
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Modula-2 Real-Time Scheduler

Use and Implementation
Andersson, Leif

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Andersson, L. (1989). A Modula-2 Real-Time Scheduler: Use and Implementation. (Technical Reports TFRT-
7414). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/a8782089-934d-48c4-9b26-476e5982012e

CODEN: LUTFDZ(TFRT-741 4)11-9l(1 98 9)

A Modula-2 Real-Time Scheduler
Use and Implementation

Leif Andersson

Department of Automatic Control
Lund Institute of Technology

January 1989

Department of Automatic Control
Lund fnstitute of Technology
P.O. Box 118
5-221 00 Lund Sweden

Documcnt name

INTERNAL REPOR.T
Datc o1 ìcsue

1989-01-26

Documcnt JVumbc¡

CODEN: tuTFD2/(TFRT-7 4r4)/ l-el(1 e8e)
Author(s)
Leif Andersson

Supcrvieor

Sponcorr'ng organí sat íon

Titlc ¿nd subtítlc
A Modula-2 Real-Time Scheduler-Use and Implementation

Abst¡act

Describes a simple foreground/background scheduler programmed in Modula-2. An example of its use is
given, and the compleüe implementation is shown.

Key wotds

Clasa,ìficatíon syltcm indcx terms (iî any)

Supplcmcnúary bíblio gnphic aI

LSS.IV ¿nd key title ISBN

Language

English
Numbe¡ of pgcs
I

Racipient's notes

Sccurity clas cìfrc zt ío n

Thc report may bc o¡dc¡ed lron the Dcpartrncnt of Automatíc Cont¡o| o¡ bonowed tlrough the Ilnivcrsity Library 2, Box l0lo,
5-227 03 Lund, Swedcq Tclex: 33248 lubbis lund.

1. fntroductron

The simplest possible base for a real-time program is the Foreground/Back-
ground Scheduler. Such programs have been used at the Department of Au-
tomatic Control since the late seventies [Matsson 1978]. This report describes
an implementation in Modula-2 for the IBM PQ/AT a^nd compatibles. Also
included is a very simple program that gives an example of its use. Section 2
contains the library description for the Scheduler and section 3 the example
program. Section 4 contains the implementation module of the Scheduler, and
sections 5 contains the definition and implementation modules of a lowest-level
Clock Interrupt Driver that is used by the Scheduler. There is a bibliography
in the l¿st section.

2. Scheduler Library Description

DEFINITI0N MODUIE Scheduler;
A simple foreground/background scheduler

EXPORT QU¡,IIFIED Schedule, Run, Stop, Lag;

PROCEDURE Schedule (FG : PR0C) ;

Initializes the scheduler and specifies which procedure to be called on each
sampling instance. No other procedures of the module should be called
before this.

PROCEDURE Run(period: CARDINÂL) ;

Make the scheduler call the foreground procedure specified in Schedule with
an interval specified by period, expressed in milliseconds.

PR0CEDURE Stop;
Cancels the calling of the specified procedure. The procedr¡re Run may be
called liater to resume the scheduling.

PR0CEDURE tago : CÂRDINÂL;

If the foreground procedure is still rururing when it is due to be called the
next time, then the scheduler will instead increment an internal counter.
The foreground routine will then be recalled immediately on return and the
counter decremented. Thus, if the foregroud routine is too long, then the
counter will start to accumulate. The procedure Lag will return this counter,
enabling the foreground procedure to check that it doesn,t lag behind.

END Schedulsr.

3. The Example Program

As an example for the Foreground/Background Scheduler we choose a very
simple proportional regulator. The only parameter that can be changed is thl
gain. The program contains a procedure Opcon that runs in a loop accepting
real numbers, amd a procedure Regul that is the regulator proper, and thai
is run regularly by the schedurer. In order to simplify 0pcon we use the
convention that a gain with a,n absolute value less than 0.01 is a signal to exit
the program.

L

A general problem with real-time prograrns is the sharing of variables between
processeE in a proper ü'ay so that they are not garbled by simultaneous access.
The solution in this case is as follows. There are two copies of the variable,
one that is changed exclusively by 0pcon and one by Regur. There is also
a flag, which is set by Opcon when it has changed the va,riable. Regur runs
regularl¡ and each time it has performed its normal task, it checks the flag
and copies the variable if the flag is set and then clears the flag. There is a
very small probability that 0pcon wants to change its variable before Regul
has taken care of the previous change, and therefore Opcon waits for the flag
to be reset before it changes its copy of the variable.

