LUND UNIVERSITY

Omola -- An Object-Oriented Modelling Language

Andersson, Mats

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Andersson, M. (1989). Omola -- An Object-Oriented Modelling Language. (Technical Reports TFRT-7417).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/5a8945aa-ba94-4666-b72a-11296d5d9a41

CODEN:LUTFD2/(TFRT-7417)/1-018/(1989)

Omola — An Object-Oriented
Modelling Language

|OMOLA I

IMODEL I |TERMINAL I |REALIZATION I

/NN N

Mats Andersson

Department of Automatic Control
Lund Institute of Technology
April 1989

Document name

Department of Automatic Control Report
Lund Institute of Technology Date of issue
P.O. Box 118 April 1989
S-221 00 Lund Sweden Document Number
CODEN:LUTFD2/(TFRT-7417)/1-018/(1989)
Author(s) Supervisor

Mats Andersson

Sponsoring organisation

The Swedish Board of Technical Development

Title and subtitle
Omola ~ An Object-Oriented Modelling Language

Abstract

This report presents a new language for structured dynamic models. The language is based on ideas from
object-oriented programming. Models are represented as classes with attributes. Inheritance and hierarchical
submodel decomposition improves model structure and facilitates resuse of models. The language is designed
to be general and extendable in order to represent future, yet unpredicted, model representation concepts.

Key words
Computer Aided Control Engineering, object-oriented, modelling language

Classification system and /or index terms (if any)

Supplementary bibliographical information)

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 18

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

During work on the CACE project “Tools for model development and simula-
tion” it has become more and more obvious that a new formal model language
is needed. Such a language must be powerful enough to express all new model
structuring concepts introduced in the project. Also, it is desirable that the
language is general enough for future needs to express yet unpredicted mod-
elling concepts. It has been clear that many model structuring concepts re-
semble concepts in object oriented programming. It has been equally clear
that most of the objectives of model development are the same as those of
program development. Among these objectives are fast development of new
models, reuse of existing models and secure check of model consistency and
correctness. Based on these observations and on experiences gained during the
development of new modelling concepts, the new modelling language Omola
— Object-oriented MOdelling Language — was designed.

In the remaining part of this intoduction we will give a brief presenta-
tion of some concepts for model structuring. In the following sections we will
first introduce Omola by some simple examples. Then there will follow a more
formal and detailed description of the language. Finally, there are some discus-
sions about Omola as a part of CACE environment, different interpretations
of Omola code and how the language can be extended in various directions.

Model structures

Models of real plants tend to become very large. Hundreds of states and
equations are not unusual. To build and to understand such a large model
is very difficult unless it can be divided into smaller parts that can be ana-
lyzed and comprehended separately. Many technical systems are built from
standard components connected by electric wires, pipes, shafts etc. Naturally,
it is convenient to describe models as connected submodels in a similar fash-
ion. Models of standard components can be saved in libraries and reused.
A modelling language supporting hierarchical submodel decomposition, called
DYMOLA, is proposed in [Elmgqvist, 1978]. The model structuring concepts
considered in this report are based on hierarchical submodel decomposition,
structured terminals and multiple realizations. These concepts are explained
very briefly here. For a more comprehensive discussion see [Mattsson, 1989b]
and [Andersson, 1989).

Model is the main structural entity. A model has a number of components
defining its interaction with the environment and the user, its behaviour and
other attributes.

Terminal is a model component for defining the model’s interaction with
other models. There are different kinds of terminals, for example, simple
terminals and record terminals. A simple terminal corresponds to a scalar
variable and has attributes describing physical aspects of the terminal. A
record terminal, represents interaction which involves a set of variables.

Realization is a component defining the behaviour of the model. A model
can have multiple realizations and there are different kinds of realizations for
different ways of describing model behaviour. Some of these are:

® A primitive realization defining model behaviour as a set of differential
algebraic equations.

e A transfer function.

e An ABCD-form for linear state space representations.

e A structured realization defining behaviour as a set of connected submod-
els. This kind of realization is the foundation of the hierarchical model
decomposition.

Parameters are attributes of models and realizations making it possible to
adapt the model for different purposes. A parameter is a (simulation-) time
invariant variable that can be changed by the user.

