values of umax can be used before the performance degrades.
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Figure 4.9 Numerical solution of the minimum-energy problem with umax = n/2
(left), umax = n (center) and umax = 2n (right) for different values of ∆; ∆ = 0.02Topt
(solid), ∆ = 0.05Topt (dashed), ∆ = 0.10Topt (dash dotted) and ∆ = 0.15Topt (dotted).

by increasing the movement time slightly we can make the acceleration
reference much smoother. Notice that when ∆ is sufficiently large neither
the slosh nor the control constraint is active.

Experimental evaluation of the minimum energy strategy

The minimum energy acceleration references are evaluated for different
values of ∆ and ω with umax = 9.81 m/s2 and smax = 3.5 cm. Table 4.5
shows the movement times and the relative increase in movement time
for different values of ω . The acceleration profiles are calculated for five
movement times T and three values of ω .

Since the minimum movement time Topt depends on ω , the relative
increase in movement time is different for different values of ω . The re-
sults of the experiments are shown in Figure 4.10. In the two plots for
ω = 21.0 rad/s with T = 417 ms and T = 444 ms, the sensor was not
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T (ms) 417 444 478 520 570

ω = 21.0 rad/s ∆/Topt (%) 9 16 25 36 49

Topt = 383 ms max u (m/s2) 7.35 5.73 4.58 4.03 3.97

max s (cm) 3.47 3.05 2.58 2.06 1.63

ω = 19.5 rad/s ∆/Topt (%) 7 14 23 33 46

Topt = 390 ms max u (m/s2) 8.81 6.65 4.95 3.86 3.44

max s (cm) 3.43 3.05 2.63 2.17 1.69

ω = 18.0 rad/s ∆/Topt (%) 5 11 20 30 43

Topt = 399 ms max u (m/s2) 9.81 8.14 5.82 4.15 3.21

max s (cm) 3.42 3.02 2.63 2.22 1.79

Table 4.5 The relative increase in movement time, the maximum of the applied
acceleration and the simulated maximum slosh are shown for different values of
the movement time T and different ω from the numerical solution of the problem.

able to measure the surface elevation between t � 0.5 s and t � 0.7 s,
which resulted in the straight lines in the plots.

Figure 4.10 shows that the performance can be increased by adjusting
the value of ω . When T = 570 ms the best performance is achieved with
ω = 21.0 rad/s, for T = 478 ms ω = 19.5 rad/s gives the best perfor-
mance and ω = 18.0 rad/s gives the best performance when T = 417 ms.
If performance is defined as the amplitude of the surface elevation oscilla-
tions after the movement is performed, the smaller amplitude the better
performance.

4.7 Modified minimum energy solution

Analytical solutions to the minimum energy problem can actually easily
be obtained with the following modifications to the constraints:

• The constraint on the control signal (C1) is removed

• The slosh inequality constraint (C2) is replaced with a quadratic
penalty on the slosh

A motivation for the modifications can be found in the numerical solu-
tions of the original minimum energy problem shown in Figure 4.9. There
it can be seen that for the case when umax = n neither the control nor the
slosh constraint is active when ∆ ≥ 0.1Topt.
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Figure 4.10 Data from experiments with the minimum energy acceleration ref-
erence for varying values of the movement time T and the oscillation frequency ω
in the slosh model used for optimization. The dotted lines show the simulated max-
imum and minimum slosh, see Table 4.5. Each plots show two experiments, one
with the sensor in the front and one with the sensor in the back of the container.
The figure shows that the best performance is obtained for different values of ω for
the different movement times and that the surface elevation corresponds relatively
well with the simulated surface elevation.
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This gives the following cost function and constraints

J =1
2

∫ T

0
xT (t)Qx(t) + Ru2(t) dt

x(0) = [ 0 0 0 0 ]T

x(T) = [ 0 0 0 L ]T
(4.3)

The control u(t) that minimizes J is obtained by simultaneously solving
the system equation (3.39) and the adjoint Euler-Lagrange equations,
see [Bryson and Ho, 1975]

λ̇T =− VH
V x

(4.4)
VH
Vu

= 0 (4.5)

where the Hamiltonian is

H = 1
2
(xT Qx + Ru2) + λT(Ax + Bu)

Equations (3.39), (4.4) and (4.5) give[
ẋ

λ̇

]
=

[
A − 1

R B BT

−Q −AT

]
︸ ︷︷ ︸

M

[
x

λ

]
(4.6)

and
u = − 1

R
BT λ (4.7)

The solutions to (4.6) can be written as[
x(t)
λ(t)

]
= Φ(t)

[
x(0)
λ(0)

]
(4.8)

where Φ(t) = eMt. The boundary values are given in (4.3), while λ(0) and
λ(T) are free. Insertion of x(0) in (4.8) then gives

x(t) =Φ1:4,5:8(t)λ(0) (4.9)
λ(t) =Φ5:8,5:8(t)λ(0) (4.10)

where Φ1:4,5:8(t) means the sub matrix with rows 1 to 4 and columns 5
to 8 of Φ(t). Evaluation of (4.9) at time T gives

λ(0) = [Φ1:4,5:8(T)]−1x(T) (4.11)
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4.7 Modified minimum energy solution

The optimal control u(t) is hence

u(t) = − 1
R

BT Φ5:8,5:8(t)[Φ1:4,5:8(T)]−1x(T) (4.12)

A special case

In the original minimum energy problem there is no penalty on the state
trajectory, and if the movement time is sufficiently large neither the con-
trol nor the slosh constraint is active. This motivates an investigation
of the special case when there is no penalty on the state trajectory (i.e.
Q = 0). When Q = 0 and R = 1 we get

Φ(t) =
[ eAt Φ1:4,5:8(t)

0 e−AT t

]
Model with no damping If the damping is neglected in the model
(i.e. ζ = 0) we get

BT Φ5:8,5:8(t) = [ aω
2n cosω t − aω

2n sinω t 1 −t ]

hence we get

u(t) = −aω
2n (λ1(0) cosω t− λ2(0) sinω t) − λ3(0) + λ4(0)t (4.13)

where λ(0) is given by (4.11).

Model with damping With the damping in the model (i.e. ζ �= 0) we
get

BT Φ5:8,5:8(t) =


aω eωζ t

2n
√

1−ζ 2
(
√

1− ζ 2 cosω mt+ ζ sinω mt)

− aω eωζ t

2n
√

1−ζ 2
sinω mt

1

−t



T

where ω m = ω
√

1− ζ 2. This gives

u(t) = − aω eωζ t

2n
√

1− ζ 2
[λ1(0)

√
1− ζ 2 cosω mt+

(λ1(0)ζ − λ2(0)) sinω mt] − λ3(0) + λ4(0)t (4.14)

where λ(0) is given by (4.11).
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Experimental evaluation of the modified minimum energy strategy

The control strategies in (4.13) and (4.14) are evaluated for the move-
ment in several steps. The container is moved 0.2 m five times and the
movement time is 460 ms and the filling time between the movements is
440 ms.

If we use the nominal value of ω = 21.0 rad/s given by (3.25) when
calculating the acceleration reference the expected performance is not
achieved in experiments. This is due to the amplitude dependent oscil-
lation frequency. A way of quantifying the performance is to study the
remaining oscillation after the movement has been performed.

DEFINITION 4.2
Define the residual slosh r(t) as

r(t) = s(t+ T) , for t ≥ 0

where s(t) is the surface elevation and T is the movement time. The
performance measure R is then defined as

R =
√∫ ∞

0
r2(t) dt

To increase the performance, the model parameters ω and ζ were tuned
using experiments. First experiments were done with acceleration refer-
ences calculated for different values of ω , with ζ = 0. The performance
measure R from these experiments are shown in Figure 4.11. This gave
ω = 19.1 rad/s as a minimizer of R. This value of ω was then used in
the experiments with acceleration references calculated for different val-
ues of ζ . Figure 4.11 shows R for different values of ζ . The performance
measure R is minimized for ζ = 0.013.

The surface elevation when five consecutive movements are performed
is shown in Figure 4.12. In Figure 4.13 the surface elevation from each
movement cycle is plotted upon each other. The figure shows that there is
only a small difference between each movement cycle, and the acceleration
reference fulfills the specifications. Since the residual slosh is small the
performance is independent of the time between the movements (i.e. the
filling time), and therefore the same acceleration reference can be used
even if the filling time is changed which is an advantage.

Figure 4.14 shows the surface shape obtained using the vision mea-
surement system described in Section 2.3 when the container is moved
one step. The acceleration reference is calculated using the modified min-
imum energy approach with the model parameters ω = 19.0 rad/s and
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Figure 4.11 The left plot shows the performance measure R for different values
of ω with ζ = 0, where ω = 19.1 minimizes R. In the right plot R is shown for
different values of ζ with ω = 19.1, where ζ = 0.013 minimizes R.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

−1

0

1

2

3

Time (s)

S
u

rf
ac

e
el

ev
at

io
n
(cm

)

Figure 4.12 Experiment when the container is moved five times showing the
surface elevation in the back and in the front. The movement length of each step is
L = 0.2 m, the movement time is T = 460 ms and the time between each step is
440 ms. The performance is satisfactory and the maximum slosh constraint is not
violated.

ζ = 0. The movement time is 0.46 s and the movement distance is 0.2 m.
The figure shows that the surface shape is far from the shape of the first
order mode assumed in the model.

In Figure 4.15 the amplitude of the six first oscillation modes are
shown. The amplitudes are obtained in the same way as described in
Section 3.4. The figure shows that the first mode is dominant but the
higher order modes are not negligible.
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Figure 4.13 Experiment when the container is moved five times showing the
surface elevation. The movement cycles are plotted upon each other. To the left of
the dashed line the container is moving and to the right of the dashed line it is
standing still. The upper plot shows the surface elevation in the back and the lower
plot shows the surface elevation in the front.
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0 20 40 60 80

100 120 140 160 180

200 220 240 260 280

300 320 340 360 380

400 420 440 460 480

500 520 540 560 580

600 620 640 660 680

700 720 740 760 780

800 820 840 860 880

900 920 940 960 980

Figure 4.14 The surface shape when the container is moved using the modified
minimum energy approach. The number in each frame is the time in milliseconds
from the beginning of the movement. The movement distance is 0.2 m and the
movement time is 0.46 s. The parameters used in the slosh model are ω = 19.0
rad/s and ζ = 0.
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Figure 4.15 The amplitude of the six first oscillation modes obtained from the
surface shapes in Figure 4.14. The figure shows that the first mode is dominant but
the higher order modes are not negligible, especially not the second mode.
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4.8 Implementation issues

All acceleration references calculated so far are continuous functions.
However, the control systems is implemented in a computer which works
in discrete time. Therefore, the acceleration references need to be dis-
cretized.

The implementation of the motion control system can be done in many
ways. The trajectory can be represented by the acceleration reference or
by a position reference. If a position reference is used then the discretiza-
tion is simple. One can simply choose points from the continuous position
trajectory as position reference. The continuous position trajectory is easy
to obtain from the solutions of the optimal control problems.

When an acceleration reference is used it is important that the fi-
nal velocity is zero and that the final position is the desired. This is not
fulfilled if the continuous acceleration reference is sampled. Therefore
the discretization must be made such that the velocity and position con-
straints are satisfied. Since the acceleration reference is integrated in the
control system to generate position and velocity references the integration
algorithms in the control system need to be known.

Now follows a description of a simple algorithm to discretize the con-
tinuous acceleration reference ac(t). The result should be a piecewise con-
stant discrete reference ad(kh) where h is the sampling period. The sam-
pling period is chosen such that the movement time is Nh. This gives
that ad(kh) is zero for k < 0 and k > N − 1.

If the acceleration reference is piecewise constant then the velocity
will be piecewise linear and the position piecewise quadratic. It is further
assumed that the following integration routines are used in the control
system

v(kh) = h
k∑

i=0

ad(ih) p(kh) = h
2

k∑
i=0

v((i− 1)h) + v(ih) (4.15)

where v(t) is the velocity reference and p(t) is the position reference. The
constraints that ad(kh) need to satisfy are v(Nh) = 0 and p(Nh) = L
where L is the desired movement distance.

One way to find ad(kh) is to solve the following optimization problem

min
ad(kh)

∫ Nh

0

(
ac(t) − ad

(⌊
t
h

⌋
h
))2

dt

subject to: v(Nh) = 0

p(Nh) = L
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where exg is the largest integer less than x and v(Nh) and p(Nh) are
given by (4.15).

Here a simple scheme will be proposed. The method is based on the
fact that if the discrete time acceleration reference ad(kh) does not fulfill
the constraints then there exists constants b and c such that c(ad(kh)−b)
fulfills the constraints. The constants b and c can easily be calculated; first
b is found by calculating the resulting velocity if the reference is applied
and dividing it by N. The resulting position is calculated for at(kh) =
ad(kh)−b, c is then given by the resulting position divided by the desired
position L. This gives the following algorithm:

ALGORITHM 4.1
Construction of discrete acceleration reference ad(t) that fulfills the move-
ment constraints from a continuous acceleration reference a(t).

