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Mathematical Notations

Coordinates
q Generalized position coordinates
q Generalized velocity coordinates
gr Reference value for position
q Position error § = q — ¢,
z(t) State of motion z = [ ¢ 4T ) !
T
z(t) Error state of motion & = [ a‘T i ]
z,.(1) Reference state of motion z, = [ g ¢f ] g

Torques, forces, inertias

T Applied torques or forces
M(q) = M*(q) > 0

C(q,9)d4 Coriolis, centripetal and frictional forces

M(q) Moment of inertia

G(q) Gravitational forces
u Control variable u = M(q)Tﬁc" + %M(q, Tz

Energy. functions

C Lagrangian of mechanical motion

L Lagrangian of optimization

H Hamiltonian of mechanical motion

H Hamiltonian of optimization

U(q) Potential energy

T(q,4) Kinetic energy

V(z,t) Hamilton principal function of optimization
Vx()? ,t) Lyapunov function of control and adaptation

J(u) Optimization criterion

g€ R
g € R"
gr € R"
geER"
z € R*"
Z € R

zr € R2ﬂ

T€E€R"
M € R™"
C € R™"
G € ™"
u€ R



Matrices

Q Optimization weighting matrix w.r.t. z Q € R¥nx2n

R Optimization weighting matrix w.r.t. u R € R™X™

S Optimization cross weighting matrix w.r.t. z,u S € Rnx2n

To State transformation matrix Tp € R¥X2n
T, Ty State transformation matrices T,,T, € R™*"
T11,Ti» State transformation matrices T11,T12 € R™*"
U State transformation matrix U € R?nx3n

Adaptive control

0 Vector of unknown parameters 0 € RP

) Regression matrix 1 € R™X?P
~ ~ T =

X(t) Error state of motion X = [ § ab ] X € Rintr
Introduction

A purpose of motion control is to maintain a prescribed motion for the control object by
applying compensating corrective torques or forces. Motion controlled systems intended
for autonomous operation need optimization as well as an ability of adaptation to new and
rapidly changing operating conditions. The optimality of such control design is therefore
meaningful to consider. Linear optimal control based on linearized equations of motion is
a standard approach to solve such problems.

Nonlinear dynamics with motion constraints and rapidly changing operating condi-
tions sometimes make such control problems difficult. The rigid body mechanics of flight
control or robot manipulator motion is often formulated with the general equations ob-

tained from Lagrangian mechanics (time arguments omitted).
M(q9)i+C(g,9)i+G(g) =7  M(q)=M"(g)>0 (1)

The position coordinates ¢ € R™ with associated velocities ¢ and accelerations § are
controlled with the driving torques 7 € R™. The (generalised) moment of inertia M(q),
the coriolis, centripetal and frictional forces C(g, §)4, and the gravitational forces G(q) all

vary along the trajectories.



The control problem is as follows: Find the torques (forces) 7 so that the control
object follows a trajectory provided that equations (1) of the rigid body mechanics are
known. From the standpoint of linear quadratic control theory it is natural to include the
torques (forces) in the performance index. Attempts to design linear quadratic control
however often fail due to the position-dependent, nonlinear behavior of (1).

Both optimal control and adaptive control are relevant in this context. Various
adaptive control algorithms were early proposed in robotics by TomizukA et al [28].
DuBowsKY AND DESFORGES [6] proposed an adaptive control that adjusts feedback
gains to follow a reference model. Korvo AND Guo [18] used an autoregressive model to
fit data. Both assumed that the interaction forces among the joints are negligible. Re-
cently, several authors [4], [17], [27], have proposed adaptive control solutions which take
the nonlinear actions into account.

Linear optimal control solutions are standard and rely on linearized equations around
an operating point. SARIDIS AND LEE [25] made early work on self-optimizing control
in robotics. Apart from such approximate solutions there are also approaches with sub-
optimal solutions based on the nonlinear equations. LEE AND CHEN [20] proposed a
suboptimal nonlinear control design based on quasi-linearization and linear optimal con-
trol. Discrete-time adaptive control based on linearized dynamics around preplanned
trajectories was proposed by LEE AND CHUNG [21].

‘Exact linearization’ of nonlinear systems as a method for control design has lately
attracted considerable interest in application areas such as flight control [13] and robotics
[8], [19], [23] (‘computed torque’) as well as in theory [14], [24]. The idea is to use state
feedback to make exact cancellation of nonlinear terms and factors followed by optimal

control design for the simplified system.

Problem statement

There are two natural choices of control variable for computation of optimal motion con-
trol. One approach is based on minimization of local accelerations, velocities, and posi-
tions. A solution of the linear quadratic control problem provides the optimal accelerations
and the corresponding torques can be calculated with the ‘exact linearization’ or ‘com-
puted torque’ method. This optimization is based on linear system dynamics with double

integrator action and does not include the nonlinear dynamics of (1). Thus, the control
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optimization is not made with respect to the applied torques.

