LUND UNIVERSITY

A Modula-2 Real-Time Scheduler
Use and Implementation
Andersson, Leif

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Andersson, L. (1989). A Modula-2 Real-Time Scheduler: Use and Implementation. (Technical Reports TFRT-
7414). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/a8782089-934d-48c4-9b26-476e5982012e

CODEN: LUTFD2/(TFRT-7414)/1-9/(1989)

A Modula-2 Real-Time Scheduler

Use and Implementation

Leif Andersson

Department of Automatic Control
Lund Institute of Technology
January 1989

P.O. Box 118

Department of Automatic Control
Lund Institute of Technology

S-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

1989-01-26

Document Number

CODEN: LUTFD2/(TFRT-7414)/1-9/(1989)

Author(s)
Leif Andersson

Supervisor

Sponsoring organisation

Title and subtitle

A Modula-2 Real-Time Scheduler—Use and Implementation

Abstract

Describes a simple foreground/background scheduler programmed in Modula-2. An example of its use is
given, and the complete implementation is shown.

Key words

Classification system and /or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient's notes
English 9

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

The simplest possible base for a real-time program is the Foreground /Back-
ground Scheduler. Such programs have been used at the Department of Au-
tomatic Control since the late seventies [Matsson 1978]. This report describes
an implementation in Modula-2 for the IBM PC/AT and compatibles. Also
included is a very simple program that gives an example of its use. Section 2
contains the library description for the Scheduler and section 3 the example
program. Section 4 contains the implementation module of the Scheduler, and
sections 5 contains the definition and implementation modules of a lowest-level
Clock Interrupt Driver that is used by the Scheduler. There is a bibliography
in the last section.

2. Scheduler Library Description

DEFINITION MODULE Scheduler;
A simple foreground /background scheduler
EXPORT QUALIFIED Schedule, Run, Stop, Lag;

PROCEDURE Schedule(FG:PROC);
Initializes the scheduler and specifies which procedure to be called on each

sampling instance. No other procedures of the module should be called
before this.

PROCEDURE Run(period: CARDINAL);
Make the scheduler call the foreground procedure specified in Schedule with
an interval specified by period, expressed in milliseconds.

PROCEDURE Stop;
Cancels the calling of the specified procedure. The procedure Run may be
called later to resume the scheduling.

PROCEDURE Lag(): CARDINAL;
If the foreground procedure is still running when it is due to be called the
next time, then the scheduler will instead increment an internal counter.
The foreground routine will then be recalled immediately on return and the
counter decremented. Thus, if the foregroud routine is too long, then the
counter will start to accumulate. The procedure Lag will return this counter,
enabling the foreground procedure to check that it doesn’t lag behind.

END Scheduler.

3. The Example Program

As an example for the Foreground/Background Scheduler we choose a very
simple proportional regulator. The only parameter that can be changed is the
gain. The program contains a procedure Opcom that runs in a loop accepting
real numbers, and a procedure Regul that is the regulator proper, and that
is Tun regularly by the Scheduler. In order to simplify Opcom we use the
convention that a gain with an absolute value less than 0.01 is a signal to exit
the program.

A general problem with real-time programs is the sharing of variables between
processes in a proper way so that they are not garbled by simultaneous access.
The solution in this case is as follows. There are two copies of the variable,
one that is changed exclusively by Opcom and one by Regul. There is also
a flag, which is set by Opcom when it has changed the variable. Regul runs
regularly, and each time it has performed its normal task, it checks the flag
and copies the variable if the flag is set and then clears the flag. There is a
very small probability that Opcom wants to change its variable before Regul
has taken care of the previous change, and therefore Opcom waits for the flag
to be reset before it changes its copy of the variable.

MODULE ExampleSchedule;

FROM Scheduler IMPORT Schedule, Run, Stop;
FROM ConvReal IMPORT StringToReal;
FROM AnalogI0 IMPORT ADIn, DAOut;

FROM BIOSterminal IMPORT WriteString, ReadString, WriteLn;
The module BIOSterminal should be used instead of Terminal so that DOS
does not interfere with the real-time operations.

