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Heuristics for Assessment of PID control

with Ziegler-Nichols Tuning

K. J. Astrom, C. C. Hang, and P. Persson

Abstract.

In this paper we attempt to develop formal tools to assess what can be
achieved by PID control of a class of systems with the Ziegler-Nichols tuning
formula and to characterize a class of systems where PID control is appropri-
ate. Based on empirical results and approximate analytical study, we introduce
two numbers, namely the normalised dead time @ and the normalized process
gain «, to characterize the open loop process dynamics and two numbers, the
peak load error A and the normalised rise time 7, to characterize the closed
loop response. Simple methods of measuring these parameters are proposed.

It is shown that 6 and s are related and either of them can be used to
predict the achievable performance of PID controller tuned by the Ziegler-
Nichols formula. A small § indicates that tight control is achievable with P
or PI control. Processes with @ in the range of 0.15 to 0.6 can be controlled
well with PID regulators. Moderate performance can only be expected if @ is
larger than 0.6 and hence a more sophisticated controller like Smith Predictor
should be used for tight control. The intelligent controller can thus interact
with the operator and advise on choice of control algorithm.

We have established useful relations, such as 7 ~ 1 and &)\ = 1.3, which
can be used to assess whether the PID controller is properly tuned. The sim-
plicity of the relations allows the development of a first generation of intelligent
controller using current technology.



1. Introduction

The thrust of control theory for the past 30 years has been to provide exact
solutions to precisely stated problems. Much less work has been devoted to
finding crude solutions to poorly defined problems. One of the few exceptions
is the work on fuzzy sets by Zadeh (1973). A typical example is control system
design where alot of prior knowledge like a mathematical model, design criteria
etc. is required to carry out a design. To make a good control system design
it is also very useful to have an assessment of some key features of the system
like bandwidth, achievable performance, etc. There are also several problems,
like integral windup etc, that have to be handled. This is normally done
manually by engineers. Not much is published about these craft-like aspects
of control. It is certainly not part of the standard control curriculum. This
has undoubtedly contributed to the recurrent discussions on the gap between
theory and practice in control.

Why should we then be concerned with these issues? We have been led
into this in efforts to design expert control system (Astrom et. al. 1986) where
some of the knowledge of design engineers is built into a control system. We
seek to extract and condense knowledge about control system design which can
replace the otherwise large number of possibly conflicting rules accumulated
by different experts to ease the workload of a real-time expert system. We also
believe that it is useful to describe the heuristic aspects of control so that the
knowledge can be discussed and refined. This can also contribute to spreading
control engineering knowledge to persons with less formal education. A long
range goal is to provide a framework for making qualitative reasoning about
control systems.

This paper looks at a simple version of the problem. It tries to give formal
tools to assess what can be achieved by PID control of a restricted class of
processes and a simple tuning rule. The key result is that there are simple
dimension-free parameters that give insight into the achievable performance.
These features will allow us to do formal reasoning about simple control loops.

The paper is organized as follows. The restricted class of processes that
we are concerned with is introduced in Section 2. Some useful dimension-
less numbers are introduced in Section 3. In Sections 4 and 5 some relations
between the features are derived by approximate analysis and empirical re-
finement based on simulation. The results are used in Section 6 to discuss the
performance that may be achieved with PID control based on Ziegler-Nichols
tuning. A possible application of the process characteristics in detecting in-
strumentation errors is outlined in Section 7. Some conclusions are given in
Section 8.



2. Process Characteristics

The processes we consider are restricted to simple feedback loops. It is as-
sumed that the process dynamics is linear and stable. The characteristics will
be further restricted both in the time and the frequency domain.

2.1 Time Domain Characterization

It will be assumed that the step response has the general characteristics shown
in Figure 2.1.

A system with a positive impulse response clearly has a monotone step
response. The fact that the impulse response is unimodal ensures that the
step response has a unique inflexion point. An impulse response is essentially
positive if it is positive possibly apart from a small initial part. This is the
essential feature that we will use because for such systems the quantities ky, L,
and T' can be defined. The number k,, is the staiic process gain, the number L
is the apparent dead time and the number T is the apparent time constant. The
parameters 1" and L are obtained by the graphical construction indicated in
Figure 1 where the tangent is drawn in the inflexion point of the step response.
An alternative is to define L by drawing a line between the points where the
step response has reached 10% and 90% of its steady state values. The transfer
function

ensL

(o) = ko7

(2.1)
is a crude analytic approximation of the the transfer function of the class of
processes that we are considering. Notice however that the transfer functions
considered are not restricted to this class. It is sufficient to have a step response

with the shapes shown in Figure 2.1a or Figure 2.1b, characterized by k,, L,
and T'.
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Figure 2.1 Step response of a system whose impulse response is 2) positive and
unimodal and b) essentially positive and unimodal.
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Figure 2.2 Nyquist curve for system with a) monotone frequency response and
b) essentially monotone frequency response.

