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A Kernel for System Representation

Sven Erik Mattsson Mats Andersson
Department of Automatic Conürol

Lund Institute of Technology

P.O. Box 1L8, 5-22L 00 LUND, Sweden

Abstrøct. This paper proposes a kernel for model representation. The kernel
may serve as a central model data base in an integrated environment for model
developmenü and simulation. The CSSL definition from 1g6? has had a profound
impact on simulation and h¿s served very well for over 20 years. It is perhaps
now time to capitalize on the enormous development of information teclnology
and reconsider the foundations of model representation. This paper is a modÃi
effort in this direction. If we could agree upon a common set of iàeas we may lay
the foundation to a new standard. The proposed kernel supports a modularized
and object oriented representation of models to allow flexible and safe reuse of
model components. The model developer may supply exüra information which is
used for automatic consistency analysis to check for unintended abuse of models.
The kernel can allow any logical and mathematical framework such as differential-
algebraic equations, difference equations, etc. to describe behaviour, but a basic idea
is that behaviour descriptions should be declarative and equation based. The ke¡nel
allows integration of different customized user interfaces. À prototype of the kernel
is implemented in common Lisp and KÐ8. An implementation in c** is under
development.

Keyutord's: computer aided system design; modeling; simulation languages; hierar-
chical systems; data structures.

fntroduction

Mathematical models of various kinds are impor-
tant in all kinds of engineering. Modelling is often
a time consuming part of an engineering job but
it can be facilitated by proper Computer Aided
Control Engineering (CACE) tools.

Today's most used languages for continu-
ous simulation (ACSL, CSMP, CSSL IV, EASyb
etc., for overviews see Kreutzer (1986) and Kheir
(1988)) follow the CSSL definition (Strauss,
1967). It has served very well for over 20 years.
During this time there has been an enormous de-
velopment of computing science and computer
hardware. In L967 it was necesEary to adapt
the modelling language to the computer. It is
perhaps now time to reconsider the foundations
of model representation and borrow ideas from
computer science and develop a representation

more adapted to the user's need. This paper is a
modest effort in this direction. If we could agree
upon a common set of ideas u'e may lay the foun_
daüion to a new standa¡d.

This paper proposes a kernel for system rep-
resentation. A kernel can be viewed as a central
model data base in an integrated environment
for model development, simulation and design. It
is important that a kernel of this kind supports
a flexible f¡amework for representing many var-
ious aspects of model structure and behaviour.
The aim is to support a common representation
of models which allows flexible and safe reuse of
models for various taske and for similar systems.
It i also important that the kernel representa-
tion is separated from the user interface, so that
customized inüerfaces for various needs and user
categories can be supported.

The paper is organized as follows. First,
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the importance of a declarative equation based
model description is discussed. Then the ba-
eic model structuring concepts are prelent€d.
Thirdly we show how these concepts map into
concepts in object-oriented programming.

Declarative models

Today models developed to be used in one
CACSD package cannot without additional work
be used in another. Unfortunatel¡ much ¿.model

developmentt' work of üoday consistg of manual
recoding or implementation of adapters. An ob-
vious reagon is of course that there is no common
agreement on the representation of models.

Anothe¡ maybe less obvious reason is that
ühe representations used in moet of today,s
CACSD and simulation tools are too specialized
and of too low a level üo allow reuse of models
for other tasks than simulation. The CSSL ioole
solve problems of the type d,a/ilt= f (t,æ) if the
user definee a Forüran-like procedure which cal-
culates f(t,r).

To allow a model to be used for different
purposes it should be declarative and not pro-
cedural. It should desc¡ibe facts and relations
and not be a calculation procedure. À natu¡al
decla¡ative form for continuous time modelg are
Differential-Algebraic Equation (DAE) systems,
g(t,ùræ):0. An overview of important proper-
ties can be found in Mattsson (lg8ga).

A declarative model is multipurpose, since
iü is symbolic and can be manipulated automat-
ically to generate efficient code for simulation,
code for calculation of stationary points, linear
representations, descriptions which are accepted
by other existing packages etc. Models of the con-
troller can be used for automatic generation of
the control software or to generate layouts for
special purpose analog or digital VLSI circuits
which implement the controller.

A decla¡ative model is usually also closer to
the modeller's perception of the physical reality,
and therefore, development of new models is
easier.

Model structures

To understand large models and to be able to
reuse parts of models, good süructuring facilities
must be supported. A powerful modularization
concept supports model development by beating
complexity as well as it allows reuse of parts and
building of models by putting together existing
components.

An important conclusion from computer sci-
ence is that modules should be encapsulated with
well-defined interfaces. The idea is to support ab-
straction by separating the internal details of a
model from its interface. It means also that in-
ternal details can be changed without affecting
the way the module is used as a component.

