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1

Introduction

1.1 Background and Motivation

One of the most important subsystems in any vehicle is its braking
system. In the last century, braking systems evolved considerably. It
started with primitive systems, consisting of a block rubbing against
the wheel rim. Today, the braking is electronically controlled by Anti-
lock Braking Systems (ABS).

“While the development of braking systems has come a long way, the
progress is just beginning.’’ [Buckman, 1998]

The first ABS systems were implemented in the late 1970’s, the main
objective of the control system being prevention of wheel-lock. Most
ABS controllers available on the market are table and relay-feedback
based, making use of hydraulic actuators to deliver the braking force.

In the latest generation of brake-by-wire systems, electro-mechanic
actuators are capable of delivering continuously varying and differ-
ent brake forces independently to the four wheels. Such actuators are
capable of superior performance, needing novel slip controllers that
can fully exploit these capabilities. The control objective of these sys-
tems shifts to maintain a specified tire slip rather then just preventing
wheel-lock. The set-point slip is supposed to be provided by a higher
level in the hierarchy (e.g. an ESP system), and can be used for sta-
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1.2 Contributions and Related Publications

bilizing the steering dynamics of the car while braking.
This thesis proposes a novel gain-scheduling scheme for tire slip

control. This controller has the capability of controlling the tire slip at
a given set-point.

To tune the proposed controller, new theory has been developed. The
proposed synthesis method can be used for a wide class of nonlinear
systems.

During the synthesis of the controller, an important factor was the
servo properties of the control system. Motivated by this, the servo
problem for a special type of nonlinear systems is examined.

1.2 Contributions and Related Publications

Chapter 2 of this thesis is concerned with an industrial application,
an Anti-lock Braking System for a passenger vehicle. A novel control
system is proposed. Simulation and test results are presented. The
work in this chapter is contained in:

Solyom, S. and A. Rantzer (2002): “ABS Control by Gain Scheduling.”
To be published in Nonlinear and Hybrid Control in Automotive
Applications, Springer-Verlag.

The third chapter is treating a synthesis method for robust PI(D)
controllers. This design method is used to tune the nonlinear controller
developed in the second chapter. The work in this chapter is contained
in:

Solyom, S. and A. Ingimundarson (2002): “A synthesis method of
robust PID controllers for a class of uncertainties.” Accepted for
publication in Asian Journal of Control, Special Issue on PID
Control.

The fourth chapter is treating the servo problem for piecewise lin-
ear systems. Convex optimization is used to describe the behavior of
system trajectories of a piecewise linear system with respect to some
input signals. The work in this chapter is contained in:

Solyom, S. and A. Rantzer (2002b): “The servo problem for piecewise
linear systems.” Accepted at 15th International Symposium on
Mathematical Theory of Networks and Systems, Notre Dame.
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Chapter 1. Introduction

1.3 Future Work

In the first part of this thesis a model based Anti-lock Braking Sys-
tem is presented. Simulation and test results are presented. In order
to fully validate the proposed controller, more tests are needed, espe-
cially for low friction surfaces. Furthermore, in the control design only
longitudinal slip has been considered. It is the believe of the author
that the controller can be easily adapted for the cases when side-slip
is present.

The third chapter of the thesis treats a synthesis procedure for
PID controllers for a class of uncertain systems. It solves the problem
for a cone bounded nonlinearity in feedback with a part of the plant.
It is of interest to investigate the case when multiple cone bounded
nonlinerities are present in the system.

The last chapter presents a result for analysis of piecewise linear
systems. Behavior of system trjectory is analyzed with respect to some
input signal. In the current stage of the result, the input signal at
each time instant is constrained to a set. It is of interest to relax
this constraint such that the equilibrium point of the piecewise linear
system can switch partition.

8



2

ABS control — A design
model and control
structure

2.1 Introduction

The Anti-lock Braking System (ABS) is an important component of
a complex steering system for the modern car. It is now available on
most of the vehicles, enhancing their braking capabilities.

The early development of anti-lock system for vehicle brakes be-
gan in Europe in the mid 1920’s [Buckman, 1998]. One of the first
patents in Europe was issued in 1932 entitled “An Improved Safety
Device for Preventing the Jamming of the Running Wheels of Auto-
mobiles when Braking”. In the US the first patent was issued in 1936,
named “Apparatus for Preventing Wheel Sliding”. Contrary to the com-
mon belief, the first practical application of an anti-lock system to a
vehicle was done to railroad trains and not to aircrafts. The first oc-
curred around 1943, while the later appeared in the late 1940’s and
early 1950’s. In 1951 an anti-lock braking system for highway vehi-
cles was presented. These early systems were mechanical systems and
performed with varying degrees of efficiency, but they significantly im-
proved vehicle steerability during braking. This ability of the early sys-
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Chapter 2. ABS control — A design model and control structure

tems encouraged further development. In 1968 an optional equipment
for Thunderbirds was a rear axle hydraulic ABS. The control algorithm
of this system was implemented on analog computers with primarily
discrete components, resulting in low reliability. In 1978, Mercedes-
Benz offered anti-lock braking system as an optional equipment for its
S-class vehicles. In the beginning of the 1980’s the algorithms were mi-
grated to micro-computers and ABS development started to progress
strongly. By 1985, Mercedes, BMW and Audi introduced Bosch ABS
systems. Meanwhile Ford introduced its first Teves systems. In the
late 1980’s ABS systems were offered on many luxury and sports cars.
Today, ABS systems can be found on most of the vehicles, tending to
be a standard equipment.

The main objective of most of these control system is prevention
of wheel-lock while braking. This is important for two main reasons.
First, to maintain steering ability of the car while hard and emergency
braking, enabling obstacle avoidance in such situations. Second, to
decrease the braking distance in case of an emergency braking. The
later is due to the fact that the maximum friction between the road
and the tires is, in most of the cases, achieved when the wheel is still
rotating and not when is locked.

It turns out that this task is not trivial, one of the main reasons
being the high amount of uncertainty involved. Most uncertainty arises
from the friction between the tires and the road surface. In addition,
the tire-road characteristics is highly nonlinear, which burdens even
further the control task.

The brake actuators play an important role in slip control, influ-
encing the control system’s performance. Most of the ABS available
on the market are making use of hydraulic actuators. These are sim-
ple hydraulic valves, usually with three-point-characteristics. In the
new generation of ABS, electro-hydraulic actuators are used and in
the next generation of brake-by-wire systems electro-mechanic actu-
ators will be used. In a brake-by-wire system the drivers action on
the brake pedal is converted into electrical signals that are transmit-
ted via microcontrollers to the brake actuators. This way there is no
hydraulic connection between the pedal and the actuators. The brake
actuators used in these systems have the advantage of allowing contin-
uous and more accurate adjustment of the brake force. These braking
systems enable control of tire slip at arbitrary set-points which can be
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2.2 Process description

used to improve the driving characteristics of the vehicle. This means
that to fully exploit the capabilities of such braking systems, there is
a need for new high performance control systems. In particular, these
controllers should be able to regulate the slip at different set-points.
These reference values are to be specified by other systems, such as
an Electronic Stabilization Program (ESP).

The key word for novel vehicle dynamics control systems is inte-
gration. Different levels, in a hierarchical structure of controllers with
different functionalities are interacting in order to improve the driving
characteristics of the vehicle. Such a high level integration and inter-
action is not possible without brake-by-wire technology. To fully use
the capabilities offered by this technology, new analysis and synthesis
approaches are to be developed.

This chapter is addressing the ABS system for a vehicle equipped
with brake-by-wire technology. A novel, model based control approach
for slip control is proposed. A systematic synthesis method is proposed.
The resulting controller is a hybrid nonlinear PID controller. Tests have
been carried out in a Mercedes E220 vehicle, provided by Daimler-
Chrysler, equipped with electro-mechanical brakes and brake-by-wire
system.

2.2 Process description

It is easiest to understand the underlying control problem by looking
at the so called quarter car model. This model consists of a single wheel
attached to a mass, as shown in Figure 2.1.

The equations of motion of the quarter car, in case of braking, are
given by:

Jω̇ = rFx − Tb

mv̇ = −Fx
(2.1)

where:

m - mass of the quarter car

v - velocity over ground of the car
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Chapter 2. ABS control — A design model and control structure

ω

Fx

v

Fz

Tb

Figure 2.1 Quarter car.