VAR OpcomK: REAL; Gain variable used by Opcom.

VAR RegulK: REAL; Gain variable used by Regul. The value of OpcomK
is transferred here by Regul.

VAR change: BOOLEAN; Flag to signal to Regul that a parameter change
has taken place.

CONST period = 10; The sampling period in milliseconds.

TYPE string = ARRAY [0..79] OF CHAR;
PROCEDURE Opcom;
VAR s: string; pos: CARDINAL; val: REAL;
BEGIN
REPEAT
WriteString("> ");
ReadString(s); WritelLn;
pos:=0;
StringToReal(s,pos,val);
IF pos > 0 THEN
WHILE change DO ; END;
At this point we have an acceptable number. The WHILE-loop is to
handle the (very rare) situation where a previous change has not yet
been taken by Regul.
OpcomK := val;
Since any previous change has been taken care of it is OK to set the
variable.
change := TRUE;
Now set the flag so that Regul can transfer the value to its variable.
ELSE
A bad number has been detected. Just complain and continue the loop.
WriteString("Error: Bad number."); WriteLn;
END;

UNTIL ABS(OpcomK) < 0.001;
END Opcom;

PROCEDURE Regul;

VAR r, y, u: REAL;

BEGIN
The following four statements constitute a very simple proportional regula-
tor.

r := ADIn(0);

y := ADIn(1);

u := RegulK*(r-y);
DAOut(0,u);

We now test if Opcom has set the flag, and if so transfer the variable value.
Note that since Regul cannot be interrupted by Opcom there is no risk
that Opcom can access the variables until Regul has finished.

IF change THEN
RegulK := OpcomK;
change := FALSE;

END;

END Regul;

BEGIN
change := FALSE;
OpcomK := 1.0; RegulK := 1.0;
Schedule(Regul) ;
Run(period) ;
Opcom;
Stop;
END ExampleSchedule.

4. Scheduler Implementation

IMPLEMENTATION MODULE Scheduler:;

FROM SYSTEM IMPORT

ENABLE, DISABLE, CODE, ADDRESS, SETREG, ADR, DS, BX;
FROM InitError IMPORT Trap;

The procedure Trap is an error-message-and-exit routine.

FROM FloatingUtilities IMPORT Float;
IMPORT ClockInterrupts;

CONST TICK=1; Tick time in milliseconds

VAR

ForeGround: PROC; The procedure to be called on each sampling in-
stance. Set by the procedure Schedule.

running: BOOLEAN; Flag to indicate if a foreground process should run
or not. Changed by Run and Stop procedures.

period: CARDINAL; The sampling period, i.e. the number of ticks be-
tween each call of the foreground process. Set by the
procedure Run.

time: CARDINAL; The actual time within the period. This variable
is incremented each tick and compared to period.
When they are equal, the foreground is called and
time is reset.

lagging: CARDINAL; A counter for the number of times the foreground
was still active when it was due the next time. See
procedure Ticker.

FParea: ARRAY [0..47] OF CARDINAL; Save area for the FP registers.

started: BOOLEAN; Flag set when procedure Schedule is called.

(*$R-%) (x$S~%) (*$T-%)

PROCEDURE Schedule(FG: PROC);
Initialization procedure. It checks that it isn’t called twice, sets the
ForeGround procedure variable and starts the clock interrupt driver.
BEGIN
IF started THEN
Trap(’Scheduler: Schedule called twice.’);

END;
started := TRUE;
ForeGround := FG;

ClockInterrupts.Init(Ticker,Float(TICK));
END Schedule;

PROCEDURE Run(p: CARDINAL);
Sets period from the input parameter, and sets the flag running so that the
foreground will be called with the proper interval.
BEGIN
IF NOT started THEN
Trap(’Scheduler: Run called before Schedule.’)
END;
IF running THEN
Trap(’Scheduler: Run called twice without Stop.’)
END;
DISABLE;
time:=0;
period := p;
running:= TRUE;
ENABLE;
END Run;