Submodel is a model used as a component of a structured realization. Any
model can be used as a submodel.

Connection is a component of a structured realization representing a rela-
tion between terminals of the super-model and of the submodels.

2. Model Representation in Omola

In this section we will introduce omola Omola by a number of small examples.

Omola is an object-oriented modelling language. Concepts and terminol-
ogy from object-oriented programming will be used in following. See [Stefik et
al., 1986] for a brief introduction to object-oriented programming or [Mayer,
1988] for a comprehensive one.

Models and model components like terminals and parameters are repre-
sented as classes. Every class is a descendant (subclass) of some previously
defined class from which it will inherit properties. We can assume that there
are predefined super-classes for models (called Model) and different compo-
nent types (e.g. Terminal, Realization) in the system. Here is an example of
a model definition:

Tank IS A Model WITH
terminals:
inflow IS A Terminal;
outflow IS A Terminal;
parameters:
tank_area := 5.0;
outlet_area := 0.05;
END
The tank model is defined as a subclass of Model with four local attributes:
inflow, outflow, tank_area and outlet_area. The first two attributes are
subclasses of Terminal without any local attributes. The other two attributes
are type defined variables with default values. A default value can be changed
in a subclass of Tank or in a tank instance involved in a simulation.
The Tank model defines only the model interface and not the model be-
haviour. In order to get a tank model with some description of its dynamic
behaviour we make a new definition:

Tank2 IS A Model WITH
terminals:
inflow IS A Terminal;
outflow IS A Terminal;
parameter:
tank_area := 5.0;
= 0.

outlet_area : 05;

realization:
re IS A Primitive WITH
variable:
level := 0.0;
equations:
tank_area * dot(level) = inflow - outflow;
outflow = outlet_area * sqrt(level);
END;

END;

In this new tank model we have added one more component — a realization.
The realization is a subclass of Primitive which indicates that the behaviour of
this model is defined as a set of differential equations. A primitive realization
typically have attributes which are variables and equations. The equations
involve parameters and terminals of the model, variables and time derivatives
of variables. In this example “dot(level)” indicates the time derivative of
the level.

In the new tank model, only the additional realization attribute is different
from the o-iginal tank model; the model interface is the same. In Omola we
can instead use inheritance to define the new tank. In this case, the new
tank is defined as a subclass of the original tank model. Tank3 will inherit all
attributes from Tank and add a realization. The Tank3 model will be identical
to the Tank2 model.

Tank3 IS A Tank WITH
realization:
Re IS A Primitive WITH
variable:
level := 0.0;
equations:
tank._area * dot(level) = inflow - outflow;
outflow = outlet_area * sqrt(level);
END;
END;
One advantage of using inheritance in this case is that we can define a number
of different tank models inheriting the same interface from Tank. If a tank is
used as a component of a larger system, we can easily exchange different tank
models since they all have identical interfaces.
We shall extend the example a bit further. Assume we want to define a
system with two connected tanks. We do this by defining Tank-System with
a structured realization with two submodels:

Tank_System IS A Model WITH
realization:
Re IS A Structure WITH
submodels:
Tank_a IS A Tank3;
Tank_b IS A Tank3;
connections:
Tank_a.0utflow AT Tank_b.Inflow;
END;
END;

Here, the realization Re is defined as a subclass of Structure which is a special
kind of realization. A structure is a set of connected submodels. The sub-

models and connections are defined as attributes of the realization. Tank_a
and Tank_b, are components defined as subclasses of the previously defined
Tank3. A special syntax is used to define connections.

New kinds of terminals can also be defined as classes. In the system
there is a predefined terminal class called “SimpleTerminal”. Even though it
is predefined it could have been defined as something like:

SimpleTerminal IS A Terminal WITH

attributes:
value TYPE real;
default_value TYPE real;
quantity TYPE Quantity;
unit TYPE string;
direction TYPE (In,Out,Across);
END;

A SimpleTerminal has a number of different attributes which are type de-
clared but with unknown values. We can now specialize this class and define
the subclass VoltageTerminal, where some of the attributes are given default
values:

VoltageTerminal IS A SimpleTerminal WITH
quantity := Voltage;
unit := "y*;
direction := Across;

END;