M0DULE ExanpleSchedule ;

FR0M Scheduler IMP0RT Schedu1e, Run, Stop;

FR0M ConvReal IMPORT StringToReal;

FR0M Analogf0 IMPORT ÂDIn, DÀ0ut;

FR0M Bl0Ste:nÍnal IÌ,IPORT Hritestring, ReadString, t{riteln;
The module Bf0sterminal should be used instead of Terninal so that DOS
does not interfere with the real-time operations.

VÂR 0pconK: REÂL;
VÅR RegulK: REAL;

VÅR change: BO0LEÂN;

CONST perÍod = 10i

Gain r¡ariable used by 0pcon"
Gain y¿riable used by Regu1. The v¿lue of OpconK
is transferred here by Regul.
Flag to signal to Regul that a parameter change
has taken place.
The sampling period in milliseconds.

TYPE string = ÂRRÁY [0..79] 0F CEÂR;
PR0CEDURE Opcon;
VÂR s: string; pos: CÅRDINAI; val: REÂL;
BEGIN

REPE^ÀT

llritestring(") ");
ReadStrÍng(s) ; !{riteln;
Pos: =0;
StringToReal (s, pos, vaI) ;
IFpos>0TEEN

¡¡EIIE change D0 ; END;

At this point we have an acceptable m¡rnber. The ïlHrtE-loop is to
handle the (very rare) situation where a previous change has not yet
been taken by Regul.

0pconK := val;
since a.ny previous change has been taken care of it is oK to set the
va¡iable.

change := TRUE;

Now set the flag so that Regul can transfer the value to its v¿riable.
ELSE

A bad number has been detected. Just complain and continue the loop.
I{riteString("Error: Bad number. ") ; l{riteln;

END;

2

UNTIT ÂBS(opconl() < O.oot;
END Opcon;

PROCEDURE Begul;
VÂR r, Ir u: REÅL;
BEGIN

The following four statements constitute a very simple proportional regula-
tor.
r := ÂDfn(O);
y := ÅDIn(l)i
u := RegulK*(3-r¡.
DÂ0ut(0,u);

'We now test if Opcon has set the flag, a¡rd if so transfer the va,riable value.
Note that since Begur cannot be interrupted by 0pcom there is no risk
that Opcon can access the variables until Regul has finished.

fF change THEN

ReguIK := OpcomK;
change := FÂLSE;

END;

END Regul;

BEGIN

change := FÅLSE;
Opconl(:= 1.0; RegulK := 1.0;
Schedute (negul) ;
Run(period);
0pcom;
Stop;

END ExãlnF1eSchedule.

4. Scheduler Implementation

IMPTEMENTÅTION MODULE Scheduler;

FROM SYSTEI' TMPORT

ENABLE, DIS^ÀBLE, CODE, ADDRESS, SETREG, ÅDR, DS, BT;
FROM fnitError fMPORT Trap;

The procedure Trap is an error-message-and-exit routine.

FROM FloatingUtitíties IMP0RT Floar;
IMPORT Clocklntertupts ;

C0NST TIGK=I; Tick time in milliseconds

vÅR

ForeGround: PR0C; The procedure to be called on each sampling in-
stance. Set by the procedure Schedule.
Flag to indicate if a foreground process should run
or not. Changed by Run and Stop procedures.
The sampling period, i.e. the nurnber of ticks be-
tween each call ofthe foreground process. Set by the
procedure Run.

numÍng: B0OLEÂN;

3

period: CÂRDINÅL;

tino: CÂRDINÀI; The actual time within the period. This variable
is incremented each tick and compared to period.
When they are equal, the foreground is called and
time is reset.

J-agging: cÅRDrNÀ[; A counter for the number of times the foreground
was still active when it was due the next time. See
procedure Ticker.

FParea: ÅRRÂY 10..47J 0F CÂRDIN.AL; Save area for the FP registers.
started: Bo0LEAN; Flag set when procedure Schedule is called.

(*$R-*) (*$s-r,) (*$T-*)

PROCEDURE Schedule(FG: PR0C) ;
Initialization procedure. rt checks that it isn't called twice, sets the
ForeGrorurd procedure variable and starts the clock interrupt driver.

BECIN

fF started TEEN

Trap('scheduler: Schedule calIed twice.,) ;
END;

start€d := TRUE;

ForeGround := FG;
ClockfnteÌruprs . Inir (Ticker, Float (TICK)) ;

END Schedule;

PR0CEDURE Rrur(p: CÅRDINAI) ;
Sets period from the input parameter, and sets the flag rr:aning so that the
foreground will be called with the proper interval.