The class of systems considered is the same as that used in the classical
works on Ziegler-Nichols tuning. There are important classes of systems that
are excluded, e.g., systems having integrators and systems with resonant poles.
Systems having integrators may have monotone step responses but they are
not stable. Systems with resonant poles do not have a monotone step response.

2.2 Frequency domain characterization

A different frequency domain characterization of process dynamics will also
be introduced. It is assumed that the Nyquist curve has the shape indicated
in Figure 2.2.

To be specific it is assumed that both the phase and the amplitude are
monotone functions of the frequency. This guarantees that the the intersec-
tions with the real and imaginary axes are unique. The first intersection with
the negative real axis defines the ultimate frequency, w,, and the ultimate gain,
k. Lack of monotonicity can be accepted at high frequencies.



3. Features

Dimeusion-free- parameters; like Reynold’s numbers; have found nmch use in- -

many branches of engineering. They have however not been much used in
automatic control. In this section it is attempted to introduce some numbers
that are useful in assessing control system performance.

3.1 Normalized Dead-time

The normalized dead-time is defined as the ratio of the apparent dead-time
and the apparent time constant, or formally

0===— (3.1)

See Figure 2.1. This number is thus easily obtained from a record of the step
response. It has been known from practical experience that the normalized
dead-time may be used as a measure of the difficulty of controlling a process.
Processes with a small 6 are easy to control and processes with a large 6
are difficult to control. The parameter § was actually called the controllability
ratio by Deshpande and Ash (1981). Fertik (1975) introduced the name process
controllability for the quantity 6/(1+ ). To avoid possible confusion with the
standard terminology of modern control theory we will use the word normalized
dead time.

3.2 Normalized Process Gain

The process gain kj is not dimension-free. It can however be made dimension
free by multiplication with a suitable regulator gain. The ultimate gain k,,
i.e., the regulator gain that makes the process unstable under proportional
feedback control, is a suitable normalization factor. With reference to Figure
2.2 the normalized process gain, &, can thus be defined as

K = kpku- (32)

This number is easily obtained as the ratio of the process gains where the phase
is 0° and 180°, see Figure 2.2. The number also has a physical interpretation as
the largest process loop gain that can be achieved under proportional control.
The number is useful to assess the control performance. Roughly speaking,
a large value indicates that the process is easy to control while a small value
indicates that the process is difficult to control.

The normalized process gain is directly obtained from a Nyquist curve of
the process. It can also be obtained from an experiment with relay feedback,
see Astrom and Higglund (1984).

Since the processes we consider are stable they have a static error under
proportional feedback. The static error obtained for a unit step comnand

_ 1 S 1
_l—l—k:pkC 14k

€y

(3.3)
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Figure 3.1 Block diagram of a simple feedback system with a load disturbance
acting at the process input.

where k. is the proportional gain used. The inequality follows because kpk, <
k. The number & can thus be used to estimate the static error achievable
under proportional control and also to determine if integral action is required
to satisfy the specifications on static error.

3.3 Peak Load Disturbance Error

The response to step load disturbances is an important factor when evaluat-
ing control systems. The effect of a load disturbance depends on where the
disturbance acts on the system. In this section it will be assumed that the
disturbance acts on the process input, see Figure 3.1.

With a regulator without integral action a unit step disturbance in the
load gives the static error

— kP > kP
T 14 keke T 148

€] (34)

The quantity e;/k, is dimension-free.

When a regulator with integral action is used the static error due to a
step load disturbance is zero. A meaningful measure is then the maximum
error due to a load disturbance. To obtain a dimension-free quantity it is also
divided by the process gain. The following variable is thus obtained

A= —Lmax e(t) (3.5)
lok,

where Iy is the amplitude of the step disturbance.

3.4 Normalized Closed Loop Rise Time

The closed loop rise time is a measure of the response speed of the closed loop
system. Again, to obtain a dimension-free parameter it will be normalized by
the apparent dead time L of the open loop system. The parameter is thus

%. (3.6)

T =



4. Empirics

The Ziegler-Nichols_closed-loop tuning procedure was.applied to_a. large num- .

ber of different processes. It was attempted to correlate the observed proper-
ties of the open and closed loop systems to the features introduced in Section
3. In this section we will present the empirical results. Processes with the
transfer functions

e—4D
Gi() = From (4.1)
Ga(s) = ﬁ, 3<n<20 (4.2)
Gs(s) = (11;0!)3, 0<a<2b (4.3)

will be investigated. These models cover a wide range of dynamic character-
istics such as pure dead-time and nomminimum phase response. The main
features of the models are summarized in Appendix A.