1. Sample N points from the continuous acceleration reference a(t)
with the sampling period h to get as(kh).

2. Calculate the velocity v(kh) for as(kh) using (4.15). This gives the
bias term

b = v(Nh)
N

3. Calculate the temporary reference

at(kh) = as(kh) − b

4. Calculate the position p(kh) for at(kh) using (4.15). This gives the
gain

c = p(Nh)
L

5. The compensated acceleration reference is now given by

ad(kh) = cat(kh)

The sampling of a(t) can be done in several ways, here are some examples:

as(kh) = a(kh) (I)
as(kh) = a(kh+ h) (II)
as(kh) = a(kh+ h/2) (III)

(4.16)

The different sampling methods in (4.16) are evaluated using simula-
tion for several sampling intervals when the container is moved 0.2 m in
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Before After

v(Nh) L − p(Nh) si(Nh) si(Nh)
(m/s) (m) (m) (m)

h = 0.02 s (I) 1.01E-1 -2.31E-2 8.88E-4 2.43E-3

(II) -1.01E-1 2.36E-2 8.88E-4 2.43E-3

(III) -8.74E-16 3.77E-4 3.70E-5 3.70E-5

h = 0.005 s (I) 2.53E-2 -5.81E-3 2.23E-4 6.13E-4

(II) -2.53E-2 5.84E-3 2.23E-4 6.13E-4

(III) -4.13E-16 2.36E-5 2.27E-6 2.27E-6

h = 0.001 s (I) 5.07E-3 -1.17E-3 4.46E-5 1.23E-4

(II) -5.07E-3 1.17E-3 4.46E-5 1.23E-4

(III) 1.11E-16 9.44E-7 9.06E-8 9.06E-8

Table 4.6 Results from simulation with the different samplings methods in (4.16)
for different sampling periods. The terminal velocity, the terminal position error and
the terminal stored internal slosh is shown before the compensation is applied. The
terminal stored internal slosh after compensation has been applied is also shown.

0.46 s. The acceleration reference is calculated using the modified mini-
mum energy approach with ω = 21.0 rad/s, ζ = 0, Q = 0 and R = 1.
Table 4.6 shows the results of the simulations. The table shows the termi-
nal velocity, the terminal position error and the terminal stored internal
slosh without compensation and the terminal stored internal slosh with
compensation.

The simulations show that the velocity and the position errors decrease
as the sampling period is decreased. The errors are also considerably
smaller for method III than for method I and II, especially the velocity
error.

The stored internal slosh represents the amount of surface elevation
oscillation when the movement has been performed and should be as small
as possible. The simulations show that the stored internal slosh decreases
as the sampling period is decreased and that it is smaller for sampling
method III. Notice that the stored internal slosh is increased after the
compensation for method I and II but not for method III.

The simulations show that sampling method III gives the best per-
formance and it has been used in the implementation of the acceleration
references.

Another implementation issue is the quantization of the acceleration
reference. Most motion control systems are implemented using fixed point
arithmetics. Therefore, the quantized acceleration reference needs to ful-
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fill the motion constraints. This is a hard problem and has not been con-
sidered during this work.

4.9 Discrete time calculations

One way to avoid the discretization problem is to directly solve a discrete
time optimal control problem. First a description of the system is needed
when the input is a piecewise constant signal with a constant sampling
period h. This is obtained by standard zero order hold sampling of the
continuous system description in (3.39), which gives

x(kh + h) = Adx(kh) + Bdu(kh)

where the discrete time states directly correspond to the continuous time
states.

Now the following discrete time minimum energy optimal control prob-
lem can be formulated when the container is moved the distance L in time
T = Nh

min
u

N−1∑
k=0

u2(kh)

subject to: x(kh+ h) = Adx(kh) + Bdu(kh)
x(0) = [ 0 0 0 0 ]T

x(Nh) = [ 0 0 0 L ]T
hu(kh)h ≤ umax, k = 0, . . . , N − 1

hx2(kh)h ≤ smax, k = 1, . . . , N

By introducing the vectors

U = [u(0) u(h) . . . u((N − 1)h) ]T

Xi = [ xi(h) xi(2h) . . . xi(Nh) ]T , i = 1, . . . , 4

and the matrices

Gi =


ni(h) 0 . . . 0

ni(2h) ni(h) . . . 0
...

...
. . .

...

ni(Nh) ni((N − 1)h) . . . ni(h)

 , i = 1, . . . , 4
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where ni(kh) is the pulse response from the input to state xi the system
can be described by

Xi = GiU , i = 1, . . . , 4

since the initial condition is zero. Now the optimal control problem can
be written as

min
U

UT U

subject to: CU = [ 0 0 0 L ]T
hU h ≤ Umax

hG2U h ≤ Smax

where Umax and Smax are constant vectors of length N and

C =


n1(Nh) n1((N − 1)h) . . . n1(h)
n2(Nh) n2((N − 1)h) . . . n2(h)
n3(Nh) n3((N − 1)h) . . . n3(h)
n4(Nh) n4((N − 1)h) . . . n4(h)


This is a standard quadratic programming problem which is easily solved
using any of the numerous numerical solvers available. If the inequality
constraints are removed it is also easy to solve analytically.

Using quadratic programming it is also easy to solve the global prob-
lem considering all movement steps and not requiring the surface to be
at rest between the movements.

The problem now is to find u(kh) that moves the container the distance
L on the time Tm = Nh. When the acceleration reference is repeated O
times with a waiting time of Tw = Mh between each movement the surface
elevation must not exceed smax.

First a description of the surface elevation on the form G2eO U when the
acceleration reference is repeated is needed. This can be obtained in the
same way as in the single movement case. The total time of the problem
is now (N +M)Oh, which gives that the surface elevation response from
the first movement is given by G2eU with

G2e =



n2(h) 0 . . . 0

n2(2h) n2(h) . . . 0
...

...
. . .

...

n2(Nh) n2((N − 1)h) . . . n2(h)
...

...
...

n2(Jh) n2((J − 1)h) . . . n2((J − N + 1)h)


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where J = (N + M)O is the total number of samples. When the accel-
eration reference is repeated the surface elevation response is given by
G2eO U with

G2eO =
I−1∑
k=0

[
0k(N+M)

G2e(O−k)(N+M) )

]
where 0n is a zero matrix with N columns and n rows and G2en is the n
upper rows of G2e. This gives the quadratic program

min
U

UT U

subject to: CU = [ 0 L ]T
hU h ≤ Umax

hG2eO U h ≤ Smax

where Smax is a constant vector of length J and

C =
[n3(Nh) n3((N − 1)h) . . . n3(h)
n4(Nh) n4((N − 1)h) . . . n4(h)

]
Investigation of behavior

The behavior of the method is studied by solving the problem for different
movement and waiting times when the container is moved five times. The
quadratic program is solved using the function quadprog in Matlab. The
model parameters were ω = 21.0 rad/s, ζ = 0, a = 0.07 m and the
movement distance was L = 0.2 m. The constraints were umax = n and
smax = 0.035 m and the sampling period was h = 5 ms.

The problem is solved for two waiting times 500 ms and 450 ms and
four movement times 500 ms, 400 ms, 390 ms and the minimum move-
ment time for the different waiting times which is 380 and 385 ms re-
spectively. The solutions for Tw = 500 ms are shown in Figure 4.16 and
for Tw = 450 ms in Figure 4.17.

The figures show that the solutions are very different. When the wait-
ing time is 500 ms the resulting minimum movement time is 380 ms which
is less than the minimum movement time when the surface is required
to be at rest. The figure also shows that the surface elevation constraint
is seldom active except in the first movement step. In the case when the
movement time is 500 ms the surface elevation constraint is never ac-
tive and the acceleration reference is simply a ramp which is the same
as minimum energy acceleration reference if the slosh is not taken into
account.

When the waiting time is 450 ms the resulting minimum movement
time is 385 ms and the movement is such that the surface is at rest at
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the end of the movement. The surface elevation constraint is active in
almost every movement step and the acceleration reference is such that
the surface elevation oscillation between the movements is decreased as
the movement time is decreased.

4.10 Conclusions

Several different methods for calculation of horizontal acceleration refer-
ences have been developed and evaluated. All methods are based on the
model (3.39) and optimal control techniques. Evaluation of the methods
has been performed in the experimental setup presented in Chapter 2
where the surface elevation in the container can be measured.

In Section 4.4 the minimum time optimal control problem is solved
with constraints in the maximum allowed acceleration umax and surface
elevation smax. The problem is solved numerically for different values of
umax. The resulting acceleration reference is switching between four dif-
ferent levels, ±umax and ±ucon when umax ≥ ucon and between ±umax

otherwise, where ucon is the constant acceleration needed to keep the
surface elevation at the constraint. The switching times are calculated
analytically for the case when umax ≥ ucon and ζ = 0.

The experimental evaluation of the minimum time acceleration refer-
ence reveals that the method only works for small values of umax and smax.
Insight into why it works only for small amplitudes can be obtained by
studying the stored internal slosh. During the movement there are very
large peaks in the stored internal slosh especially if umax is large. This
indicates that there is a large amount of energy pumped in and removed
from the system. This pumping of energy in and out of the system requires
a very accurate model to be successful.

One way to limit the stored internal slosh is to add a constraint on the
maximum allowed stored internal slosh imax and solve for the minimum
time acceleration reference. This is done in Section 4.5 where the problem
is solved numerically for different values of umax and imax. This also results
in a switching acceleration reference but the acceleration reference also
switches to ui(t) to keep the stored internal slosh on the constraint, if
ζ = 0 we get ui(t) = 0 since no energy is dissipated from the system. The
switching times are calculated analytically for the case when umax ≥ ucon,
imax = smax and ζ = 0. The movement time is only slightly increased
compared to the original minimum time method.

Experimental evaluation of the modified minimum time method shows
that larger values of umax and smax can be used before the performance
degrades. However, the largest value of smax that gives acceptable perfor-
mance is still quite far from the maximum allowed smax and the resulting

97



Chapter 4. Horizontal motion
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Figure 4.16 Simulation of the minimum energy discrete time optimal control
problem when five movements are considered. The waiting time is Tw = 500 ms
and the movement distance is 0.2 m. As the movement time is decreased the sur-
face elevation is not at rest in between the movements and it is possible to move
the container faster than when it is required that the surface should be at rest.
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Figure 4.17 Same as Figure 4.16 but with Tw = 450 ms. As the movement time
is decreased the surface elevation oscillation between the movements is decreased
and at the minimum movement time the surface is at rest between the movements.
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movement time is too long.
A natural thing to do when controlling something more or less un-

known is to be cautious. This can be introduced in the optimal control
problem by minimizing the control effort which is presented in Section
4.6. The movement time obtained from the minimum time solution Topt is
increased with ∆ and a fixed time optimal control problem is solved with
the same constraints but with the integral of u2 as the cost. The problem
is solved numerically for several values of ∆. This shows that a increase
in ∆ results in acceleration references that become smoother and with
smaller maximum amplitudes.

The experimental evaluation shows that it is possible to move the con-
tainer faster and with a larger value of smax without performance degra-
dation than the minimum time methods. However, to achieve this the
oscillation frequency ω of the model needs to be adjusted depending on
the slosh amplitude. The higher slosh amplitude the lower frequency. This
is natural since the oscillation frequency is amplitude dependent, see Sec-
tion 3.3.

An analytical solution to the minimum energy problem can easily be
obtained if the constraints are modified. In Section 4.7 the control con-
straint is removed and the surface elevation constraint is replaced by a
quadratic penalty on the surface elevation and rate of change of the sur-
face elevation. This can be justified by the fact that as ∆ is increased
neither the control nor the surface elevation constraint is active.

In Section 4.8 some implementation issues are discussed. Most of the
acceleration references in this chapter are given as a continuous function
that should be implemented in a computer. Therefore, the acceleration
references need to be discretized. It is very important that the motion
constraints are fulfilled for the discretized acceleration reference. A simple
algorithm that solves this problem is presented in Algorithm 4.1.

Section 4.9 presents a method to solve the minimum energy problem in
discrete time using a discrete time model, which can be obtained by zero-
order-hold sampling of the model in (3.39), and quadratic programming.
A method to solve the global optimal control problem during a series of
movements using quadratic programming is also presented. Numerical
solutions to the global problem show that depending on the waiting time
between the movements the solutions are very different. This proves that
the only way to obtain an acceleration reference that works for all waiting
times is to require that there is no surface oscillation after each movement
step.
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5

Iterative methods

In the previous chapter optimal control techniques were used to calculate
acceleration references using a simple model describing the slosh. The ex-
perimental evaluations of the calculated references showed that the model
parameters needed to be adjusted for the minimum energy approaches to
work. For the minimum time approaches the model was only valid for
small surface elevation oscillations. Better control can be obtained if a
more accurate model is used. However, a more accurate model is probably
of higher order and nonlinear which leads to much harder optimal control
problems.