ω - angular velocity of the wheel

Fz - vertical force

Fx - tire friction force

Tb - brake torque

r - wheel radius

J - wheel inertia

The longitudinal tire slip is defined as:

λ = v−ω r
v

(2.2)

hence, a locked wheel (ω = 0) is described by λ = 1, while the free
motion of the wheel (ω r = v) is described by λ = 0.
The tire friction force, Fx, is determined by:

Fx = Fzµ(λ, µ H ,α , Fz, v)
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2.2 Process description

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wheel slip (λ)

fr
ic

ti
on

co
ef

fic
ie

nt
(µ
)

Figure 2.2 Tire friction curve.

where µ(λ, µ H ,α , Fz) is the road-tire friction coefficient, a nonlinear
function with a typical dependence on the slip shown in Figure 2.2
(µ H denotes the maximum friction coefficient). The most common tire
friction model used in the literature is the “Magic Formula” [Bakker
et al., 1989], or Pacejka model. This model uses static maps to de-
scribe the dependence between slip and friction and it can depend on
the vehicles velocity (v). In the literature there are reported several
dynamical friction models [Bliman et al., 1995], [Canudas de Wit and
Tsiotras, 1999], that attempt to capture more accurately the transient
behavior of the tire-road contact forces. In this work a Pacejka model
will be used for simulations as well as design. This function depends
also on the normal force (Fz), steering angle (α ), road surface, tire
characteristics, velocity of the car. For ease of writing, in the following
the arguments of µ will be dropped. Substituting (2.2) into (2.1), the
system becomes:

λ̇v = − Fzµ
J

r2 − Fzµ
m
(1− λ) + r

J
Tb

v̇ = − Fzµ
m

(2.3)

This is a nonlinear differential equation where the parameters v, µ are

13



Chapter 2. ABS control — A design model and control structure

time varying. Notice that the slip dynamics is scaled by the inverse of
the velocity over ground of the vehicle. This will have an important
effect on the control performance.
As mentioned before, the tire-road friction coefficient is itself a nonlin-
ear function. Depending on the road condition and the tire characteris-
tics, the peek of the friction curve will be more or less pronounced and
the value of the maximum friction coefficient (µ H) will be different.
To the left of the peak the tire slip dynamics is stable. While on the
right of the peak, where the slope of the curve is negative, the slip dy-
namics becomes unstable. The easiest way to see this is by linearizing
in operating points that are in the positive respectively negative slope
regions of the curve.
Another factor that is influencing the tire-road friction curve is the
side-slip angle. In case of steering while free rolling, side slip together
with a side force occur. This phenomenon is more pronounced in case
of simultaneous braking and steering. In general, the larger the tire
slip angle is the smaller the longitudinal friction will be. Naturally,
this will lead to reduction of braking force when braking in a curve
and consequently will increase the braking distance.

Consider the tire friction curve shown in Figure 2.2 (this curve
corresponds to a high friction surface, e.g. dry asphalt). Then by fixing
the braking torque Tb, one can draw the phase plane of (2.3). Figure 2.3
shows the normalized vector field of (2.3) together with some simulated
solutions. The thick dashed lines represent the slip coordinate of the
two equilibrium points close to the peak of the tire friction curve. These
equilibrium points are on different sides of the peak (see Figure 2.2)).
One of them is a stable equilibrium point (0.079, 0) while the other
is unstable (0.205, 0). The position of these points (for a fixed curve)
depends on the braking torque (Tb). It can be seen from the phase-
plot that the velocity over ground dynamics is much slower than the
slip dynamics. Furthermore, the slip dynamics is somewhat faster for
low velocities than for high velocities. Figure 2.3 is drawn for fixed
Tb = 1300 Nm, one can see the specific behavior of the slip dynamics,
namely that for an initial slip higher than a given value (in this case
0.205), the slip dynamics becomes unstable. This would basically mean,
that for a given constant braking torque Tb = 1300 Nm, if the point
λ = 0.205 is passed, the wheel will lock.

Notice that this model is a quite simple description of the slip dy-
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2.3 Existing ABS solutions
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Figure 2.3 Phase plane for the quarter-car model.

namics for a wheel. It does not capture pitching motion of the car body
while braking, suspension dynamics, actuator dynamics, tire dynam-
ics nor camber angle (in the above given model, the tire is consider
perpendicular on the road surface).

2.3 Existing ABS solutions

Most of ABS controllers available on the market are table and relay-
feedback based, making use of hydraulic actuators to deliver the brak-
ing force [Hattwig, 1993], [Maisch et al., 1993], [Maier and Müller,
1995], [Wellstead and Pettit, 1997].
The existing ABS control strategies can be divided, conceptually in
two groups: wheel acceleration control and slip control. The first group
of ABS use the measured angular velocity of the wheels. This control
strategy is regulating the slip indirectly by controlling the wheel decel-
eration/acceleration. It is used mainly for hydraulic brakes with three-
point-characteristics. The idea is to measure the wheel rotational veloc-
ity and compute the wheel deceleration. Then, given some thresholds
for the wheel deceleration and acceleration, the pressure is increased,
held or decreased preventing wheel lock during braking [Kiencke and
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Chapter 2. ABS control — A design model and control structure

Nielsen, 2000]. By appropriately selecting these thresholds, the slip
will oscillate around the “critical slip”. This way, the friction force be-
tween the tires and the surface is close to its maximum value and
the braking distance is minimized. This kind of algorithm will have
as side-effect vibrations which are noticeable while braking. Todays
production ABS are rule based control system, having exhaustive ta-
bles for different braking scenarios. These controllers are tuned in trial
and error manner, using simulations and exhaustive field testing. The
level of complexity they reach is a serious limitation for the analysis
and further development of this kind of ABS. This naturally leads to
model based approaches where the parameters have physical meaning.
An immediate advantage for the model based controllers is that they
are easier to migrate to different vehicles. In the literature another ap-
proach is presented for hydraulic brakes, where the maximum friction
point is reached measuring the angular velocity of the wheel and the
brake pressure [Drakunov et al., 1995]. This is a model based approach
and uses sliding mode to reach and track the maximum friction during
emergency braking.
In [Liu and Sun, 1998], feedback linearization is used to design a slip
controller and gain scheduling to handle variation with speed of the
tire friction curve.

Most of the ABS control systems, including production ABS do not
aim for control of tire slip at a given set-point, but they maximize
the friction force between the tire and the surface by finding the peak
of the friction curve. In the latest generation of brake-by-wire sys-
tems, electro-mechanic actuators are used, which are capable of de-
livering continuously varying and different brake force on each of the
four wheels. Set-point slip is supposed to be provided by a higher level
in the hierarchy (e.g. an ESP system), and can be used for stabilizing
the steering dynamics of the car while braking. This way the control
objective shifts to maintain a specified tire slip for each of the four
wheels. This might imply different reference values for the slip of each
wheel. In [Johansen et al., 2001] there are presented two model based,
hybrid approaches. These controllers have been tested on the same
vehicle as the one used in this thesis. One of the controllers is a Lya-
punov function based adaptive controller. It is using Sontag’s universal
formula to obtain an optimal stabilizing control law. Independently on
the set-point slip, the controller also returns an estimate of the maxi-
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2.4 The test vehicle

mum friction coefficient resulting from the adaptation.
The other approach presented in [Johansen et al., 2001] is a con-
strained LQ controller. In order to make it applicable for such fast
processes, it does not rely on real-time optimization, but it evaluates
the explicit solution to a suboptimal LQ problem. The controller is
shown to be a piecewise linear controller. Additional gain-scheduling
on tire slip and velocity is used. Test results for both approaches will
be shown later, in comparison with results for the solution proposed
in this thesis.

In [Jiang, 2000], different controllers have been proposed: a PID,
a robust controller resulting from loop-shaping and a nonlinear PID
controller. In the later the nonlinearity is a function that returns high
gains for low errors and low gains for high errors. Simulation results
are presented for a heavy vehicle.

2.4 The test vehicle

The test vehicle was a specially equipped Mercedes E220 passenger ve-
hicle (see Figure 2.4). This vehicle was provided by DaimlerChrysler
and it was used as test vehicle in the EU – Esprit project Hetero-
geneous Hybrid Control (H 2C ). It was equipped with an advanced
brake-by-wire system and four state of the art electro-mechanical disk
brakes.

In addition it was fitted with the following sensors:

• four wheel speed sensors,

• two accelerometers for longitudinal and lateral acceleration re-
spectively,

• sensors for the position of the brake pedal and the force applied
to the brake pedal,

• a sensor for the steering wheel angle,

• a yaw rate sensor,

• hall sensors for measuring the clamping forces at each brake.
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Chapter 2. ABS control — A design model and control structure

Figure 2.4 H 2C test vehicle.

The ABS controllers are components of a complex brake-by-wire sys-
tem. Figure 2.5 shows a block diagram of the hardware architecture of
the test vehicle. It consists of four servo controllers for the brakes, a
monitoring unit, a brake-by-wire control unit and a power supply unit.

Figure 2.5 Test vehicle hardware architecture.

The electro-mechanical disk brakes are servo controlled by PID con-
trollers. The brake-by-wire software, among other functions, gives ac-
cess to sensor signals and command signals given by the ABS con-
trollers. The modules in the above shown architecture communicate

18



2.5 The control problem

on a synchronous TTP bus. This is advantageous from control point of
view, in the sense that the time delay of the system is fixed.

2.5 The control problem

The control objective is, as mentioned above, to follow a reference tra-
jectory for the tire slip on each of the four wheels while braking. The
specifications include the following requirements [Kalkkuhl, 2001]:

• no wheel lock allowed to occur for speeds above 4 m/s
• wheel lock for a period of less than 0.2 seconds is allowed for

speeds in the range of 0.8 . . . 4 m/s
• for speeds below 0.8 m/s the wheels are allowed to lock

• the control system should be robust with respect to other unmod-
eled dynamics:

– actuator dynamics

– suspension dynamics

• the control system should be robust to an additional time delay
of 7 milliseconds due to communication

One of the most important signal in slip control is the vehicle’s
velocity (v). This signal is not measurable and it has to be estimated.
The measured signal that is used to obtain the vehicles velocity is the
tires angular velocity. Using an acceleration sensor will considerably
ease this task.

In the same manner, any information about the tire friction curve
has to be estimated. This later task can be challenging since the road
surface conditions can change rapidly (e.g. a wet spot on a dry surface)
and the estimate should converge rapidly inspite of the uncertain en-
vironment.

Thus already at this point, some of the robustness requirements
can be identified due to:

• the feedback signal (λ) is not measurable but results from esti-
mation and the signals quality is rather poor,
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Chapter 2. ABS control — A design model and control structure

• time delay due to sampling and communication,

• high uncertainty in the tire-friction curve, especially in the non-
linear region.

In other words it is to avoid controllers with high gains, while robust-
ness against modeling error has to be maintained (resulting especially
from the friction curve).

On the other hand fast response time is imperative, that is obvi-
ously contradictory to the above mentioned robustness requirements.

