
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Experiences of Object-Oriented Development in C++ and InterViews

Brück, Dag M.

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Brück, D. M. (1989). Experiences of Object-Oriented Development in C++ and InterViews. (Technical Reports
TFRT-7418). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/81263f42-5516-4791-a72a-a16d1c85348d

CODEN: IUTFD2/(TFRT-7418)/ 1-008/(less)

Experiences of Object-Oriented
Development in C++ and InterViews

D.g M. Bräck

Department of Automatic Control
Lund Institute of Technology

March 1989

Department of Automatic Control
Lund fnstitute of Technology
P.O. Box 118

5-221 00 Lund Sweden

Documant natne

INTERNAL REPORJT
Date oî í¡¡ue
March 1989

Docurent Numbc¡
CoDEN:LUTFD2/(TFRT-7418) / 1-00 8/ (1e 8 e)

Authot{s)
Dag M. Brück

Supcnriror

Sponsoring otganíøat íon
The National Swedish Board of Technical
Development (STU project 87-2503)

Titlc and. subtítlc
Experiences of Object-Oriented Development in C** and InterViews

Abctract

This paper describes our experiences with InterViews, an object-oriented package for implementing user
interfaces written in C**. A comparison is made with pHIGS, a more conventional graphics standard. A
strong interaction between base classes and derived classes is observed, noüably ba¡e classes depending on
the behaviour of the derived classes. The application is an interactive block diagram ediüor. It is used as a
stand-alone graphical tool which generates equations for Simnon, a simulator for non-linear systems.

This paper has been submitted to OOPSLA'89 (Conference on Object-Oriented Programming Systems, Lan-
guages and Applications), October 2-6, 1989, New Orleans, Louisiana, U. S. A.

Kcy wordø

Object-oriented programming, User interfaces, Caa, InterViews, Computer Aided Control Engineering

Classificatíon aystcm and/or índex tcrms (íf any)

Supplemcnüar¡r biblìo gnphical ínîo¡matíon

ISSN ¿nd kcy titlc ISBN

Languøgc

English
ÀIumbe¡ of pgcs
I

Ilccipicnú b notcc

Sccuriúy classiñc at ío n

Tåc rcporé mdy be o¡dcrcd f¡om thc Departmcnt o1 Autorætíc Contrcl or borrcwcd thrcugh the Univereíty Lìbnry 2, Box 7olo,
S-227 OS Lund, Sweden, Tclex: 33248 lubbi¡ lund.

Experiences of Object-Oriented Development

in Cf* and InterViews

Dag M. Brück

Department of Automatic Control
Lund Institute of Technology

Box 118, 5-221 00 Lund, S\ryEDEN

E-mail: dag@control.lth.se

Abstract

This paper describes our experiences with InterViews, a,n object-oriented
package for implementing user interfaces written in C**. A comparison
is made with PHIGS, a more conventional graphics standard. A strong
interaction between base classes and derived classes is observed, notably base
classes depending on the behaviour of the derived classes. The application is
an interactive block diagram editor. It is used as a stand-alone graphical tool
which generates equations for Siurnon, a simulator for non-linear systems.

L. Background

Developing real control systems is always a difficult task. Mathematical models and simula-
tions are often used in the design and analysis of control systems. The use of computers for
this purpose is called Computer Aided Control Engineering (CACE). The development of
new CACE tools requires research on the basic concepts of modelling control systems, and.
the computer representation of control system models [Mattsson, 1988][Andersson, lgSg].
Equally important is the choice of tools for developing these tools.

For research and prototyping, a combination of KEE and Common Lisp has proved
effective. KEE provides a dynamic and interactive object-oriented development environ-
ment, including simple graphical output [IntelliOorp, L986]. A practical engineering tool
for designing control systems must be more economical than an expert system like KEE, so
a leaner implementation is needed. C++ is a very good implementation language in this
case because of its efficiency and support for object-oriented programrning [Brück, 1g8Z].

One of the remaining problem a¡eas is the implementation of the user interface. The
developer must choose arnong a few window managers and several graphics packages. In
the on-going evaluation of different alternatives, this paper describes our experiences with
InterViews [Linton and Calder, 1987], a,n object-oriented libra^ry for implementing user in-
terfaces, written in C** [Stroustrup, 1986] and running on the X Window System [Poutain,
1e8el.