The traditional way to handle model uncertainty is to use feedback.
In this case it is not possible to use direct feedback in the control loop
since measurement of the slosh in the machine is not cost realistic. It is
however possible to measure the surface elevation in the experimental
testbed. In Section 3.3 it is shown that the response to an acceleration
reference is very repeatable and there are almost no disturbances except
measurement faults and noise. Therefore, the control error from an exper-
iment can be used to modify the acceleration reference to be used in the
next experiment. The procedure is then repeated until the desired perfor-
mance is obtained. This methodology is called iterative learning control
(ILC) and is described in Section 5.1.

Two different iterative methods are developed for this application, and
are described in the sections 5.3 and 5.4. The framework used in the
ILC approaches is described in 5.2. The stability, the stationary solution
and the noise properties are calculated numerically for both algorithms in
Section 5.5 and in Section 5.6 the algorithms are evaluated in simulations
with both a linear and a nonlinear process model. Section 5.7 presents
experimental results for both algorithms.

The iterative methods presented in this chapter have been found to be
a practical and efficient way to generate good acceleration references. The
methods does only need a rather crude model of the slosh and are sim-
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ple to tune. More conclusions and comparisons between the two different
methods are given in Section 5.8.

5.1 Iterative Learning Control

Iterative learning control (ILC) is a method to learn how to follow a tra-
jectory. The method works in an iterative manner where the control error
from previous iterations is used to refine the control. Necessary conditions
for the method are that the trajectory always starts in the same state and
that the major disturbances are repeated each iteration.

The learning signal is introduced either directly into the system as
the command signal or control signal, or indirectly as a correction of some
other signal, for instance the control signal in a feedback loop. The learn-
ing signal uk(t) at iteration k is in the standard formulation calculated as
follows

uk(t) = Q(q)(uk−1(t) + L(q)(r(t) − yk−1(t))
) (5.1)

where r(t) is the desired trajectory and yk−1(t) is the response to the
input uk−1(t), Q(q) and L(q) are linear time invariant filters. Since the
calculation is done off-line the filters need not be causal and generally
are not. The design of the filters are usually heuristic but model based
approaches are also common.

The update law or learning law in (5.1) is called a first order ILC since
only data from the previous iteration is used. Higher order ILCs can also
be used that use data from several iterations.

For more information about ILC and further details see [Moore, 1993;
Bien and Xu, 1998].

In this application of ILC the learning signal u(t) is the acceleration
reference. The specifications on the movement gives the following con-
straints on u(t) ∫ T

0
u(t) dt = 0,

∫ T

0

∫ t

0
u(s) dsdt = L (5.2)

where T is the movement time and L is the movement distance. The
constraints state that the velocity is zero after the movement and that
the movement distance is L. These constraints make it hard to choose
time-invariant filters Q(q) and L(q) in (5.1).
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5.2 The ILC framework

The control signal and the surface elevation measurements are collected
in vectors as in Section 4.9, this gives

U = [u(0) u(h) . . . u((N − 1)h) ]T

Yb = [ yb(h) yb(2h) . . . yb((N + M)h) ]T

Y f = [ yf (h) yf (2h) . . . yf ((N + M)h) ]T

where the sampling period h is chosen as T = Nh, yb(t) is the surface
elevation on the backward side of the container and yf (t) on the forward
side with respect to the direction of movement. The surface elevation is
stored for M additional samples.

An approximation of the behavior is given by the linear discrete time
transfer operator G(q), which can be obtained either from system iden-
tification or by sampling the model in (3.39). This gives the following
approximate surface elevation when the acceleration reference u(t) is ap-
plied

ŷb(t) = G(q)u(t), ŷ f (t) = −G(q)u(t)
In the same way as in Section 4.9 the following matrix is introduced

G =



n(h) 0 . . . 0

n(2h) n(h) . . . 0
...

...
. . .

...

n(Nh) n((N − 1)h) . . . n(h)
...

...
...

n((N + M)h) n((N + M − 1)h) . . . n((M + 1)h)


where n(t) is the pulse response of G(q). The approximate surface eleva-
tion can now be expressed by

Ŷb = GU , Ŷ f = −GU

The motion constraints in (5.2) can also be written as a matrix equa-
tion. This gives

CU =
[

h h . . . h

h2(N − 1
2 ) h2(N − 3

2 ) . . . h2

2

]
U =

[
0

L

]

103



Chapter 5. Iterative methods

5.3 Constrained Iterative Learning Control (CILC)

The following algorithm is similar to algorithms presented in [Bien and
Xu, 1998; Frueh and Phan, 1998; Gunnarsson and Norrlöf, 1999].

A reference r(t) for the surface elevation on the backward side of the
container, −r(t) for the forward side, and an initial acceleration reference
u0(t) is calculated using some of the methods presented in Chapter 4. The
acceleration reference and the surface elevation reference is sampled with
sampling period h and the surface elevation reference is augmented with
M zeros giving

R = [ r(h) r(2h) . . . r(Nh) 0 . . . 0 ]T

This gives the control errors

Eb = R − Yb, Ef = −R − Y f

The objective is to find an acceleration reference U which solves the fol-
lowing minimization problem

min
U

EbT
WbEb + Ef T

Wf Ef + UT WuU

subject to: CU =
[

0

L

] (5.3)

where the weighting matrices Wb and Wf with size (N + M) � (N + M)
and Wu with size N � N are introduced as tuning parameters.

The minimization can be performed in an iterative manner. Assume
that an experiment has been performed with the input Uk and the surface
elevation responses Yb

k and Y f
k have been measured on the real system.

In the next iteration the input

Uk+1 = Uk + ∆ (5.4)

will be applied. A prediction of the surface elevation responses in the next
iteration is given by

Ŷb
k+1 = Yb

k + G∆, Ŷ f
k+1 = Yb

f − G∆

which gives the following predicted errors

Êb
k+1 = Eb

k − G∆ (5.5)
Ê f

k+1 = Ef
k + G∆ (5.6)
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If Uk satisfies the constraints then Uk+1 = Uk + ∆ also satisfies the con-
straints if C∆ = 0.

The minimization problem in (5.3) can now be solved in an iterative
manner by finding the ∆ which solves

min
∆

Eb
k+1

T
WbEb

k+1 + Ef
k+1

T
Wf Ef

k+1 + Uk+1
T WuUk+1

subject to: C∆ = 0
(5.7)

All ∆ that satisfy the constraints are given by Kθ where K is the kernel
of C and θ is an arbitrary vector with length N − 2. Insertion of (5.4),
(5.5), (5.6) and ∆ = Kθ in (5.7) gives

min
θ
(Eb

k − GKθ )T Wb(Eb
k − GKθ )+

(Ef
k + GKθ )T Wf (Ef

k + GKθ )+
(Uk + Kθ )T Wu(Uk + Kθ )

(5.8)

with the N � (N − 2) matrix

K =



1 0 . . . 0 0

−2 1 . . . 0 0

1 −2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −2 1

0 0 . . . 1 −2

0 0 . . . 0 1


which is one representation of the kernel of C.

The objective function is quadratic in θ and there are no constraints.
The minimizing θ is given by

θ =M K T(GT (Wb Eb
k −Wf Ef

k ) − WuUk) (5.9)

where
M = [

K T (GT(Wb + Wf )G + Wu)K
]−1

The update law is now given by ∆ = Kθ , (5.4) and (5.9) and can be
written as

Uk+1 = QUk + Lb Eb
k + Lf Ef

k (5.10)
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with
Q = I − KM K T Wu

Lb = KM K T GT Wb

Lf = −KM K T GT Wf

The matrices Q, Lb and Lf are constant between the iterations and do
not depend on the experimental data and need only to be calculated once.
The matrix multiplications correspond to linear filtering of the signals in
the time domain, possibly time-varying and non causal and can be written
as

uk+1(t) = Q(t, q)uk(t) + Lb(t, q)eb
k(t) + Lf (t, q)ef

k(t)
which has almost the same structure as the standard version of the update
law in (5.1). This gives the following algorithm

ALGORITHM 5.1
Constrained iterative learning control algorithm:

1. Calculate r(t) and u0(t) using some of the methods in Chapter 4 and
set k = 0.

2. Calculate the matrices Q, Lb and Lf .

3. Perform an experiment with uk(t) to obtain eb
k(t) and ef

k(t). Stop if
performance is satisfactory.

4. Calculate uk+1(t) using (5.10) and increase k by one.

5. Go to step 3.

Analysis of the CILC algorithm

A simple analysis of Algorithm 5.1 can be done if the system is described
by a linear model. The linear system is described by a matrix P in the
same way as the model of the system is described in the update law by
the matrix G. This gives the following description of the controlled system

Yb
k = PUk, Y f

k = −PUk

and the measured control error

Eb
k = R − PUk − V b

k , Ef
k = −R + PUk − V f

k (5.11)

where V ∗ are vectors containing measurement noise that is added to the
measurements.
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The iterative process can now be described as a linear system. If the
state is chosen as Uk a state space description is easily found using (5.10)
and the control errors above. This yields a system of order N. However,
this is not a minimal state space representation since

Uk = Kθ k + Kθ k−1 + ⋅ ⋅ ⋅+ Kθ1 + U0 = K Θk + U0

where
Θk+1 = Θk + θ k

is the sum of all updates and is of size N − 2. This shows that Uk can be
described using N −2 states. Therefore a state space representation with
the state Θk will be derived.

The state space representation is obtained from (5.9) which gives θ
and the control error given in (5.11). This gives the following state space
description of the iterative process where Θk is the state, the reference
R and U0 are the inputs, and Uk and the surface elevations Y∗

k are the
outputs:

Θk+1 = (I −M K T (GT(Wb + Wf )P + Wu)K )Θk−
M K T (GT(Wb + Wf )P+ Wu)U0+
M K T GT(Wb(R − V b

k ) + Wf (R + V f
k )) Uk

Yb
k

Y f
k

 =
 I

P

−P

 (K Θk + U0)

The iterative process is hence stable if the following matrix has all eigen-
values inside the unit circle

A = I −M K T (GT(Wb + Wf )P+ Wu)K (5.12)

Note that if there are no modeling errors, i.e. P = G, or if there is
no penalty on the control errors, i.e. Wb = Wf = 0, then A = 0 and all
eigenvalues are in the origin. Hence, the iteration process converges in
one iteration since A = 0.

It can easily be seen that the constraint fulfillment is conserved in the
iterations since

CUk = CK︸︷︷︸
0

Θk + CU0 = CU0

If the system is stable and there is no measurement noise then the
iteration will converge to a steady state since the inputs are constant.
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The steady state is obtained by setting Θ = Θk+1 = Θk and solving for Θ.
The steady state is given by the solution of

K T (GT(Wb + Wf )P +Wu)K Θ =
− K T (GT(Wb + Wf )P + Wu)U0 + K T GT (Wb + Wf )R (5.13)

The noise properties of the algorithm can be studied by calculation of
the variance of Uk and Y∗

k when the measurement noise is white noise
with zero mean and variance σ 2. The variance is calculated using the
H2-norm of the transfer function from the disturbance input Vk to the
outputs Uk and Yk. A state space representation of the system is

Θk+1 =A Θk +B Vk

Uk = CuΘk

Yk = C yΘk

with

B = [−F K T GT Wb F K T GT Wf ] , Vk =
[

V b
k

V f
k

]
, Cu = K , C y = PK

Only one of the surface elevation outputs are considered. Since the only
difference between them is the sign, the variance of Yb

k will be equal to
the variance of Y f

k . With E(VkV T
k ) = σ 2 I we get

σ 2
U = E(UT U) = hhCu(qI −A )−1B hh22σ 2

σ 2
Y = E(YT Y) = hhC y(qI −A )−1B hh22σ 2

(5.14)

in stationarity.
Numerical calculation of the stability, of the stationary solution and of

th noise properties are given in Section 5.5.

5.4 Iterative Optimal Control (IOC)

The algorithm presented in Section 5.3 tries to shape the input such that
the response follows a desired trajectory. The desired trajectory is cal-
culated using a simplified linear model of the system. If there are large
modeling errors the desired trajectory is not optimal and may even be
infeasible. Therefore an algorithm which solves the underlying optimal
control problem using data from experiments in an iterative manner will
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be derived. A similar approach is presented in [Roberts, 1993] where a
general optimal control problem is solved in an iterative manner using
data from experiments on the real process with both model mismatch and
approximate objective functions.

The algorithm is based on the discrete time minimum energy problem
in Section 4.9. Since a linear model of the slosh is used the surface eleva-
tion is symmetric, see Section 5.2. This will give rise to problems if both
the surface elevation on the backward side and on the forward side are
included in the optimal control problem. If there are hard constraints on
the surface elevation the problem will be infeasible if the measurements of
the surface elevation are not exactly symmetric at the constraint. There-
fore the terminal constraints on the surface elevation are replaced with a
penalty of the surface elevation after the movement has been performed
over M samples.

This gives the optimal control problem

min
u(t)

ρ
N−1∑
k=0

u(kh)k +
N+M∑

k=N+1

(
yb(kh)2 + yf (kh)2)

subject to: hu(kh)h ≤ umax, k ∈ [0, N − 1]
u(kh) = 0, k ∈ [N ,∞]

yb(kh) ≤ smax, yf (kh) ≤ smax, k ∈ [1, N]
v(Nh) = 0

p(Nh) = L

where the parameter ρ is used as a tuning parameter, v is the velocity
and p is the position of the container.