Thus, in order to have good control performance it is important to
have precise estimate of the vehicles velocity, a good estimate of the
surface conditions and a not too long time delay in the control system.
Naturally the brake-actuator performance is also important. However,
this work is focused on brake-by-wire systems equipped with elec-
tromechanical brakes, which guarantee high performance such that
their limitations are not essential for the control system.

Another aim in the synthesis was to obtain a controller that is
relatively easy to tune in the test vehicle and can easily be ported onto
other vehicles.

As pointed out in the previous section, the proposed controller is
model based, therefore a natural point to start with is the quarter car
model.

2.6 Proposed design model

From the equations of motion for the quarter car, taking into account
that the velocity of the car varies much slower than the other variables
involved, one obtains the dynamics of the tire slip:

λ̇v = − r2 Fz

J
µ + r

J
Tb (2.4)

Relation (2.4) is a first order nonlinear differential equation due to the

tire friction coefficient function. Denoting β ∆= r2 Fz/J, α ∆= r/J and
adding a time delay T , the proposed design model (see Figure 2.6) can
be synthesized in the following:

λ̇(t)v = −β µ(λ(t)) +α u(t − T) (2.5)
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2.6 Proposed design model

where v is considered constant but uncertain.

1
vse−sT

Tb λα

β µ(λ)

u

Figure 2.6 Design model for an ABS.

This model captures the main control difficulties of an anti-lock
braking system. Notice that in addition to those pointed out at the
beginning of this section, velocity dependence of the system is also
included.

If the above presented model is linearized around an operating
point, the resulting model is of the form:

λ̇(t)v = −β (miλ(t) + Ψ) +α u(t − T) (2.6)

where mi is the slope of the tire-friction curve at the considered op-
erating point. Then locally the slip dynamics is given by a first order
system, stable or unstable depending on the slope mi.

Fundamental limitations

If the slope mi resulting from the linearization is negative, one obtains
locally an unstable system which in conjuncture with a time delay will
give rise to fundamental limitations in control performance [Åström,
1997]. In the following a local analysis of the system in the mentioned
situation will be carried out.
Consider that there are no other unstable nor non-minimum phase
dynamics in the system. Then the unstable pole in question is:

p= β
hmih

v

with mi < 0. According to rules of thumb in [Åström, 1997], satisfactory
control performance with a phase margin ϕ m = π/4 requires

pT ≤ 0.3
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Chapter 2. ABS control — A design model and control structure

where T is the time delay, and the resulting crossover frequency is:

ω c = p

√
2

pT
− 1

Consider process parameters such that β � 440, a time delay of
T = 14 ms and a friction curve with local negative slope of −0.5 (that
is a deflection from horizontal of −26o). Then satisfactory control per-
formance can be obtained until a velocity over ground not less than
v = 10 m/s. While for a local negative slope of −0.05 (that is a deflec-
tion of approximately −3o) the same performance can be obtained up
to a velocity over ground not less than v = 1 m/s. The crossover fre-
quency where this performance can be achieved being ω c � 50 rad/s.

Thus the time delay plays an important role in the investigated
system.

2.7 Proposed control structure

As mentioned previously, many of the important signals used in the
control unit are not directly measurable. The resulting control struc-
ture is of the form shown in Figure 2.7. The estimated variables are

Estimator
slip
reference

dynamics
Car

Controller
slip

friction, slip, velocity

Figure 2.7 ABS control.

the tire slip (λ), velocity of the car (v) and the maximum friction co-
efficient (µ H). In the design procedure these variables are considered
to be measurable, i.e. no dynamics of the estimators are taken into
account. This work is focused on the slip control loop based on given
estimates of velocity and friction.
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2.7 Proposed control structure

Due to braking the car body will exhibit a pitching motion so there
is a difference between the front and back wheels behavior. On the
other hand, due to the position of the center of gravity of the car
there is a difference between the left and right wheels even in case
of straight line braking. In the design, only a simplified model, the
proposed design model (2.5) will be used. In this model none of the
above mentioned phenomena are considered. The design is carried out
based on the same model irrespective of the wheel location. Further-
more no suspension dynamics are explicitly considered.

Estimation

Velocity of the car is estimated using information from the acceleration
sensor and the wheel speed. An extended Kalman filter is used, that
besides the velocity estimates other states of the vehicle too. One of
the estimated parameters is the maximum friction coefficient of the
road (µ H). However, the convergence of this estimate is slow to be
effectively used for control purposes. In [Kalkkuhl et al., 2000] a mul-
tiple model observer structure is proposed. This hybrid observer can be
used to obtain a fast estimate of the maximum friction coefficient for
the slip curve. The idea is to construct a finite set of parallel observers,
each being designed for a fixed parameter value of the nonlinear plant.
Defining a performance index for each of the individual observer it is
possible to quantify the parameter mismatch between each of these ob-
servers and the real plant. Then, a switching logic is used to select the
observer with the best performance, this way obtaining an estimate
for the unknown parameter. The transient behavior for the estimate
of µ H , is much faster than the one obtained from the extended Kalman
filter. In the simulations and experiments in the test vehicle, an ex-
tended Kalman filter has been used to estimate the velocity v and the
multiple model observer has been used to obtain an estimate of the
maximum friction coefficient µ H .

Proposed controller

The control problem is highly uncertain and nonlinear, mainly due to
the tire friction characteristics. On the other hand, fast changes in
operating conditions can appear (e.g. change in surface characteristics
from wet to dry road-surface). An important limiting factor is time-
delay due to sampling and communication.
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Chapter 2. ABS control — A design model and control structure

In the following, a synthesis method is proposed that handles un-
certainties induced mainly by the friction curve, while the system has
to operate in a noisy environment. A simple static model of friction
is used. Based on this, we develop a gain-scheduled controller which
switches between local controllers. The proposed control structure (Fig-
ure 2.8) is a gain scheduling scheme, based on tire slip value, velocity
over ground (v) and the maximum friction coefficient µ H (i.e. friction
coefficient at the top of the friction curve).

Controller

µ H

λ0 λ
e−sT

Tb α

β µ(λ)

u

v

1
vs

Figure 2.8 ABS control scheme.

The main idea behind the slip control design is to use a few local
controllers that locally, robustly stabilize the system for different slopes
of the friction curve and which tolerate the time variations due to the
decreasing velocity over ground of the car (v). Switching between the
local controllers is done according to the estimated friction and slip,
which define the operating point on the friction curve.

Design of the local linear controllers

Due to high uncertainty in the real process, it is natural to look for a
simple robust controller which can easily be tuned in the test vehicle.
Therefore, PI controllers are used and the gains are scheduled based
on the three variables mentioned above.

Consider a linearized model as in (2.6). The bandwidth of this
model depends on v, i.e. the bandwidth is smaller for high car ve-
locities than for low car velocities. Therefore, it is natural to design
the controller to counteract this variation. The controller is scaled by
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2.7 Proposed control structure

velocity (v) to ensure a higher gain for high velocities. In particular,
when the system is operating at maximum friction, that is at the top of
the friction curve, this scaling will theoretically remove the dependence
on velocity over ground.

The chosen local controllers are of the form:

u(t) = k (λ0(t) − λ(t)) v(t) +
∫

ki (λ0(t) − λ(t)) v(t)dt (2.7)

and can be viewed as PI- controllers scaled by the velocity over ground.
As seen in (2.6), in stationarity the slip dynamics does not depend

on v. Hence, in stationarity the control output should not be affected by
the velocity scaling. This can be achieved by moving the velocity inside
the integral, thus the integral term is kept constant as long as the slip
error is zero. Also the gain ki is inside the integral in order to obtain
a smooth transition while switching between parameters [Åström and
Hägglund, 1995].

Another important issue in ABS control is to prevent wheel-lock
in case of changes in surface condition (e.g. a transition from dry to
wet surface).A change in surface condition (e.g. transition from dry to
wet surface) will act as a load disturbance of magnitude β

α (Ψ1 − Ψ2)
according to (2.6). Thus, it is important that the controller minimizes
the effect of load disturbances on the system. On the other hand, as
seen in relation (2.6), the slope of the approximating line (resulting
from the linearization of the friction curve) affects the pole of the linear
system. Furthermore this is scaled by the velocity as a consequence of
(2.7).

Then the local control problem is to robustly stabilize the system
while minimizing the effect of load a disturbance. The main uncer-
tainty comes from one pole and the gain of the plant.

To synthesize a PI controller that minimizes the effect of load dis-
turbances one can solve a constrained optimization problem as sug-
gested in [Åström et al., 1998]. In order to guarantee additional ro-
bustness against the uncertainty in the plant, it is possible to add a
further inequality constraint based on the circle criterion as described
in [Solyom and Ingimundarson, 2002]. For improved accuracy, a model
of the actuators was also introduced in the optimization.

PID controllers can be designed in the same way, with the aris-
ing design difficulties described in [Solyom and Ingimundarson, 2002].
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The main potential advantage of using PID instead of PI controllers
for the above described system is the ability to increase significantly
the integral gain, while keeping the robustness constraints inactive.
Simulations have been encouraging.

More details about the design of the local controllers are given in
the next chapter, Section 3.6.

