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Frequency-Domain Analysis of Linear
Time-Periodic Systems

Henrik Sandberg, Member, IEEE, Erik Möllerstedt, and Bernhardsson

Abstract—In this paper, we study convergence of truncated
representations of the frequency-response operator of a linear
time-periodic system. The frequency-response operator is fre-
quently called the harmonic transfer function. We introduce the
concepts of input, output, and skew roll-off. These concepts are
related to the decay rates of elements in the harmonic transfer
function. A system with high input and output roll-off may be well
approximated by a low-dimensional matrix function. A system
with high skew roll-off may be represented by an operator with
only few diagonals. Furthermore, the roll-off rates are shown
to be determined by certain properties of Taylor and Fourier
expansions of the periodic systems. Finally, we clarify the connec-
tions between the different methods for computing the harmonic
transfer function that are suggested in the literature.

Index Terms—Convergence analysis, frequency-response opera-
tors, linear time-periodic systems, series expansions.

Notation: Signals in continuous time on an interval
where , , is finite belongs to

. When the interval is clear from the context, it will be
left out in the notation. Square-summable sequences be-
long to , and the norm is finite. The
set of times continuously differentiable real functions in some
open set is denoted by . For , we denote by
and the -th partial derivative of with respect to its first
and second argument, respectively. denotes the differentiation
operator, and integration. denotes the real numbers, the
integers, and the set of complex numbers. is the imaginary
unit, and is the imaginary axis, denotes complex conjugate
of , and is the adjoint of .

I. INTRODUCTION

I N THIS paper, we study linear operators defined on sig-
nals in , where ,
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We restrict ourselves to the set of bounded operators , i.e.,
operators with finite induced norm

(1)

We assume in the following that the given operator is bounded
and has a time-domain representation with a causal impulse re-
sponse

for all

and

(2)

where and belong to . Often we identity the
impulse response with the operator . Conditions for repre-
sentability of an operator as an integral equation (2) are given in,
for instance, [1]. It is well known that systems with finite-dimen-
sional state-space realizations as well as infinite-dimensional
models such as time-delay systems may be written on the form
(2). We will often make the assumption that the impulse re-
sponse has uniform exponential decay. This means that there
are positive constants and such that

for all

In particular, this assumption implies boundedness of , since
, for all . This may be shown by using

[2, Th. IV.7.2.22]. If there is a real positive number such that

for all (3)

then the operator (or the impulse response) is said to be periodic
with period . The impulse response of a time-invariant system
satisfies

for all

A system with a finite-dimensional state-space realization with
no direct term can be written as

(4)

The impulse response of the system is given by
, , where is the transition

0018-9286/$20.00 © 2005 IEEE
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matrix for , see [3]. If the matrices , ,
are -periodic, the impulse response satisfies (3). For

simplicity, we do not deal with systems with direct terms in
this paper. Direct terms may be included in the analysis using
techniques similar to those in [4].

In the following, and are scalar signals. That is, we
treat single-input–single-output systems. However, this is just
for notational convenience. Everything can be done for mul-
tiple-input–multiple-output systems with only minor modifica-
tions.

It is well known, see, for example, [4], [5], that frequency-
domain representations of periodic systems are infinite-dimen-
sional operators. The main goal of this paper is to develop intu-
ition for the decay rate of the elements in these operators, and
to review some known results in the area.

A. Previous Work

The study of periodic systems has a long history in applied
mathematics and control. One reason for the interest in periodic
systems is that natural and man-made systems often have the
periodicity property (3). Some examples are oscillators used in
communication systems, planets and satellites in orbit, rotors of
wind mills and helicopters, sampled-data systems, and ac power
systems. There is an excellent survey of periodic systems and
control in [6].

Frequency-domain analysis of linear time-periodic systems
in continuous time has been studied by several authors in the
past. A classical reference is the work by Zadeh, see [7], where
the steady-state response of a time-varying system to harmonics
is used to define a time-varying transfer function, the parametric
transfer function (PTF). The PTF has been further developed
and used in [8], [9]. The PTF is a scalar function that depends
on two variables: time and frequency.

A second frequency-domain representation can be obtained
by using time-domain lifting on the time-periodic system, and
then applying the -transform, see [5], [10], [11]. Colaneri
called this function the transfer function operator (TFO). This
is an integral operator with a kernel depending on time and
frequency. An alternative derivation of the TFO comes from
studies of the steady-state response of the system to an expo-
nentially modulated periodic (EMP) signal. The EMP signals
serve as good test functions, since EMP signals are mapped to
EMP signals by periodic systems.