However, optimization criteria with penalties on the torques rather than accelerations
lead to complicated trajectory dependent mathematical problems. Methods hitherto pre-
sented in the literature generally require cumbersome trajectory dependent numerical or
approximate solutions [20], [25], [29].

To the author’s knowledge there exists no analytic solution to the quadratic control
problem of motion described by equations of Lagrangian mechanics. It is the purpose
of this paper to present stable, analytic solutions to the problem of quadratic optimal
control of motion control with minimization of the applied torques (forces) when velocity
and position measurements are available. We use an optimal control approach to solve
a Hamilton-Jacobi equation and present feedback solutions to the stated optimal motion

control problem. We reduce the given problem into two separate problems:
- Explicit solution of an optimal tracking problem with the Hamilton-Jacobi equation

—~ Adaptive control

The solution offers:

—  Optimization of a performance index

—  Stability

—  Trajectory planning

We will thus achieve separated solutions of optimality and adaptation. The solution

should be of interest for robot manipulator control, biomechanics, flight control and other

branches of applied mechanics.

Rigid body dynamics

We model the motion dynamics as a set of n rigid bodies connected and described by
a set of generalized coordinates ¢ € R™. The derivation of the motion equations (1) by
methods of Lagrange theory [2], [9] involves the explicit expressions of kinetic energy 7°
and potential energy U to form the Euler-Lagrange equations of motion

d oL, 0L

g;(a—q-)—%="'; L=T-U (2)

where 7 are the externally applied torques and forces. The Lagrangian £ of robot motion
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in a space with a velocity independent gravitation potential is

L(g,4) = T(g,4) — U(q) = —qTM(Q)q U(q) (3)

The standard general equations (1) are obtained from (3) as

M(q)i+C(g,d)i+G(q) =T (1)

It is assumed that the positions ¢ and velocities § but not the accelerations § are available
for measurement. It is further assumed that the torque vector 7 is available as the control
input. It is assumed that the matrices M,C,G have a known structure and contain

constant parameters.

Control objective

The desired reference trajectory for the control object to follow is assumed available as
bounded functions of time in terms of generalized positions g, € C! and its corresponding
accelerations §, and velocities ¢,. The variables §,, ¢, ¢ may be conveniently generated

with some bounded reference signal » and a reference model of the type
gr + Kagr + Kpgr = K,7 r,¢r € R" (4)

The dynamic system (4) with the n x n-matrices Ky, K, K, need be stable. Define the

errors of accelerations, velocities, and positions as

] [q g | ; 5=z—zr=[g:z:] (8)

q—4qr

VYYD

The control objective is to follow a given, bounded reference trajectory ¢,,q, without

position errors ¢, or velocity errors q.

A state space description

The full error state space representation is found as

0= (F) #w) i Ferr (©)

The error dynamics of the manipulator may be obtained from (1), (4), and (6) as a state

space description where the derivative of Z is

3(t) = [5"“)] (00D O

i) J e

n)(ﬂ OﬂXﬂ



+ [ —@r — M~ (9)(G(9) + C(q,é)dr)] N [ Inxn

OYIX n

| =9 ()

OﬂXﬂ.

or with shorter notation

Z(t) = A(g,§)3(t) + Bo(drrdr, d,q) + BM~(g)7 (8)

where 7 is available for assignment of the control law.

‘What control effort should be minimized?

A natural aim is to minimize velocity and position errors (state errors) with a minimum
of the applied torques as well as the energy consumtion. The Euler-Lagrange equations
give for a velocity-independent potential energy U
d 0T, 0T oU
_(_')_—-{——:T (9)
dt* 94 0q Oq
Changes in potential energy due to gravitation are inevitable and can be determined from
the start and end points only. It is therefore not very meaningful to make optimization

with respect to gravitation-dependent torques or forces. Consider therefore the applied

torques 73, that selectively affect the kinetic energy.

n=r- G = 550~ = M@i+ M@= (M), bi@d)s (0

For minimization we embed this choice of control variable in the more general definition

.
~

. ~ 1. o~
uE [M(q), %M(q,q')] [;1] = M(q)TiZ + 7 M(q,4)TaZ (11)
1
with Z and T introduced via the following state-space transformation of

;1 Tl - ~

5 - a T T q

Z= | —| =Tz=| —— [?.] = [ - 1 ] [f_] i Ti1,Ti2 € R
- q 0 Inxn q
Za T,

(12)

This definition includes torques affecting kinetic energy (10), reference trajectories (5),

and a state space transformation (12). The control variable u of (11) specializes to 7 of

(10) for ¢, = 0, T11 = Inxn, and T3 = 0. The equations of motion (7) from u to Z are

then

dz e
i A1(g,4)% + Bi(q)u



with

Oan

2 —iM(q)"1M(q,¢ N -1
F=T1 [ 2 (!l)_1 (,9) 0_>;n Tos + T M(q) ] s
T, =T The

and

By(q) =Ty "' BM(q)~" (13)