The scheduling

As described above, local robust controllers have been designed to han-
dle different slopes on the friction curve at different velocities. By
scheduling the gains k, ki the controller can be adapted to the cur-
rent operating mode/position on the estimated friction curve. In the
results presented below, only two local PI controllers are used.
The choice of two local controllers is based on the observation that usu-
ally there is a maximum on the friction curve, and to the left of this
there is a positive slope region , while to the right of the top (tire slip
values up to 0.5 are considered) there is a region with negative slope
that tends to flatten out for higher slip values. Thus it is natural to
have one of the scheduling variables depending on the slip value where
the assumed maximum is located (λ H). To the left of this, a controller
is used which is tuned for relatively high positive slopes, while to the
right a controller that can handle negative slopes is used.
The coordinate of the maximum changes with the friction curve, thus a
new scheduling variable is introduced, the maximum friction coefficient
(µ H) which is estimated. According to this a new λ H is considered.
Due to the robustness of local designs, it is enough to use the same
λ H for a family of friction curves. This is a point where trade-off be-
tween robustness and performance will lay a mark on the controller’s
complexity.
Thus the scheduling scheme for the controller used in the simulations
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2.8 Simulation and Experimental Results

and experiments is the following:

If low-friction surface

If low slip1 use k1, ki1

If high slip1 use k2, ki2

If high-friction surface

If low slip2 use k1, ki1

If high slip2 use k2, ki2

Notice that the same parameters k, ki are used for low and high friction
surfaces, only the scheduling based on the tire slip is changing (λ H).
This is indicated by the subscripts 1 and 2 for the scheduling slip
variable. Thus this controller has seven tunable parameters.

In order to have a fast response at the beginning of the braking
action, an initial braking force is applied, by initializing the controller
state at once as the ABS is switched on. In this way, fast response
times are possible while the controller’s robustness is maintained.

2.8 Simulation and Experimental Results

The Simulation environment

The simulator contains a four wheel model including pitch dynamics
of the car body. This simulation environment has been written and
provided by DaimlerChrysler. Ansi C has been used as programming
language for the environment. The simulator also contains the estima-
tors for µ H and v, that is the Multi-Model Observer and the extended
Kalman filter. The control software used in the simulator is designed
such that is directly transported on the platform used in the test ve-
hicle.

Figure 2.9 shows simulation results for the left front wheel. Fig-
ures 2.12–2.14 in the Appendix show simulation results for the other
wheels. As mentioned before, in the design procedure there was no
information included regarding position of the wheel. Thus identical
controllers are used on each of the four wheels.
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Figure 2.9 Simulation results for left front-wheel.

The first subplot shows the estimate of the controlled slip (λ) and
its set-point. The second subplot depicts the vehicles velocity v (the line
with negative slopes) and the wheels linear velocity ω r. The difference
between this two is given by the tire slip scaled by the vehicles veloc-
ity v. The third subplot shows the estimate of the maximum friction,
(denoted µ) and the maximum friction used in the simulation.

The plots show the tire slip control in a scenario where braking
is commenced on a high friction surface (µ H = 0.9) then a surface
with low friction is encountered (µ H = 0.3) and finally the braking is
finished on a high friction surface (µ H = 0.6). That means a scenario
that would simulate braking on a dry surface with a wet or icy spot.

Note the influence of the pitching dynamics which makes it harder
to control the slip for the front wheel. The plot shows that in case of
a change in the surface conditions, (transition from a high to a low-µ
surface) the front wheels have a more pronounced tendency to lock
than the rear wheels (see Figures 2.9 and 2.13). This phenomenon
can be easily understood from (2.6). Pitching of the car body can be
thought of as an increase of the mass acting on the front wheels, re-
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spectively decrease of the mass acting on the rear wheels. The mass is
proportional to the term β in (2.6). A change in the surface character-
istics, will act as a load disturbance on the system, as pointed out in
the previous section. This load disturbance is proportional to β , which
means that a change in the surface conditions will affect much more
the front wheels than the back wheels. This is exactly the behavior
noticed in the simulation results.

There are also some minor differences between a left and a right
wheel due to displacement in the center of gravity of the car.

The same simulations have been performed using local PID con-
trollers. The results are presented in Figures 2.15–2.18. It can be seen
that the overall performance is better.

Experimental results

The hybrid PI (HPI) controller has been tried out on the test vehicle
with typical results as presented in Figures 2.10–2.21. Figure 2.10
presents the result for the left front-wheel. Here braking on dry surface
with summer tires was tested. Summer tires present a prominent peek
at the maximum friction coefficient, which will give rise to an unstable
region for the slip dynamics.
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Figure 2.10 Experimental results for left front-wheel.
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Figure 2.11 Test result for production ABS. The figure shows tire slip – time
dependence.

As shown in the figure, after an initial transient the slip is con-
trolled very smoothly. It is to be noticed that for the back-wheels the
performance is even better. The initial transient is not so pronounced.

In these tests the HPI controller had the best deceleration in com-
parison to the approaches in [Johansen et al., 2001]. The braking dis-
tance for the HPI controller, from an initial velocity of 30 m/s was
between 36−41 meters, outperforming in this sense the controllers in
[Johansen et al., 2001] and the production ABS.

A test result for the production ABS is shown in Figure 2.11 (the
diagram depicts slip versus time dependence). As mentioned before,
the production ABS was not designed to track a reference slip trajec-
tory, but to maximize the friction force. This explain the oscillatory
behavior.

For the tests as well as the simulation a gain-scheduled controller
has been used with two local controllers, one for the regions with high
slopes in the tire-friction curve and one for regions with low slopes
in the tire-friction curve. Hence for the gain-scheduled PI controller,
seven parameters have been tuned.
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2.9 Conclusion

2.9 Conclusion

A simple but powerful design model for ABS control has been pre-
sented. Fundamental limitations on the control performance have been
pointed out. A gain-scheduled PI/PID design approach has been used
for the controller. Simulations and experiments in a test vehicle were
performed with satisfactory results.

2.10 Appendix
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Figure 2.12 Simulation results for right front-wheel.
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Figure 2.13 Simulation results for left back-wheel.

0 1 2 3 4 5 6 7
0

0.5

1
slip
setpoint

0 1 2 3 4 5 6 7
0

10

20

30

40

0 1 2 3 4 5 6 7
0

0.5

1

ti
re

sl
ip

ve
lo

ci
ty
[m
/s
]

t, [s]

µ,
µ

H

Figure 2.14 Simulation results for right back-wheel.

32



2.10 Appendix

0 1 2 3 4 5 6
0

0.5

1
slip
setpoint

0 1 2 3 4 5 6
0

10

20

30

40

0 1 2 3 4 5 6
0

0.5

1

ti
re

sl
ip

ve
lo

ci
ty
[m
/s
]

t, [s]

t, [s]

t, [s]

µ,
µ

H

Figure 2.15 Simulation results for right front-wheel with HPID controller.
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Figure 2.16 Simulation results for left front-wheel with HPID controller.

33



Chapter 2. ABS control — A design model and control structure

0 1 2 3 4 5 6
0

0.5

1
slip
setpoint

0 1 2 3 4 5 6
0

10

20

30

40

0 1 2 3 4 5 6
0

0.5

1

ti
re

sl
ip

ve
lo

ci
ty
[m
/s
]

t, [s]

t, [s]

t, [s]

µ,
µ

H

Figure 2.17 Simulation results for right back-wheel with HPID controller.
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Figure 2.18 Simulation results for left back-wheel with HPID controller.
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Figure 2.19 Experimental results for right front-wheel.
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Figure 2.20 Experimental results for right back-wheel.
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Figure 2.21 Experimental results for left back-wheel.
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3

A synthesis method for
robust PI(D) controllers for
a class of uncertainties

3.1 Introduction

Many optimal control synthesis methods result in controllers of order
related to the order of the plant. Often it is beneficial to design con-
trollers with a restricted structure. Their performance is often close to
optimal performance while they often remain substantially less com-
plex.

One of the most common controllers is the PID controller. Its popu-
larity is mainly due to fact that despite of its simple structure, it pro-
vides with some important functions such as: feedback, ability to elim-
inate steady state offsets through integral action and can anticipate
the future through derivative action [Åström and Hägglund, 1995].

The synthesis procedure presented in this chapter, is an extension
to synthesis procedures presented in [Åström et al., 1998; Panagopou-
los et al., 1999] which are collected in [Panagopoulos, 2000]. There, a
design procedure for PI(D) controllers was presented which minimizes
the effect of a load disturbance. This is achieved by maximizing the
integral gain while making sure that the closed loop system is sta-
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ble. Furthermore, it is guaranteed that the Nyquist curve of the loop
transfer function is outside a circle with center −Cs and radius Rs.
This constraint can be expressed with the equations

maximize ki (3.1)
subject to l(k, ki, kd,ω ) ≥ R2

s ∀ω > 0

where l is the function:

l(k, ki, kd,ω ) = hCs + C(iω )G(iω )h2 (3.2)
and G(s) is a linear time invariant plant and C(s) is the PID controller
parametrized as

C(s) = k+ ki

s
+ kds (3.3)

By choosing Cs = 1 and Rs, the resulting controller will guarantee
that the maximum of the sensitivity function equals 1/Rs, i.e:

1
Rs
= max

ω
S(iω )

where S(s) = 1/(1 + G(s)C(s)). Controllers with constraints on the
maximum complementary sensitivity function (T(s) = 1− S(s)) could
also be designed or a combination of these constraints. In case of PID
controllers, additional inequality constraints will be added regarding
the curvature and phase change of G(s)C(s).

In [Panagopoulos, 2000] the main design parameter was Ms = 1/Rs,
with values typically between 1.4–2. The value of this parameter will
influence the closed loop system’s damping. In the PID case, the above
mentioned inequality constraints are supplemented. These will be re-
viewed later.

The extension presented in this chapter guarantees in addition
asymptotic stability of the system when a cone bounded nonlinear-
ity is present in feedback with part of the plant, as shown in Figure
3.1. Here, as well as in the rest of this chapter C(s) represents the con-
troller. The nonlinearity f (⋅, ⋅) is a memoryless, possibly time-varying
nonlinearity within the cone given by α ,β ∈ R, α < β and β �= 0 (see
Figure 3.2), that is:

α y2 ≤ y f (y, t) ≤ β y2, ∀y ∈ R,∀t ≥ 0 (3.4)
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C(s) G1(s) G2(s)r z
y

f (⋅,⋅)

Figure 3.1 Block diagram showing nonlinearity, plant and controller.