A third approach was taken by Wereley and Hall in [5], [12].
They applied an harmonic balance method to state-space sys-
tems with EMP inputs. That is, periodic matrices and signals
are expanded into Fourier series and harmonics are equated.
This method yields a transfer function that depends only on fre-
quency. The function was called the harmonic transfer function
(HTF). The HTF is an infinite-dimensional operator. The infi-
nite dimensionality can be seen as the price that is paid for the
removal of the time dependence in the transfer function. For ex-
ample, it was shown in [13] that a Fourier expansion of the PTF
in the time direction yields the elements of the HTF.

All of the above transfer functions can be used for studies
of periodic systems, for example, to compute norms. It is im-
portant to understand that all of these transfer functions are

equivalent. The PTF and the TFO are time dependent. If this
time dependence is expressed in an harmonic basis of the type

, we essentially obtain the HTF. Relations of this
sort are treated in [13]–[15]. In this paper, we investigate what
happens when higher harmonics in this basis are truncated. An
alternative approximation method is, for example, to use fast
sampling in time. Such approximations are discussed in [16]. It
should also be mentioned in this context that the frequency-do-
main operator of a discrete-time periodic system becomes fi-
nite dimensional, see [17], [18]. The previous listing of fre-
quency-domain methods is not complete. There are more rep-
resentations, see, for example, [19], [20].

In the area of sampled-data systems, a lot of related work has
been done. The PTF has been applied to sampled-data systems
in [8]. A method similar to the TFO, that is, a lifting and -trans-
form approach, has been used in, for example, [15] and [21]. An
approach similar to the HTF has been used in [22] and [23]. A
nice property of sampled-data systems is that often closed-form
solutions are obtained. This is not the case for generic peri-
odic systems. The literature on sampled-data systems is vast and
many more references can be found in the previous work.

We mainly work with the HTF in this paper. From the above
discussion, it follows that this is not a severe restriction. The
HTF has successfully been used by several authors for different
applications in the past. For example, for identification of heli-
copter dynamics, see [18], for vibration damping in helicopters,
see [24], and for stability and robustness analysis in switched
power systems, see [25], [26]. A nice feature with the HTF is
that we can directly extract Bode-type diagrams that describe
the cross-coupling of frequencies from the diagonals of the HTF.
This can be used to detect resonances that involve several fre-
quencies, see [26]. Another reason for studies of the HTF is that
it has recently obtained a lot of theoretical attention. Formally,
we can work with the HTF just as with a standard transfer func-
tion. Hence, formulas for -norms are completely analo-
gous to the time-invariant formulas, see [4], [5], and [27]. How-
ever, the HTF is also useful for studies of attainable per-
formance, see [28], generalization of the Nyquist criterion [29],
and for generalization of Bode’s sensitivity integral [30], [31].

B. Computation of the HTF

Despite all of this work, there are still open issues about the
HTF. In particular, how the HTF should be computed. Three
approaches have been taken, to the authors’ knowledge.

In the first approach, see [4] and [5] it is assumed that has
a state-space realization (4), and that a Floquet transformation
has been performed. Then the matrix is time invariant, and
explicit formulas for the elements in the HTF can be given as a
series of the Fourier coefficients of and .

The second approach is also a state–space approach, see [28].
The elements of the HTF are given implicitly via an inversion
of an unbounded quasi-Toeplitz operator, with the Fourier co-
efficients of the state matrix on the diagonals. It
has been claimed that this yields the HTF when the dimension
of finite-dimensional truncations of the operator grows toward
infinity. However, to the best knowledge of the authors of this
paper, how and when this convergence works has not been prop-
erly explained. This second approach is interesting since it does



SANDBERG et al.: FREQUENCY-DOMAIN ANALYSIS OF LINEAR TIME-PERIODIC SYSTEMS 1973

not require a Floquet transformation on the state-space model,
and allows us to work directly with the Fourier coefficients of
the state-space realization. We call this method the truncated
harmonic balance method.

A third approach is used in [26]. This approach is based on an
impulse-response model (2) of the periodic system. It is shown
how the elements of the HTF can be computed via a Fourier
expansion of the impulse response. This approach is interesting
since it only uses input-output data of the model. However, the
calculations in [26] are formal and many details and possibilities
are not treated.

In Section VI of this paper, we clarify the connections be-
tween the above approaches, using the tools that are developed
here. In the limit, we obtain the same operator no matter what
approach that is used. Hence, it is justified to use the term HTF
in all of the previous cases.

C. Organization and Contributions

This paper serves the purpose of survey some existing results
as well as introducing new results. The new results give intu-
ition for the structure of the HTF, based on two types of series
expansions of the systems.