A quadratic optimization problem

We embed the motion control problem into the following somewhat more general opti-

mization problem. The assumptions made are summarized as follows:
Basic assumptions

Al: The motion equations are M(q)§ + C(4,¢)d + G(q) = 7 with coordinates ¢ and
external torques (forces) 7.
A2:  Reference trajectory given as ¢,, ¢, §, with the error-state = ( ‘qj T ]

A3: A state-space transformation

T
Z=n5=[1h ‘2]5

Onx n Inxn

A4: The control action to minimize is

Oan

1. . ~ A Inxn
u= ;M(q,4)B"To% + M(q)B"Tos; B = [ " ] (14)

A5:  Positions and velocities of rigid body motion are available for measurement
A6: Known structure of M,C,G

A7:  Known parameters of M,C,G

O

To derive an optimal feedback, the control problem is formulated as a quadratic optimiza-

tion problem with a performance index J(u) subject to assumptions (A1-7)

n@=/wuamm (15)

to

with the Lagrangian

~ v lopo 1 o 1 Qu Q2 q 1 7
1 = 37000 + R = 3 (7 2#) (S 22) (7] + fua
(16)
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Given the performance index J(u), we find an optimal control u = u* that will transfer
from an initial state to a desired state. The control u = u* moves the system from an
arbitrary initial state Z(to) to the origin of the error-space while minimizing J(u). The
control variable u is weighted with the matrix R = RT > 0 and the vector of velocity and
position errors Z is weighted with the matrix @ = QT > 0. The rate of compensation
can be adjusted by chosing proper weights Q. The term uT Ru guarantees smoothness of

operation.

The Hamilton-Jacobi equation

Define the Hamiltonian of optimization as

1, ’SV(::: 1)y _ (aV(m )75

+ L(Z,u) (17)

where V' solves the partial differential equation

_OV(3,1) 8V(3: t)

= ( Y% + L(, ) (18)

A necessary and sufficient condition for optimality [7], [22], is to choose a value function

V that satisfies the Hamilton-Jacobi equation.

o .o 8V,
W-}-IIHIIH(Z,U,%)—O (19)

This minimum is attained for the optimal control « = u* and the Hamiltonian

BV(:: t)) _ _ oV (z,1)

H*=minH = mm(( )Ta:'+ L(Z,u)) = H(z,v", ot

(20)

The optimal value function V' that solves (19) for u = u* is the Hamilton’s principal

function [9] of the system.
LEMMA 1:

The following function V' composed of Z, ¢,(t), To, M, and a symmetric matrix K €
R™™ solves the Hamilton-Jacobi equation and is a Hamilton’s principal function for the
optimization problem (15-16) under assumptions (A1-7).

V(E(@),) = %ETTOT [Mé") ;] Tos (21)



for K, Tp solving the algebraic matrix equation
sT[ [0 B +Q—T0TBR-IBTT0]5=0 (22)
K 0
The optimal feedback control law u = u* that minimizes J is

u*(t) = —R™'BT Ty (t) (23)

ProoF: See appendix 1. O
REMARK:

The matrix solution K of (21) is not unique. Another solution to (22) may be obtained

by adding any n X n skewsymmetric matrix to K. O

All optimal control generated by the solution (21-23) to the Hamilton-Jacobi equation do
not necessarily guarantee stable closed-loop behavior. Only solutions that also guarantee
a stable closed-loop behavior are interesting for control design purposes. Sufficient condi-
tions for stable, optimal control requires that K = KT > 0 as formulated in the following

theorem:

THEOREM 1:
Let the weighting matrices ¢, R with Cholesky factors Q1, Q2, R be chosen such that

_ [ @Qu Q1z]=[ TQ: Q12
QT Qi T, QIQ.

R=RT=RTR, >0 (24)

Q=0T | @fei+afai- (@h+Qu) >0

Let To, K be chosen as the matrices

T — [Tn Tis ] _ [R;"‘Q1 Rsz]
. 0 Inx'n 0 Ian

K = K7 = (@02 + Q1Q1) - £(Q% +Qu) > 0 (25)

The optimal control solution of (15) subject to assumptions (A1-7) then gives a L?—stable

closed-loop system with the optimal feedback control law u = u*

u*(t) = —R™ BT ToE(1) (26)
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The minimal optimization criterion is then obtained as

J(u*) = min / " L(E,u)dt =

v Jy i

/ " L(&, u*)dt = V(3(to), to)

to

where V' solves the Hamilton-Jacobi equation (19)

V(&(2), 1) = %ETT&" [Méq) ;] Tos

PRrOOF: See appendix 2.

REMARK:

(27)

(28)

Consider an optimization criterion J; where the matrix S is used for weighting of the cross

term between = and wu.