The framework presented in Section 5.2 and the following decomposi-
tion of the matrix G and the vectors Y∗

G =
[

G1

G2

]
, Y∗ =

[
Y∗

1

Y∗
2

]
where G1 is the N upper rows of G and G2 the M lower rows and Y∗

1 is
the N first rows of Y∗ and Y∗

2 is the M last rows allows the problem to
be written as

min
U

ρUT U + Yb
2

T
Yb

2 + Y f
2

T
Y f

2

subject to: hU h ≤ Umax

Yb
1 ≤ Smax, Y f

1 ≤ Smax

CU =
[

0

L

]
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Similar to as in Section 5.3 this can be solved in an iterative manner. An
experiment is performed with the input Uk, and Yb

k and Y f
k are obtained.

In the next iteration the input Uk+1 will be applied. A linear approxima-
tion of the response to Uk+1 is given by

Ŷb
k+1 = Yb

k + G(Uk+1 − Uk) (5.15)
Ŷ f

k+1 = Y f
k − G(Uk+1 − Uk) (5.16)

The optimal control problem for iteration k+ 1 is

min
Uk+1

ρUk+1
T Uk+1 + Yb

2 k+1
T

Yb
2 k+1 + Y f

2 k+1

T
Y f

2 k+1

subject to: hUk+1h ≤ Umax

Yb
1 k+1 ≤ Smax, Y f

1 k+1 ≤ Smax

CUk+1 =
[

0

L

]
Insertion of (5.15) and (5.16) gives

min
Uk+1

Uk+1
T(ρ I + 2GT

2 G2)Uk+1 + 2(Yb
2 k − Y f

2 k − 2G2Uk)T G2Uk+1

subject to: hUk+1h ≤ Umax

G1Uk+1 ≤ Smax − Yb
1 k − G1Uk

−G1Uk+1 ≤ Smax − Y f
1 k + G1Uk

CUk+1 =
[

0

L

]
(5.17)

where all terms that do not depend on Uk+1 have been removed from the
objective function. This is a standard quadratic program which can be
solved using any numerical solver. This gives the following algorithm

ALGORITHM 5.2
Iterative optimal control algorithm:

1. Set u0(t) = 0, yb
0(0) = yf

0 (t) = 0 and k = 0.

2. Calculate uk+1(t) by solving the quadratic program in (5.17) and
increase k by one.

3. Perform an experiment with uk(t) to obtain yb
k(t) and yf

k (t). Stop if
performance is satisfactory.

4. Go to step 2.
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Analytical solution to the quadratic program

If the constraint on the control signal and on the surface elevation is
removed the problem is possible to solve analytically. The minimization
problem in (5.17) now becomes

min
Uk+1

Uk+1
T(ρ I + 2GT

2 G2)Uk+1 + 2(Yb
2 k − Y f

2 k − 2G2Uk)T G2Uk+1

subject to: CUk+1 =
[

0

L

]
With

H = 2(ρ I + 2GT
2 G2), c = 2GT

2 (Yb
2 k − Y f

2 k − 2G2Uk)

b =
[

0

L

]
, x = Uk+1

(5.18)

the problem can be written on the form

min
x

1
2

xT Hx + cT x

subject to: Cx = b

This can easily be solved using the Karush-Kuhn-Tucker (KKT) condi-
tions. The Lagrangian for the problem is

L(x, v) = 1
2

xT Hx + cT x + vT(Cx − b)

where v is a vector of Lagrange variables. Differentiation of L with respect
to x gives

dL(x, v)
dx

= Hx + c+ CT v

The KKT conditions become{
Hx + c+ CT v = 0

Cx − b = 0

which gives the following matrix representation[
H CT

C 0

] [
x

v

]
=

[−c

b

]
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If H is invertible we have[
H CT

C 0

]−1

=
[

H−1 − H−1CT H̃CH−1 H−1CT H̃

H̃CH−1 −H̃

]

where H̃ = (CH−1CT)−1. This gives

x = (H−1CT H̃CH−1 − H−1)c+ H−1CT H̃b

where the experimental data appear linearly in c. This gives that the
update law can be written on the form

Uk+1 = QUk + LbYb
2 k + Lf Y f

2 k + Uc

with
Q = 4M GT

2 G2

Lb = −2M GT
2

Lf = 2M GT
2

Uc = H−1CT H̃
[

0

L

]
where

M = H−1 − H−1CT H̃CH−1

and H is given in (5.18).

Analysis of the IOC algorithm

A simple analysis of Algorithm 5.2 can be done if the system is described
by a linear model. The linear system is described by a matrix P in the
same way as the model of the system is described in the update law by
the matrix G. This gives the following description of the controlled system

Yb
k = PUk, Y f

k = −PUk

and the measurements

Ỹb
k = Yb

k + V b
k , Ỹ f

k = Y f
k + V f

k

where V ∗ are vectors containing measurement noise that is added in the
measurement.
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This gives the following state space description of the iterative process
where Uk is the state, Uc is a constant input and Y∗

k are the outputs.

Uk+1 = 4M GT
2 (G2 − P2)Uk + 2M GT

2 (V f
2 k − V b

2 k) + Uc[
Yb

k

Y f
k

]
=

[
P

−P

]
Uk

The iterative process is stable if the following matrix has all eigenvalues
inside the unit circle.

A = 4M GT
2 (G2 − P2) (5.19)

If the matrix G is constructed using the pulse response from a linear
system of order n then the rank of G2 is at most n (Kronecker’s theorem
see for example page 210 in [Young, 1988]). The rank of A is smaller than
or equal to the rank of G2 this means that at least N − n eigenvalues of
A will be in the origin. If P2 = G2 then all eigenvalues are in the origin.

It is easily seen that the constraint is conserved during the iterations
since

CM = CH−1 − CH−1CT︸ ︷︷ ︸
H̃−1

H̃CH−1 = 0

and

CUc = CH−1CT︸ ︷︷ ︸
H̃−1

H̃
[

0

L

]
=

[
0

L

]

If the system is stable and there is no measurement noise then the
iteration will converge to a steady state since the input is constant. The
steady state is obtained by setting U = Uk+1 = Uk and solving for U. The
steady state is given by the solution of

(I − 4M GT
2 (G2 − P2))U = Uc (5.20)

The noise properties of the algorithm are studied in the same way
as for the CILC algorithm in Section 5.3 by calculating the variance of
Uk and Y∗

k when the measurement noise is white noise with zero mean
and variance σ 2. The variance is calculated using the H2-norm of the
transfer function from the disturbance input to the output. A state space
representation of the system is

Uk+1 =A Uk +B Vk

Yk = C yUk
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with

B = [ 0 −2M GT
2 0 2M GT

2 ] , Vk =


V b

k 1

V b
k 2

V f
k 1

V f
k 2

 , C y = P

Only one of the surface elevation outputs are considered. Since the only
difference between them is the sign, the variance of Yb

k will be equal to
the variance of Y f

k . With E(VkV T
k ) = σ 2 I we get

σ 2
U = E(UT U) = hh(qI −A )−1B hh22σ 2

σ 2
Y = E(YT Y) = hhC y(qI −A )−1B hh22σ 2

(5.21)

in stationarity.
Numerical calculation of the stability, of the stationary solution and of

the noise properties are given in Section 5.5.

5.5 Numerical analysis

The stability, the stationary solutions and the noise sensitivity of the al-
gorithms are analyzed using numerical calculations when the process is
described by a linear system.

The model used in the algorithms is given in continuous time by the
transfer operator

Gc(p) = a
2n

ω 2
m

p2 +ω 2
m

with a = 0.07 m and wm = 21.0 rad/s which are the theoretical values
given in Section 3.1.

The process is described in continuous time by the transfer operator

Pc(p) = ap

2n
ω 2

p

p2 + 2ζ pω pp+ω 2
p

where the gain can be changed through ap, damping is added with ζ p and
the oscillation frequency can be modified using ω p.

Zero-order-hold sampling of Gc(p) and Pc(p) with the sampling period
h = 0.01 s gives the discrete time transfer operators Gd(q) and Pd(q)
which are used to construct the matrices G and P as described in Sec-
tion 5.2. The movement time is chosen as 0.46 s which gives N = 46
and M is chosen as 20. The variance of the measurement noise is cho-
sen as σ 2 = 10−6 which is in the same range as the measurement noise
encountered in the experimental setup.
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5.5 Numerical analysis

The Constrained Iterative Learning Control algorithm (CILC)

The stability, the stationary solution and the noise properties of the CILC
algorithm derived in Section 5.3 is calculated numerically.

Stability First the root locus is studied when the parameters in the
process model are changed with the weighting matrices Wu = 10−5 I and
Wb = Wf = I. The parameters of the process model are set to the same
values as the model used in the update law, i.e. ω p = ω m = 21.0 rad/s,
ζ p = 0 and ap = am = 0.07 m. The eigenvalues of the matrix A in (5.12)
are then plotted as one of the parameters is changing. The eigenvalues
are calculated using the Matlab function eig.

Figures 5.1, 5.2 and 5.3 show the eigenvalues when ω p, ζ p and ap

are varying. The figures show that the eigenvalues move outside the unit
circle if ω p and ap is sufficiently far from ω m and am and that the stability
is not affected by ζ p.

In Figure 5.4 the eigenvalues are shown for 500 random parame-
ters and four different values of the control cost Wu. The parameters
are uniformly distributed within the following intervals, ω p ∈ [17, 21],
ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08]. The figure shows that the eigenval-
ues are moved further from the origin as Wu is decreased and hence the
robustness to model errors is also decreased.

Stationary solution To evaluate the influence of the weighting ma-
trices on the final result the stationary solution is calculated with the
weighting matrices Wu = ρ I and Wb = Wf = I for different values of ρ.

The surface elevation reference and initial control signal is calculated
using the modified minimum energy strategy presented in Section 4.7.

Figure 5.5 shows

U T U =
N−1∑
k=0

u(kh)2 and ET E =
N+M∑
k=1

eb(kh)2

as a function of ρ. Only the error on one side is considered since ef (t) =
−eb(t). The figure shows UT U and ET E when the model in the update law
and the process are equal and for 20 random processes with parameters
in the intervals, ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08].

The figure shows that only a small decrease of the ET E is obtained if
ρ < 10−6 compared to ρ = 10−5 and that the control signal U becomes
very large for small values of ρ. For ρ > 10−6 there is only a slight
decrease in the control signal and there is no increase in the control error
if ρ > 10−3. Therefore a suitable choice is ρ = 10−5. The figure also shows
that the achievable minimum error is increased when there is a mismatch
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Figure 5.1 The eigenvalues of A in (5.12) for the CILC algorithm when ω p is
varying from 13 rad/s (○) to 29 rad/s (�). If ω p is sufficiently far from ω m = 21
rad/s the system becomes unstable.
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Figure 5.2 The eigenvalues of A in (5.12) for the CILC algorithm when ζ p is
varying from 0 (○) to 1 (�). The system is stable for all values of ζ p.
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Figure 5.3 The eigenvalues of A in (5.12) for the CILC algorithm when ap is
varying from 0 m (○) and 0.2 m (�). The system becomes unstable if ap is sufficiently
larger than am = 0.07 m.

between the model in the update law and the process and that the control
signal does not become large if the model and process are equal.

In Figure 5.6 the stationary solution is shown for some values of ρ for
a process with the parameters ω p = 0.9ω m, ζ p = 0.01 and ap = 1.1am.
The figure shows that as ρ is decreased there is a chattering behavior in
the control signal and the amplitude becomes very large. The output of
the system is very close to the reference for all ρ ≤ 10−5.

Since the main objective is to make the residual slosh small the weight-
ing matrices Wb and Wf can be modified to penalize the surface elevation
more in the M last samples. Figure 5.7 shows the M last samples when
Wb = Wf = I and when Wb = Wf = diag(I46, 10I20), where the penalty on
the last M samples is 10 instead of 1. The figure shows that the residual
slosh is considerably decreased.

Noise The noise properties of the CILC algorithm is examined by calcu-
lating the control signal variance σ 2

u and the output variance σ 2
y in (5.14)

for different values of the control weight Wu = ρ I with Wb = Wf = I.
Figure 5.8 shows the variances σ 2

u and σ 2
y for different values of ρ. The

H2-norm is calculated using the Matlab function norm for linear time in-
variant systems.