In Section II, we derive Taylor expansions of time-varying
systems. The expansions are around “infinite frequency,” and
the coefficients become time-varying Markov parameters. Two
different expansions are studied. We introduce the concepts of
input and output roll-off of a time-varying system, and relate the
Markov parameters to the roll-off concepts. In Section III, we
derive Fourier expansions of time-periodic systems. The gener-
alized Fourier coefficients become time-invariant systems. Sim-
ilar ideas were suggested in, for example, [7], [26]. Here we
apply Hilbert space formalism to the problem. Furthermore, we
derive conditions under which truncated Fourier series converge
in induced -norm, and introduce the concept of skew roll-off.
In Section IV, we define the HTF based on the impulse response,
as was done in [26]. Its definition is straightforward after a
Fourier expansion. We show that if the periodic system has high
input and output roll-off, then it may be well approximated by
a finite low-dimensional matrix function. If the system has high
skew roll-off, then it may be approximated by an operator with
only few diagonals. In Section V, we obtain error bounds for
the closed-loop operator , when it is computed from
truncated HTFs. These formulas are useful in Section VI, where
we show that the HTF defined in Section IV is identical to the
HTF defined in [4], [5]. We also study the truncated harmonic
balance method. It is seen that by a minor modification of the
method, we can show that it converges to the desired operator.
The convergence may, however, be quite slow.

An early version of this paper is [32].

II. TAYLOR EXPANSIONS OF TIME-VARYING SYSTEMS

We will obtain a frequency-domain description of . Many
times the input signal and output signal in are
represented by their Fourier transforms and , where

is the angular frequency. This presents no problems since
is isomorphic to under the Fourier transform,

see, for example, [33], and

.

A. Markov Parameters for Time-Varying Systems

As a first step in the analysis, we make an expansion of the
convolution integral (2) that resembles a Taylor expansion.
This is motivated by the Markov parameters for time-invariant
systems. That is, a transfer function of a time-invariant
system, where is the impulse response, can under certain
regularity conditions be Taylor expanded as

as (5)

The Markov parameters are and they
determine the response to high-frequency signals. If the first
Markov parameters are zero, then high-frequency signals are
attenuated quickly. (“The system has high roll-off.”) We will
establish similar conditions in the time-varying case and start
by putting restrictions on the impulse response, for the com-
putations to be justified. The set of continuously differentiable
and exponentially bounded impulse responses will appear fre-
quently throughout this article.

Definition 1 (The Set ): A causal time-varying (not neces-
sarily periodic) real impulse response belongs to the set if

E1) belongs to , where ;
E2) and all its partial derivatives up to order have

a limit everywhere on the boundary of , that is

exists for all , where or , and
;

E3) and all its partial derivatives up to order have
uniform exponential decay.

Example 1 (State–Space Models): We can check that the im-
pulse response of state-space models belong to if the model
is exponentially stable, and belong to , and

belongs to . Furthermore, all the matrices should
be bounded over .

It will be useful to consider signals in the space of Schwartz
functions ,

and

is bounded for all

where is the differentiation operator. The set is dense in
, for , and the Fourier transform of an element

in is again in , see [34]. To obtain expansions of (2) in the
form of (5), we proceed by using integration by parts. If we
choose an input signal , this gives

(6)
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is the integration operator: , and
means the partial derivative of with respect to its second argu-
ment. The above computation is allowed if and .
One should notice that (6) is an expansion of the time-varying
system (2) into a sum of a modulated integrator and a new stable
time-varying system with as impulse response. After
the following definition, we obtain the general expansion for-
mulas.

Definition 2 (Input and Output Markov Parameters): For a
system with impulse response in , the input Markov pa-
rameters, , are defined as

(7)

and, the output Markov parameters, , are defined as

(8)

for .
Remark 1 (Markov Parameters for Time-Invariant Sys-

tems): For time-varying systems in , the Markov parameters
are bounded continuously time-varying functions. For time-in-
variant systems, with impulse response ,
the input and output Markov parameters coincide with the
traditional Markov parameters, and are constant and equal.

Theorem 1 (Taylor Expansions of Time-Varying Sys-
tems): Assume that belongs to . Then for every input

, the output given by (2) can be expressed in
either of the following two ways:

— Input Markov parameter expansion

(9)

— Output Markov parameter expansion

(10)

Proof: To prove (9), use integrations by parts on
, and substitute into (6). If the procedure

is repeated, we obtain (9).
The first step in proving (10) is to differentiate (2)

and then to integrate over in the -direction

(11)

Repeat this procedure on the virtual output for
and substitute into (11). The above computa-

tions are allowed under the given assumptions, since the outputs
are continuously differentiable and , as . Equa-
tion (10) may also be proven from (9) by a duality argument,
see Remark 2.

Remark 2 (Duality of Input and Output Markov Parame-
ters): The adjoint of , where , is given
by (the anti-causal relation) , and one
can make Taylor expansions of this relation as well

where . So with the interchange
the input Markov parameters of are the output Markov pa-
rameters of (with the obvious changes from causality to an-
ticausality).

B. Input Roll-Off and Output Roll-Off

Equation (5) shows that there is a relation between the
Markov parameters and high-frequency behavior for time-in-
variant systems. This relation will be further explored for
time-varying systems. We need the projection operator on

that is defined by

.