K= [TIEWE LG = J5THRE0 + ST OR + o ()5E0) (29)

The Lagrangian of (29) can be brought to a form (30) similar to (15-16) provided that the

symmetric matrix Q — STR™15 > 0.

Ly(%,u) = -;—(u(t) + R718%(2))TR(u(t) + R™1S%(2)) + %“T(t)(Q - STR718)3(t) (30)

The optimal feedback control law « = u* that minimizes J; is
u*(t) = —R™Y(S + BTTy)3(¢)
for K, Tp solving the algebraic matrix equation

[ [IO( I;T] +Q_(S+BTT0)TR‘1(S+BTT0)] —0

This follows with the same arguments as in the proof of lemma 1.

(31)

(32)
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Asymptotic stability

The function V'(Z,t) of (28) can be viewed as a sum of a kinetic energy and a potential
energy from a set of springs with a stiffness matrix K. The controlled motion keeps stable
with an equilibrium on the prescribed reference trajectory as long as V does not grow.

This physical analogy can be formalized in a stability proof as follows:
THEOREM 2:

The function V' of (28) is a Lyapunov function for the system controlled with the optimal
control (26) under assumptions (A1-7).

0

V(E(t),t) = %ETTOT [MéQ) e

| 7z

The Lyapunov function derivative V = dV/dt < 0 for ||Z|| # 0 and global asymptotic
stability holds for @ > 0,R > 0. O

Proor:

The quadratic function V(Z,t) is a suitable Lyapunov function candidate because it is
positive, radially growing with ||Z||. It is continuous and has a unique minimum at the
origin of the error-space. It remains to show that V < 0 for all ||Z|| # 0. From the solution
of the Hamilton-Jacobi equation (18) it follows that dV/dt + L = 8V/8t + H* = 0 is

constant for u = u* so that
dv(z,t - 1 . =
% = —L(Z,u*) = —§~T(T§BR_1BTT0 + Q)z < 0; Vit > 0,2 # 0. (33)

The Lyapunov function derivative (33) is negative definite and the proposition of the

theorem then follows directly from the properties of Lyapunov functions, see [11]. O

The Control Law
The optimal control was given as the feedback control
u*(t) = —R1BTTo3(1) (34)

Calculation of the appropriate external torques to apply is then obtained with the ‘com-

puted torque’ method from (1), (12) and (15) as the acceleration equation
= N 1, ~ 1 Lyl e~
M(q)7 = M(q)T;;' (M(9) ™ v" - Tuag — 5 M(q) ™ M(g, §)T17) (35)

12



This gives the ‘optimal torque’ 7* calculated via assumptions (A1-7)
B . I 1l - ~ o
7" = M(q) (Qr ~ T3 Tiaq — T M(q) I(EM(q, i)+R 1)BTToiB) +C(g,4)a+ G(q) (36)

This control law is considerably simplified for a diagonal Ti; = t31l,xn, t11 € R which
is obtained for a special choice of @, R (and S). It is then not necessary to involve the

complicated M(g)~?! in the control law calculations.

1 . : 1. . - TN
T = ” (M(Q)(tnqr — T129) - 5 Mg, §)BTTo% + u ) +C(q,9)d + G(9)
with

v =—-R'BTT3 (37)

A further simplification of (37) to a case with ¢, = 0, Ti; = 0 gives the control law u*

with the physical interpretation (10) of minimized torque.

Self-optimizing adaptation

The ‘exact linearization’ or ‘computed torque’ method (37) can be viewed as a feedforward
control with respect to M, C, G and its accuracy thus relies on good knowledge of M, C, G.
In cases with uncertain or time-varying parameters of M,C,G there is a need of identi-
fication and adaptation of the optimal control to the operating conditions. Adaptation
of the ‘exact linearization’ or the ‘computed torque’ method is easily implemented only
if accelerations are available for measurements. The presented optimal control algorithm
(37), however, is straightforward to modify for self-optimizing adaptive control.

The matrices M, C, G are assumed (A6) to have a known structure but the parameters
are now assumed unknown, cf. (A7). Let the optimal control law be expressed in terms
of unknown parameters § € RP of M,C,G and the data vectors 1 € R**P, 9y € R™. The
vectors 1o contains terms of 7* that can be computed without reference to unknown or

uncertain parameters.

= o (M(a) T~ (0, )B™ Do+ ) 4000, ik Ola) = =90+ o+

t11
(38)

The adaptive control law is a modification of (38) with @ replaced by an estimate )
1, ~ N 1 (= .. N R PR D oove | A
T= m(¢0+¢o+u = ™ M(q)(t11Gr — T129) - EM(q, §)B " Toz+u* ) +C(q,4)¢+ G(q)
(39)
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Adaptation

?
Ref. ) lineaEr)i(:lg:ion'
Optimal | U , T Control N
control object
— T=Y0+y +u
0
q, dg/dt

Figure 1. Organisation of optimal control and adaptation (Ti1 = I).