The variances are calculated when the process is equal to the model
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Figure 5.4 The eigenvalues of A in (5.12) for the CILC algorithm for 500 random
systems with uniformly distributed parameters in the intervals ω p ∈ [17, 21], ζ p ∈
[0, 0.1] and ap ∈ [0.06, 0.08] for four values of Wu. The system is stable for all of the
500 random random processes but the eigenvalues are further from the origin as
Wu is decreased.

used in the update law and for 10 random processes with parameters in
the intervals ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08]. The figure
shows that the noise gives a very large variance in the control signal for
small values of ρ. For large values of ρ the variances decrease rapidly.
Note that the variances do not change much due to the mismatch between
the model in the update law and the actual process.
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Figure 5.5 The magnitude of the control signal and the control error for different
values of ρ with the CILC algorithm. The thick lines are for the case when the
model in the update law and the process are equal and the gray lines are for 20
random processes with parameters in the intervals, ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and
ap ∈ [0.06, 0.08]. The figure indicates that ρ = 10−5 is a suitable choice.
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Figure 5.8 Noise variances for the CILC algorithm with respect to Wu = ρ I. The
thick lines are σ 2

u (solid) and σ 2
y (dashed) when the process and the model in the

update law are equal. The grey lines are the variances for 10 random processes
with parameters in the intervals ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08].
The variances seem to be insensitive to model mismatch.
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The Iterative Optimal Control algorithm (IOC)

The stability, the stationary solution and the noise properties of the IOC
algorithm derived in Section 5.4 is calculated numerically.

Stability The eigenvalues of the matrix A in (5.19) are plotted as one of
the parameters in the process model varies and the others are equal to the
parameters in the update law. Since the model used in the update law is
of second order all eigenvalues but two will be located in the origin. These
will not be drawn in the root locus plots. The eigenvalues are calculated
using the Matlab function eig.

Figures 5.9, 5.10 and 5.11 show the two eigenvalues when the param-
eters are varying. The figures show that the eigenvalues move outside the
unit circle if ω p and ap are sufficiently far from ω m and am and that the
stability is not affected by ζ p.

In Figure 5.12 the eigenvalues for 500 random parameters and four
different values on the control cost are shown. The parameters are uni-
formly distributed with the following intervals, ω p ∈ [17, 21], ζ p ∈ [0, 0.1]
and ap ∈ [0.06, 0.08]. The figure shows that the eigenvalues are moved
further from the origin as Wu is decreased and hence the robustness to
model errors is also decreased. For ρ ≤ 10−5 the iteration process becomes
unstable for some of the parameter values. Compared to the eigenvalues
for the CILC algorithm in Figure 5.4 the eigenvalues are further from the
origin for the IOC algorithm.

Stationary solution To evaluate the influence of the control cost on
the final result the stationary solution is calculated for different values
of ρ. Figure 5.13 shows

UT U =
N−1∑
k=0

u(kh)2 and YT
2 Y2 =

N+M∑
k=N+1

yb(kh)2

as a function of ρ, only the output on one side is considered since yf (t) =
−yb(t). The figure shows UT U and YT

2 Y2 when the model in the update
law and the process are equal and for 20 random processes with param-
eters in the intervals, ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08]. The
figure shows that the residual slosh decreases when ρ is decreased and
that there is a slight increase in the control signal when ρ ≤ 10−4. The
increase in the control signal is larger if there are modeling errors.

In Figure 5.14 the stationary solution is shown for some values of ρ
for a process with the parameters ω p = 0.9ω m, ζ p = 0.01 and ap = 1.1am.
The figure shows that the residual slosh is almost zero for ρ ≤ 10−5.
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Figure 5.9 The eigenvalues of A in (5.19) for the IOC algorithm when ω p is
varying from 13 rad/s (○) to 29 rad/s (�). The system becomes unstable if ω p is
sufficiently far from ω m = 21 rad/s.
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Figure 5.10 The eigenvalues of A in (5.19) for the IOC algorithm when ζ p is
varying from 0 (○) to 1 (�). The system is stable for all values of ζ p.
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Figure 5.11 The eigenvalues of A in (5.19) for the IOC algorithm when ap is
varying from 0 m (○) and 0.2 m (�). When ap is sufficiently large the system
becomes unstable.

Noise Similarly as with the CILC algorithm the noise properties of the
IOC algorithm are examined by calculating the control signal variance σ 2

u
and the output variance σ 2

y in (5.21) for different values of the control
cost ρ. Figure 5.15 shows the variances σ 2

u and σ 2
y for different values of

ρ. The H2-norm is calculated using the Matlab function norm for linear
time invariant systems.

The variances are calculated when the process is equal to the model
used in the update law and for 10 random processes with parameters in
the intervals ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08]. The figure
shows that the variance approaches a constant value as ρ is decreased.
For large values of ρ the variances decrease rapidly. It can also be seen
that the variances change much due to the mismatch between the model
in the update law and the actual process for small values of ρ.

5.6 Evaluation using simulation

The CILC and IOC algorithms described in previous sections are evalu-
ated in simulations.

The model used in the algorithms is given in continuous time by the
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Figure 5.12 The eigenvalues of A in (5.19) for the IOC algorithm for 500 random
systems with uniformly distributed parameters in the intervals ω p ∈ [17, 21], ζ p ∈
[0, 0.1] and ap ∈ [0.06, 0.08] for four values of ρ. The system becomes unstable for
some of the random processes when ρ ≤ 10−5. Compare with Figure 5.4 for the
CILC algorithm.

transfer operator

Gc(p) = am

2n
ω 2

m

p2 +ω 2
m

with am = 0.07 m and wm = 21.0 rad/s which are the theoretical values
given in Section 3.1. This is the same model that was used in the nu-
merical analysis in Section 5.5. The movement time is 0.46 s which gives
N = 46 and M is chosen as 20.
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Figure 5.13 The magnitude of the control signal and the residual slosh for differ-
ent values of the control penalty ρ with the IOC algorithm. The thick lines are for
the case when the model in the update law and the process are equal and the gray
lines are for 20 random processes with parameters in the intervals, ω p ∈ [17, 21],
ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08].
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Figure 5.14 The stationary solution of the IOC algorithm given in (5.20) for a
process with the parameters ω p = 0.9ω m, ζ p = 0.01 and ap = 1.1am when ρ = 1
(dashed), ρ = 10−5 (solid) and ρ = 10−10 (dotted). The stationary solutions are
very close for ρ = 10−5 and ρ = 10−10. Compared to Figure 5.6 there is no problem
with chattering in the control signal as ρ is decreased.

Process models

Two process models are used in the evaluation; one linear and one non-
linear. The nonlinear model is designed to mimic some of the nonlinear
behavior experienced in the real process, see Section 3.3, but there is no
direct physical interpretation of the model.

Linear process model The linear model is given in continuous time
by the transfer operator

Pc(p) = ap

2n
ω 2

p

p2 + 2ζ pω pp+ω 2
p

with ω p = 0.9ω m, ζ p = 0.01 and ap = 1.1am. Hence, the gain of the
process is increased and the oscillation frequency is decreased compared
to the model used in the update law. Damping is also added to the process
model. The surface elevation measurements are given by

yb(t) = Pc(p)u(t) + vb(t)
yf (t) = −Pc(p)u(t) + vf (t)

where v∗ are discrete time white noise with variance 10−6. This is the same
model structure and noise variance that were used when evaluating the
stability, the stationary solution and the noise properties in Section 5.5.
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Figure 5.15 Variances for the IOC algorithm with respect to ρ. The thick lines are
σ 2

u (solid) and σ 2
y (dashed) when the process and the model in the update law are

equal. The grey lines are the variances for 10 random processes with parameters
in the intervals ω p ∈ [17, 21], ζ p ∈ [0, 0.1] and ap ∈ [0.06, 0.08]. Compared to the
variances for the CILC algorithm in Figure 5.8, σ 2

u is considerably smaller for small
values of ρ.
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5.6 Evaluation using simulation

Nonlinear process model The nonlinear process model is given in
continuous time by the state space description

ẋ1(t) = −2ζ pω mx1(t) −ω 2
m

tanh 30x2(t)
30

+ amω m

2n u(t)
ẋ2(t) = x1(t)
yb(t) = 4

5
x2(t) + 7x2

2(t) + vb(t)

yf (t) = −4
5

x2(t) + 7x2
2(t) + vf (t)

where ω m, ζ p, am and v∗ are the same as previously. The term tanh 30x2(t)
30

gives an amplitude dependent oscillation frequency and the quadratic
term in the output gives asymmetric oscillation. These are behaviors that
have been observed in real slosh, see Section 3.3. This model is only de-
signed to mimic these phenomena and has no direct physical meaning.

The Constrained Iterative Learning Control algorithm (CILC)

The CILC algorithm is evaluated on the linear process model given above.
The initial acceleration reference and the surface elevation reference are
calculated using the minimum energy approach presented in Section 4.7
and the same model as used in the update law.

The weighting matrices are chosen as proposed in Section 5.5, Wu =
10−5 I and Wb = Wf = diag(I46, 10I20). Figure 5.16 shows the cost

J = EbT
Wb Eb + Ef T

Wf Ef + UT WuU

for the ten first iterations. The figure shows that the cost decreases rapidly
during the four first iterations and then remains on a constant level.

In Figure 5.17 the surface elevation on the backward side of the con-
tainer is shown for the ten first iterations. After four iterations the surface
elevation is very close to the reference and does not change much as the
iterations are continued.

Figure 5.18 shows the acceleration and the surface elevation on the
backward side for the initial trajectory and after five iterations. It also
shows the surface elevation reference and the simulated measured surface
elevation. It is shown in the figure that the surface elevation is close to
the reference after five iterations and the biggest difference is a slightly
larger amplitude of the resulting surface elevation. This is due to that
the gain is higher in the linear process model which makes the calculated
reference infeasible.
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Figure 5.16 The cost for the CILC algorithm for the ten first iterations in the
simulation with the linear process model. The cost decreases rapidly during the
four first iterations.

A more realistic test of the CILC algorithm is to use the nonlinear
process model which emulates some of the behaviors encountered in real-
ity. The algorithm is used with the same weights as used with the linear
process model. Figure 5.19 shows the initial and resulting surface eleva-
tion after 5 iterations. The figure illustrates the main drawback with the
CILC algorithm, the problem with infeasible reference trajectories. The
resulting surface elevation is very far from the reference during the peak
and the crest of the wave. This is due to the asymmetry in the oscillation.
The convergence is also slightly slower compared to the linear process
model.

The main objectives are to keep the maximum surface elevation and
the residual slosh small. The asymmetry in the oscillation causes the
maximum surface elevation to increase since the algorithm tries to make
the surface elevations to follow the reference. Since there is a coupling
between the surface elevation on the forward and on the backward side
of the container the peak on the forward side cannot be lowered without
raising the crest on the backward side. It is more important to lower the
maximum surface elevation than to increase the crests and therefore the
weighting matrices Wb and Wf are modified to neglect the errors when
the reference is negative.

To handle the asymmetric oscillation the following weighting matrices
are therefore used

Wb = diag(I23, 023, 10I20), Wf = diag(023, I23, 10I20) (5.22)
and Wu = 10−5 I where 0n is an n � n zero matrix. The results using the
modified weighting matrices are shown in Figure 5.20. The figure shows
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Figure 5.17 The surface elevation of the backward side of the container for the
ten first iterations when the CILC algorithm is simulated with the linear process
model. The surface elevation converges to a steady state in four iterations.
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Figure 5.18 The acceleration reference (left) and surface elevation (right) before
the iteration is started (dashed) and after five iterations (solid) when the CILC
algorithm is simulated with the linear process model. The surface elevation refer-
ence (dotted) and the simulated measurement (grey) are also shown. The surface
elevation after five iterations is close to the reference and there is very little noise
visible in the surface elevation.
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Figure 5.19 The surface elevation on the backward (left) and on the forward
(right) side of the container before the iteration is started (dashed) and after five
iterations (solid) when the CILC algorithm is simulated with the nonlinear process
model. The surface elevation reference (dotted) and the simulated measurement
(grey) are also shown. The asymmetric oscillation amplitude causes a large differ-
ence between the reference and the resulting surface elevation after five iterations.

that the maximum surface elevation is reduced to the same level as in the
simulation with the linear process model. This shows that it is possible
to compensate for nonlinearities by modifying the weighting matrices.

The simulations have shown that the CILC algorithm is able to handle
the nonlinearities and that it is not affected by the measurement noise
with this choice of the weighting matrices.

The Iterative Optimal Control algorithm (IOC)

In the same way as the CILC algorithm was evaluated the IOC algorithm
is now simulated using a linear process model. The control cost is chosen
as ρ = 10−5 as proposed in Section 5.5. The maximum control is umax =
10 m/s2 and the maximum allowed surface elevation is smax = 3.5 cm.
Figure 5.21 shows the actual cost and the predicted cost for ten iterations,
where the actual cost, Ja, is calculated using the actual surface elevation
and predicted cost, Jp, is calculated using the predicted surface elevation.
The cost is calculated using

Ja
k = ρUT

k Uk + Yb
2

T
k Yb

2 k + Y f
2

T

k Y f
2 k

Jp
k = ρUT

k Uk + Ŷb
2

T

k Ŷb
2 k + Ŷ f

2

T

k Ŷ f
2 k

(5.23)

with

Ŷb
2 k = Ỹb

2 k−1 + G2(Uk − Uk−1), Ŷ f
2 k = Ỹ f

2 k−1 − G2(Uk − Uk−1)
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Figure 5.20 The surface elevation on the backward (left) and on the forward
(right) side of the container before the iteration is started (dashed) and after five
iterations (solid) when the CILC algorithm is simulated with the nonlinear process
model and the modified weighting matrices given in (5.22). The surface elevation
reference (dotted) and the simulated measurement (grey) are also shown. Compared
to Figure 5.19 the maximum surface elevation is reduced.

where Ỹ is the simulated surface elevation measurement and Ŷ is the
predicted surface elevation.