Furthermore, it is assumed that f (y, t) is piecewise continuous in t and
locally Lipschitz in y. The synthesis procedure is based on a frequency
domain description of the system so it is easy to take into account dead
time in the plant.

The synthesis procedure can be thought of as a nonlinear opti-
mization problem with two families of constraints. One that ensures
stability and performance for the closed loop system without the non-
linearity f , and another group of constraints that will guarantee sta-
bility of the closed loop system in presence of the nonlinearity f (as

α y

β y

y

f (y, t)

Figure 3.2 Sector bounded nonlinearity.
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shown in Figure 3.1). From this point on the first family of constraints
will be referred to as constraints for nominal performance, while the
second group of constraints will be referred to as constraints for robust
stability. Furthermore, it has to be mentioned that the constraints for
nominal performance ensure robust stability against a cone-bounded
nonlinearity in the control loop (see [Panagopoulos, 2000]).

The constraints for nominal performance can be considered those
presented in [Panagopoulos, 2000]. This work will concentrate on the
constraints for robust stability.

3.2 Sufficient conditions for stability

Consider the transfer functions G(s) describing a linear plant. In feed-
back with a part of this plant, a cone bounded nonlinearity is present.
Factorizing G(s) as

G(s) = G1(s)G2(s), (3.5)
the cone bounded nonlinearity is in feedback with G1(s), as shown in
Figure 3.1. Consider for the beginning the case when the controller is
a PI, i.e.:

C(s) = k+ ki

s
. (3.6)

With G(s), G1(s) and G2(s) as in (3.5) define

P(s) ∆= G1(s)
1+ C(s)G(s) (3.7)

Furthermore,
G(iω ) = a(ω ) + ib(ω ) = r(ω )eiφ(ω) (3.8)

and
G1(iω ) = a1(ω ) + ib1(ω ) = r1(ω )eiφ1(ω) (3.9)

be the evaluations of the transfer functions G(s), G1(s) on the positive
imaginary axis.

In the case that P(s) is not strictly proper, the analysis involves
additional test for the well posedness of the feedback connection. For
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simplicity, only the strictly proper case will be considered. Hence, a
minimal realization of P(s) is given by:

ẋ = Ax + Bu

y = Cx
(3.10)

Then,

ẋ = Ax − B f (y, t)
y = Cx

(3.11)

describes the system in Figure 3.1 with r = 0.
First, some definitions will be quoted, that are necessary to state

the main results.
Absolute stability [Khalil, 1992]: The system (3.11) is absolutely stable
if the origin is globally uniformly asymptotically stable for any nonlin-
earity in the given sector. It is absolutely stable with a finite domain
if the origin is uniformly asymptotically stable.
Positive real transfer function [Slotine and Li, 1991]: A transfer func-
tion H(s) is positive real (PR) if

Re{H(s)} ≥ 0, ∀Re{s} ≥ 0.

It is strictly positive real (SPR) if H(s − ε ) is positive real for some
ε > 0.

It is a well known result that a transfer function H(s) is SPR if
and only if H(s) is Hurwitz and

Re{H( jω )} > 0, ∀ω ≥ 0

Conditions for absolute stability of system (3.11) can be obtained
by applying the circle criterion, for the transfer function P(s) as it is
connected in a loop with the nonlinearity. Therefore the circle criterion
for a scalar plant will be cited:
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PROPOSITION 3.1—CIRCLE CRITERION [KHALIL, 1992]
Consider the system (3.11), where (A, B) is controllable, (A, C) is ob-
servable. f (y, t) is locally Lipschitz in y, piecewise continuous in t and
satisfies the sector condition (3.4) globally. Then, the system is abso-
lutely stable if A−α BC is Hurwitz and

1+ β P(s)
1+α P(s)

is strictly positive real.

In order to state the main results, some intermediary steps will be
helpful.

LEMMA 3.1
Consider P(s) as in (3.7) and α , β ∈ R. Then ∀ω > 0

Re
{

1+ β P( jω )
1+α P( jω )

}
> 0 (3.12)

if and only if

r(ω )2k2 + p(ω )k+ r(ω )2
ω 2 k2

i + q(ω )ki + h(ω ) > 0 (3.13)

with

p(ω ) = (a(ω )a1(ω ) + b(ω )b1(ω )) (α + β ) + 2a(ω )
q(ω ) = 1

ω
((a(ω )b1(ω ) − b(ω )a1(ω )) (α + β ) + 2b(ω ))

h(ω ) = (α + β )a1(ω ) +α β r1(ω )2 + 1 (3.14)

The proof of this lemma is based on elementary but tedious computa-
tions and it can be found in the Appendix of this chapter.

Lemma 3.1 states that since in the control structure (3.7) the con-
troller C(s) is a PI, the positivity constraint (3.12) can be checked in
the controller’s parameter space, i.e. k – ki plane. The parametric curve
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in (3.13) is an ellipse in the k – ki plane, for a given frequency ω . This
result is similar to those in [Åström et al., 1998; Panagopoulos et al.,
1999; Saeki and Kimura, 1997].

Based on the circle criterion and the lemma above, the following
theorem for absolute stability of system (3.11) can be stated:

THEOREM 3.1
Let A,B,C describe a minimal realisation of the system defined by
(3.5)−(3.9). Consider α , β ∈ R and a function f (y, t) piecewise contin-
uous in t and locally Lipschitz in y such that (3.4) holds.
If A−α BC is Hurwitz and (3.13) holds then the system of form (3.11)
is absolutely stable.

Proof:
The circle criterion provides sufficient conditions for absolute stability
of the system. The only condition left to prove is that 1+β P(s)

1+α P(s) is SPR.

All poles of 1+β P(s)
1+α P(s) have strictly negative real part due to the fact that

A−α BC is Hurwitz. By Lemma 3.1, ∀ω > 0

Re
{

1+ β P( jω )
1+α P( jω )

}
> 0

is equivalent to (3.13), and since P(0) = 0 the proof is complete. 3

This result is equivalent to that presented in [Solyom and Ingimundar-
son, 2002]. The conditions presented here have a higher degree of gen-
erality while the parametric relations are simpler.

In many engineering applications it is of interest to look at other
equilibrium points than the origin. This is natural since often the equi-
librium point will change depending on the systems input. Obviously
any equilibrium point can be analyzed by shifting it to the origin. This
would mean different tests for each equilibrium point. Therefore it is of
special interest to derive a single test, that will give information about
the stability of equilibrium points depending on the input signal. In
this sense the following theorem gives useful result.
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THEOREM 3.2
Consider the system:

ẋ = Ax − Bw+ Brr

w = f (Cx) (3.15)

with (A, B), (A, C) controllable respectively observable pairs and f
a continuous, memoryless scalar nonlinearity. Denote P(s) = C(sI −
A)−1 B.
If there exist α , β ∈ R such that

α ≤ f (y1) − f (y2)
y1 − y2

≤ β , ∀y1, y2 ∈ R, (3.16)

Re
{

1+ β P( jω )
1+α P( jω )

}
> 0, ∀ω ≥ 0 (3.17)

and A − α BC is Hurwitz then every equilibrium point of (3.15) cor-
responding to some constant r, is a global uniformly asymptotically
stable equilibrium point.

Proof:
Consider the change of variable: ξ = x − xr with xr given by

0 = Axr − B f (Cxr) + Brr

for some constant r. If for a fixed r, the solution of the above equation
exists, then it is unique. (See Lemma 3.2 in the Appendix.)

Consider the system:

ξ̇ = Aξ − Bϕ (Cξ )

with the new nonlinearity ϕ (Cξ ) = f (C(ξ + xr)) − f (Cxr). According
to (3.16) this is a cone bounded nonlinearity.
Using the circle criterion for this system, it can be concluded that ξ = 0
is a global uniformly asymptotically stable equilibrium point. Hence xr

is a global uniformly asymptotically stable equilibrium point of (3.15),
for the considered r ∈ R. 3
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3.2 Sufficient conditions for stability

Consider now the sytem defined by (3.5) − (3.9) in feedback with a
nonlinearity f . This system is shown in Figure 3.1. The system equa-
tions are given by:

ẋ = Ax − B f (y) + Brr

y = Cx

z= Cr x

(3.18)

where (A, B), (A, C) are controllable respectively observable pairs and
f is a continuous, memoryless scalar nonlinearity. This system has a
special structure, in the sense that it uses a PI controller. The problem
is to investigate the equilibrium points with respect to r. Hence, for
system (3.18) Theorem 3.2 can be applied. Since the controller is a
PI, the positivity condition (3.17) can be checked, according to Lemma
3.1, in the parameter space of the controller (k − ki plane). Then the
following proposition can summarize the result for the case of PI con-
trollers.

PROPOSITION 3.2
Let A,B,C describe a minimal realisation of the system defined by
(3.5)−(3.9). If there exist α , β ∈ R such that (3.13), (3.16) hold and
A−α BC is Hurwitz then every equilibrium point of (3.18) correspond-
ing some constant r, is a global uniformly asymptotically stable equi-
librium point.

Thus in the case of PI controllers, the constraints that guarantees
nominal performance, robust stability as well as solution for the servo
problem in case of a constant input can be easily drawn in the con-
troller’s parameter space (k–ki plane). In this way the optimization
problem of finding the maximum ki such that these constraints hold
can be solved by visual inspection.
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3.3 Other design issues

PID controllers

In case of PID controllers the synthesis procedure is similar to the PI
case presented above. The above presented results hold with minor
changes. The easiest way to migrate the results to the case of PID
controllers is by replacing the parameter ki with ki −ω 2kd. This way
the parameter space becomes three dimensional (k, ki, kd) making the
synthesis procedure more complex.