The evaluation of InterViews was conducted by developing a block diagram editor for
Simnon, a simr¡lator for non-linear systems [Elmqvist et al., 1986]. Simnon is an interactive,
command driven simulation package with its roots in the 1970's; Simnon is still very much
state-of-the-art for continuous simulation, but has no graphical input. The block diagram
editor is not integrated with Simnon, and therefore reasonably sized for evaluation pur?oses.
This paper also contains a comparison with an earlier evaluation of PHIGS (Programmer,s

1

acones lrlHl

New syetem

Read system

Generator

Sum

Product

-1

Connection

Write

EXIT

Regul Motor

-1

Figure 1. Screen dump of a simple block diagram.

Hierarchical Interactive Graphics Standard) in a similar application [Brück, 1988]. A par-
allel effort aims at developing a block diagram editor for Simnon on the Macintosh, using
Object-Pascal and MacApp. Previous work has also explored continuous panning, scrolling
and zooming of block diagrams on a high-performance workstation. The concept of infor-
mation zooming was introduced, meaning that the information contents of a block changes
depending on its size on the screen [Elmqvist and Mattsson, 1989].

2. The application

A key concept in Sirnnon is the system, which corresponds to a mathematical model of the
reality being studied. A system is described in a special modelling language. There are
continuous systems based on differential equations and discrete systems based on difference
equations. A third type is the connecting system, which is used to form compound systems
from enclosed continuous or discrete systems. Every Simnon system is stored as a separate
text file.

The connecting system is often visualized (with pencil and paper) by drawing a block
diagram. Unfortunatel¡ the drawing must still be transformed into statements of the
modelling language. The block diagram editor can produce simple forms of Simnon's CON-
nEcting System, hence the name Scones.

Figure 1 shows a simple block diagram in Scones. There is a fix comrnand menu on the
left side, and a drawing area for the block diagram on the right. Systeru are represented
by large annotated boxes. Special symbols represent the sum (l), product (II, not shown
in Figure 1) or negation (-1) of signals. General expressions are represented by generator
symbols (-).

When creating a block diagram, the user can either create a new system in which
case Scones will make a template file, or read an existing file in which case Scones will
extract properties necessary for drawing the block diagram. Scones knows the name of the
system, and maintains for each system a list of terminals (inputs and outputs) which can
be connected to terminals of other systems. The connections define the interaction between
the systems enclosed by the connecting system. A sequence of connected special symbols

2

CONTINU0US SYSTEM Regul
"Filename pid.t
rrCreated. Fri Feb 10 14:14:51 1989
INPUT y-ref y
OUTPUT u
END

Listing 1. Simnon code for the regulator system. Comment lines begin with a
double quote (").

CONNECTING SYSTEM Consys
ilFilename consys.t
rrCreated Fri Feb LO 1.4230:33 1989
TIME t
rrSystem: Regul
y-ref[RegulJ = if t) 0 then 1 else 0
y[ReguIJ = -ylMotorJ
'rSystem: Motor
u[Motor] = u[Regul] + sin(t)
rrGenerator: if t) 0 then I else 0
rrGenerator: sin(t)
END

Listing 2. Simnon code for the connecting system.

are transformed into an arithmetic expression in the connecting system. It should be noted
that Scones completely ignores the equations that define the behaviour of a continuous or
discrete system. Scones also defines a global time va¡iable ú in every connecting system.

The block diagram in Figure 1 represents a servo constructed from a motor and. a
regulator. A generator provides a step in the regulatorts reference value grn"y. the control
signal from the regulator 3l is influenced by a load disturbance from another generator.
The measured value from the motor u is negated. The template system for the regr:lator
(without equations) is shown in Listing 1. The connecting system produced by Scones is
shown in Listing 2. The template code for the motor is very similar to the code for the
servo, a¡rd therefore not shown.

3. InterVielys and PHIGS

InterViews is a.n object-oriented user interface package [Linton and Calder, 1987]. It pro-
vides the basic building blocks for implementing a wide variety of user interfaces. Basic
objects derived from the base class Intetactot can display a graphical image and accept
input events. Composite objects derived from class Scene ca^n display a complex image by
combining other objects (including scenes).

Scenes defined in InterViervs can arrange interactors in many ways: side-by-side hori-
zontally (an HBox) or vertically (a VBox), one stacked above the other (a Deck), or framing
an interactor (a trbame). Every interactor has a predefined natural size, but may stretch
or shrink within specified limits. This means that a scene can adapt to available space by
stretching or shrinking its components. Glue objects can be inserted to improve the layout.
Other "high-leveÏ' user interface objects are scrollers and panners that cha,nge the view of
a scener different types of buttons, pop-up menus, and a string editor.