The figure shows that the actual cost decreases rapidly and the pre-
dicted and actual cost are very close after five iterations. The figure shows
also that when the iterations have converged the predicted cost is occa-
sionally larger than the actual cost. This is because the noise is include
in the measurement of the surface elevation from the previous iteration
in the prediction.

Figure 5.22 shows the surface elevation on the backward side of the
container for the ten first iterations. The residual slosh decreases fast in
the first five iterations and then the surface elevation does not change
much.

The true optimal control signal is easy to calculate for the linear pro-
cess model and is compared with the result of the IOC algorithm in Fig-
ure 5.23. The figure shows that the IOC algorithm converges to a steady
state very close to the true optimal solution.

The IOC algorithm is also tested with the nonlinear process model to
see how the nonlinearities are handled. Figure 5.24 shows the actual and
predicted cost for the ten first iterations. The actual cost decreases rapidly
during the five first iterations and then the actual cost and predicted cost
are very close.

The surface elevation on both sides of the container is shown for the ten
first iterations in Figure 5.25 for the nonlinear model. The figure shows
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Figure 5.21 The actual (�) and predicted (○) cost for the ten first iterations with
the IOC algorithm and the linear process model. The actual cost decreases fast in
the five first iterations and then the predicted and actual cost are very close.
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Figure 5.22 The surface elevation on the backward side of the container for the
ten first iterations when the IOC algorithm is simulated with the linear process
model. The residual slosh decreases fast and the surface elevation converges to a
steady state in six iterations.
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Figure 5.23 The acceleration reference (left) and surface elevation (right) before
the iteration is started (dashed) and after six iterations (solid) when the IOC algo-
rithm is simulated with the linear process model. The true optimal solution (dotted)
and the measured surface elevation (grey) are also shown. The figure shows that
the result of the IOC algorithm is very close to the true optimal solution.
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Figure 5.24 The actual (�) and predicted (○) cost for the ten first iterations with
the IOC algorithm and the nonlinear process model. The actual cost decreases fast
in the five first iterations and then the predicted and actual cost are very close.

that the residual slosh is very large in the first iteration but decreases
rapidly and is almost zero after six iterations. The maximum surface el-
evation on the forward side of the container is also very large in the first
iterations but is decreased to a normal level in 2 iterations.

In the simulations with the IOC algorithm neither the control nor
the surface elevation constraints are active when the iterations have con-
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Figure 5.25 The surface elevation on the backward (upper) and on the forward
(lower) side of the container for the ten first iterations when the IOC algorithm is
simulated with the nonlinear process model. The residual slosh decreases fast and
the surface elevation converges to a steady state in six iterations.
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verged. This corresponds to the case that was analyzed in Section 5.4 and
Section 5.5. To examine the behavior of the algorithm in the case of ac-
tive constraints the movement time is decreased to 420 ms which gives
N = 42, M = 20 and the algorithm is simulated with the nonlinear pro-
cess model. To obtain the same levels of residual slosh as in the previous
simulations the control cost had to be decreased to ρ = 10−7.

Figure 5.26 shows the surface elevation on the backward side of the
container for the 20 first iterations for two simulations; one with mea-
surement noise and the other one without. A comparison between the two
simulations shows that there is a fluctuation in the surface elevation be-
tween the iterations in the simulation with noise that is not present in the
noise free simulation. This fluctuation has not been present in the previ-
ous simulations with the IOC algorithm. This indicates that the algorithm
is more sensitive to noise when the constraints are active. This is quite
intuitive, since if the control is calculated to keep the predicted surface
elevation on the constraint then in the next iteration when the control is
applied a different noise sequence will be present and the constraint will
be violated.

This can also be seen by studying the control signal shown in Figure
5.27 for both cases. The figure shows that the control signal is almost
bang-bang after the first iteration which is very different from the initial
control. This is because there is a very large violation of the surface eleva-
tion constraint when the initial control is applied. This shows that there
is a very high gain from constraint violations to the control.

The simulations have shown that the IOC algorithm is able to han-
dle the nonlinearities and the measurement noise. Contrary to the CILC
algorithm there is no need to alter the parameters of the algorithm to
handle nonlinearities and there is no problem with infeasible reference
trajectories. There is however some problems with noise if the surface el-
evation constraints are active because of fluctuations between iterations.
This is because there is no noise attenuation in the prediction of the sur-
face elevation in the algorithm.

5.7 Evaluation using experiments

The performance of the CILC and IOC algorithms in reality is evaluated
using the experimental setup described in Chapter 2.

Since there is only one surface elevation measurement on one side of
the container two experiments with the same acceleration reference is
performed to obtain the data needed; one forward and one backward.

The model used in the algorithms is given in continuous time by the
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Figure 5.26 Surface elevation on the backward side of the container when the IOC
algorithm is simulated using a nonlinear process model for a movement when the
constraints are active. The simulation is performed both with measurement noise
(upper) and without (lower). The figure shows that there is a fluctuation in the sur-
face elevation between the iterations induced by the noise. However the algorithm
is still successful in minimizing the maximum surface elevation and residual slosh.
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Figure 5.27 The control signal when the IOC algorithm is simulated using the
nonlinear process model for a movement when the constraints are active. The sim-
ulation is performed both with measurement noise (left) and without (right). The
figure shows the control signal after the first iteration (dotted), the 19th (dashed)
and the 20th (solid). The control signal after the first iteration is almost bang-bang
in both cases and with measurement noise the difference between the 19th and 20th
iteration is quite large.

transfer operator

Gc(p) = am

2n
ω 2

m

p2 +ω 2
m

with am = 0.07 m and ω m = 21.0 rad/s which are the theoretical values
given in Section 3.1. The movement time is 0.46 s which gives N = 46
and M is chosen as 20. This is the same model and parameters that were
used in the numerical analysis in Section 5.5 and in the simulations in
Section 5.6.

The Constrained Iterative Learning Control algorithm (CILC)

The following weighting matrices were used when running the CILC al-
gorithm in the experimental setup:

Wu = 10−5 I, Wb = diag(I23, 023, 10I20), Wb = diag(023, I23, 10I20)

These are the same weighs that were used in the simulations with the
nonlinear process model. The results of the experiments are presented in
the figures 5.28, 5.29 and 5.30.

In Figure 5.28 the cost is shown for the ten first iterations. The figure
shows that the cost increases in the first iteration but then decreases fast
during the next three iterations. After four iterations there is only a slight
decrease of the cost.
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Figure 5.28 The cost for the ten first iterations with the CILC algorithm in the
experimental setup. The cost increases in the first iteration but then decreases fast
during the next three iterations.

Figure 5.29 shows the acceleration reference and surface elevation
response for the initial experiment and after ten iterations. It is seen in
the figure that the maximum surface elevation is decreased and that there
is almost no residual slosh after ten iterations.

The surface elevation response in all experiments are shown in Figure
5.30. The figure shows that the residual slosh decreases fast and that the
maximum slosh is also decreased.

The experiments have shown that the CILC algorithm is successful in
reducing the residual slosh in the experimental setup.

The Iterative Optimal Control algorithm (IOC)

The IOC algorithm is evaluated in the experimental setup and the control
cost is chosen as ρ = 10−5 as in the numerical analysis and in the simu-
lations. The maximum control is set to umax = 10 m/s2 and the maximum
allowed surface elevation smax = 3.5 cm. The results of the experiments
are presented in the figures 5.31, 5.32 and 5.33.

The actual cost, Ja, and predicted cost, Jp, see (5.23), for the twelve
first iterations are shown in Figure 5.31. The cost decreases fast in the
first iteration then alternates between increase and decrease for a few
iterations and then continues to decrease after the fourth iteration. After
ten iterations the actual and predicted cost are very close.

In Figure 5.32 the acceleration reference and surface elevation re-
sponse for the initial experiment and after twelve iterations are shown.
The figure shows that there is almost no residual slosh after twelve iter-
ations and that the maximum surface elevation is decreased and that the
surface elevation constraint is not violated.
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Figure 5.29 The acceleration reference (upper), surface elevation on the backward
side (lower left) and on the forward side (lower right) before the iteration is started
(dashed) and after ten iterations (solid) when the CILC algorithm is used in the
experimental setup. The dotted line shows the surface elevation reference used in
the algorithm. The figure shows that the residual slosh is considerably decreased
and that the surface elevation is close to the reference when the reference is positive
after ten iterations.

The surface elevation response for the twelve first iterations are shown
in Figure 5.33. The figure shows that the residual slosh decreases fast
in the first iterations and that the maximum surface elevation is also
decreased in the first iterations.

The experiments have shown that the IOC algorithm is successful in
reducing the residual slosh in the experimental setup.
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Figure 5.30 The surface elevation on the backward (upper) and on the forward
(lower) side of the container for the ten first iterations when the CILC algorithm is
used in the experimental setup. The residual slosh decreases fast and the maximum
slosh is also decreased.
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Figure 5.31 The actual (�) and predicted (○) cost for the twelve first iterations
with the IOC algorithm in the experimental setup. The actual cost decreases in the
first iteration then jumps around for a few iterations and then continues to decrease
after the fourth iteration. After ten iterations the actual and the predicted cost are
very close.

5.8 Conclusions

In this chapter two different approaches of Iterative Learning Control
(ILC) have been used to find an acceleration reference that fulfills the
specifications. Since the learning signal is the acceleration and there are
constraints on the final position and velocity the standard formulation of
Iterative Learning Control could not be used.

In Section 5.3 the Constrained Iterative Learning Control (CILC) al-
gorithm is presented. The algorithm tries to find an acceleration reference
that makes the surface elevation follow a reference while preserving the
constraints on terminal position and velocity of the container. The algo-
rithm is based on minimization of a quadratic cost function subject to lin-
ear equality constraints. The cost function contains the acceleration and
the surface elevation error on both sides of the package. The optimization
problem is solved analytically which results in an update law that con-
sists of three time-varying linear filters. Analysis of the algorithm using
a linear process model gives stability conditions, the stationary solution
and some noise properties.

The CILC algorithm uses a reference for the surface elevation that is
derived using some of the methods in Chapter 4. If there are modeling
errors when generating the reference it will be non optimal and even
infeasible. Therefore, the Iterative Optimal Control (IOC) algorithm is
derived was Section 5.4.
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Figure 5.32 The acceleration reference (upper), surface elevation on the back-
ward side (lower left) and on the forward side (lower right) before the iteration is
started (dashed) and after ten iterations (solid) when the IOC algorithm is used
in the experimental setup. The figure shows that the residual slosh is considerably
decreased and that the surface elevation constraint is not violated.

The IOC algorithm is based on the discrete time minimum time op-
timal control problem in Section 4.9 but the equality constraints on the
surface elevation is replaced by a quadratic penalty on the residual slosh.
The algorithm is given as a quadratic program that is solved between each
experiment. The inequality constraints on the acceleration and surface el-
evation are removed which enables the optimization problem to be solved
analytically. The analytical solution to the quadratic program yields an
update law that consists of three time-varying linear filters similarly as
the CILC algorithm. Analysis of the algorithm using the analytical solu-
tion and a liner process model gives stability conditions, the stationary
solution and some noise properties.

Both algorithms use a linear model of the surface elevation response
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Figure 5.33 The surface elevation on the backward (upper) and forward (lower)
side of the container for the the first iterations when the IOC algorithm is used in
the experimental setup. The residual slosh decreases fast and the maximum slosh
is also decreased.
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to acceleration to predict the surface elevation in the next iteration.
In Section 5.5 the eigenvalues are calculated numerically for both al-

gorithms with a linear process model of the same structure as the model
in the update law but with parameter mismatch. This shows that if there
are sufficiently large parameter mismatch the iterative procedure becomes
unstable. The calculation also shows that a larger parameter mismatch
can be handled if the penalty on the control is larger and that the CILC
algorithm is more robust to model errors than the IOC algorithm. The
section also contains numerical calculations of the stationary solutions
for different weights in the cost functions and shows that if the control
cost is too small in the CILC algorithm the acceleration reference will
exhibit a chattering behavior. The examination of the stationary solution
gives some insight on how to choose the weights. The numerical calcula-
tion of the noise variance shows that the variance increases as the control
cost is decreased and for small values of the control cost the variance in
the control signal is about 107 times larger for the CILC algorithm than
for the IOC algorithm.

The algorithms are evaluated using simulations of both a linear and
a nonlinear process model in Section 5.6. The simulations show that both
methods work well for both the linear and the nonlinear process model.
However, the weights in the CILC algorithm needed to be modified such
that the surface elevation error is not penalized when the surface eleva-
tion reference is negative with the nonlinear process model. This is be-
cause the surface oscillation is asymmetric in the nonlinear process model
which makes the reference infeasible. These problems were not encoun-
tered using the IOC algorithm but the simulations showed that the noise
sensitivity was increased if the surface elevation constraints were active.