In a similar fashion we can define a current terminal. It is also possible to define
structured terminals, for example, an electric terminal with a voltage and a
current component. All structured terminals are subclasses of the predefined
terminal class “StructureTerminals”. A definition of an electric terminal might
look like:

ElectricTerminal IS A StructureTerminal WITH
components:
I IS A CurrentTerminal;
U IS A VoltageTerminal;
END;

3. The Design of Omola

It has been an attempt to design Omola in such a way that it is not limited to
the model structuring concepts presented in previous section. Rather, Omola
is based on a few very general concepts from object-oriented programming
which can be used to represent high level model structures of various type.
For this reason, is instructive to view Omola as divided into three distinct
concept levels:

e The model representation level containing concepts like model, terminal,
realization, etc.

o The structure level with concepts like class, component, attribute and
inheritance. This level is defined by the formal syntax of Omola.

e The data level supporting the mathematical framework for model be-
haviour. It includes concepts like number, expression, matrix, polynomial,
equation and function.

In the following sections we will present these levels of concepts in more detail
by starting with the last one.

4. The Data Level

The data level of Omola contains low-level data types like integer number,
real number, string, etc., as well as a number of higher level mathematical
primitives for describing model properties and behaviour. As far as possible
we have used MATLAB syntax [Moler et al., 1987] for mathematical objects.
However, MATLAB has only one data type, the complex matrix, and other
kinds of data such as polynomials and transfer functions have to be coded
as matrices. On this matter we agree with [Rimvall, 1986] that “Structurally
different data (e.g. a matrix and a transfer function) should be stored in
separate data structures, however, data with only semantical variation (e.g.
the state-matrices of a continuous and a discrete system) should be treated
equally by the system”. For this reason we need to invent some special syntax
not present in MATLAB.

In this section we will present those data level objects that are special to
Omola and not found in MATLAB or other programming languages. In the
appendix, there is a complete list of all data types in Omola.

Polynomials Polynomials are indicated by brackets (“{}”) and can be ex-
pressed in one of two different forms: coefficient form or root form. For exam-
ple, the polynomial

P +2p+3

on coefficient form is written in Omola as {1,2,3}, while the polynomial

2(p-3)(p—4)

is written as {2: 3,4} on root form.
Operator overloading for the common operators (+, — and %) on polyno-
mials is used. The division operator “/” indicates rational polynomials.

Equations Differential algebraic equations can be used to express model
behaviour [Mattsson, 1989a]. We have chosen to use the equal sign “=" as the
equation operator. A special operator ,dot, is used to express time derivatives.
For example, dot(x) means dz/dt. Both scalar and matrix equations are
allowed. Here is an example of a differential algebraic matrix equation:

Exdot(x) = A*x + Bxu

where the constant matrices A, B and E, and the vector variables x and u are

assumed to be declared. The matrix dimensions must agree for the equation
to be valid.

Constraints are used to propagate parameter values between model com-
ponents. A constraint is a directed relation between two parameters binding
the value of the left hand side parameter to the value of the right hand side
parameter. For example, when a composite (structured) model is defined, it is
usually desirable to bind submodel parameters to parameters of the composite

model. Assuming we have two submodels S1 and S2 each with a parameter
p which we want to be bound to the value of the parameter p of the compos-
ite model. This can be specified by the constraint expression (defining two
constraints):

S1.p :- S2.p :~- p;
where dot-notation is used to access parts of structured objects. This means
that only the parameter of the super-model can be changed by the user and
that this change is propagated downwards to the parameters of the submodels.
Simple arithmetic expressions can be used in constraint expressions.

In future versions of Omola, also undirected constraints might be consid-
ered.

Connections are used in composite models to express relations between
terminals. In most cases a connection is an equality relation between terminal
variables and an equation would be an appropriate notation. However, for
some types of terminals a connection implies a “zero sum” equation. For this
reason we have adopted a special notation for all connections from Dymola
[Elmqvist, 1978]:

<terminal> AT <terminal>

5. The Structure Level

The structure level contains the object-oriented aspects of Omola. It includes
concepts for defining classes of objects with component and variable attributes.
Concepts on the structure level as well as on the data level is reflected in
the syntax of Omola. A formal definition of the Omola syntax is given in
the appendix. The structure level of Omola is designed to represent object-
oriented data structures of any kind, not just models. These general aspects
of Omola are described in this section.