BEGTN

IF N01 Btarted THEN

Trap('scheduler: Run called before Schedule.,)
END;

IF nrnning TEEN

Trap('scheduler: &un ca1led twice without Stop.r)
END;

DISÀBLE;
time: =0;
períod := p;
runníng:= TRUE;

ENÂBIE;
END Run;

PROCEDURE Stop;
Resets the runníng flag, which means that the foreground will no longer be
called.

BEGIN

IF NOT started TüEN
Trap('scheduler: Stop calIed before Schedu1e.,)

END;

IF NOT running TEEN
Trap('scheduler: Stop called twice without Run.,)

END;

DISÂBLE;
running := FI,LSE;

4

laggíng := 0;
ENÅBLE;

END Stop;

PR0CEDURE tag0 : C^0,RDINÀL;

Returns the va¡iable laggíng
BEGIN

REïURN lagging;
END Lag;

PR0CEDURE SaveFloat;
Saves the floating point registers

VÂB a: ÂDDRESS;

BEGTI{

a:=ÂDß(FParea);
SETREG (DS, a. SEGMENT) ;
SETREC(BX,a.0FFSET) ;
(* FSÂVE [Br] *) C0DE(oDDE,o3ZE);

END SaveFloat;

PR0CEDUBE RestoreFloat ;

Restores the floating point registers
VÂR a: ÂDDRESS;

BEGIN

a:=ÅDR(FParea);
SETREC (DS, a. SEGMENT) ;
SETREG(BI,a.0FFSET);
(* FRST0R [Sr] *) coDE(oDDE ,027F);

END RestoreFloat;

PROCEDURE Ticker;
This is the main workhorse of the scheduler. It is called every clock tick
by the clock interrupt driver. It counts ticks until the foregrolnd is due,
then it saves the floating point registers, calls the foreground procedure,
and restores the floating point registers. There is also some interlocking,
handled with the global r¡ariable lagging, to ensu¡e that the foreground is
not called while it is still running.

BEGTN

fF NOT running TIEN RETURN END;
INC(tine,TICK);
fF tíne >= period TEEN

time := time - period;
rNC(lagging);

The variable tagging is 0 when everything starts. rt is then incre-
mented above, and decremented below. If it has a value) t here, then
we a¡rive }¡.erc before we have finished the foreground procedure the
previous time. we should thus zoú call the foreground. rt is instead
recalled when it returns, because of the while statement.

IFlagging=1TEEN
SaveFloat;
IüEILElagging>0D0

ENÂBLE;

ForeGround;

5

DISABTE;
DEC(lagging);

END;

RestoreFloat;
END;

END;

END Tícker;

BEGIN

started := FÅLSE;
nurning := FALSE;
lagging := 0;

END Scheduler.

5. Clocklnterrupt Definition and Implementation

DEFINITI0N MODULE Clockfnterrupts ;

Low level clock interrupt driver.

EXP0RT QU¡,IIFIED Init;
PROCEDURE Init(P: PROC; tÍck: REÅt);

Initialization procedure.

P the procedure to be called on each clock interrupt.
tick the clock interrupt period expressed in ms.

END Clocklnterrupts.
IMPTEMENT.ITION M0DULE Clocklnterrupts ;

The module Clocklnterrupts uses the system clock of the computer to
give interrupts reguLrarly. The system clock normally interrupts ca. 18
times/second 12u times/hour). The hardware clock registers may be
changed to interrupt at a higher rate, which is utilized here. F\rrtherrnore,
the clock interrupt vector is changed so that a procedure in this module
handles the interrupt. In order to maintain the system software clock
on time the interrupt routine maintains a counter so that the standard
interrupt routine may be called with the correct frequency. In order to call
the standard interrupt routine, the original interrupt vector must be copied
to an auxiliary software vector. An arbitrary choice of vector 229 has been
made. If conflicts should arise, this number appea,rs in one and only one
place, in the C0NST section below.

FROM SYSTEM IMPORT CODE, ADDRESS, OUIBYTE, DISABIE, ENÂBIE;
FR0M Devices TMPORT savernterruptvector, Restorernterruptvector ;
FROM RTSMain IMP0RT InstallTerrnProc;
FROM FloatingUtitities IMP0RT Round;

CONST

SavedClockVector = 229; Auxiliary software interrupt vector
BaseFrequency = 1193.18; Frequency driving the counter/timer
TCC = 0438; Timer/counter control word
TCO = 0408; Timer 0
ClockMode = 0368; Clock Mode B, 1_6 bits, binary

6

vÂB
period: cÂRDrNÀt; The value to set in the hardware counter/timer.