Notice that is not causal in the time domain, and
. It is also convenient to define .

This term is motivated in Section IV-A.
Definition 3 (Rectangular Truncation): Assume that

. Then is called a rectangular
truncation of .

The systems in the following are strictly proper (they have
no direct term) and can be arbitrarily well approximated by its
low-frequency part:

as

To quantify the rate of convergence, we use the bound

Definition 4 (Input and Output Roll-Off): Assume that is a
bounded operator on . If there are positive constants and

such that



SANDBERG et al.: FREQUENCY-DOMAIN ANALYSIS OF LINEAR TIME-PERIODIC SYSTEMS 1975

then is said to have output roll-off . The largest such
is called the maximum output roll-off. If there are positive con-
stants and such that

then is said to have input roll-off . The largest such is
called the maximum input roll-off.

Remark 3: The roll-off rates and are not necessarily in-
tegers, but sometimes the maximum roll-off rates are, see The-
orem 2. If a system has output roll-off , then it also has output
roll-off , where , and similarly for input roll-off.

Some simple properties for calculations with systems with
input/output roll-off are stated in the following proposition.

Proposition 1 (Input and Output Roll-Off): The following
rules apply to systems with roll-off.

i) If has output roll-off and is bounded, then
has output roll-off of . If has input roll-off and

is bounded, then has input roll-off of .
ii) Input and output roll-off reduce to the standard notion

of roll-off for time-invariant . That is,
and , where

is either the input or the output roll-off of .
iii) If is a time-invariant system with output roll-off

and has output roll-off , then has output
roll-off . If is a time-invariant system with
input roll-off and has input roll-off , then
has input roll-off .

Proof: In this proof, means the induced -norm.
i) follows from Definition 4 and the induced norm property

. ii) commutes with a time-invariant .
We have

, where could be either the input or output
roll-off. iii) We have and

, which proves the
first statement. The second statement follows from a dual
argument.

Since Definition 4 may be hard to check for a given oper-
ator , it simplifies if we decompose the system into terms that
are easier to analyze. The Taylor expansions in Theorem 1 are
such decompositions. We use them in the following theorem to
show that the Markov parameters in Definition 2 determine the
roll-off.

Theorem 2 (Markov Parameters and Roll-Off): Assume that
the impulse response of belongs to . Let be the first
nonzero input Markov parameter and be the first nonzero
output Markov parameter. Then

i) has input roll-off . If and
for all , then has maximum input roll-off ;

ii) has output roll-off . If and
for all , then has maximum output roll-off .

Proof: We start with the second statement of i). We need
a bound on . By definition, we have

(12)

TABLE I
INPUT AND OUTPUT MARKOV PARAMETERS OF A TIME-VARYING

STATE–SPACE MODEL (4)

To bound (12), we make an input Markov parameter expansion
of , for . Since is dense in , such a bound
holds for inputs in as well. Using the assumption that the
first Markov parameters are zero and , we have

The first term in the expansion can be bounded as

where . For the remaining terms, we can
make the upper bound

where and , where
. Hence, using the triangular

inequality we have

(13)

and the system has input roll-off . To see that is the max-
imum input roll-off, assume has a larger roll-off .
Then, we obtain a contradiction for sufficiently large in (13)
due to the lower bound.

To prove the first statement of i), we make an input Markov
parameter expansion as before, but we stop the expansion when
we have terms with . Then we can prove an upper bound
similar to (13) (but not a lower bound) and the result follows.
To prove ii), the output Markov expansion is used instead of the
input Markov expansion.

Example 2 (Finite-Dimensional State–Space Models): Let
us assume that the system has a state–space realization (4) and
that the impulse response belongs to , see Example 1. Ac-
cording to Theorem 2 the roll-off of the state–space system can
be determined by checking which of the Markov parameters are
zero. The first few Markov parameters of (4) are given in Table I.
In particular, they coincide with the normal Markov parameters
for time-invariant systems:

The Markov parameter conditions for output roll-off cor-
respond to the conditions for relative degree of a periodic
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system, defined in [35]. Also notice that the -th Markov param-
eters may be written as and , where

and , using
notation from [35].

III. FOURIER EXPANSIONS OF TIME-PERIODIC SYSTEMS

Until now we have not used the periodicity condition
. The periodicity condition can be

used for Fourier expansions. The possibility of Fourier expan-
sions of periodic systems was discussed already in [7]. Here,
we apply Hilbert space formalism to the problem. We define
the space for periodic impulse responses

is periodic and causal

where

The previous equality follows from the periodicity condition (3).
The -norm is also used in, for example, [4], [10], [28]. is
a Hilbert space with the scalar product

(14)

is composed of the well-known separable Hilbert spaces
and . Orthonormal basis functions in are,

for example

or

where and is an orthonormal basis in
. We can choose , where

are the Laguerre polynomials, for example. By standard results
from functional analysis, see, for example [36], all functions in

can be represented by a generalized Fourier series

(15)
where the series converge in -norm. Instead of using the ex-
pansion (15), it is more useful for us to only use the expansion
in the -direction. This is expressed in the following theorem.