The primary structural entity in Omola is the class. As in object-oriented
programming, a class defines properties common to a set of instances. In-
stances will be discussed later in this report.

A class has a name, a super class (sometimes called parent class) and
possibly some local attributes. A class will inherit all attributes of the super
class. A class definition with a class body of local attributes is written like:

<name> IS A <super class> WITH
<body with local attribute definitions>
END

Class attributes

A class can define two kinds of attributes:
e variable attributes (or just variables) and
e component attributes (or just components).

Variable attributes correspond to instance variables in object-oriented pro-
gramming. Entities from the data level previously discussed are used as values
of variable attributes. A definition of a variable attribute in a class body looks
like:

<name> TYPE <type name> := <initial value>

where the initial value is optional. The type name is the name of a built-in
data type listed in the appendix. When an initial value is given, the “TYPE
<type name>” part can be omitted whenever the type can be infered from the
value.

Component attributes are similar to class definitions lexically scoped in-
side other class definitions. This is allowed in some object oriented program-
ming languages (e.g. Simula) but it is not very common. In Omola a compo-
nent attribute is just a class definition in the body of another class definition.
The scope rules of components are similar to the scope rules of nested proce-
dures in for example Pascal but there are some exceptions discussed further
below.

Attribute declarations in a class body are terminated by a semicolon ;”.
If the defined class has no local attributes the class body can be empty or
omitted.

Categories

The set of attributes of a class is divided into subsets called categories. This
is a way of adding more structure to a class definition which is not found in
any commonly used object-oriented language.

A category tag is a name ending with a colon “:” and it determines the
category for attributes following. A class definition accepts any category tags
but certain tags will be assigned specific meanings when Omola is used for
model representation. This will be the issue of the next section. Attribute
declarations without any category tag will by default belong to the standard
category “attributes:”. Here is a simple example of a class definition with
different categories:

CACE_project IS A Research_project WITH
leader:
SvenErik IS A Person;
staff:
Bernt IS A Person;
Dag IS A Person;
Mats IS A Person;
properties:
Budget TYPE real := 1.0;
END;

Here, the class body defines five local attributes — four components and one
variable — with three different tags. The components are all class definitions
without bodies, i.e., they have no attributes except those inherited from their
super-classes.

Inheritance

Whenever a new class is defined as a subclass of an existing class all attributes
of that class will be inherited by the new class. An inherited attribute belongs
to a class in the same way as if it was defined locally in the class. If a local
attribute is defined with the same name as an inherited attribute, the local
definition will override the inherited one. In this case, the local attribute must
be defined in the same category as the inherited attribute or before the first
category tag. For example, we can define a subclass of the CACE_project:

CACE_subproject IS A CACE_project WITH

Budget := 0.5;
staff:
Tomas IS A Person;
END

which has one additional attribute in the staff category and another value for
the budget variable.

The scope of names and class definitions

Classes can be defined globally or as component attributes of other classes. A
global class definition is available everywhere and can be used as a super-class
in any other class definition. A class must be defined before it can be used as
a super-class.

Classes defined locally as attributes of another class are not available as
super-classes outside the body of that class. However, a local class definition
can be used in class definitions following within the same body. For example,
the following definition is correct:

C1 IS A Class WITH
X1 IS A Something;
X2 IS A X1;

END

if “Something” is defined globally. Here, the class X2 is a subclass of the
locally defined class X1. Also, in the body of subclasses of C1 both X1 and
X2 are available as super-classes.

Attributes with a special syntax

So far, attributes have been defined as named objects. In some cases it is
not appropriate that the user has to invent names for all attributes. For
example, in the next section we will see how a class representing a model have
a set of equations describing its behaviour. The equations are all individual
attributes of the class but it would be inconvenient to require all equations to
be declared as named attributes in the standard way. Therefore, the Omola
syntax allows some attributes to be declared anonymously and with a special
syntax. Connections and equations are examples of such attributes. Special
tags (in this case “connections:” and “equations:”) are used to direct the
Omola parser to accept the special syntax of connections and equations.

The Omola syntax is designed in such a way that it is easy to extend it
with additional special syntax variants.