Furthermore, in the case of PID controllers it was found in [Panagopou-
los, 2000] that the sensitivity constraint alone was not sufficient to
guarantee a nice, well-damped response. Condition ensuring negative
curvature of the loop gain and the monotonicity of the phase function
of the loop gain were added to the optimization problem. In the case
of integrating processes only the second condition is imposed.

Thus in contrary to the PI case, where the optimization problem
could be easily solved by visual inspection, for the case of PID con-
trollers a similar approach is significantly more difficult. Therefore an
optimization routine is more adequate to solve this problem.

3.4 Optimization

Using the results presented in the previous section the synthesis prob-
lem can be stated as the following optimization problem.

max ki

subject to f (k, ki, kd,ω 1) ≥ R2
s ∀ω 1 > 0 (3.19)

n(k, ki, kd,ω 2) ≥ 0 ∀ω 2 > 0 (3.20)
k > 0, ki > 0, kd > 0 (3.21)

Constraint (3.21) guarantees that the controller will not have an un-
stable zero. The two frequency dependent inequalities define the exte-
rior of two ellipses for a fixed frequency. For 0 < ω < ∞ these ellipses
generate envelopes that define the boundaries of the set of parameters
which satisfy the constraints.
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The constraints can be visualized by plotting the ellipses for a tight
griding of frequencies, enabling to visually identify the optimizer. This
graphical approach is suitable when PI design is considered but is
more difficult in case of PID controllers. However it is possible to plot
the ellipses for a grid of kd values. Here is of more interest to have a
numerical optimization procedure that can give the desired result. For
most numerical optimization procedures it is important to have good
starting values. The problem of finding good starting values is related
to determining if the problem has any feasible solution. But a quick
view of the constraints for a few values of kd should be sufficient to
obtain good starting values and see if the problem is feasible.

Automating the synthesis procedure

So far the synthesis procedure that has been presented would need
much manual intervention. It is of interest to automate the synthesis
procedure so that only the process and the parameters characterizing
the uncertainties would need to be specified. This is in principle to
automate the checking of feasibility and finding a good start value for
the numerical optimization procedure. For ideas about this issue see
[Panagopoulos, 2000].

3.5 Examples

Two examples of PI controller design will now be given followed by one
example for PID design.
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EXAMPLE 3.1
Consider the system in Figure 3.1 with

G1(s) = 1
(s+ 1)3 G2(s) = 1

and a static, time varying nonlinearity f (y1, t) : α ≤ f (y, t)/y ≤ β
with α = 1, β = 4. In particular if the cone bounded uncertainty
would be an uncertain gain the transfer function would be given by
G(s) = 1

(s+1)3+∆ where ∆ ∈ [1, 4]. The two constraints, equations (3.19)
and (3.20), will give rise to constraint surfaces as shown in Figure
3.3. As seen in the figure, in this case, the optimizer considering the
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Figure 3.3 Constraints in the k-ki plane in Example 3.1.

stability constraints for the linear system (in the figure indicated as
“sensitivity constraint”) will not guarantee stability of the nonlinear
system with cone bounded uncertainty as considered above. The sta-
bility constraint for the nonlinear system is indicated in the figure
as “robustness constraint”. Choosing the maximum ki that falls below
both constraint surfaces and a corresponding k, Theorem 3.1 guaran-
tees absolute stability of the nonlinear system.
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Figure 3.4 Nyquist plot of the loop transfer function L(s) in Example 3.1.

The Nyquist plot of the loop transfer function and the transfer func-
tion defined by equation (3.7), shown in the Figures 3.4 respectively
3.5, confirm that the constraints are not violated.
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Figure 3.5 Nyquist plot of P(s) in Example 3.1.
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EXAMPLE 3.2
Consider the system in Figure 3.1 with

G1(s) = 1
s+ 1

G2 = e−0.1s

and a static, time varying nonlinearity f (y, t) : α ≤ f (y, t)/y ≤ β with
α = −5, β = 5. In particular, if f (y, t) is an uncertain gain, the trans-
fer function would be given by: G1(s) = 1

s+∆ e−0.1s where ∆ ∈ [−4, 6].
Constraints (3.19) and (3.20) give rise to constraint surfaces as shown
in Figure 3.6. From this figure results that neither in this case the “op-
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Figure 3.6 Constraints in the k–ki plane in Example 3.2.

timum”, considering only the stability constraints for the linear system,
will guarantee stability of the nonlinear system. Choosing the maxi-
mum ki that falls below both constraint surfaces and a corresponding
k, Theorem 3.1 guarantees absolute stability of the nonlinear system.

The Nyquist plot of the loop transfer function and (3.7), shown
in Figure 3.7 respectively 3.8, confirm that the constraints are not
violated.
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Figure 3.7 Nyquist plot of the loop transfer function L(s) in Example 3.2.

Consider now, f (y, t) such that its slope at the equilibrium point,
is α = −5. Theorem 3.2 guarantees stability for this equilibrium point
too.
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Figure 3.8 Nyquist plot of P(s) in Example 3.2.
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EXAMPLE 3.3
Assume a PID controller is wanted for the process in Example (3.2).
The maximum integral gain was ki = 8.0 when only a PI controller was
used. By plotting the ellipses for a selection of kd values the following
solution could be obtained.

[k ki kd] = [6.7 22.5 0.2]

The envelopes that the ellipses generated for these parameters can be
seen in Figure 3.9. A substantial increase in integral gain could be
achieved with the PID design. The process on the other hand is simple
so this could be expected.

The Nyquist plot of the loop transfer function and (3.7), shown
in Figure 3.10 respectively 3.11, confirm that the constraints are not
violated.

Notice that the constraints shown in Figure 3.9 do not contain any
extra constraints on the curvature nor the phase lead of the loop trans-
fer function as suggested in Section 3.3. However, in this case, the
Nyquist curve of the loop transfer function (L( jω )) has a satisfactory
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Figure 3.9 Ellipses for kd = 0.2 in Example 3.3.
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Figure 3.10 Nyquist plot of the loop transfer function L(s) in Example 3.3.

behaviour. Naturally, for more complicated systems this might not be
the case.
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Figure 3.11 Nyquist plot of P(s) in Example 3.3.
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3.6 Controller Synthesis for an Anti-lock Braking
System

In this section an application of the above described synthesis method
to an Anti-lock Braking System (ABS) will be presented. The syn-
thesis method will be used to design local PI(D) controllers for a gain
scheduled scheme as presented in Chapter 2 and [Solyom and Rantzer,
2002a]. The proposed design model from chapter one will be used to
design the local controllers.

According to (2.5) the plant can be written as:

λ̇(t)v = −β µ(λ(t)) +α u(t − T)

As pointed out before µ(λ) is a nonlinear function of λ , and possibly
time varying (e.g. as result of a change in surface conditions). More-
over, v is the car’s traveling velocity, which is obviously time varying
however it has a slower dynamics than the tire slip λ .

The tire friction curve, µ(λ), is highly uncertain. It depends on
many variables, as described in Chapter 2. However, it is safe to as-
sume that is cone bounded. Furthermore we assume that is locally
Lipschitz in λ . Then theorems 3.1 and 3.2 can be used to design op-
timal controllers that are robust against a cone bounded nonlinearity,
which in this case is the tire friction curve.

Applying the synthesis method for a cone that contains the entire
friction curve will give rise to difficulties. In case that all equilibrium
points are considered (Theorem 3.2) it is very likely that the optimiza-
tion problem turns out infeasible. This can be due to a potentially large
cone while the degrees of freedom in the controller are restricted. On
the other hand, as pointed out in Section 2.6, limitations on the control
performance arise due to time delay and unstable dynamics. Even if
it would be possible to stabilize the system in any point on the entire
friction curve, the resulting controller would be very conservative and
it would not satisfy the performance requirements on the ABS.

A way around this problem is to design controllers for different
smaller cones and then switch between them according to some schedul-
ing variables. These cones are supposed to describe different regions
of a typical friction curve. Using Theorem 3.2, one would look at re-
gions on the friction curve with slopes in a given cone. The resulting
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controllers will stabilize any equilibrium point on the considered cone
bounded nonlinearity. Considering all possible slopes of the friction
curves, by Theorem 3.2 one is able to stabilize any point on a friction
curve by its appropriate controller. Then by switching between these
controllers, it will be possible to stabilize points on any friction curve
that are contained in the considered cone and has its slope confined to
the same cone.

The scheduling variable is supposed to be able to determine the
operating point on the friction curve. This was presented in Chapter 2
of this work.

Furthermore, scaling the controller by velocity over ground (v) as
suggested in Section 2.7, will in turn scale the relative uncertainty
caused by the friction curve by v−1. This scaled uncertainty remains
in feedback with a nominal plant as shown in Figure 2.6. Considering
the uncertainty as being cone bounded, this scaling will “tighten” the
cone with increasing velocity.

As pointed out in Section 2.7, to prevent wheel lock in case of sud-
den change in the surface conditions, it is important that the controller
minimizes the effect of load disturbances.

Thus the synthesis methods proposed in this chapter can be directly
applied to this problem, resulting in optimal controllers that stabilize
the system for a family of friction curves.

Furthermore, to obtain a better performance, the actuator dynamics
have been also considered. These are incorporated in G2(s) and can be
easily handled by the proposed design method.