The resulting, effective control variable u in case of uncertain parameters can be computed
from (38) and (39) as

u=u*+v0; u* =-R!BTT3F (40)
where § denotes the vector of parameter errors § = @ — 6. This control law is no longer
optimal in the sense of (15) due to the term 1/15 Let the parameter error 8 be included in

a new state vector X that suffices to describe the error dynamics.
= z
X=1= 41
(5) (1)
The following Lyapunov design of parameter adjustment can make the solution system-

atically tend toward the optimal solution. Introduce the following Lyapunov function

candidate Vx

Vx(X,t) = V(,t) + Ve(8) = %:‘ETTOT [ Mé") IO( ] ToZ + %’TK,,J; Ko=KI >0

(42)
where V' is the solution to the Hamilton-Jacobi equation (19) and Vj is a quadratic func-
tional of parameter errors. Moreover, Vx is a function of the full error state with a unique

minimum at the origin of error state space. The function Vx is thus feasible as a Lyapunov

function candidate for the adaptive (sub)optimal system with the derivative
. . . 1_n, - ~ -
Vk=V+Vs=—3 T(Q + TTBR'BTTo)Z + T TT By + 6T K40 (43)

14



The following adaptation law (44)
8= —K; 4T BT Ty (44)

and the control law (39) assures that Vx is equal to V of (33) for constant parameters 6.

dvg(X,t) 1.

o 5a;T(Q +TTBR'BTTy)z (45)

This proves that the system is globally stable (in the sense of Lyapunov) and the adaptation
eventually makes the control system optimal. The adaptation thus makes the system
work as a self-optimizing control system or an extremum controller. The performance

degradation due to the parameter errors can be evaluated as

% / N 27(Q + TT BR™'BTTy)zdt < Vx(X(to), to) = J(u*) + Va(8(t0)) (46)
to

We summarize and formalize the given statements as theorem 3.

THEOREM 3:

Assume that the optimal control u* is determined as stated in theorem 2. Let the optimal
control law be expressed in terms of unknown parameters 8 € RP of M, C, G and the data
vectors ¥ € R™P, 19 € R™. The vectors 9 contains terms of 7* that can be computed

without reference to unknown or uncertain parameters.
. : 1. : = o
M(q)(t11gr — T127) — EM(%Q)BTTOE + t11(C(g,9)§ + G(q)) = ¥6 + o (47)
The adaptive control law with # replaced by an estimate e RPis
1,2 .
r= (Ul + o+ ) (48)
11

with the adaptation law
§= —K;'¢9TBTTo& (49)

The Lyapunov function Vx
= 1. M ~ 1 ~
Vx(X,t) = =5TTT () O Tof + ~0TKe0; Kg=KI >0 (50)
2 0 K 2
with the negative semidefinite derivative
. A 1_ _ ~
Vk=V+Ve=-3 TQ+TIBR'BTT)z<0; VX +#0 (51)

15



then assures that the self-optimizing adaptive (sub)optimal control solution (48-49) is
L%—stable and uniformly globally stable in the sense of Lyapunov for constant parameters

8. The solution reaches the the optimal solution for 8 = 0.

Proor:

The theorem is immediately verified by application of (49) to (43) under the conditions of
constant parameters # and theorems 1, 2. The solution reaches the optimal solution for
§ = 0. The Lyapunov function derivative is negative semidefinite w.r.t. X and negative

definite w.r.t. Z. O

A simulated example

)\

Figure 2. A two-link manipulator with masses m; and ma.

We consider trajectory planning for a weight lifting operation of the two-link example
in Fig. 1 with point masses mi, my [kg], lengths l;, lo [m], angular positions ¢i, ¢z [rad],

and torques 71, 7o [Nm]. The cost functional to minimize is assumed to be:
_ [T (. T q T . _
J(U)—/ [q q ]Q[q]+uRu dt;  u=1-G(q) (52)
0

16
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1 1
O | L 0 | |
0 10 20 0 10 20
0, taul 0, tau2
—100; -100{
~2004 —2004
0 10 20 0 10 20
J(u) Lyapunov function
200 200
0 L ] 1 0I ] ]
0 10 20 0 10 20

Figure 3. Simulation of the robot (55) with the optimal control law (59). Upper graphs show
@1, g2 and middle graphs show 11, 73, respectively. Lower left graph shows the performance index
J(u) of (15). The lower right graph shows the Lyapunov function (28) that decreases everywhere.
All graphs vs. time [s].