6. The Model Representation Level

In the previous two sections we have presented the foundations of Omola as
language for defining general structures of objects with attributes. In this
section we will see how this language can be used for model representation.

The model representation level can be seen as an additional semantic
level on top of the data level and structure level. Model representation is not
inherent in the syntax of Omola. For example,

C IS A Class WITH
p: x TYPE real := 0;
END

is correct Omola code but it has no meaningful interpretation as a model
object. On the other hand,

C IS A Model WITH
parameter: x TYPE real := 0;
END;

has a precise meaning as being the definition of the model C with the parameter
x. In this case our interpretation of the code comes from the fact that we have
a feeling for what a “Model” is and what a “parameter” is. In other words,
there is some semantics hidden behind the words “Model” which is a class and
behind the word “parameter” which is a category tag. It is important that
different users and tools accessing Omola structures agree upon this semantics
in order to get the same interpretation of the code.
The model representation level of Omola can be described as

e aset of predefined classes,
e for each predefined class a set of predefined attributes,
o for each predefined class a set of admissible category tags, and

e for each admissible category tag some rules concerning the attributes
defined in the category.

In this section we will present the classes and their admissible category tags,
of the different model objects predefined in Omola.

Models

By models we mean all classes which have the system defined class Model as
a direct or indirect super-class. In a model definition the following category
tags are special:

e terminals: All attributes defined in this category must be component
attributes that are descendants of the system defined class Terminal.

¢ parameters: Parameter attributes are variable attributes or compo-
nents that are descendants of the system defined class Parameter. The
defined value of the parameter or the component is used as a default value.

e realizations: These are component attributes that are descendants
of the system defined class Realization. When a model has more than
one realization the last one has a special status as being the primary
realization of the model. The primary realization defines the default be-
haviour of the model.

e variables: The variable attributes defined with this tag are consid-
ered to be time varying (or state) variables of the model. The defined
value of such a variable is used as its default initial value.

e constraints: Constraint attributes are written in a special syntax (see
previous section) and are used to express constraints between parameters
of the model and parameters of other components.

Terminals

By terminal we mean all classes which have the system defined class Terminal
as an indirect super-class. No attributes are defined for Terminal. Instead,
Terminal has three system defined subclasses which can be used as model
components; these are SimpleTerminal, RecordTerminal and VectorTermi-
nal, and they all have different sets of predefined attributes which will be

described in this section. Terminal semantics are discussed in [Mattsson, 1988
and 1989b].

SimpleTerminal This kind of terminals are similar to variables and they
can be used as variables in equations. A simple terminal can be viewed as
having the following Omola definition:

SimpleTerminal IS A Terminal WITH

attributes:
value TYPE real;
default_value TYPE real;
direction TYPE (Across, In, Out);
causality TYPE (Read, Write);
variability TYPE
(TimeVarying, Parameter, Comstant) := TimeVarying;
low_limit TYPE real;
high_limit TYPE real;
unit TYPE string;
quantity TYPE Quantity;
END

The type specification for direction and causality are enumerations of possi-
ble symbolic values. The type Quantity means any object in a database of
quantities.

RecordTerminal A record terminal is somewhat similar to a record in Pas-
cal; it has a set of components which are terminals themselves. The tag “com-
ponents:” should be used for the component terminals. A record terminal can
not be used directly as a variable in equations. From the inside of a model
dot-notation can be used to access record terminal components. From the
outside of a model the the record terminal can only be accessed as a whole,
and connected to other terminals with similar structure.

VectorTerminal A vector terminal has a number of identical component
terminals and it can be used as a column vector variable in equations. It has
a length attribute with an integer value, and comptype attribute which is the
terminal class of all elements. VectorTerminal can be be viewed as having
the following Omola definition:

VectorTerminal IS A Terminal WITH
length TYPE integer;
comptype IS A Terminal;

END

Parameters

Parameters are components of models and realizations defined as subclasses of
the predefined class Parameter. A parameter can be used as a time constant
equation variable and it has one predefined variable attribute: value.

Realizations

Realizations are used to define model behaviour. A realization is always de-
fined as a component of a model and it refers to parameters and terminals of
that model. It has no meaning outside the model in which it is defined.