Evaluation of the algorithms in the experimental setup are made in
Section 5.7. The experiments show that both algorithms are successful in
finding suitable acceleration references that minimize the residual slosh.

The iterative methods have proven to work very well and have shown
that it is possible to find good acceleration references using only a simple
model of the slosh phenomenon.
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6

Combined horizontal and
rotational motion

One way to minimize the surface elevation relative to the container wall
is to combine horizontal acceleration with rotation of the container to
counteract the motion of the liquid. The use of rotation to obtain slosh
free motion is also explored in [Feddema et al., 1997] and [Yano et al.,
1999].

The experimental evaluation in Section 3.3 showed that the response
to horizontal acceleration and rotational acceleration is linear for small
oscillation amplitudes. It was also shown that the oscillation caused by the
rotational acceleration can be minimized by choosing the vertical position
of the rotational axis properly.

In this chapter the model in (3.40) for simultaneous horizontal and
rotational acceleration presented in Section 3.5 is used for synthesis of
movements that minimize the maximum surface elevation relative to the
container wall.

Section 6.1 shows how the tilt angle that totally counteracts the sur-
face elevation can be calculated if the rotational acceleration does not
cause any surface oscillation. In Section 6.2 the problem is approached us-
ing optimal control and a minimum energy discrete time optimal control
problem is solved using quadratic programming. The obtained horizontal
and rotational acceleration references are also evaluated using experi-
ments showing that the method is successful. The conclusions are given
in Section 6.3.

6.1 Direct calculation of the tilt angle

If the rotational acceleration does not cause any surface oscillation, i.e.
b2 = 0 in (3.40), the tilt angle that gives zero surface elevation relative
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Chapter 6. Combined horizontal and rotational motion

to the container wall can easily be calculated. The horizontal acceleration
is calculated using any of the methods in Chapter 4 or Chapter 5. The
resulting surface elevation s(t) is then obtained by simulating the model
in (3.39).

The tilt angle θ (t) that gives zero surface elevation relative to the
container wall is now obtained from

θ (t) = arctan
2s(t)

a

where a is the container width. This gives the required rotational accel-
eration

ur(t) = d2θ (t)
dt2 = 2a d2s(t)

dt2

a2 + 4s(t)2 −
16a

(
ds(t)

dt

)2
s(t)

(a2 + 4s(t)2)2

where d2s(t)
dt2 and ds(t)

dt can be obtained from the state equations in (3.39).
It is also possible to calculate the tilt angle that reduces the surface

elevation relative to the container wall by a certain amount. By choosing
α between 0 and 1 in

θ (t) = arctan
2α s(t)

a

the maximum surface elevation can be decreased to a desired level. With
α = 1 the surface elevation is set to zero and with α = 0 the maxi-
mum is unchanged and there is no tilting action. The required rotational
acceleration is obtained in the same way as previously.

6.2 Optimal control

The direct calculation is only applicable if the rotational acceleration does
not excite the surface oscillation. If b2 in (3.40) is not zero then the ro-
tation will cause surface oscillation. Therefore, when designing the rota-
tional acceleration the surface oscillations need to be taken into account.
This can be done by solving an optimal control problem for the horizontal
and rotational acceleration.

All optimal control problems that were studied in Chapter 4 can also
be studied when the rotational acceleration is added by using the model in
(3.40) instead of the model in (3.39) and adding constraints on the termi-
nal angel and angular velocity. Here, only the minimum energy problem
will be studied since that approach proved to work well in practice, see
Section 4.6.
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6.2 Optimal control

The following optimal control problem will be studied

min
uh,ur

∫ T

0
ρhu2

h(t) + ρru2
r(t) dt

subject to: The model in (3.40)
huh(t)h ≤ amax

hur(t)h ≤ rmax

hs(t)h ≤ smax

x(0) = [ 0 0 0 0 0 0 ]T

x(T) = [ 0 0 0 L 0 0 ]T

where T is the movement time and L is the movement distance. The
constraints state that there is no surface oscillation in the end of the
movement and that the container moves the desired distance and is at
rest at the end of the movement.

If the rotational acceleration does not excite the oscillation, i.e. b2 = 0,
the maximum surface elevation is set to smax = 0, the cost for tilting is set
to ρr = 0, the maximum allowed rotational acceleration is set to rmax =
∞ and the horizontal acceleration is the minimum energy acceleration
reference then the solution to the optimal control problem will be the
same as for the direct calculation of the tilt angle described previously.

Similarly as in Section 4.9 this continuous time optimal control prob-
lem can be discretized using zero-order-hold sampling of the inputs uh

and ur. The model in (3.40) is nonlinear in the output. If the model is
linearized, the optimal control problem can be formulated as a quadratic
programming problem in the same way as in Section 4.9.

By replacing the term−(a/2) tan x6 with −(a/2)x6 the system becomes
linear. This simplification will lead to that s(t) is larger for the linearized
model than for the nonlinear model and hence solutions to optimal control
problems using the linearized model will tilt the container more than
necessary to satisfy the constraint hs(t)h ≤ smax for the nonlinear model.

The sampling period h is chosen such that T = Nh and the matrices
Gh and Gr are constructed in the same way as in Section 4.9 where Gh

contains the pulse response from horizontal acceleration to the surface
elevation relative to the container wall and Gr the corresponding response
from rotational acceleration.

The control signals are collected in the vector

U = [uh(0) . . . uh((N − 1)h) ur(0) . . . ur((N − 1)h) ]T

and now the response to the horizontal and rotational acceleration can be
written as

S = GU with G = [Gh Gr ]
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Chapter 6. Combined horizontal and rotational motion

since the initial condition is zero. The optimal control problem can now
be written as

min
U

UT
[ ρh I 0

0 ρr I

]
U

subject to: hU h ≤
[

Amax

Rmax

]
hGU h ≤ Smax

CU = [ 0 0 0 L 0 0 ]T

(6.1)

where Amax, Rmax and Smax are constant vectors with length N. The
terminal constraint matrix C is given by

C =



nh
1 (Nh) . . . nh

1(h) nr
1(Nh) . . . nr

1(h)
nh

2 (Nh) . . . nh
2(h) nr

2(Nh) . . . nr
2(h)

nh
3 (Nh) . . . nh

3(h) 0 . . . 0

nh
4 (Nh) . . . nh

4(h) 0 . . . 0

0 . . . 0 nr
5(Nh) . . . nr

5(h)
0 . . . 0 nr

6(Nh) . . . nr
6(h)


where nh

i is the pulse response from the horizontal acceleration to state i
and nr

i the corresponding response from rotational acceleration.
This is a standard quadratic programming problem that can be solved

numerically using any of the numerous solvers available. If the inequality
constraints are removed it is also easy to solve analytically.

Numerical solution

A numerical solution for the quadratic program in (6.1) is obtained using
the quadprog function in Matlab. The problem is solved for different values
of ρh, smax and b2 in (3.40) with ρr = 1. The movement time is T = 0.5 s,
the movement distance is L = 0.1 m and the theoretical model parameters
ω = 21.0 rad/s and ζ = 0 are used. The results are shown in the figures
6.1, 6.2 and 6.3.

In Figure 6.1 the rotational acceleration does not excite the oscillation,
b2 = 0, and the problem is solved for smax = [0.012, 0.008, 0.004] m and
ρh = [1, 102, 104]. The figure shows that when smax = 0.0012 no tilting
of the container is necessary to satisfy the constraints. When ρh = 1 the
surface elevation is minimized using the horizontal acceleration only. The
container is only tilted for smax = 0.004 m when the surface elevation
cannot be reduced using the horizontal acceleration. This gives a horizon-
tal acceleration that is close to the minimum time acceleration references
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6.2 Optimal control

derived in Section 4.4. As ρh is increased more tilting action is used to
reduce the surface elevation. When ρh = 104 the horizontal acceleration
is almost equal for all values of smax. When smax = 0.012 m the surface
elevation constraint is not active and the solution is the pure minimum
energy solution.

Figure 6.2 shows the numerical solution for b2 = 25 ⋅ 10−6ω which
corresponds to a rotational axis positioned 4 cm below the surface, see
Table 3.3. The behavior is similar as for b2 = 0 except that when ρh = 104

the rotational acceleration is used to control the surface elevation and not
only tilting the container to counteract the oscillation. This results in that
the surface elevation constraint is active also for smax = 0.012 m.

The numerical solution when b2 = −25 ⋅ 10−6ω is shown in Figure 6.3,
this corresponds to a rotational axis positioned 2 cm below the surface.
The solution is similar as for the previous cases except when ρh = 104.
For ρh = 104 the surface elevation is controlled using mostly the rota-
tional acceleration which results in that the surface elevation constraint
is inactive for smax = 0.012 m and smax = 0.008 m.

The numerical solutions show that the balancing between horizontal
and rotational acceleration in the cost function is very important. If the
cost for horizontal acceleration is too small the horizontal acceleration
reference will tend to the minimum time acceleration reference before
any tilting action is invoked as smax is decreased. A suitable choice of ρh

seems to be between 102 and 104. The numerical solutions also show that
the solutions for ρh = 1 and 102 are very similar for all values of b2.

The resulting maximum tilting angle for smax = 0.004 m are 6.9○ with
ρh = 1, 8.2○ with ρh = 102 and 11.7○ with ρh = 104 when b2 = 0. The
maximum tilting angle is slightly smaller for b2 = 25 ⋅ 10−6ω and slightly
larger for b2 = −25 ⋅ 10−6ω .

As a comparison the minimum movement time when the container is
not tilted is also calculated. With smax = 0.008 m the minimum move-
ment time is 0.47 s and the smallest movement time when the surface
elevation constraint is inactive is 0.58 s. With smax = 0.004 m the corre-
sponding movement times are 0.64 s and 0.89 s. The smallest movement
time when the surface elevation constraint is inactive is interesting be-
cause the resulting horizontal acceleration reference has proved to work
well in practice. This shows that the movement time can be reduced con-
siderable if smax is small by tilting the container.

Experimental evaluation

The experimental evaluation is performed in the experimental setup pre-
sented in Chapter 2 using a container with a width of 7 cm and a liquid
depth of 20 cm. The movement time is 0.5 s and the movement distance
is 0.1 m. The experiments are performed with three different vertical po-
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Figure 6.1 The numerical solution to (6.1) and simulated surface elevation with
ρr = 1, b2 = 0 and ρh as given in the figure. The problem is solved for smax =
0.012 m (solid), smax = 0.008 m (dashed) and smax = 0.004 m (dash dotted). For
ρh = 1 the horizontal acceleration tends to the minimum time acceleration reference
as smax is decreased. When ρh is increased more tilting action is used and the
horizontal acceleration becomes smoother as well as the simulated surface elevation.

sitions of the rotational axis, yr = [−2,−3,−4] cm which corresponds to
approximately b2/ω = [−25 ⋅ 10−6, 0, 25 ⋅ 10−6]. The oscillation frequency
in the model is modified to ω = 20.5 rad/s and the damping is set to
ζ = 0.01 to reduce the amount of residual slosh in the same way as in
Section 4.7.

Experiments are performed for the same values of ρh, ρr and smax as
in the numerical solutions in the previous section. Each movement is per-
formed twice, one forwards and one backwards, to obtain measurements
of the surface elevation on both sides of the container. The results of the
experiments are shown in the figures 6.4, 6.5 and 6.6.

Figure 6.4 shows the experimental results when yr = −3 cm and
b2 = 0. The figure shows that the resulting maximum surface elevation
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Figure 6.2 Same as Figure 6.1 but with b2 = 25 ⋅ 10−6ω . Compared to Figure
6.1 the rotational acceleration is also used to control the surface elevation when
ρh = 104 and the rotational acceleration becomes less smooth and the container is
also tilted when smax = 0.012 m.

decreases as smax is decreased except when ρh = 1. The poor performance
with ρh = 1 was expected since the horizontal acceleration reference tends
to the minimum time acceleration reference as smax decreases. The min-
imum time acceleration reference only works for very small maximum
amplitudes of the inputs as shown in Section 4.4. When ρh = 1 and
smax = 0.004 m liquid splashed out of the container.

For ρh = 102 and ρh = 104 the performance is similar but the maxi-
mum surface elevation is slightly smaller for ρh = 104. The residual slosh
increases slightly as smax is decreased due to the increased tilting action.
Compare the experimental data with the simulations from the numerical
solution shown in Figure 6.1.

In Figure 6.5 the experiments with yr = −4 cm and b2 = 25 ⋅ 10−6ω
and in Figure 6.6 the experiments with yr = −2 and b2 = −25 ⋅ 10−6ω are
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Figure 6.3 Same as Figure 6.1 but with b2 = −25 ⋅10−6ω . Compared to Figure 6.1
the rotational acceleration is also used to control the surface elevation when ρh =
104. Since b2 is negative the rotational acceleration also counteracts the oscillation
and the solution for smax = 0.012 and 0.008 is equal.

shown. The figures show similar results as for yr = −3 cm and b2 = 0
shown in Figure 6.4.