The model is the kernel's basic structuring
unit. It ie an abstraction of some dynamic be-
haviour. A model consists of three parts: termi-
nals, parameters and realizations. The terminals
are variables which constitute a well-defined in-
terface to describe interacüion with the environ-
ment. Parameters a¡e interface variables defined
by ühe model designer to allow the user to adapü
the description of behaviour.

Realiaations

A realization is a description of model behaviour.
A model user can use ¿ model wiühout having
to bother about how iüs behaviour is defined
internally and the model designer can and must
define its behaviour without any assumptions
about the environment.

One reason for treating a realization a¡ a
separate pa^rü within the model is that we want to
have multiple realizations. Different realizations
can give more or lesg refined descriptione of the
behaviour or they can define the behaviour for
different working conditions or phases ofa batch
process. The user can choose the appropriate
realization for each parüicular use.

\{e disüinguish beüween primitive realiza.
tions and structured realizations. A structu¡ed
realization is decomposed inüo submodels and
its behaviour is described by the submodels and
their interaction. The submodels can in turn
have structured realizations which means that
the model concept is hierarchical. A primitive re-
alization is not decomposed into submodels, but
its behaviour is described in some mathematical
or logical framework as differential equations, dif-
ference equations etc.

Parameters

A parameter is a time invariant variable that can
be set from outside to modify a realization. The
burden ofa user to set parameters can be relieved
by letting the model developer provide default
values. If a good default alüernative is provided,
the casual user could be left unallyare about the
flexibility and no extra burden is put on him.

To support reparameterizations and alterna.
tive parameters, it is possible to define relations
between pa.rameters. See Mattsson (1g8gb).
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Terminals

Terminals can be viewed as variables which are
shared by the internal description of the model
and its environment.

It is natural to aggregate terminal variables,
eince the description of an interaction often in-
volves several quantities. We propose two types
of composite terminals: record and vector termi-
nals. Their subterminals can be simple, record or
vector terminals.

Exluplp 1-A pipe terminal
A terminal to describe the ends of a pipe or the
inlets and outlets of pumps, valves and tanks can
be defined a¡ a record terminal

PipeTerninal IS A RecordTerminal [tITt
conponents:

p IS !, PressureTerminal.;
q IS A l{aseF1o¡rTerminal;
d IS A Dia¡neterTerminal;

E}ID;

having three componenùs, which are simple ter-
minals. The component d defines the diameter of
the pipe or hole. tr

Connections

Interacüiong between submodels of a structured
realization are described by terminal connec-
tions. The term ¿(connection,, reflects what we
are doing in the block diagram when describing
an interaction. We will not discuss user inter-
faces here, but just point ouù that a bloclc dia,
gram is a good way of describing model struc-
ture. Elmqvist and Mattsson (1989) have devel-
oped a prototype simulator, which exploits some
features of modern computer graphics.

A connection between two structured termi-
nalg means that their first components are con-
nected to each other and so on recursively down
to the level of simple terminals. There are two
sorüs of simple terminale: acroas and ú,lrrougå. Ä
connection between two across terminals mean
that they a^re equal. Examples of physical quanti-
ties are position, pressure, temperature and volt-
age. Through terminals have an associated direc-
tion (in or out) and connected terminals should
eum to zero. Examples of through quantities are
mass flow, energy flow, force, torque and current.

A simple terminal has an attribute defining
the unit of measure with the SI unit as default.
It is used for automatic introduction of proper
scale factors in the connection equations, thus
eliminating the need of user defined adapters.

It is important to note that generally the
causality of a terminal (input or output) is not
defined by the model designer but is infer¡ed
from the use of the model.

The semantics of a connection is kept sim-
ple, since we do not want to provide two different
ways of describing complex behaviors. It is possi-
ble to describe complex interaction by introduc-
ing new submodels. It is also desirable to make
the means to describe interactions independent
of the frameworks used to describe the behaviour
of primitive models.

Ex¡.lupr,p 2-Pipe terminals cont.
Agsume that we wanü to model a system where
a tank has a valve at the outlet. We then just
connect the outlet terminal of the tank model
to the inlet terminal of the valve model. The
equatione for the interacüion saying that the
pressureo as well as the diameters should be equal
and that the masg flows should sum to zero are
deduced auüomatically from the connecüion. tr

Consistency of connections

It is important to make the use of library mod-
els safe and reliable. The encapsulation of the
models prevents to a large extent unintended
abuse, but the terminals are dangerous holes in
the wall. To allow automatic checks of connec-
tions, ühe model developer may add extra infor-
mation, which also is useful for documentation.