There are two important subclasses of the predefined class Realization;
these are Primitive and Structure.

10

Primitive This kind of realization defines model behaviour as a set of dif-
ferential algebraic equations. The following tags have a special meaning:

e variables: with the same meaning as in models,

e constants: which are variable attributes with defined values,

e parameters: with the same meaning as in models, and

e equations: which are given with a special syntax discussed above.

The equations of a primitive realization can refer to variables, constants and
parameters of the realization as well as variables, parameters, terminals and
terminal components of the model of which the realization is a component.

Structure A structure realization defines model behaviour as a set of sub-
models and connections. The following category tags are accepted:

e submodels: where the attributes should be models,

¢ connections: where the attributes should be connections written in spe-
cial syntax, and

e constraints: where the attributes should be constraints written in spe-
cial syntax.

7. An Environment for CACE

Omola is designed to be a language used for model representation in an
integrated environment for model development, simulation, control design
(CACE), etc. Omola code can be turned into data structures representing
models which can then be displayed graphically and manipulated iteractively.
Models that are created from scratch within the environment can be turned
into Omola code and saved. Omola can also be used for documenting models
and as a standardized form for exchanging models between users and different
systems.

8. Interpretation of Omola objects

Since Omola is a declarative language Omola code can be interpreted in differ-
ent ways depending on the circumstances. Many other simulation languages
are more imperative to its nature, giving explicit expressions how variables
should be computed. These languages are less flexible and more devoted to a
special purpose, for example simulation.

Omola class definitions can be interpreted in different ways by different
tools in the CACE environment. Normally in object-oriented programming,
classes serve as descriptions of run-time objects. The creation of an object from
a class is called instantiation. In a CACE environment, ‘run-time’ corresponds
to the simulation of the model. Before a model can be simulated it has to
be instantiated. This means that separate instances are created for each class
definition and class references in a model definition. Instantiation is a recursive
procedure over a structure of class definitions. ‘

Instantiation for the purpose of simulation is only one way to interpret a
set of class definitions in Omola. Here are some other purposes and interpre-
tations:

11

e Generating a graphical picture of the system structure, for example, a
block diagram.

e Generating text descriptions of the system for documentation or user
information.

o Generating special purpose code, for example, regulator code or simula-
tion code in other simulation languages.

®* Generating standardized system descriptions in order to communicate
with other control engineering packages.

e Derivation of different kinds of systems properties like stability margins,
loop gains, etc.

o Transforming a model into a form accepted by a specific control design
tool.

9. Extending Omola

Omola is designed to be extendable. New model structuring concepts and new
aspects of models can normally be expressed within the current framework of
concepts on the data and structure level. However, there are some limitations
of Omola as compared with some object-oriented programming languages.
Some of these might be useful to have in a modelling language as well.

Multiple inheritance

Multiple inheritance is possible in some object-oriented languages and some-
times considered very useful. Currently, it is not possible for an Omola class
to inherit properties from more than one super-class. However, we believe it is
useful also in model representation and ought to be included in the language.

As an example where multiple inheritance is useful, consider a model of a
chemical reactor. A reactor tank has its physical properties in common with
all tanks. These properties can be inherited from a previously defined standard
tank model. Beside the properties of the physical device, we also have a model
of the chemical reaction going on in the tank. This reaction can be described
independently of the vessel in which it takes place. Therefore, we would like
to define a class which inherit properties from both the class defining the tank
model and from the class defining the chemical reaction model.

There are no principle problems by including multiple inheritance in Omo-
lIa but some difficulties are to be solved.

Procedural specifications of model behaviour

As presented, Omola is a purely declarative language. Since methods can
not be defined, there is no concept of procedural or functional knowledge. If
methods are to be included, we have to decide in what language they should
be written. In a “quick and dirty” Lisp (or KEE) implementation of a model
representation environment based on Omola, the simple solution is to use Lisp
to implement the methods. If tools like Matlab and Macsyma are integrated
into the environment, it should be possible to implement and execute methods
in these languages.

If procedures can be associated with models, another interesting possi-
bility appears. Models can be supplied with knowledge about how to use the

12

different tools in the environment for analyzing and manipulating the models
themselves. For example, a non-linear model realization can have method for
linearization associated with it. When all parameters of a model are defined
and the operating point is settled, possibly by simulation, the user can send a
message to the model asking for its linearization.