Theorem 3 (Fourier Expansion in ): Assume that the im-
pulse response of belongs to . Then

(16)

(17)

with convergence in . The Fourier coefficients are given by

(18)

(19)

Proof: We show (16). A similar calculation gives (17).
Using the Cauchy–Schwartz inequality on (18), we have for all

Since , we can expand it in the generalized
Fourier series

If we insert this in the sum in (16), we see that it is equal to
(15).

Some immediate properties of the Fourier coefficients in (16),
(17) are stated in the following corollary.

Corollary 1 (Properties of Fourier Coefficients): Assume
that and belong to . Then

i) the Fourier coefficients and satisfy
;

ii) if is real, then for all ;
iii) the Fourier coefficients and belong to

for all ;
iv) the scalar product (14) can be expressed as

By Corollary 1 it follows that there is no essential difference
between the expansions (16) and (17). They are essentially the
same. In the following sections, we will mostly work with the
expansions in . It is also useful to introduce the orthogonal
projection

(20)

We make the following definition.
Definition 5 (Skew Truncation): Assume that the impulse re-

sponse of is in . Then the system , with impulse re-
sponse given by (20), is called an th-order skew trunca-
tion of .

The reason for the term “skew truncation” will be more clear
once we have constructed the harmonic transfer function in Sec-
tion IV-B. A simple application of Corollary 1 iv) gives that
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the skew truncations converge in , , as
.

Remark 4 (Optimal Approximations in ): By Corollary 1
iv), impulse responses that do not contain the same Fourier co-
efficients are orthogonal in . Hence, in .
From standard results for approximation in Hilbert spaces,
is the optimal -approximation of in the subspace .
In particular, is the optimal time-invariant impulse-response
approximation of in .

A. Input–Output Properties

The interpretation of the convergence in the above Fourier
expansions is that for impulse inputs, the outputs converge in
“mean energy sense.” This is a quite weak form of convergence.
By strengthening the assumptions on , we can show stronger
forms of convergence, in induced norms. This is the topic of the
rest of this section.

The input–output map of is given by

(21)

where we have interchanged the order of integration and sum-
mation. The output is given by a parallel connection of
input- or output-modulated time-invariant systems. We asso-
ciate with the th Fourier coefficients of causal and time-in-
variant system and

Hence, we can represent by the formal Fourier series

(22)

where the Fourier coefficients are time-invariant systems. We
will show that these series converge in induced norms. Let us
again use the class of causal continuously differentiable and
exponentially bounded impulse responses, , defined in Sec-
tion II.

Lemma 1 (Bounded Fourier Coefficients): Assume that a pe-
riodic system has an impulse response that belongs to .
Then

i) belongs to ;
ii) there are positive constants and such that the

Fourier coefficients are bounded

Proof:

i) We will prove that belongs to . Since belongs to
at least , by E3) we have .
Hence, we can bound the -norm

ii) By assumption E1) we have that for
all . Make a Fourier expansion in the -direction
of , and notice that

Hence, we have the bound

(23)

for some positive constants and . Such constants exist by
assumption E3). The result follows.

Using Lemma 1 we can show the following theorem.
Theorem 4 (Convergence of Skew Truncations): Assume that

a periodic system has an impulse response that belongs
to , where . Then, for all inputs , the
output in (21) converges, uniformly in , to in (2),
as .

Under the same assumptions on , we have the following con-
vergence bound on the Fourier series (22)

(24)
for a system-dependent constant .

Proof: We start with the first statement. Using Lemma 1
ii) we have that

(25)

where is a constant such that

(26)

Since the upper bound in (25) is independent of and tends to
zero as , the convergence is uniform. Furthermore, we
have shown (24) when , with .

It remains to prove (24) for . We use that the
Schwartz functions are in , and are dense in ,

. If the domain of is restricted to , we can by (25) inter-
change the order of integration and summation and represent
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by the Fourier series , where are
time-invariant systems. Furthermore, we have the bound

using first Young’s inequality and then Lemma 1 ii). Now, since
is dense in , , we can conclude that

(27)
where is a given by (26). Hence, also in this
case.

We can apply Theorem 4 to input signals that are harmonics
and thereby see the connection between the above Fourier ex-
pansions and the classical analysis by Zadeh [7].