Comparing InterViews with an established graphics standard such as PHIGS [Brown,

Dù

1985] is like comparing apples and oranges; the comparison is interesting though, as either
InterViews or PHIGS may be the best alternative in a particular application. Superficiall¡
the simil¿rities are striking: both InterViews and PHIGS provide

o Hierarchical structure of graphics. Complex images a¡e constructed by combining sim-
pler objects.

o Reuse of a graphical object in different contexts, and multiple views of a single object.
¡ Event mode input.

The main difference is in the degree of "object-orientedness." InterViews is firlly object-
oriented., whereas PHIGS ca,n be classified as object-based [Wegner, 1987]. Graphical objects
in PHIGS (called structures) a,re manipulated by a fixed set of operations, contain only
graphical information, and their storage is managed by the PHIGS runtime system. With
InterViews, classes derived from class Interactor add behaviour to graphical objects, and can
directly represent the real-world object; no separate graphical object hiera,rchy is needed.

fnteractor objects in InterVieÌvs are more "live" tha¡r structures in PHIGS. When a
graphical object changes, it sends a Change message to its parent (enclosing scene). Irr-
terViews will then send Redraw messages to all affected interactors, including the one
that was changed; the interactors draw images that reflect their internal state. Redraw
messages are also sent on demand from the window manager, for example, when hidden
interactors become visible. \ryith PHIGS, the application program must edit the contents of
separate structures. The PHIGS system will generate the image by traversing its internal
data structures, either on conunand from the application program, or ttwhen necessary."
It is probably easier to use specialized graphics processorõ or to distribute processing to
intelligent graphics terminals in PHIGS, than it is in InterViews.

Similarly, input events are sent directly to the target interactor in InterViews. In
PHIGS, the application program will get the identifier of the target structure and of all
ancestor structures of the target. The application program is responsible for identifying
related objects in its own world. InterViews also contains a set of PHIGS-like graphical
objects, derived from class Gtaphic. Apparently, class Graphic does not ha¡rdle input
events, so interactors were used in this project.

Another important difference is the positioning of objects. PHIGS objects are posi-
tioned at (æ,y); multiple local coordinate systems may be used. In ürterViews, objects are
typically positioned relative another object, without bothering about the exact coordinates;
the object may in fact move around or be reshaped as available space increases or decreases.
The ÛrterViews approach is normally much more convenient, and interacts better with the
window marì.ager. The strengths of PHIGS are its powerful SD capabilities, and its handling
of different projections. Good PHIGS implementations are also signifi.cantly more effi.cient
in drawing complex images. Filters are used in PHIGS to control what objects should be
visible, pickable, or highlighted. Filters are hardly needed in tlterVieïys, as the graphi-
cal image is generated by user written routines that easily adapt to the properties of the
corresponding objects. In PHIGS, filters are quite useful.

fn short, PHIGS can be regarded as a porverful sta,ndard for drawing graphics, and
InterViews as a powerful tool for building user interfaces.

4. System design

Scones was designed with simplicity and ease of implementation in mind. It has few features
and the user interface is simple. Interaction is mouse based, except for input of text strings.
The use of Scones is strongly influenced by the $'ay you draw block diagrams ma^nuall¡ the
modelling concepts in Simnon, and the user interfaces of other drawing programs. Internal
operation is event driven, using the default event dispatcher of InterViews. Scones was

4

InterVÍews Scorus

Scene ConnectingScene
---------+ Con nectingSystem

lnteractor System

Component
Generator

Sum

Product

-1

SpecialSymbol

Figure 2. The cl¿es hierarchy in Scones.

implemented entirely with InterViews a¡rd there are no direct calls to the underlying X
Window System.

An important objective was closenees to InterViews. Most classes used for represent-
ing the block diagram were designed as step-wise augmentations of predefined InterViews
classes. Mixing attributes related to the real-world objects being modelled and the graphi-
cal attributes is appropriate in this application; in other applications it may be desirable to
separate the graphical aspects, for example, to take advantage ofdistributed graphics pro-
cessors. The arr¿ilability of multiple inheritance would probably lead to a design with looser
coupling between graphical and modelling aspects. It would then be possible to build a
class hierarchy based on the modelling aspects, inheriting graphical aspects as need.ed from
InterViews.