with @ = 100I4x4, and R = 0.025;53. The reference values of (4) are ¢, = 0, g- = 0. The

motion equations of Lagrangian mechanics may be derived from the kinetic and potential

energies.
. 1. .
T(4,9) = EQTM(Q)q; U(q) = (m1 + ma)glici + maglaee (53)
with
(my + myp) 2 malila(81382 + c1¢2)
M(q) = 1 " (54)
M21112(8182 + c1c2) mzlz

with the short notation ¢; = cos(ga), 81 = sin(g1), etc. The motion equations are

T=M(q)§+C(g,4)§ +G(a); 6 =my (55)
where
: Limylyl - i — g
C(g,9) = %M(q,d) = [ 1 ° Lo sleres — i)l qz)]
gmalila(c1sz — s1¢2)(d1 — ¢2) 0
and the gravitation
—(my + ma)ligs, ]

G(q) = 56
(9) [ —malags; (56)
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Figure 4. Simulation of the robot (55) with the self-optimizing adaptive control law (60).
Upper graphs show g1, g2, and middle graphs show 7 and 72, respectively. Lower left graph
shows the estimate & of mz. The lower right graph shows the Lyapunov function (28) that
decreases everywhere. All graphs vs. time [s].

Theorem 1 and 2 are valid for this example with Ty; = Ts = v/2I,xy and ¢1; = /2. Let
T ) T
v = [ V11 V12 ] = t1gy — T12q, v2 = ( Va1 U2z ] = t11§ — BTT,Z. The matrices 9,

o of (48) are

v = [ By + Lily(s182 + c1¢3)via + shla(cisz — s1¢2)(d1 — d2)vaz — tinglisy

lLila(s182 + e1ca)via + Bvia + Flila(c182 — s1¢2)(d1 — d2)va1 — ta1glass

| o

(58)

_ [ miBBuyy — matiiligs;
o = 0

The resulting control law is then

) =m(m)e () -»(8)-=(2) o

Theorems 1 and 2 are valid for this example so that stable optimal control can be an-
ticipated. Simulations are shown in Fig. 3 for m; = 1 [kg], my = 10 [kg], I, = 1 [m],
and I = 1 [m] and initial values ¢; = ¢ = 7/2 [rad] and zero velocities. Notice that the

Lyapunov function decreases everywhere (Fig. 3).
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Assume now that the weight of the load mz = § = 10 [kg] is unknown so that adaptation
is necessary. Choose the adaptation matrix Ky = 3. The resulting control law of (48-49)

g Rad

is then

92
=B () -=(0)-=(5) @
A simulation that includes the self-optimizing adaptation is shown in Fig. 4 with the
initial estimate § = 1. All other initial conditions and system are the same as in Fig.
3. Apart from the initial adaptation transients the result is very similar to the optimal
control simulation of Fig. 3. This indicates that the algorithm is capable to compensate

for tenfold gain variations in the moment of inertia with quite good results.
Discussion and Conclusions

A time-variant optimal control problem of rigid body motion has been solved with explicit
solutions to the Hamilton-Jacobi equation. The optimal solution provides asymptotically
stable optimal control. Globally stable adaptive control for self-optimization has been
designed to solve the case of uncertain parameters.

The proposed solutions contribute to the understanding of the close connections be-
tween classical mechanics and optimization theory for motion control. The matrix K of
(28) represents a spring action around the desired position while terms containing M (9)
represents kinetic energy. The Hamiltonian H = 7 + U of analytical mechanics may be
compared with the Hamilton-Jacobi solution V(Z,t) that represents a sum of kinetic en-
ergy and a ‘potential energy’ of a spring action described by a stiffness matrix X. The
spring action thus formally replaces the gravitation as the source of potential energy.

The optimal control is globally asymptotically stable while the self-optimizing adap-
tive control is globally stable in the sense of Lyapunov. The uniform stability in the
sense of Lyapunov follows from the existence of a negative semidefinite Lyapunov function
derivative as shown in theorem 3. Finite initial conditions and ¢,, ¢, € L°® mean that
V(%(t0),t0) is bounded. A finite value of the Lyapunov function V necessarily means a
finite magnitude of the tracking errors ¢, &' The L —stability follows from the fact that
the Lyapunov function can only decrease with time.

The control law contains linear and nonlinear compensations that can be calculated

with algebraic matrix equations (25). The matrices Ti1, T2 providing velocity and position
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feedback are easily computed from the weighting matrices of control optimization. The
closed-loop properties may be effectively chosen with the weighting matrices Q, R of
(16). These matrices may be chosen according to the common design experiences in
linear quadratic optimal control. The self-optimizing adaptation may be chosen with the
weighting matrix Kg.

The presented optimal control algorithm exhibits a certain similarity to the linear
quadratic control problem. Equation (22) and the algebraic Riccati equation are similar
but the solutions are very different. The Riccati equation solution is positive definite
but the present algorithm does not in general provide a symmetric weighting matrix Tg.
Secondly, the solution to the Hamilton-Jacobi equation in the linear quadratic control case
is not composed in the same way as the solution (28) of the present work.