Simple terminals have ühe attributes name
of quantity and value range. The name of quan-
tity is used used io check the consistency of con-
nections. There is an international standard (ISO
31) for naming of quantities in diffe¡enü national
languages like English or Swedish. Information
about ranges of validity is used to test for unin-
tended abuse during simulations.

.4. terminal component may be decla¡ed as
time-invariani. Such a terminal is similar to a
parameter. This has two complementary uses.
First, a connection implies automatic propaga-
tion of parameter valueg from one submodel to
another. Second, if the two connected parame-
ter terminals have defined values, they must be
equal for the connecüion to be consistent.

Ex¡nrpr,p 3-Pipe terminals cont.
Consider PipeTerminaL in Example L. The pres-
sure component p can be defined by

PreesureTer¡ninaL IS A SimpleTerminal
üIITE

attributes:
value := UIrlKlI0l,IIt;
quantity := pressnre;
unit := kpai
direction := across;
variability := tíne_varyingi
causaLity := IINKIüOI{N;

EIÛD;
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The mass flow component q and the diameter
component d are defined in analogous ways.
An important difference ìs that mass flow is
a through variable and the direction attribute
should be set üo in or out.

The va¡iability of d ought to be set to
tine-invariant if the model does noü allow the
size of the pipe or hole to vary with time. It also
allows automatic check of that two connected
pipes are of the same diameter.

The terminal could also have a component
indicating medium, which can be ueed for con-
sistency checking or parameter propagation. For
example, we can check that water pipes are con-
nected to water pipes. tr

Unspeciff.ed terminal attributes

To allow exploratory model development and
prototyping, a declaration of a terminal may
leave attributes unspecified as long as neces-
sary information can be deduced from the con-
text. Unspecified attributes make it possible to
develop generic models. To support consistency
checks of generic models, the model developer
ca^n specify relationg between unspecifi.ed aü-
tributes. See Mattsson (19Sgb).

Object-oriented representation

In this section we will outline the conceptual
design of a kernel for model representation.
The basic entities, relations between entities and
operaüions on them are discussed.

Object-oriented programming has been an
increasingly popular methodology for software
development. Increased programmer productiv-
it¡ increased software quality and easier pre
gram maintenance are the objectives for this new
methodology. Object-oriented programming sup-
ports these objecüives by facilitating modulariza.
tion and reuse of code. We will here show that
ideas from object-oriented programming are use-
ful algo for model representation. For a brief in-
troduction to object-oriented programming see
Stefik and Bobrow (1986).

Basic model objects

Models and model components are objecús in
the kernel for model representation. An object
has a unique identity within the system and it,
contains a collection of attributes. There is a
number of important types of objects recognized
in the kernel. They are representations of model
structuring entities discussed in the previous
section:

o models,
o üerminals,
o parameüers and
¡ realizations.

The last three object types can be used as
componentr of models.

Class objects and relations

In our proposal, all model objects are represented
as classes. In objecü-oriented programming a
class describes the properties common to a set
of similar objects - it defineg an object úype. For
this reason, a model definee a component type
rather than a particular instance of a component;
the same applies to realizations, terminals, etc. A
class can have a number of ¿úú¡ibutes which can
be simple variabÏes or ¡elations to other model
objects.

There are a three important relations which
can be established between model objects. These
are:

o has - parü-of
o subclass - super class
o connection

The .has-link is typically used between a model
and its terminals, parameters and realizations.
Further, a structured realization has this kind of
relation to other models indicating the gubmod-
els. A haslink is stored as an attribute of the
owner. The inverse relation is called part-of.

One class can be defined to be a subclass
of another cl¿ss - the super class. The subclass
will inherit all properties of the euper class
in addition to the locally defined properties.
InheÅtance is an important concept in object-
oriented programming and its use in this conüext
will be discussed below.

A connectìon is a symmetric relation be-
ùween two terminals and it is etored as an at-
tribute of a structured realization.

Ex¡upr,p 4-Tank model
In this example we will show a model of a tank
written in Omola (Object-Oriented Modelling
Language) (Andersson, lg8ga,b). Omola is a
declarative language for model representation
that has been designed to supporü our proposed
concepts.