It is worth mentioning that during the field tests, diagrams of the
kind shown in Figure 3.3, showing the constraint surfaces in the k–ki

plane, has been proven to be helpful in retuning the controllers.

3.7 Conclusions

The synthesis method presented deals with design of robust controllers
with restricted structure, in particular PID controllers. The uncer-
tainty in the plant is described by a cone bounded nonlinearity, which
is in feedback with part of the plant. To obtain a “good” controller, max-
imum sensitivity is limited as well. The synthesis method presented
requires much manual intervention but it is the believe of the author
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it can be automated significantly. The design method was successfully
used to tune local controllers for an Anti-lock Braking System.

3.8 Appendix

Proof of Lemma 3.1:

Re
{

1+ β P(s)
1+α P(s)

}
= Re

{
1+ C(s)G(s) + β G1(s)
1+ C(s)G(s) +α G1(s)

}
Re

{
1+ (k− j ki

ω )(a(ω ) + jb(ω )) + β (a1(ω ) + jb1(ω ))
1+ (k− j ki

ω )(a(ω ) + jb(ω )) +α (a1(ω ) + jb1(ω ))

}
> 0 :;

Re
{(

1+
(

k− j
ki

ω

)
(a(ω ) + jb(ω )) + β (a1(ω ) + jb1(ω ))

)
(

1+
(

k+ j
ki

ω

)
(a(ω ) − jb(ω )) +α (a1(ω ) − jb1(ω ))

)}
> 0

(3.22)

which represents a region outside some ellipses (depending on ω ) in
the k− ki. By identifying the coefficients of k and ki in (3.22), one ob-
tains inequality (3.13) with parameters as in (3.14). 3

LEMMA 3.2
Consider the system:

ẋ = Ax − Bw+ Brr

w = f (Cx) (3.23)

with A Hurwitz, (A, B), (A, C) controllable respectively observable
pairs and f a continuous, memoryless scalar nonlinearity. Denote P(s) =
C(sI − A)−1 B.
Assume that there exist α , β ∈ R such that

α ≤ f (y1) − f (y2)
y1 − y2

≤ β , ∀y1, y2 ∈ R,
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Re
{

1+ β P( jω )
1+α P( jω )

}
> 0, ∀ω ≥ 0. (3.24)

If for a given r0 ∈ R, (3.23) has an equilibrium point then it is
unique.

Proof
An equilibrium point xe corresponding an r0 ∈ R satisfies the equation:

0 = Axe − B f (Cxe) + Brr0 (3.25)

Assume there exist xe1 �= xe2 satisfying (3.25) for the same r0. Since A
is Hurwitz, one obtains:

xei = A−1 B f (Cxei) − A−1 Brr0, i = 1, 2

then
xe1 − xe2 = A−1 B( f (Cxe1) − f (Cxe2))

hence

α ≤ f (Cxe1) − f (Cxe2)
Cxe1 − Cxe2

= 1
CA−1 B

≤ β (3.26)

Furthermore, (3.24) is equivalent to:

Re
{
(1+ β P( jω ))(1 +α P( jω ))

}
> 0, ∀ω ≥ 0

thus in particular

Re {(1 + β P(0))(1+α P(0))} > 0

i.e.
(1− β CA−1 B)(1−α CA−1 B) > 0

or (
1

CA−1 B
− β

)(
1

CA−1 B
−α

)
> 0

which contradicts (3.26), completing the proof. 3
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4

The servo problem for
piecewise linear systems

4.1 Introduction

Behavior of trajectories for piecewise linear systems, in presence of an
input signal, is an important issue from a control theoretic point of
view. Most analysis results on piecewise linear systems are oriented
toward stability of the origin for the unforced system [DeCarlo et al.,
2000],[Hassibi and Boyd, 1998],[Johansson and Rantzer, 1998]. The
convergence of trajectories of the unforced piecewise linear system as
defined in [Johansson and Rantzer, 1998] is not sufficient in general, to
guarantee good behavior when input signals are applied to the system.
Even if the unforced system is proved to be stable, applying an input
might change the equilibrium point in such a way that the system
behavior becomes unsatisfactory.

The servo problem for a general nonlinear system can be analyzed
in a framework presented in Figure 4.1. The problem is to obtain infor-
mation about the differences between the system’s trajectories (x) and
a predetermined trajectory xr in presence of an input signal r. The ex-
ogenous input considered in this framework will be the time derivative
of r. Choosing L 2 norm as measure for the signals, it is natural to use
the L 2 gain to characterize the system behavior. Thus by computing
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4.1 Introduction

ṙ r

ẋ = f (x, r)

xr = n(r)

∫
x

xr

Figure 4.1 This chapter derives computable bounds on the map from the time
derivative ṙ of the reference signal to the magnitude hx − xrh of the state error.

the L 2 gain from the derivative of the input signal (ṙ) to the “dis-
tance” between system trajectory (x) and reference trajectory (xr), one
obtains information relating the convergence of the system trajectories.
In the literature on nonlinear systems, there exist qualitative results
[Khalil, 1992], [Rugh and Shamma, 2000], of the following type: if an
autonomous nonlinear system depending on some parameter, is stable
for different fixed values of this parameter, then slow variations of the
parameter between these fixed values, results in a non-autonomous
system that will stay in the neighborhood of the equilibria defined
by the fixed parameters. Our contribution is to give a quantitative
bound on the neighborhood of the equilibria when the variation of the
parameter is a continuous function. For piecewise linear systems a
computational method using convex optimization is proposed.

This chapter contains the work in [Solyom and Rantzer, 2002b].
The layout of the chapter is as follows: the second section presents the
related problem for a linear system while the third section general-
izes the problem for a nonlinear system. Section 4.4 treats the case of
piecewise linear systems. Finally, some conclusions are presented in
Section 4.5.
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4.2 The linear case

The L 2 gain for a linear system is given by well known formulas. One
approach is to solve a Riccati inequality, by means of convex optimiza-
tion [Zhou and Doyle, 1998]. In Theorem 4.1, this approach is used for
the computation of L 2 gain between the reference signal’s derivative
and the difference x − xr.

THEOREM 4.1
Consider the linear system:

ẋ = Ax+ Br, x(0) = 0 (4.1)
such that A−1 exists. Furthermore, define

xr
∆= −A−1 Br (4.2)

then the following statements are equivalent:

i) There exist γ > 0, P > 0 such that[
AT P + PA+ I PA−1 B

(A−1 B)T P −γ 2I

]
< 0. (4.3)

ii) For each solution of (4.1) with r ∈C 1 and r(0) = 0 the following
inequality holds: ∫ ∞

0
hx − xrh2dt ≤ γ 2

∫ ∞

0
hṙh2dt (4.4)

Proof:
Define x̃ ∆= x − xr. Then ˙̃x = Ax̃ + A−1 Bṙ For this system standard
results can be applied to obtain (4.3).
Multiplying (4.3) by

[
x− xr

ṙ

]
from the right and its transpose from

the left gives
dV
dt
+ hx − xrh2 − γ 2hṙh2 < 0.

Integration gives (4.4). See [Zhou and Doyle, 1998] for details. 3
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4.3 The generic nonlinear case

In case of a general nonlinear system with a time varying input, it is
more difficult to draw conclusions about trajectory convergence. Still,
it is possible to find an upper bound on the L 2 gain from the derivative
of the input to the state deviation.

THEOREM 4.2
Let f : Rn � Rm → R

n be locally Lipschitz. For every r ∈ R ⊂ Rm let
xr ∈ Rn be a unique solution to 0 = f (xr, r).

If there exists γ > 0 and a non-negative C 1 function V , with
V (xr, r) = 0 for all r ∈R and[ VV

V x f (x, r) + hx − xrh2 1
2
VV
V r

1
2

( VV
V r

)T −γ 2 I

]
< 0 (4.5)

for all (x, r) ∈ S , then for each solution to

ẋ = f (x, r), x(0) = xr0 , r(0) = r0 (4.6)

such that r(t) ∈R and (x(t), r(t)) ∈ S for all t, it holds that∫ T

0
hx − xrh2dt ≤ γ 2

∫ T

0
hṙh2dt (4.7)

Proof:
Multiplying (4.5) from left and right with [1 ṙT ] one obtains:

VV
V x

f (x, r) + hx − xrh2 + VV
Vr

ṙ − γ 2hṙh2 < 0

that is
dV
dt
+ hx − xrh2 − γ 2hṙh2 < 0

which in turns by integration on [0, T ] gives

V (x(T), r(T)) +
∫ T

0
hx − xrh2dt− γ 2

∫ T

0
hṙh2dt < 0
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and inequality (4.7) results since V (x, r) ≥ 0. 3

Remark Consider a linear system as in (4.1) with xr defined by
(4.2). Furthermore, consider a Lyapunov function of the form V (x, r) =
(x − xr)T P(x − xr). Then

VV
V x

f (x, r) (4.2)= (x − xr)T(AT P+ PA)(x − xr)
VV
Vr

= 2(x − xr)T PA−1 B

and the matrix in (4.5) becomes:

[
x− xr 0

0 1

]T [ AT P + PA+ I PA−1 B

(A−1 B)T P −γ 2 I

][
x− xr 0

0 1

]
which negative definiteness is given by (4.3).

Remark The matrix inequality (4.5) using Schur complement can
be written as

VV
V x

f (x, r) + 1
2γ 2

VV
Vr

(VV
Vr

)T

+ 1
2
(x − xr)T(x − xr) ≤ 0

which is the Hamilton-Jacobi inequality for the system
[

ẋ

ṙ

]
=
[

f (x, r)
0

]
+
[

0

1

]
u

y = x− xr

(4.8)

(see Theorem 6.5 in [Khalil, 1992]).
Similarly to Theorem 4.2, an upper bound on the instantaneous

value of hx − xrh can be obtained. The following result is analogous to
Theorem 4.2.