Discrete events

Many phenomena in real world systems are most conveniently modeled as
discrete events rather than continuous time processes. Typical examples are
models of batch processes, production lines etc. Examples of events are a tank
that becomes full and causes a valve to close, and a processing machine that
becomes ready for the next piece of material. Often unmodeled dynamics con-
sidered to be fast compared with the rest of the system can be represented by
events. For example, a relay with hysteresis is conveniently described in a lan-
guage containing the event concept. Sampling is also conveniently represented
as events.

Concepts for describing discrete event behaviour can be added to Omola
without too much effort.

10. Acknowledgements

The author would like to thank Sven Erik Mattsson, Bernt Nilsson, Dag Briick,
and Tomas Schénthal, for interesting discussions and useful ideas. This work
has been supported by the National Swedish Board for Technical Development
(STU) under contract 87-2503.

11. References

ANDERSSON, M, (1989): “An Object-Oriented Modelling Environment,”
Proc. of the 1989 European Simulation Multiconference, Rome, June 7-9.

AsTroM, K. J. and W. KREUTZER (1986): “System representations,” Proc.
IEEE Control Systems Society Third Symposium on Computer-Aided
Control Systems Design (CACSD).

BirTWISTLE, G. M., O-J. DaHL, B. MYHRHAUG and K. NYGAARD (1973):
Simula Begin, Auerbach, Philadelphia, Pa.

Ewrmqvist, H. (1978): A Structured Model Language for Large Continuous
Systems.

MaTtTsson, S. E. (1988): “On Model Structuring Concepts,” Preprints of
the 4th IFAC Symposium on Computer-Aided Design in Control Systems
(CADCS), August 2325 1988, P.R. China, pp. 269-274.

MartTsson, S. E. (1989a): “On Modelling and Differential/ Algebraic Sys-
tems,” Simulation, 52, No. 1, 24-32.

MatTsson, S. E. (1989b): “Modelling of Interactions between Submodels,”
Proc. of the 1989 European Simulation Multiconference, Rome, June 7-9.

MEYER, B. (1988): Object-oriented Software Construction, Prentice Hall.

13

MoLER, C., J. LiTTLE and S. BANGERT (1987): PRO-MATLAB User’s
Guide, The MathWorks, Inc., Sherborn, MA.

RmvaLr, C. M. (1986): Man-Machine Interfaces and Implementational
Issues in Computer-Aided Control System Design, Dissertation, Swiss
Federal Institute of Technology Zurich.

STEFIK, M. and D. G. BoBrow (1986): “Object-Oriented Programming:
Themes and variations,” AI Magazine, 6:4, pp. 40-62.

14

Appendix A. — Omola Syntax

The formal syntax of Omola is presented in this appendix. The syntax is
presented as a context free grammar on BNF form. Non-terminal symbols are
written in upper case letters while terminal symbols are written in lower case
letters. Key words and special characters that appears litterally are enclosed in
dubble quotes. A vertical bar “|” separates alternatives. An expression within
square brackets is optional, i.e., [exp] is the same as (exp | $), where $ is
the empty string.

The syntax rules are divided into three groups: basic Omola syntax, spe-
cial syntax for model representation and syntax for mathematical expressions.

Basic Omola syntax

The rules defining the basic omola syntax is here listed in alphabetic order.
The non-terminal symbol “CLASS-DEFINITIONS” is the start symboal, i.e.,
it represents a complete Omola block of code.

BODY ->
NAME-LIST (CLASS-DEF | TYPE-DECLARATION | C-ASSIGNMENT)
" 5 " [BUDY]

C-ASSIGNMENT -> ":=" LITTERAL

CLASS-BODY -> (BODY [TAG-BODY] | TAG-BODY)

CLASS-DEF ->
("is a" | "is an") SUPER-CLASS ["with" CLASS-BODY "end"]

CLASS-DEFINITIONS ->
NAME CLASS-DEF ";" [CLASS-DEFINITIONS]