The major class hierarchy in Scones is shown in Figure 2. Intetactor is the base class of
all graphical objects. Class Component represents the common behaviour of all objects in a
block diagram. Typical attributes are terminals (the endpoints of a connection), operations
on all terminals of a component, and handling of events. Component is an abstract base class
(no objects ca¡r be directly insta¡rtiated) and most operations are realized in derived classes,
for example, to generate the equations of the connecting system by following connections.
Class Sysúem represents a continuous or discrete system in Simnon. One specialization is
the ability to fi¡e up the editor on the corresponding Simnon text file. The m¿in purpose
of all other components is to tie together connections. These attributes are represented by
class SpecialSynbol, but geometrical shape and arithmetic meaning are realized by derived
classes. Class Gene¡aúo¡ has more features than other special symbols (e.g., it can be
edited), and should probably have been derived directly from class Component.

A scene in InterViews is essentially an arranger of other objects; this definition also
applies to the connecting system of Simnon. The properties most closely related to the op-
eration of InterViervs a,re collected in class ConnectìngScene. Additional properties related
to connections and the generation of equations were collected in class Connectingsystem.
The division into two levels of derivation was motivated by the problems in realizing all
the needed behaviour of an InterViews scene. Connections are not regarded as objects
like systems or summation symbols (and are therefore not interactors), but rather as an
attribute of the connecting system. This distinction is probably wrong; many operations
(e.g., deletion) would be easier to implement if connections were represented by interactors.
The user interface could also be improved if connections responded to mouse clicks, etc.

5

b Experiences

The first question that arises when you start using a new software package is "\{'hat can
I do?" The second is "How should I do it?" Graphics with InterViews can be realized in
three complementary ways:

1. InterViews provides a rich set of ready-to.use building blocks, for example, text mes-
sages, buttons, and a string editor. These standard interactors axe easy to use, easy to
integrate (e.g., to create an input form), and behave as expected.

2. Simple user defined graphical objects a¡e derived from class fnteractor. A few low-level
methods must be implemented, such as, Redraw. Certain attributes of the interactor must
be initialized by the user, for example, the shape object and interest in input events.

The methods and attributes of the low-level objects are not difficult to understand
separatel¡ but their use should be better documented to the benefit of new users. When
no output at all is produced, it may not be obvious that the real cause was forgetting to
initialize the shape member r¡ariable. Misuse of attributes, failure to implement a method,
or performing initializations in the wrong method, may initially pass unnoticed; in some
other context, tried and ttdebuggedtt classes rnay fail for some unexpected reason.

3. Composite graphical objects that contain other interactors are called scenes. Inter-
Views provides ma^ny useful types of scenes, but apparently not a Bcene that simply puts
an interactor at position (æ, y) which was needed in Scones.

Implementing a scene is considerably more complex tha.n just drawing some graphics.
Firstl¡ the scene must manage a collection of inserted interactors. A number of operations
may require interaction with the enclosed objects, for example, shape calculations. Sec-
ondl¡ the derived scene interacts intimateþ with its base class and the low-level routines
of InterViews. The user written scene must provide a nr¡mber of services for insertion, dele-
tion, changes, reconfigurations, reshaping, etc. Fhrthennore, the scene must have a fairly
complete set of operations to be operable at all; few shortcuts are possible. On the other
hand, once done it is quite easy to comprehend, and not too difficult to redo for a different
application.

Object-oriented programming is appa^rently more complicated than normally presented, i.e.,
as simply inheriting behaviour from the base class, or as the base class providing a template
for the interface of derived classes. This application shows a strong coupling between base
class and derived class; in particular, the firnction of the base class relies on a properly
implemented derived class. This is exactly why the keyword protected. was introduced
into C**; to distinguish class members that must be accessed by derived classes, but
not by code outside these classes. The introduction of multiple inheritance in C++ will
hopefully enable a design with less coupling.

The problems with strong coupling axe common in any application where code is reused,
and obviously not typical for object-oriented programming. The need for high-quality design
and documentation of generally used base classes is pronounced. Object-oriented program-
ming does make it easier to reuse existing code but the designer of a useful base class must
anticipate future needs, for example, by declaring methods vÍrtual in C-l-*. One may say
that object-oriented programming will give you less trouble with the past, and more trouble
with the future.

InterViews is a well-designed package, and most problems are due to lack of documen-
tation (about the average UNIX standard). A major improvement would be a description of
the internal operations of InterViervs, e.g., in the form of a data flow graph. This would give
more insight in the interaction between objects, and the intended use of certain methods

- what happens when a window is resized? Currentl¡ a major source of documentation is
the InterViews code. There are a number of overview papers related to InterViews [Linton

6

and Calder, l987][Vlissides and Linton, 1988][tinton et a1.,].989], and a lively mailing list
on Internet.