THEOREM 4.3
Let f : Rn � Rm → R

n be locally Lipschitz. For all r ∈ R ⊂ R
m, let

xr ∈ Rn be a unique solution to 0 = f (xr, r).
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4.3 The generic nonlinear case

If there exist γ , c, p> 0 and a C 1 function V with V (x, r) ≥ chx − xrhp
and [ VV

V x f (x, r) + λ V 1
2
VV
V r

1
2

( VV
V r

)T −γ 2I

]
< 0 (4.9)

for all (x, r) ∈ S , then for each solution to

ẋ = f (x, r), x(0) = xr0 , r(0) = r0 (4.10)

such that r(t) ∈R and (x(t), r(t)) ∈ S , it holds that

hx(T) − xr(T)hp ≤ γ 2

c

∫ T

0
hṙh2e−λ(T−t)dt (4.11)

Proof:
Multiplying (4.5) from left and right with [1 ṙT ] one obtains:

VV
V x

f (x, r) + VV
Vr

ṙ + λ V − γ 2hṙh2 < 0

thus on S yields:
dV
dt
+ λ V − γ 2hṙh2 < 0

which by multiplication with e−λ(T−t) > 0 gives

dV
dt

e−λ(T−t) + λ Ve−λ(T−t) − γ 2hṙh2e−λ(T−t) < 0

< d
dt

Ve−λ(T−t) − γ 2hṙh2 e−λ(T−t) < 0

then by integrating on [0, T ] and using that V (x(0), r(0)) = 0, gives

c2hx(T) − xr(T)hp ≤ V (x(T), r(T)) <

< γ 2
∫ T

0
hṙh2e−λ(T−t)dt

thus inequality (4.11) yields. 3
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Remark Consider a linear system as in (4.1) with xr defined by
(4.2) and S = Rn �Rm. Furthermore, consider a Lyapunov function of
the form V (x, r) = (x − xr)T P(x − xr) and p = 2. Then the Lyapunov
function’s positivity condition in Theorem 4.3 translates to:

P− c2I > 0 <
[

P I

I 1
c2 I

]
> 0

while (4.9) becomes:[
AT P+ PA+ λ P PA−1 B

(A−1 B)T P −γ 2 I

]
< 0

Obviously, for a generic nonlinear system as considered in (4.6) it
might be difficult to find a V (x, r) such that (4.5) or (4.9) is fulfilled.
In case of piecewise linear systems convex optimization can be used in
the analysis.

4.4 Piecewise linear system

Consider now a particular kind of nonlinear systems, a piecewise linear
system, of the form:

ẋ = Aix + Bir, x(t) ∈ Xi (4.12)

with {Xi}i∈I ⊆ Rn a partition of the state space into a number of convex
polyhedral cells with disjoint interior. Suppose that for any constant
r ∈R , the piecewise linear system has a unique equilibrium point.

Furthermore, consider symmetric matrices Sij that satisfy the in-
equality:[

x − xr

r

]T

Sij

[
x − xr

r

]
> 0, x ∈ Xi, r(t) ∈ R j for all t (4.13)

Define

B̄j
∆=
[

A−1
j Bj

1

]
, Ī ∆=

[
In 0

0 0m

]
(4.14)

64



4.4 Piecewise linear system

Āij
∆=
[

Ai −AiA−1
j Bj + Bi

0 0

]
(4.15)

The following proposition is useful for application of Theorem 4.2 and
Theorem 4.3.

PROPOSITION 4.1
Let f (x, r) = Aix + Bir, xr = −A−1

j Bjr with x(0) = xr(0), r(0) = r0. If
there exist γ > 0, P > 0 such that P̄ = diag{P, 0} satisfies[ ĀT

ij P̄ + P̄Āi j + Sij + Ī P̄B̄j

B̄T
j P̄ −γ 2 I

]
< 0, i �= j (4.16)[ AT

j P+ PAj + I PA−1
j Bj

(A−1
j Bj)T P −γ 2I

]
< 0 (4.17)

then V (x, r) = (x−xr)T P(x−xr) satisfies (4.5) for all x ∈ Xi, r(t) ∈ R j.

In particular, in the case when ṙ(t) = 0, for t > T , by finding a finite
γ > 0 it is shown that all trajectories of the nonlinear system (4.12)
will converge to xr.

Remark When the local linear systems contain affine terms the ar-
gument vector of the Lyapunov function will be extended to [ x̃ r 1 ].
Similarly, when partitions that do not contain the origin are to be de-
scribed, the argument vector will be augmented.

The conservatism of the theorems can be reduced by considering
piecewise quadratic Lyapunov function. In this case the Lyapunov func-
tion will be piecewise C 1 instead of C 1. Imposing that is non-increasing
at the points of discontinuity, the results yield (see [Johansson and
Rantzer, 1998]).

Remark The variation in the affine term due to r, can be viewed as
parametric uncertainty in the system. Thus the theorem can be used
to prove robust stability for a piecewise linear system, with uncertain
affine terms in the local linear systems.

EXAMPLE 4.1
Consider the system of the form:

ẋ = Ax + B(r −ϕ (Cx))
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x1

x2
X1X2

x1 = 1

Figure 4.2 State space partitions of the system in Example 4.1.

where A is a stable matrix. The nonlinearity is defined as:

ϕ (x) =
{

x, x < 1

1, x ≥ 1

This system can be described by the following piecewise linear system.

ẋ =
{

Ax− B + Br, Cx ≥ 1

(A − BC)x + Br, Cx < 1
(4.18)

The state space partitions of such a system (where the subsystems
are of second order and C = [ 1 0 ]) is shown in Figure 4.2. Here
X1 = {xhCx ≥ 1} and X2 = {xhCx < 1}. The numerical values are:

A =
[−0.5 1

−1 0

]
, B =

[
1

3

]

Then the sets R 1 = (4
3 ,∞) and R 2 = (−∞, 4

3 ) follow from simple
computations.
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4.4 Piecewise linear system

Consider first the case when r(t) ∈ R 2 for all t, i.e. xr(t) ∈ X2 for
all t .
The LMIs resulting from Theorem 4.2 turn out to be infeasible, sug-
gesting that a quadratic Lyapunov function might be too conservative.
Therefore a piecewise quadratic Lyapunov function is tried (see [Jo-
hansson and Rantzer, 1998]) :

V (x, r) =


 x − xr

r

1

T

P1

 x − xr

r

1

 , x ∈ X1

(x − xr)T P2(x − xr), x ∈ X2

Minimizing γ subject to the LMI constraints, one obtains the Lyapunov
function’s matrices:

P1 =


5.0749 −0.8930 −6.6918 8.9351

−0.8930 5.1082 0.0703 0.2583

−6.6918 0.0703 −12.1141 16.2238

8.9351 0.2583 16.2238 −2.2493


P2 =

[
20.69 −0.63

−0.63 5.1

]
and γ = 7.182.

Consider now the case when r(t) ∈ R 1 for all t, i.e. xr(t) ∈ X1 for
all t.

Consider the Lyapunov function:

V (x, r) =


(x − xr)T P1(x − xr), x ∈ X1 x − xr

r

1

T

P2

 x − xr

r

1

 , x ∈ X2

Solving the constrained minimization problem, one obtains the Lya-
punov function’s matrices:

P2 =


18.36 −2.55 47.17 −68.64

−2.55 4.22 −13.32 8.21

47.17 −13.32 146.8 −173.34

−68.64 8.21 −173.34 317.36


67



Chapter 4. The servo problem for piecewise linear systems

P1 =
[

3.874 −0.503

−0.503 4.225

]
and γ = 8.3221.

Thus for every (x, r) starting in X1 �R 1 respectively in X2 �R 2,
trajectory convergence, in the sense of Theorem 4.2, is guaranteed by
the finite γ ’s.

It is of interest to derive lower bounds on the L 2 gain in order
to verify the conservativeness of the result. A natural lower bound is
obtain by Theorem 4.1. This way for the case when xr ∈ X2 a lower
bound of 1.12 is obtained, while in the case xr ∈ X1 a lower bound of
8.318 is computed. For the case when xr ∈ X1 the resulting bounds
turned out to be very tight. However, it can be noticed that the lower
bound when xr ∈ X2 is rather small in comparison to the upper bound.
This could be refined by finding a “worst case disturbance” for the
nonlinear system.

In Figure 4.3 state trajectories x1 and x2 are presented when r ∈
R 2. Notice that x1 is passing through region X1.

As seen above, S-procedure is used (Si) to describe the state-space
partition of (4.12), and in the same time describe the set of consid-
ered r’s. More details on how to find such matrices can be found in
[Johansson and Rantzer, 1998]. The used matrices are: for X1

S12 =


0 0 −8.562 11.772

0 0 0 0

−8.562 0 −12.844 16.259

11.772 0 16.259 −20.528


and for X2

S21 =


0 0 −52.66 −34.957

0 0 0 0

−52.66 0 −315.965 100.217

−34.957 0 100.217 −336.966


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0 2 4 6 8 10 12
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(a) System trajectories and input signal.
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t, [s]

(b) Reference trajectories.

Figure 4.3 Simulation results for the system in Example 4.1.
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4.5 Conclusions

Trajectory convergence in presence of constant and time varying in-
puts has been studied. Quantitative result has been established for
a sufficient condition regarding trajectory convergence for a class of
nonlinear systems, where one of the parameters (r) is time varying.
This result has been used for piecewise linear systems, where Proposi-
tion 4.1 in combination with Theorem 4.2, give a tool for computing an
upper bound on the L 2 gain from ṙ to x − xr, characterizing the servo
problem for such systems.
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