Example 3 (Harmonic Response and the PTF): The response
of a periodic system to an harmonic is now easy to
obtain. Under the assumptions of Theorem 4 and by the defini-
tion of the Fourier transform we obtain

(28)

where is the Fourier transform of . Since
, we know that is uniformly continuous and belongs

to , see [33]. Equation (28) shows that the response in-
cludes a countable number of frequencies separated by multi-
ples of . The parametric transfer function (PTF)
that is used in [7] and [9] may be defined as the steady-state
response of the periodic system to an harmonic,

. By the previous analysis, we realize that

The PTF can also be computed directly from the impulse re-
sponse , see [7] and [9]. The HTF that we obtain in Sec-
tion IV, is also a frequency-domain representation of . The
difference is that the PTF is scalar but depends on time and fre-
quency, whereas the HTF only depends on frequency. The price
is that the HTF becomes infinite dimensional. The relation be-
tween the PTF and the HTF has also been discussed in [13].

B. Skew Roll-Off

In analogy with input roll-off and output roll-off we define
skew roll-off.

Definition 6 (Skew Roll-Off): If there are positive constants
and such that

then has skew roll-off .
From Theorem 4 we see that has skew roll-off if be-

longs to .
Remark 5 (Skew Roll-Off of Time-Invariant Systems: For a

time-invariant system , it holds that for all
and . Hence, a time-invariant system has infinite skew
roll-off.

IV. HARMONIC TRANSFER FUNCTION

Time-periodic systems can be lifted to formally time-in-
variant systems using various techniques, see, for example,
[21], [37]. In this section, we review one such representation,
the harmonic transfer function (HTF). All lifted representa-
tions have one thing in common: they are infinite-dimensional
operators. Here we apply the Taylor and the Fourier expansions
of the previous sections to show how the HTF can be approx-
imated. It also turns out that the roll-off concepts have a clear
interpretation for the HTF.

By including a sufficient amount of frequencies in the Fourier
expansion of , we can come arbitrarily close to itself, as dis-
cussed in Section III. Since we have decomposed the periodic
system into time-invariant terms, the frequency-domain anal-
ysis is now straightforward. Assume in the following that the
assumptions of Theorem 4 hold. Notice that from (2) may
be written as

(29)

where is the standard convolution product. Now pick an input
in . We can apply the Fourier transform on both sides of

(29), and get

(30)

All the Fourier transforms are well defined, since by the assump-
tions and . By Theorem 4,

converges to in . Furthermore, and are
isomorphic under the Fourier transform. Hence, for all inputs

, converges to in as . Therefore
we can put in (30) if we mean convergence in -sense,
and not point-wise convergence.

Next we rewrite the summation (30) by using lifting on
. In [22] this lifting was called the Sample-Data Fourier

transform (SD-transform). The SD-transform is an isometric
isomorphism between and a Hilbert space we denote
by . It maps the Fourier transform into an infinite-di-
mensional column-vector-valued function. The SD-transform
of is denoted by and is defined as

Since the vector contains repeated versions of , it is
enough to define for to be
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able to take the inverse SD-transform. We define the norm in
as

For signals , there are now three representations: ,
, and , and the following extended Plancherel’s the-

orem holds,

If has finite -norm, then is in (its elements are
square summable) for almost all , that is

almost everywhere.
Using the SD-transform, (30) can be written in matrix-vector

form as

(31)

when if we put

. . .
. . .

. . .
. . .
. . .

. . .

. . .
. . .

. . .
. . .

We call the HTF of and it can be regarded as a linear
operator on for each . HTF was the term used by Wereley
in [5]. A similar object was called the FR operator in [22] in
the case of sampled-data systems. The difference between these
efforts is the way the elements of are computed. In the
sampled-data case, explicit formulas are given in [22]. In the
time-periodic state-space case formulas are given in [4], [5],
and in the impulse response case formulas are given here and in
[26]. The relation between the impulse-response and state-space
approaches is further discussed in Section VI.

It was assumed in the above discussion that the impulse re-
sponse belongs to . This was done to motivate the construc-
tion of the HTF from an input-output view. However, the HTF

is a meaningful construction as soon as its elements, the
Fourier transforms of the Fourier coefficients of , are well de-
fined. This is the case, for example, when is in . We have
the following well-known results, which are derived in [4], [5],
[22] under slightly different assumptions.

Proposition 2 (Norm Formulas): Assume that the impulse
response of the periodic system belongs to . Then
can be defined as in (31). We have then

trace (32)

and

(33)

A. Rectangular Truncations Revisited

By looking at the structure of the HTF’s of rectangular and
skew truncated systems we make useful connections to the work
in [27]. The reasons for the terms “rectangular” and “skew”
will also be obvious. To compute the induced -norm (1) of
a system with input and output roll-off and , we have
the bound

(34)
Proposition 2 gives us a way to compute the induced -norm,
given a HTF . It is not essential that corresponds to
a causal operator for (33) to hold, it is true for every frequency-
domain relation (31). Hence, we can apply it to . This
is favorable, since the HTF of is simple.