Little effort was needed to lea¡n how to use InterViews a¡rd implement an acceptable
user interface, compared to our previous experiences with PHIGS in a similar application.
The new user interface is also much improved. Object-oriented programming is well suited
to implementing user interfaces, and this application is close to the basic concepts in In-
terViews. Numerous revisions of the program has shown that it is easy to extend the user
interface and to add new graphical objects. A considerable amount of time was spent on
restructuring existing classes. Two features of InterViews have not yet been evaluated:
perspectives for changing the view of a graphical object, a,nd persistent graphics for saving
graphical objects on a file.

A reasonable block diagram editor has been implemented in three months, including
time to learn InterViews. Scones contains 987 lines of header files (mostly class declarations)
and 2347 lines of other code. Users find the progtam somewhat slow, but it is unclear
whether this is because of deficiencies in InterViews or in the X server.

6. Conclusions

InterViews is a powerful object-oriented package for implementing user interfaces. It pro-
vides a set of ready-to-use building blocks (e.g., text messages, buttons, a string editor),
and simple graphical objects are relatively straight-forward to implement. Non-standard
composite graphical objects are considerably more difficult, mainly because of missing doc-
umentation.

PHIGS is more efficient and has powerful3D primitives, but PHIGS is not tailored at
implementing user interfaces. Compa^ring two similar applications, InterViews is easier to
use and yields a better user interface.

A surprising e:çerience was the strong interaction between base classes defined in In-
terViews and derived classes defined in the application. The derived classes not only inherit
behaviour, they must also provide services to the base classes and the InterViews system.
This coupling stresses the need for good documentation, in particular documentation aimed
at the class developer.

Acknowledgements

I am grateful for comments on the manuscript by Sven Erik Mattsson, Mats Andersson,
Andrew Koenig and Mark Linton. This work was supported by the Swedish National Board
for Technical Development (STU).

References

A¡¡opnssoN, MATs (1989): "An Object-Oriented Modelling Environmerrtr" Proc. lg¡g
Eutopean Simulation Multiconfercnce, June ?-g 1g8g, Rome, Italy.

BnowN, M¡,xIr.rp D. (1985): andestandíng PHTGS, Template Graphics, San Diego, CA,
USA.

Bnücx, D¡.c M. (1987): "rmplementation Languages for CACE Software," coDEN:
LUTFD2/TFRT-3195, Department of Automatic Control, Lund Institute of Technolog¡
Lund, Sweden.

7

Bnäcx, Dlc M. (1988): "Modelling of Control Systems with C++ and PHIGS,,'
Proc. USENIX C++ Confetence, October L7-201988, Denver, CO, USA.

Er,rr,rqvrsr, Hrr,orlc, K¡.nt, Jo¡l¡,N Äsrnöu and Torvr¡.s ScnöNru.l'r, (1g86): Simnon
f/se¡'s Guide fot MS-DOS Computers, Department of Automatic Control, Lund únstitute
of Technology, Lund, Sweden.

EluqvIst, HIr,oruc and Svpn EnIx M¡.trssoN (1989): "simulator for Dynamical
Systems Using Graphics and. Equations for Modeling," IEEE Contrcl Sysúems Magazine,
9, L, January L989.

InrullConr (1986): KEE Softwarc Development System User's Manual, IntelliCorp,
Mountain View, CA, USA.

LINtott, Manx A. and P¡ur, R. C¡,r,onn (1987): "The Design and Implementation of
InterViews r" Ptoc. USEI.X C++ Workshop, November g-10 1987, Santa Fe, NM, USA.

Lwron, M¡.nx 4.., Jourt M. Vrlssrons and P.c,uL R. C¿r,oon (1g8g): ,,Composing User
Interfaces with InterViews," IEEE Compute4 22, 2, February L989.

Mltrssott, Svnr Enm (L988): "on Model Structuring Concepts," Proc. 4th LFAC
Symposium on Computer-Aided Design in Contrcl Sysúems, August 23-261988, Beijing,
P. R. China.

Poutl,tn, DIcx (1989): "The X Window System," BYTE, Janua,ry 1989, 85g-960.

Stnoustnur, B¡¡.nxn (1986): The C++ Ptogtamming Language, Addison-wesley
Publishing Company, Reading, MA, USA.

Vr,IssIons, Jo¡rt M. and M¡.nx A. L¡tttolt (1988): "Applying Object-Oriented Design
to Structured Graphics," Proc. USENIX C*+ Confetence, October L7-201988, Denver,
co, usA.

'wucnon, Parsn. (1987): "Dimensions of object-Based Language Design,"
Proc. OOPSLA'97, October 4-8 1987, Orla,ndo, FL, USA.

I

I