Also used to determine when to call the sys-
tem clock interrupt routine. Set once by Init
procedure.

timer: cl'RDrNÅL; The counter for calling the system clock interrupt
routine.

clockProcedure: PROC; The procedure to call on each clock interrupt.

(*$o+*) (*$n-*) (*$s-*) (*$T-*)
PR0CEDURE Clockfnterrupt ;

This is the Clock Interrupt Service Routine. Is job is to save the registers
and call the higher level clock interrupt handler. It also maintains a counter
so that the original Interrupt Service Routine is called at approximately the
correct interval.

BEGIIÚ
(* PUSE År r,) coDE(osoE);
(* PUSE CT *) C0DE(0518);
(* PUSE DT *) CODE(OS2E);
(* PUSE BX *) C0DE(053U);
(* PusE sr r,) coDE(os6E);
(* PUSE Dr *) CODE(OS7E);
(* PUSE DS r,) C0DE(O1EE);
(* Pus[Es r.) coDE(oo6E);

At this point all registers are saved. The purpose of the next statement is
to increment the counter, but also to set the Ca,rry flag if the increment
overflows. The carry is then tested in the next c0DE-statement. This is ugly
programming, but it works provided there is only M0V-instructions after the
ÂDD-instruction in the Modula-statement. This should be checked with each
new version.

tiner: =timer+period;
(* JNC Ll *) c0DE(0738, O04E);
(* INT SavedClockVector *) C0DE(OCDE, SavedClockVector);
(r, JMP t2 *) coDE(oEBE, oo4E);
(* Ll: sENDEor r,) cgDE(oBoE, o2og, oE6[, o2o¡);(* tz: *)

All interrupt administration is done. Call the higher level interrupt routine
and restore the register.

Cl-ockProcedure;
(* PoP Es {,) coDE(ooz[);
(* PoP DS {,) coDE(olFE);
(* PoP Dr *,) coDE(osFE);
(* PoP Sr {,) coDE(osEE);
(* POP BX 'fi) CODE(OSBE);
(* PoP DX *) C0DE(05ÅE);
(* PoP CI r,) C0DE(0598);
(* PoP Åx *) coDE(ossff);
(* tEÅvE r,) c0DE(0c98);
(* rßET *,) coDE(ocFE);
END Clockfnterrupt;

7

PROCEDURE Init(P: PROC; tick: nEÂL);
VÂR IV: .IDDRESS; phigh, ptow: CÅRDINÅL;
BEGTN

InstallTemProc (Stop) ;
ClockProcedure : =P;

compute the number of clock cycles between each interrupt. w'e need it
in high-byte/low-byte form.

period: =Round(tÍck * B¿ssprequency) ;
plow:=period MOD 25G;
phigh ;= period DIV 256;

Save the original clock interrupt vector and set the vector to point to the
Clocklnterlupt procedure of this module. The rest of the initialization
is done with interrupts off.

DISÂBIE;
SavelnterruptVector (8, IV) ;
Re s tore InterruptVe ctor (Save dClo ckVe ct or, f V) ;
RestorelnterruptVector (8, ÂDDRESS (Clocklnterrupt)) ;'We reprogram the system timer/counter to give interrupts with the rate

determined by tick. The reason for the do-nothing Delay procedure is
that things may malfunction if two 0UT-instructions are placed too close
to each other.

0UTBYTE(TCC,ClockMode) ; Detay;
0UTBYTE(TCO,plow) ; Delay;
OUTBTTE(TCO,phigh) ; Delay;
ENÂBLE;

END Init;
PR0CEDURE Stop;
V^AR IV: ADDRESS;

BEGIN

DISÂBLE;

Reset the clock interrupt vector
Savef nte rrupt Ve c tor (SavedClo ckVe ctor, IV) ;
RestorelnterruptVector (8, IV) ;

Reset the system timer/counter to its normal value of 1g intenupts per
second.

OUTBYTE(TCC,ClockMode) ; Detay;
0UTBYTE(TCO,0) ; Delay;
0UTBYTE(TCO,0) ; Detay;
ENÂBIE;

END Stop;

PR0CEDURE Delay;
Does nothing

BECTN

END Delay;

END Clockfnterrupts.

8

6. References

M.ttsson, S. E. (197S): "A Simple Real-Time Sched'ler,', CODEN:
tuTFD2/TFm-7156, Department of Automatic Control, Lund rnstitute
of Technolog¡ Lund, Sweden.

Bnticx, D. M., ".4. tr'loreground/Background Real-Time scheduler for the IBM
AT,' CODEN: LUTFD2/TFRI-?393, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

o