In the same way as in Section 4.7 the parameters in the model are
modified to increase the performance. The performance is measured us-
ing the residual slosh defined in Definition 4.2 and the maximum surface
elevation relative to the container wall. The parameters ω = 20.5 rad/s
and ζ = 0.01 are fixed and the gain from rotational acceleration to sur-
face oscillation b2 is varied. Only measurements on the backward side of
the container are used. The movement time is 0.5 s, the movement dis-
tance is 0.1 m, the maximum allowed surface elevation is smax = 0.004
m and the cost parameters are ρh = 104 and ρr = 1. The experiments
are performed for three different vertical positions of the rotational axis,
yr = [−2,−3,−4] cm.
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Figure 6.4 Experimental results for acceleration references from the solution of
(6.1) with yr = −3 cm, b2 = 0, ρr = 1 and ρh as indicated in the figure. Both the
surface elevation on the backward (left) and on the forward side (right) are shown.
Experiments are made for smax = 0.012 m (solid), smax = 0.008 m (dashed) and
smax = 0.004 m (dash dotted). The experiments show that the performance is very
poor when ρh = 1 and smax=0.004 and that the surface elevation becomes smoother
as ρh is increased. It can also be seen that the residual slosh increases slightly as
more tilting action is invoked.

Figure 6.7 shows the performance measure R, see Definition 4.2, and
the maximum measured surface elevation relative to the container. The
figure shows that the minimizing b2 depends on the vertical position of the
rotational axis. The minimum of R and the maximum measured surface
elevation occur for the same value of b2 for each position of the rotational
axis. With yr = −2 cm, b2 = −40 ⋅ 10−6ω gives the minimum R and
the minimum maximum measured surface elevation, with yr = −3 cm
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Figure 6.5 Same as Figure 6.4 but with yr = −4 cm and b2 = 25 ⋅ 10−6ω .

b2 = −5 ⋅ 10−6ω is obtained and for yr = −4 cm, b2 = 25 ⋅ 10−6ω is the
minimizer.

This shows that the performance can be increased by finding the right
value of b2. Another way to increase the performance is to use iterative
learning control. Both methods presented in Chapter 5 can easily be mod-
ified to find both horizontal and rotational acceleration references.

6.3 Conclusions

In this chapter methods to reduce the surface elevation relative to the
container wall using rotation of the container has been explored. Two
methods were presented: one based on direct calculation of the tilt angle
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Figure 6.6 Same as Figure 6.4 but with yr = −2 cm and b2 = −25 ⋅ 10−6ω .

to counteract the surface oscillation and one based on optimal control and
the model 3.40 presented in Section 3.5 that simultaneously synthesizes
the horizontal and rotational acceleration reference.

In Section 6.1 a method to directly calculate the rotational accelera-
tion reference given an horizontal acceleration reference is presented. The
method is very simple but can only be used if the rotational acceleration
does not cause any surface oscillation.

Section 6.2 presents a method using optimal control and a lineariza-
tion of the simple model in (3.40) that simultaneously gives the horizon-
tal and rotational acceleration reference. The optimal control problem is
a minimum energy problem with a maximum allowed amplitude of the
acceleration references and the surface elevation relative to the container
wall. The optimal control problem is discretized using zero-order-hold of
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Figure 6.7 The performance measure R in Definition 4.2 and the maximum mea-
sured surface elevation for different values of b2/ω for yr = −2 cm (dash dotted),
yr = −3 cm (solid) and yr = −4 cm (dashed). The minimizing b2/ω is different for
the the different values of yr . The value b2/ω which minimizes R and the maximum
measured surface elevation respectively coincides for each value of yr .

the acceleration references and formulated as a quadratic program.
The problem was solved numerically for different values of the cost

for horizontal acceleration, maximum allowed surface elevation and the
different values of the gain from rotational acceleration to surface oscil-
lation which corresponds to different positions of the rotational axis. The
numerical solution showed that the balancing of the cost for horizontal
and rotational acceleration is very important. If the cost for horizontal
acceleration is too small compared to the cost for rotational acceleration
then the horizontal acceleration reference will tend to the minimum time
acceleration reference as the maximum allowed surface elevation is de-
creased and the container will only be tilted if the surface elevation cannot
be reduced any further using the horizontal acceleration.

Evaluation of the proposed method in the experimental setup showed
that the method works well when the cost for horizontal acceleration is
large. This was expected since the horizontal acceleration tend to the min-
imum time acceleration when the maximum allowed surface elevation is
decreased which only work for small values of the maximum acceleration
as showed in Section 4.4.

Experience from other experiments not presented here have also shown
that if the maximum surface elevation is too large, about 2.5 cm, without
tilting. Then the model in (3.40) is not valid and the rotation if applied
will only cause more oscillation. Therefore this method is only applicable
if the maximum allowed surface elevation is small, about 0.5 cm in the
cases studied here.
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Concluding remarks

In this thesis an industrially relevant problem has been described where
an open container with liquid should be moved without excessive slosh.
The major constraint is to keep the slosh below a certain level during
the movement. The problem has been solved by first deriving a simplified
mathematical model of the slosh phenomenon and then applying optimal
control techniques and iterative learning control to determine the appro-
priate acceleration reference.

This chapter contains a summary of the conclusions given in previous
chapters in Section 7.1. Section 7.2 describes how the work presented in
this thesis has been applied in industry. Possible extensions and continu-
ation of this work is presented in Section 7.3.

7.1 Conclusions

The slosh measurement problem is discussed in Chapter 2 and several
different methods are evaluated. The evaluations show that the slosh
measurement problem is not easy. The only measurement methods that
work satisfactorily are the infrared displacement sensor and the computer
vision based system. The computer vision based system does not give
an online measurement of the surface in this configuration. But this is
no restriction here since the measurement is only used for performance
evaluation and not for direct feedback.

In Chapter 3 it is shown that it is possible to derive a linear model for
the surface elevation above one point using fluid dynamics. In the deriva-
tion it is assumed that the surface elevation is small and that the surface
is moving slowly. It is also assumed that the liquid is inviscid, incom-
pressible and that the flow is irrotational. The resulting model consists
of an infinite number of oscillators with increasing oscillating frequencies
and decreasing gains. The slosh phenomenon is examined in experiments
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showing that it exhibits two nonlinear phenomena: amplitude dependent
oscillation frequency and asymmetric oscillation. The experiments also
show that the slosh can be modeled by a second order linear system when
the oscillation amplitude is small both when the container is accelerated
horizontally and rotationally. The chapter is concluded by presenting a
simple second order linear model that can easily be used when solving
optimal control problems.

Methods for calculation of horizontal acceleration references are pre-
sented in Chapter 4. The methods are based on optimal control and use the
simple linear model presented in Section 3.5 to describe the slosh. Both
minimum time and minimum energy problems are studied and solved
both numerically and analytically. Experimental evaluation of the result-
ing acceleration references shows that the minimum time references work
well only for long movement times with a small maximum surface eleva-
tion and small maximum acceleration. The minimum energy acceleration
references proved to work well for fast movements if the model parameters
were modified to compensate for the amplitude dependent oscillation fre-
quency. This shows that the simple linear model can be used if the surface
oscillation is small when solving a minimum time problem or if the control
is cautious as when solving a minimum energy problem. The acceleration
references calculated are all functions in continuous time which need to
be discretized to enable implementation. A simple method for discretiza-
tion of acceleration references that conserves the motion constraints was
presented. Direct calculation of a discrete time acceleration reference was
made by solving a discrete time minimum energy problem using quadratic
programming.

Two methods based on Iterative Learning Control (ILC) were pre-
sented in Chapter 5. The learning signal in both methods is the horizontal
acceleration reference. This makes it hard to use the traditional formula-
tion of ILC which uses time invariant linear filters to calculate the new
control since there are constraints on the terminal velocity and termi-
nal position. Both methods use the simple linear model of the system to
predict the output in the next iteration based on the obtained data.

The first method called Constrained Iterative Learning Control (CILC)
formulates the learning algorithm as a quadratic optimization problem
with two equality constraints, the terminal position and velocity, that min-
imizes the control error and the control signal. The optimization problem
was solved analytically and the resulting update law is structured sim-
ilarly as for traditional ILC but the linear filters are time varying. The
method tries to make the surface elevation follow a reference calculated
using a model of the slosh. If there are modeling errors then the reference
will be non-optimal and even infeasible.

To avoid the problem with infeasible references another method called

160



7.1 Conclusions

Iterative Optimal Control (IOC) was derived. The IOC method solves the
discrete time minimum energy problem using experimental data in an
iterative manner. The algorithm consists of a quadratic program that
minimizes the control signal and the residual slosh on both sides of the
container subject to constraints on the maximum control, maximum sur-
face elevation, terminal velocity and terminal position. The inequality
constraints on the control signal and surface elevation were removed and
the quadratic program was solved analytically which resulted in an up-
date law that consisted of three time varying linear filters similarly as
the CILC algorithm.

Both algorithms were analyzed for the case when the process is de-
scribed by a linear system. The eigenvalues of the iterative process were
calculated numerically for different parameter values of the process model
showing that the robustness is larger when the control cost is high and
that the CILC algorithm is more robust than the IOC algorithm to pa-
rameter mismatch. Numerical calculation of the stationary solutions of
the iteration process shows that the control error and residual slosh de-
crease as the control cost is decreased but with the CILC algorithm the
control signal exhibits chattering if the control cost is too small. The noise
variance in the output and in the control signal was calculated numeri-
cally showing that the control signal variance becomes very large if the
control cost is small using the CILC algorithm and that the output vari-
ance decreases as the control cost decreases. Both methods were evaluated
using simulations with both a linear and a nonlinear process model with
measurement noise. The simulations show that both methods are suc-
cessful but the weighting matrices in the CILC algorithm needed to be
modified to handle the infeasibility of the reference with the nonlinear
process model. The experimental evaluation showed that both algorithms
are successful in reality.

The possibility to reduce the maximum surface elevation at the wall
of the container by tilting of the container was explored in Chapter 6.
It is shown how the tilt angle and corresponding rotational acceleration
can be calculated directly for any horizontal acceleration reference if it
is assumed that the rotation does not cause any surface oscillation. To
handle the case when the rotation causes surface oscillation a discrete
time minimum energy problem was solved using quadratic programming
that simultaneously calculates the horizontal and rotational acceleration
satisfying the constraints. The quadratic program was solved numerically
which showed that the balancing of the cost between the horizontal and
the rotational acceleration is very important. If the cost for rotation is
too large then the container will only be tilted when the surface elevation
cannot be further minimized by the horizontal acceleration. This leads to
a horizontal acceleration that is close to the minimum time acceleration.
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Experimental evaluation of the method for different positions of the rota-
tional axis showed that the method works well if the maximum allowed
surface elevation is small and the horizontal acceleration is smooth and
not too large. Compared to movement without tilting the movement times
can be decreased about 20% for the same maximum surface elevation.

The main conclusion is that it is possible to find open-loop acceleration
references for movement of the packages using a very simple model of the
slosh phenomenon and optimal control. The robustness to modeling errors
is achieved by minimizing the control effort and either tuning of the model
parameters or iterative learning control.

More detailed conclusions can be found in the summary of each chapter
given in the sections 3.5, 4.10, 5.8 and 6.3.

7.2 Industrial application

The calculations of the minimum energy acceleration reference have been
implemented in an Excel spreadsheet to enable easy use by the develop-
ment engineers at Tetra Pak Research & Development AB.

The method has mainly been used in the development phase of new
machines, where it has proven to be very useful and given the develop-
ment engineers a tool to accurately predict the movement times given a
certain configuration without extensive testing. This has simplified the
development and enabled evaluation of several different machine configu-
rations during the development. This has made it possible to include the
control design in the machine design which enables further optimization
of the machine with respect to production cost and production rate.

The movement time in one existing machine has also been decreased
by 7.4% using the minimum energy acceleration reference and increased
the range of possible filling times. The minimum energy method has also
been used to show that the movement time cannot be decreased any fur-
ther in another machine.

7.3 Future work

There are many possible future extensions of this work both theoretically
and practically.

The main theoretical extension is to refine the slosh model such that
it captures some of the most important nonlinear behavior encountered
in the experiments. With a more elaborate model it might be possible to
calculate acceleration references that work without adjusting the model
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parameters. It is also possible that the solution of the minimum time
problem with a better model gives acceleration references that work for
larger maximum slosh. Using a better model of the slosh it is also possi-
ble to analyze the properties of the iterative methods in a more realistic
setting.

It would also be interesting to evaluate the developed strategies in
practice with different package geometries, different liquids and when the
motion is along a curved path. The iterative methods can also be applied
to the case when the container is tilted. Further exploration on the use of
tilting is needed to for instance determine the optimal horizontal position
of the rotational axis. It is also of interest to design simple experiments
that can be used to estimate the model parameters of the simple linear
model for different oscillation amplitudes.
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