PROCEDURE Stop;
Resets the running flag, which means that the foreground will no longer be
called.
BEGIN
IF NOT started THEN
Trap(’Scheduler: Stop called before Schedule.’)
END;
IF NOT running THEN
Trap(’Scheduler: Stop called twice without Run.’)
END;
DISABLE;
running := FALSE;

lagging := 0;
ENABLE;
END Stop;

PROCEDURE Lag(): CARDINAL;
Returns the variable lagging
BEGIN
RETURN lagging;
END Lag;

PROCEDURE SaveFloat;
Saves the floating point registers
VAR a: ADDRESS;
BEGIN
a:=ADR(FParea);
SETREG(DS,a.SEGMENT) ;
SETREG (BX,a.0FFSET);
(* FSAVE [BX] *) CODE(ODDH,037H) ;
END SaveFloat;

PROCEDURE RestoreFloat;
Restores the floating point registers
VAR a: ADDRESS;
BEGIN
a:=ADR(FParea);
SETREG(DS,a.SEGMENT) ;
SETREG(BX,a.0FFSET) ;
(* FRSTOR [BX] *) CODE(ODDH, 027H) ;
END RestoreFloat;

PROCEDURE Ticker;
This is the main workhorse of the scheduler. It is called every clock tick
by the clock interrupt driver. It counts ticks until the foreground is due,
then it saves the floating point registers, calls the foreground procedure,
and restores the floating point registers. There is also some interlocking,
handled with the global variable lagging, to ensure that the foreground is
not called while it is still running.
BEGIN
IF NOT running THEN RETURN END;
INC(time, TICK);
IF time >= period THEN
time := time - period;
INC(lagging) ;
The variable lagging is 0 when everything starts. It is then incre-
mented above, and decremented below. If it has a value > 1 here, then
we arrive here before we have finished the foreground procedure the
previous time. We should thus not call the foreground. It is instead
recalled when it returns, because of the while statement.
IF lagging = 1 THEN
SaveFloat;
WHILE lagging > O DO
ENABLE;
ForeGround;

DISABLE;

DEC(lagging) ;
END;
RestoreFloat;
END;
END;
END Ticker;
BEGIN
started := FALSE;
running := FALSE;
lagging := 0;

END Scheduler.

5. ClockInterrupt Definition and Implementation

DEFINITION MODULE ClockInterrupts;
Low level clock interrupt driver.

EXPORT QUALIFIED Init;
PROCEDURE Init(P: PROC; tick: REAL);

Initialization procedure.
P the procedure to be called on each clock interrupt.
tick the clock interrupt period expressed in ms.

END ClockInterrupts.
IMPLEMENTATION MODULE ClockInterrupts;

The module ClockInterrupts uses the system clock of the computer to
give interrupts regularly. The system clock normally interrupts ca. 18
times/second (2% times/hour). The hardware clock registers may be
changed to interrupt at a higher rate, which is utilized here. Furthermore,
the clock interrupt vector is changed so that a procedure in this module
handles the interrupt. In order to maintain the system software clock
on time the interrupt routine maintains a counter so that the standard
interrupt routine may be called with the correct frequency. In order to call
the standard interrupt routine, the original interrupt vector must be copied
to an auxiliary software vector. An arbitrary choice of vector 229 has been
made. If conflicts should arise, this number appears in one and only one
place, in the CONST section below.

FROM SYSTEM IMPORT CODE, ADDRESS, OUTBYTE, DISABLE, ENABLE;
FROM Devices IMPORT SavelInterruptVector, RestoreInterruptVector;
FROM RTSMain IMPORT InstallTermProc;

FROM FloatingUtilities IMPORT Round;

CONST
SavedClockVector = 229; Auxiliary software interrupt vector
BaseFrequency = 1193.18; Frequency driving the counter/timer

TCC = 043H; Timer/counter control word
TCO = 040H; Timer 0
ClockMode = 036H; Clock Mode 3, 16 bits, binary

VAR

period: CARDINAL;

timer: CARDINAL;

The value to set in the hardware counter/timer.

Also used to determine when to call the sys-
tem clock interrupt routine. Set once by Init

procedure.
The counter for calling the system clock interrupt
routine.

ClockProcedure: PROC; The procedure to call on each clock interrupt.