Proposition 3 (Rectangular Truncated HTFs): Assume that
has an HTF . If we choose and

, and introduce the intervals
and , the HTF of is given by

where is the part of
that maps frequencies in to frequencies in , that is

...
...

...
...

where .
Proposition 3 shows that we can represent the linear periodic

system arbitrarily well with finite-dimensional functions and
estimate its norm as

(35)

using (33) and assuming continuous elements . The guar-
anteed accuracy depends upon the matrix size and the roll-off
of according to (34). To use the rectangular truncation (35) to
estimate the norm of a periodic system has been suggested by
many authors. A similar idea is to use a compression operator,
see [38]. In [22], it is shown that the rectangular truncation con-
verges at least at a rate , for
truncations and some constant . In [22], sampled-data sys-
tems are studied, but similar techniques are used in [4], [27].
As seen in (34), the bound on convergence rate may be im-
proved by checking the Markov parameters. Moreover, non-
square truncations can be used to improve conver-
gence and computation time, adapting and to the input
and output roll-off rates.
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Input and output roll-off can be visualized in the HTF as fol-
lows. Introduce the interval and look at the HTFs
corresponding to the truncated operators in the definition of
input and output roll-off, Definition 2, 4, and use notation from
Proposition 3

Then

(36)

(37)

for almost all from (33). Since the modulus of the elements
in an operator on cannot be larger than the induced -norm,
this also bounds the sizes of individual elements. To conclude, if
the system has high output roll-off, then decays quickly
asymptotically in the up-down direction (36), and if it has high
input roll-off it decays quickly asymptotically in the left-right
direction (37). In Theorem 2 we have given the conditions for
the decay rates: the more input and output Markov parameters
that are zero, the higher roll-off.

B. Skew Truncations Revisited

Let us now look at the skew truncated HTF’s.
Proposition 4 (Skew Truncated HTF’s): The HTF of the

skew truncation , , consists of the diag-
onals of and is zero elsewhere.

Hence, as increases, more diagonals are added to the skew
truncated HTF. Furthermore, we know that each diagonal repre-
sents a Fourier coefficient of , see Theorem 3. For instance, the
middle diagonal corresponds to the time-invariant com-
ponent, see Remark 4. From Theorem 4 we know how quickly
this HTF converges in induced norms. That is, we can quantify
how much accuracy there is, at least, to gain by including an
extra diagonal in the HTF. If the system has skew roll-off , we
can conclude that

where , using Definition 6 and (33). Hence, with
high skew roll-off, the diagonals decay quickly for large . The
constants and can be determined from the smoothness of ,
see Theorem 4.

Remark 6 (Relation to [27]): Skew truncations are used to
compute the -norm of periodic systems in [27]. However, it
is not the HTF of that is used there. Instead the state-space
matrices and are skew truncated. That means that

the -norm is computed for the system , with impulse
response

where is the (Floquet-transformed) state matrix , see the
discussion in Section I-B. The HTF of has diag-
onals, but notice that in general . Hence, are
in general not -optimal approximations of , see Remark 4.

V. APPROXIMATE INVERSES

Inverses appear for closed-loop systems in mappings such
as and . Here, we study what can be
said about the approximate inverses and

, using the machinery developed thus far. This is of
interest by itself, in studies of closed-loop systems, for instance,
but in this paper we only use it for state–space models in Sec-
tion VI. We should first remember that even if is causal, the
approximation is noncausal, even if it gets “less non-
causal” as it converges to . For this reason it is difficult to prove
causality of by studying . How-
ever, to compute , we have the following
result:

Proposition 5 (Approximation of Using
): Assume that and

are bounded operators on , and that has output roll-off
and input roll-off . Then the relative -induced norm error
is bounded

Proof: All norms in this proof denote -induced norms.
First, we make an orthogonal decomposition of the Hilbert space

, so that . In this basis, takes the
operator-matrix form

where , ,
, and . Next,

we notice that
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and that second factor on the right-hand side in matrix form
becomes

The norm of the first factor is bounded by ,
and the second factor is bounded by , and
the result follows.

The approximation is a finite sum of modulated time-
invariant causal systems. If we decompose as ,
we have bounds on from Theorem 4. Assume that
is causal and bounded. Then, notice that

(38)

If is large enough we have ,
, and we can make the following Neumann series

expansion with absolute convergence in induced -norm:

(39)

If the approximation error is small, then boundedness of
follows. We formalize this in the following proposi-

tion.
Proposition 6 (Approximation of Using

: Assume that is a bounded and causal
operator on , where , and that

where . Then given by (38), (39)
is a bounded and causal operator on , and the relative error is
bounded

(40)

Proof: That is bounded and causal follows
since it is a product of the bounded and causal operators in (38).
The bound (40) follows from a simple bound on the geometric
series (39).