It is interesting to see that the optimization prescribes a non-zero Tis of the state
transformation matrix of V' to guarantee asymptotic stability. This state space transforma-
tion obtained with Tp might be understood from a linear systems viewpoint. State-space
equations of stable linear systems expressed in variables of velocities and positions (4) con-
tain a dynamics matrix with eigenvectors v = [ vl of ] g obtained from the eigenvalue

2

problem

(7 ) (B)= (07 ) () = mewm=o e

This means that velocity and position coordinates necessarily are dependent. The state
space transformation (12) may therefore serve to eliminate some redundance while keeping
the full state space order, cf. CERANOWICZ et al [3].

Many application tasks of controlled motion must be solved in due time and it can
thus be argued that the infinite time problem is less relevant for applied motion con-
trol. However, a minor reformulation of the treated optimization problem shows that the
treated problem has much relevance for practice. The considered infinite-time optimiza-
tion criterion can be viewed as a finite time problem with a performance optimization

together with an end point condition at ¢ = t; on the closed-loop stability.

t

Vi(2(to), to) = / " L, u)dt = / " L(E, vt + Vo(a(tg), t5) (62)

to oo

Notice that the Lagrangian L is positive so that V(Z(t;),t;) < V(Z(o),%0). This offers

a possibility of learning action that can be obtained also for finite-time operation with
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periodic or iterative motion. The self-optimizing adaptation of an optimal trajectory
intended for periodic motion may thus be made by a few repetitive trials.

The application potential of the proposed methodology lies in the control design in ar-
eas such as robotics and flight control and in motion control analysis of e.g. biomechanics.
Both optimal feedback control laws and optimal trajectory planning can be derived with
the present approach. The self-optimizing adaptation is valuable for cases of uncertain or
time-varying system parameters as well as for reconfiguration of the control system.

Only rigid body motion has been explicitly treated here. Structural flexibilities that
can be modelled by methods of analytical mechanics may be included in the equations (1)
and thus in the optimal control solution. Notice however that the presented method relies
on measurement of all velocity and position variables. This may be a practical difficulty
for applications to active damping.

Several extensions of the methods of this paper can be outlined. Finite-time opti-
mization with a time-varying K(t) leads to matrix equations that require matrix inversion

of M(q) and is thus computationally more complicated than the presented solution.
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Appendix 1: Proof of Lemma 1

The Hamilton-Jacobi equation

The theorem claims that the Hamilton-Jacobi equation

_‘9";'”;’ g _ m'_jn((av(z Dyt 4 13, u)> (18 - 19)

is satisfied for a function
1 M 0
V(1) = 357 T (f’) ] (21)

The proof contains four steps:

1: Verification that V = V(Z,1)

2: Evaluation of partial derivatives of V,

3: Derivation of the u that minimizes H of (17)
4: Verification that V' solves (19).

Firstly, it is necessary to verify that V and thus M(q) is a function of Z and ¢ only. Notice

that the reference value ¢,(t) is by definition a function of ¢ only. It is then obvious that
M(q) = M(7+ ¢-(t)) = M(3,¢) (AL1)

The inertia matrix M(q) is thus a function of the error-state Z and the time ¢ which implies

that V' = V(Z,t). The time derivative of the inertia matrix can be expressed as

dM(g) — dM(EF + g,.(t)) — (3M(9))Tﬁ+ (aM(g) )qur
dt dt 0q dt
M( q,d ) = (aM(Q) )T (aM(Q) )Ter (A1.2)

Secondly, partial derivatives of the function V need to be evaluated in order to test the
hypothesis that V' solves the Hamilton-Jacobi equation. The partial derivative of V with

respect to time is

3V(2 t) ~T T L Onxn ~
it 2 TO On;ﬂ O To.'l} (A13)
OV(5,1) _ OV(3,1) 700.(t) _OV(E,1) pda,(t) _ 6V(x 1) sz,
ot = 8¢, ) ot = g, ) dt = ) (A14)
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The gradient of V' with respect to the error-state Z is

OV(&,8) _ pr [ M(Z,t) Onxn 1~TTg'[Bfl-:§§,z) i

Tz + = nxXn b ToT Al5
0% O | O K )73 ] (41.5)

nxn

Expression (A1.5) is a function of Z and ¢ only and does not explicitly depend on §, g'j' or
u. This gives

(“_éi Jyrs = 5707 Of.x,.) e ]T += Z gTTy

—_S.Ll;;k Onxﬂ] o3

Onxn Oan

(AL.6)

The state space equation from u to  of (13) is

—1M(q)*M(q,q Onxn -1
- To—l 2 (q) (q) Q) nx Toi‘l' To—l M(q) ] u (13)
e ~T5;' Tia

o

OﬂXﬂ

Substitution of Z in (A1.6) gives

OV (z,t)\r= _ l.p 7 [Onxn KT ~ | =TmT
Ay . = = T T T B
(5 VE=3FT | k¥ o, ) TF+& ToBut
2n M !zt!"-—
+15TT31 M(Q) Q) + E ~ Tl Oan ] Toi!' (A17)
2 Oﬂxﬂ OnX‘n