Ta¡¡Ir IS A Model IIITE
ter¡ninaLE:
inLet IS A InpipeTerninal¡
outLet IS A 0utPipeTerninal.;
level IS A OutTerrninat;

parameters:
area TYPE real_ := 1.0;
roh TYPE reaL := 1.0¡

real-ization:
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nor¡nalBehaviour IS A SetOfDAE !üIT[
equations:
area*dot(level) =

inlet.q - outlet.q;
ln1et.p + loveL*roh*g =

outlet.p - roh,t v*abe(v) /2¡
outLet.q =

pi* (outlet . d/ 2) ^ 2*y*¡s¡i
EIÛD;

EIIID;

Thie code represents a tank model with three ter-
minals, two parameterg and a ¡ealization compo
nent stored as attributes. The inlet and outlet
terminalg a¡e both pipe terminals as in Example
1, but with directed flow components. For inl_et
poaitive flow is into the tank and for outlet pos-
itive flow is out from the tank, The realization
has three equation attributes. The first equaüion
is a masg bala¡rce and the other two are derived
from Bernoulli's equation. In Figure L we can see
some of the objects involved and their relations
represented graphically. tr

Figure 1. Somc of ühe objecte and their rela-
tione in thc ta¡k model. Subclasg link¡ ¿rc ¡olid
while h¿g-link¡ ¡rc da¡hed.

fnheritance

Inheritance is an intricate but powerful concept
in object-oriented programming. When a class
is defined to be a subclass of another class iü
will inherit all attributes and properties from
the super class. The subclass is then free to
add additional attributes or to redefine inherited
attributes. Inheritance can be used to separate
out some general attributes from a set of similar
classes into a common super class.

Inherita¡rce will faciliüate reuse of models
since carefully designed general models can be
eaved in libraries. These models or model com-
ponents can be used as super classes ofmore spe-
cialized model objects. We have already seen how
terminals have been defined in this way. The in-
let and outLet terminals of the tank model are
subclasses of InPipeTerminal and OutpipeTer-
minal which a¡e specializations of the Bame super
class RecordTerminal.

Flgure 2. A structur.d modcl

As an example of how models can be defined
by specializations we can imagine a model of a
regulator defining only the terminals: set-point,
measure value and control value. This model can
be specialized into different types of regulators
by means of adding different realizations. Irye
may then define a structured model like in Figure
2, containing the most general regulator model.
The structured model can then be specialized to
contain different regulator models.

Interpretation of model objects

Model structures-represented in the kernel or in
Omola code can be accessed and manipulated by
different tools in a CACE environment. We may
say that a particular tool that extracts relevant
properties of a model interprets the model. Dif-
ferent tools may extracü differenù properties and
therefore, they interpret the model differently.

Since all model objects diecussed so far are
classes, i.e., they represent types rather tha¡r in-
stances ofmodel objects, one obvious interpreta-
tion is to use a model as a template to create a
model Ínstance. A model instance is, for exam-
ple, needed when the model is going to be sim-
ulated. Then there must be representations for
each parüicular model object and state variable.
The instantiation procedure is recursive in the
components and submodels. Typically when we
want to simulaüe a model it is first instantiated
then all equations are extracted from the prim-
itive models and equations are generated from
the connections. Second, the equatione are sorted
and turned into code that can be used by the
D.A.E-solver. Since the model structure is main-
tained in the simulation model (the model in-
stance) the user can access it the normal way,
perhaps through its block diagram, and examine
or change parameters and initial values.

.A,s examples of other possible interpreta-
tione of model objects we can mention

o to generate a graphical picture of a system
structure,

o üo generate a text descriptions of a model
for documentation,

o to generate a special purpose code, e.g.,
regulator code or
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. to turn e model into a form accepted by a
particular design package.

Conclusions

In ühis paper ïr¡e have outlined some basic con-
cepts supporting model development and reuse.
The issues we have been focusing on a,re:

o A kernel serving as a central model data
base in an integrated environment for model
development, simulation, analysis, design,
documentation etc.

¡ Declarative a.nd equation based behaviour
descriptions to make the models versatile
and useful for various applications.

o Hierarchical models with well defined inter-
faces based on terminals and parameters.

¡ Terminal attributes for automatic check of
connection consistency making the use of
library models safer.

o An internal representation which preserves
the structure of models.

o Multiple realizations supporting model ver-
¡ions and alternative behaviour.

o Models represented as classes with inheri-
tance facilitates reuse and incremental mo-
del development.

Much could be gained if we could agree upon a
common set of ideas. It is time to lay the foun-
dation for a new standard for model representa,
tion. IFAC has a working group on standards for
CA,CSD Software. This group has not addressed
non-linear systems yeü, buù it has focused on lin-
ear systems. It may be remarked that to build
flexible model libraries we must also agree on
common principles for model development. Thie
is a hard task, but iü might be possible to achieve
in certain application areas.

The kernel is a result of a project to de-
velop concepts and tools for model development
and simulaüion in CACD. A prototype implemen-
tation has been written in Common Lisp and
KEE1. The advantage of KEE is that we have
been able to develop protoüypes with a small pro.
gramming effort. But KEE is expensive and re-
quires powerful workstations. To make are results
more generally available, an implementation in
C++ is under development.
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