Proposition 6 is stronger than Proposition 5 in the sense that
we do not need to assume existence of the approximate inverse,
the existence follows by the Neumann series expansion. On the
other hand, is easier to compute, since it can
be represented by matrices using Proposition 3.

VI. STATE-SPACE MODELS

Now, we return to the state–space systems described in (4),
and show how the results in the previous sections can be applied
to this situation. Here it is useful to allow signals to be vectors or

matrices. To use the results of the previous sections, should
be interpreted as the (induced) Euclidean norm.

A. Floquet-Transformed State–Space Models

Assume that a Floquet transformation, see, for example [3],
has been performed on the state–space realization (4) of , and
that the Fourier series

are absolutely convergent. The state matrix is constant,
. Then, the Fourier series of the impulse response is given

by

after interchange of summation order. Hence, the Fourier coef-
ficients of , see Section III, are given by

Using the definition (31) of the HTF, we see that is iden-
tical to the HTF defined in [4] and [5].

B. Convergence of the Truncated Harmonic Balance Method

As discussed in Section I-B, it is of interest to compute
the HTF of a state–space model without first applying the
Floquet transform. Truncated harmonic balance was suggested
as a method for this in, for example, [28]. However, to the
authors’ knowledge, no analysis of how and when this method
converges has been presented. We will do an attempt to analyze
the method here. Define the multiplication operator as

and and similarly. The input–output relation of the
state–space model (4) is then given by

(41)

for all , where is the differentiation operator. The reason
for introducing is to make all operators bounded. Equation (41)
is decomposed of three simple operators

(42)

The operators and have impulse responses of the type
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and the HTF becomes

. . .

. . .
. . .

. . .
. . .

. . .
. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

where the second factor is a Toeplitz operator and
are the Fourier coefficients of . It is now straightforward
to check the input and output Markov parameters. If and

belong to , the first Markov parameters of and
are and , respectively, and hence both and
have input and output roll-off 1 by Theorem 2. If both and

belong to , then and have skew roll-off ,
by Theorem 4.

Let us focus on the rectangular truncations, since these are
suggested in [28]. Under the assumptions of Proposition 5 and
using Proposition 3, we have bounds

as , and . To approximate , we
use skew truncations , since is a multiplication operator
and has no input and output roll-off. If is periodic and in

, we have that an th-order skew truncation converges as

for some constant . The HTF of is a Toeplitz operator
with the Fourier coefficients on the diagonals, see
[4]. Hence, by rectangular truncations of each of the operators
in (42), we can approximate with

and

(43)

as , for some constants , , , using the triangular
inequality. Notice that (43) is a worst-case bound. If the system

is time invariant, all the operators are diagonal and
. If we approximate , we obtain

The first part of the error bound depends on the input and output
roll-off of , which are determined by the Markov parameters
in Table I. The second part depends on the operators , , and

, as discussed previously.
To summarize, using techniques developed in this paper, we

have shown convergence of the truncated harmonic balance
method suggested in [28]. Notice that the method suggested
here and in [28] are the same, since and commute.
We have also seen that the worst-case convergence rate is slow,
only for matrix dimensions .
The advantage with the method is that we only work with the
Fourier coefficients and simple matrix algebra. No knowledge
of the transition matrix is needed. If the transition
matrix is known, we can compute the elements in
exactly by our results in Section IV. Then the convergence
of rectangular truncations may be much faster, and depends
only on the input and output roll-off. Since the convergence
rate of the rectangular-truncation method may be slow, it is an
interesting problem for future research to study how the method
may be improved.

VII. CONCLUSION

We have studied linear time-periodic systems from a fre-
quency-domain point of view in this paper. We started to
study Taylor expansions of time-varying systems and defined
input and output Markov parameters. We also introduced the
concepts of input and output roll-off. These roll-off rates are
determined by the Markov parameters. Next we studied Fourier
expansions of periodic systems in . We also gave sufficient
conditions for convergence rates of truncated Fourier expan-
sions in induced -norm, and introduced the concept of skew
roll-off.

After the Fourier expansion, it was straightforward to de-
fine the frequency-response operator that is called the HTF. The
roll-off concepts were shown to determine the decay rates of
elements in different directions of the HTF, and we were able
to strengthen available convergence bounds. After studies of in-
verses, we applied the results to systems given in state-space
form. This allowed us to give conditions under which the trun-
cated harmonic balance method converges. This method is in-
teresting since only the Fourier coefficients of the realization
are needed. Most other methods that apply to periodic systems
require knowledge of the transition matrix. However, the con-
vergence rate of the method can be quite slow.

This paper has provided a systematic convergence analysis
for the HTF. This is important since in all applications listed in
Section I-A, some sort of truncation is used. We have analyzed
the most common approaches of truncation here. However, it is
still unclear how the HTF is best approximated.
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