(*$0+%) (*$R-%) (*$S-*) (*$T~*)

PROCEDURE ClockInterrupt;
This is the Clock Interrupt Service Routine. Is job is to save the registers
and call the higher level clock interrupt handler. It also maintains a counter
so that the original Interrupt Service Routine is called at approximately the
correct interval.

BEGIN
(%
(%
(*
(*
(*
(o
(%
(*

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

AX
cX
DX
BX
SI
DI
DS
ES

*)
*)
*)
*)
*)
*)
*)
*)

CODE(050H) ;
CODE(051H) ;
CODE(052H) ;
CODE(053H) ;
CODE(O056H) ;
CODE(OS57H) ;
CODE(O1EH);
CODE(006H) ;

At this point all registers are saved. The purpose of the next statement is
to increment the counter, but also to set the Carry flag if the increment
overflows. The carry is then tested in the next CODE-statement. This is ugly
programming, but it works provided there is only MOV-instructions after the
ADD-instruction in the Modula-statement. This should be checked with each
new version.
timer:=timer+period;

(*
€
(o

JNC L1 *) CODE(O73H,
INT SavedClockVector *) CODE(OCDH,
JMP L2 x) CODE(OEBH,

(* L1: SENDEDI *)

(x L2:

*)

CODE(OBOH,

004H) ;
SavedClockVector);
004H) ;
020H, OE6H, 020H);

All interrupt administration is done. Call the higher level interrupt routine
and restore the register.
ClockProcedure;
S *)
S *)
I %)
I %)
X %)
X %)

(*
(%
(*
(%
(*
(o
(*
(*
(*
(%

POP E
POP D
POP D
POP S
POP B
POP D
POP C
POP A
LEAVE
IRET

X
X

*)
*)

*)
*)
END ClockInterrupt;

CODE(0OT7H) ;
CODE(O1FH) ;
CODE(O5FH) ;
CODE(OSEH) ;
CODE(O5BH) ;
CODE(OS5AH) ;
CODE(059H) ;
CODE(058H) ;
CODE(OC9H) ;
CODE(OCFH) ;

PROCEDURE Init(P: PROC; tick: REAL);
VAR IV: ADDRESS; phigh, plow: CARDINAL;
BEGIN
InstallTermProc(Stop);
ClockProcedure:=P;
Compute the number of clock cycles between each interrupt. We need it
in high-byte/low-byte form.
period:=Round(tick * BaseFrequency);
plow:=period MOD 256;
phigh := period DIV 256;
Save the original clock interrupt vector and set the vector to point to the
ClockInterrupt procedure of this module. The rest of the initialization
is done with interrupts off.
DISABLE;
SaveInterruptVector(8,IV);
RestoreInterruptVector(SavedClockVector,IV);
RestoreInterruptVector(8, ADDRESS(ClockInterrupt)) ;
We reprogram the system timer/counter to give interrupts with the rate
determined by tick. The reason for the do-nothing Delay procedure is
that things may malfunction if two 0UT-instructions are placed too close
to each other.
OUTBYTE(TCC,ClockMode) ; Delay;
OUTBYTE(TCO,plow) ; Delay;
OUTBYTE(TCO,phigh); Delay;
ENABLE;
END Init;

PROCEDURE Stop;
VAR IV: ADDRESS;
BEGIN

DISABLE;

Reset the clock interrupt vector
SaveInterruptVector(SavedClockVector,IV);
RestoreInterruptVector(8,IV);

Reset the system timer/counter to its normal value of 18 interrupts per

second.
OUTBYTE(TCC,ClockMode) ; Delay;
OUTBYTE(TCO0,0); Delay;
OUTBYTE(TCO0,0) ; Delay;

ENABLE;
END Stop;

PROCEDURE Delay;
Does nothing

BEGIN

END Delay;

END ClockInterrupts.

6. References

MaTssoN, S. E. (1978): “A Simple Real-Time Scheduler,” CODEN:
LUTFD2/TFRT-7156, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

Brick, D. M., “A Foreground/Background Real-Time Scheduler for the IBM
AT,” CODEN: LUTFD2/TFRT-7393, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