The last term of (A1.7) is not explicitly dependent of u, § because M(Z,t) = M(q) is a

function of ¢. Recall that the Lagrangian is
- | O R 1 T
L(z,u) = 52" (t)QZ(t) + u(t)” Ru(?) (16)

A candidate of the Hamiltonian H (17) is the sum of (A1.7) and (16). A third step is now
to evaluate how H depends on u € R™. The u = u* for which H has its minimum value is
obtained from the partial derivatives with respect to u. Only the second terms of (A1.7)

and (16) contribute to the partial derivatives.

OH _ BV(a: t)

== (( )¥% + L(%,u)) = BTToZ + Ru (A1.8)

Extremals of the Hamiltonian with respect to u is found by setting the partial derivatives

O0H/0u equal to zero. The minimum is obtained for u = u*
u* = —R'BTTF (A1.9)

A fourth step is now to verify that the suggested V satisfies (19). The time derivative of
V is composed of (A1.7) and (A1.3-4)

dV(z,t) _ 0V(%,t)  OV(E,t)\7s
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M(q) 0 L 1 M(g,4) 0 ] ~
~T'mT nxn TmT ' nxn
= T —~z- T T Al.10
To Oan K ] oF + 22 0 Oan Oan o7 ( )

Substitution of Z of (13) into (A1.10) gives

dV(@,t) _ 1z (0 KT

Al.11
= ) 0]z+z Ty Bu (A1.11)

Application of u = u* to V' gives

dv(@,t) 1.p(0 KT). . g

El_t’) = -2—zT [K 0 ] - ZTTTBR BTy (A1.12)
Application of u = u* on the Lagrangian of optimal control

L(Z,u*) = %—“’T(Q + TTBR'BTTy)z (A1.13)

The Hamilton-Jacobi equation is satisfied for u = u* if

0 KT
K o

OV(E,1)  OV(E1)

N _
TR )T”L(”’“*):E”T[[ ]+Q_T‘?BR_IBT°]”:0

(A1.14)
It now follows that V(Z,t) is a solution to the Hamilton-Jacobi equation, a Hamiltons
principal function, for u = u* and matrices K, To solving the algebraic matrix equation
T 0 KT T o1 ~ ~
z K 0 +Q—-T3 BR BTy | 2 = 0; vz (22)

This proves lemma 1. O

Appendix 2: Proof of Theorem 1

From lemma 1 is known that
~ 1 M(g) 0 ~
V(Z(t),t) = Ea’f T [ o x| To? (21)
solves the Hamilton-Jacobi equation for K = KT, Ty solving the algebraic matrix equation
K
ET[ [; 0 ] +Q—T(;-"BR-1BTT0] =0 (22)

The optimal feedback control law u = u* that minimizes J is

u*(t) = —R'BTTy3(¢) (A2.1)
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Let the weighting matrix @, R of the Lagrangian be factorized with Cholesky-factorizations
@1, Q2, Ry of (24) so that and choose

T0=[T11 Tn] [R o, RTQz]

ﬂXﬂ ﬂXﬂ

K = 3(Q7 Qs + Q3 Q1) - 5(@% + Q) (25)

Application of these factorizations and the conditions of (24) directly shows that K =
KT > 0. The matrices K, Ty of (25) solve the algebraic matrix equation of (22)

[ [I(; . +Q—T3'BR"IBTT0] =0
or with application of (25)
0 K 1 T
[ [ ]+ Q;} Q12]_ ;Q1 ;Qz]]zo (42.2)
K 0 le Q22 Qz Ql Qz Qz
The Hamilton-Jacobi equation is satisfied because

3V(:: t)

oV (&1)

S+ (T TS + L(F,u) =

0 K
K 0

] +Q - TTBR-1BTT, ] F=0
(A2.3)

Notice that V' > 0 for all positive definite K. The cost function may then be evaluated as

/t L&, u*)dt = / _Vdt = V(&(to), to) - V(E(ts)st5) < V(E(to),to)  (A2.4)

The optimality of the control follows from (A2.3) and it follows that & € L%(to,tf), Vt; >
to. The claim on L?—stability follows immediately from (A2.4). From (24) and (25)
follows that K = KT > 0 and the inertia matrix M (g) is positive definite by definition
(1). The function V has a unique minimum at the origin. It is also nonnegative and
radially growing w.r.t. ||Z|| for all t > ¢ so that it fulfills all requirements on a Lyapunov
function candidate. The time derivative dV/dt < 0 which implies that V is a Lyapunov
function for a uniformly, globally, asymptotically stable system. This finishes the proof.

O
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