LITTERAL ->
real-number | integer | MATRIX | POLYNOMIAL

NAME -> identifier
NAME-LIST -> NAME [",'" NAME-LIST]
SUPER-CLASS -> identifier

TAG ->
"terminals:" | "parameters:" | "attributes:" |

TAG-BODY ->
(TAG BODY [TAG-BODY] | SPECIAL-TAG-BODY [TAG-BODY])

TYPE-DECLARATION ->
"type" TYPE-DESIGNATOR [C-ASSIGNMENT]

TYPE-DESIGNATOR ->
("matrix" integer integer |

"row" integer |
"column" integer |
"scalar" |

"raal' l

"integer" |
"string" |

"symbol" I
"polynomial®

"(" NAME-LIST ")" |
NAME)

Special syntax

Here is the syntax for a number of Omola constructs specially introduced for
model representation.

SPECIAL-TAG-BODY ->
("constants:" | "comnstant:") CONSTANT-BODY

SPECIAL-TAG-BODY ->
("variables:" | "variable:") VARIABLE-BODY

SPECIAL-TAG-BODY ->
("equations:" | "equation:") EQUATION-BODY

SPECIAL-TAG-BODY ->
("connections:" | "connection:") CONNECTION-BODY

SPECIAL-TAG-BODY ->
(“constraints:" | "constraint:") CONSTRAINT-BODY

CONSTANT-BODY ->
NAME-LIST C-ASSIGNMENT ";" [CONSTANT-BODY]

VARIABLE-BODY ->
NAME-LIST (TYPE-DECLARATION | C-ASSIGNMENT)
";" [VARIABLE-BODY]

EQUATION-BODY ->
EQUATION ";" [EQUATION-~BODY]

CONNECTION-BODY ->
CONNECTION ";" [CONNECTION-BODY]

CONSTRAINT-BODY ->
SIMPLE-EXPRESSION ":-" CONSTRAINT-EXPRESSION
";" [CONSTRAINT-BODY]

CONSTRAINT-EXPRESSION ->
SIMPLE-EXPRESSION [":-" CONSTRAINT-EXPRESSION]

EQUATION ->

CONDITIONAL-EXPRESSION "=" CONDITIONAL-EXPRESSION

Syntax for arithmetic expressions

C-POLY -> ELEMENTS
CONDITIONAL-EXPRESSION -> EXPRESSION
CONDITIONAL-EXPRESSION ~>

"if" EXPRESSION "then" EXPRESSION

"else" CONDITIONAL-EXPRESSION
ELEMENTS -> CONDITIONAL-EXPRESSION ["," ELEMENTS]
EXPRESSION -> SIMPLE-EXPRESSION [REL-O0P SIMPLE-EXPRESSION]

FACTOR -> ["not"] FACTOR | PRIMARY ["~" FACTOR]

FUNCTION-DESIGNATOR ->
identifier "(" [ELEMENTS] ")"

MATRIX -> "[" ROWS "]"
NUMBER -> real-number | integer
POLYNOMIAL -> "{" (C-POLY | R-POLY) "}"
PRIMARY ->
VARIABLE | MATRIX | POLYNOMIAL | NUMBER |
"(" EXPRESSION ")" | FUNCTION-DESIGNATOR

R-POLY ~-> ARITHMETIC-EXPRESSION ":" ELEMENTS

REL-0P ->
(n>n I nemn I Nt I ne_n I neg="n I |l>=ll)

ROWS -> ELEMENTS [";" ROWS]

SIMPLE-EXPRESSION ->

CC+™ | "=")] TERM [("+" | "-" | »or") SIMPLE-EXPRESSION]
TERM ->
FACTOR [("*" | "/" | "and") FACTOR]

VARIABLE -> identifier

Appendix B. — Data Types

Here is a listing of all data types currently available in Omola:

Type
Constraint
Equation
Integer
Matrix

Polynomial
Real

Scalar
String
Symbol

Declaration

constraint
equation
integer
matrix mn
Tow m
column n
polynomial
real
scalar
string
symbol
(4,B,C)

a class name

Example litteral Comment
pl :- p2

dot(x) = x-1

1

[1,0;0,1]

(1, 0]

[1; 0]

{1,2,3} or {2: 1,1}

3.14
3.14
um/sn
Tank
A The declaration can be
any list of symbols.
Reference to an object.

Identical with real.

Voltage