The normalized apparent dead-time was measured from the step res-
ponses. The ultimate gain was determined by simulation. Parameters of P1D
regulators were determined by a straight forward application of the Ziegler-
Nichols closed-loop method without fine tuning, i.e. with values of propor-
tional gain k., integral time T; and derivative time Ty set as 0.6k,, 0.5T,,
and 0.1257} respectively. The closed loop performance is judged based on the
closed loop step and load responses.

The results obtained are summarized in Tables 1-3. The tables give a
parameter that characterizes the process, the ultimate period T, the over-
shoot 0s, the undershoot us of the closed loop step response, the apparent
normalized dead-time § = L/T, the normalized loop gain &, the product x8,
the normalized closed loop rise time 7 = ¢, /L, the normalized peak load error
A, and the product w,t,.

The results for the first process are summarized in Table 1. The closed
loop behaviour was judged to be satisfactory for 0.15 < § < 0.6. The overshoot
for 0 in the low range is too high. This is however easily reduced by using the
selpoint weighting factor modification, see Astrém and Higglund (1988). For
large values of 6 there is a pronounced undershoot in the step response.

D T, os wus g K K@ T A KA wyt,
0.1 14 75 26 0.15 21 32 0.80 0.06 1.26 1.5
02 20 60 14 0.19 105 20 095 0.15 1.57 1.5
04 28 50 5 0.26 5.7 1.5 1.0 0.27 1.53 1.6
06 3.6 35 2 0.34 40 14 094 037 1.48 1.7
1.0 48 26 3 0.49 2,7 13 1.02 052 1.40 1.7
1.6 6.0 19 9 0.69 20 1.4 093 066 1.35 1.8
20 72 14 14 0.89 1.7 15 0.85 0.73 1.26 1.8
25 83 12 17 1.09 1.6 16 0.82 0.83 1.28 1.8
3.0 94 20 20 1.26 14 1.8 0.79 0.89 1.25 1.8

Figure 4.1 Table 1. Experimental results for a system with the transfer function
G(s) = e_’D/(s + 1)2.




The results for the second process are summarized in Table 2. The closed
loop behaviour was judged to be satisfactory for 0.22 < 6 < 0.64. The over-
shoot for @ in the low range is too high. This is however easily reduced by
using the setpoint weighting factor modification. For large values of @ there
is a pronounced undershoot in the step response. Similar results are obtained
for the third process as summarized in Table 3.

n T. 08 us 4 K K6 T A KA wyl,
3 3.7 50 13 0.22 8.0 152 1.07 019 152 1.3
4 6.0 40 10 0.32 4.0 1.4 116 035 140 1.7
6 106 26 11 0.49 24 129 114 054 130 1.9
8 146 17 14 064 1.88 1.18 108 0.64 1.18 2.0
10 188 12 17 0.76 160 118 096 0.74 1.18
15  29.0 0 24 105 1.36 1.15 09 085 1.16 1
20 39.0 b 30 128 126 1.14 08 091 1.14 ?

Figure 4.2 Table 2. Experimental results for a system with the transfer function

G(s) =1/(s + 1)".

a T, 08  us 0 3 K@ T A KA wyut,

0 3.7 50 13 0.22 8 154 115 019 1.52 1.3
0.1 3.8 50 15 0.23 6.2 149 1.09 024 1.49 15
0.26 4.3 48 11 0.28 45 144 1.09 032 1.44 1.7
0.5 5.0 38 3.8 0.38 32 141 116 044 141 2.0
1.0 6.0 21 3.8 0.b8 20 1.34 098 067 134 22
1.5 65 96 7.7 076 145 1.31 0.89 090 130 2.4
20 70 -19 16 098 1.15 1.24 084 1.08 1.24 2.7

Figure 4.3 Table 3. Experimental results for a system with the transfer function

G(9) = (1 —as)/(s + 1)




5. Relations

We lLave thus introduced two normalized numbers, namely the normalized
dead-time 6 and the normalized process gain &, to characterize the open loop
dynamics and two numbers, the peak load error A and the normalized closed
loop rise time 7 to characterize the closed loop response. Some relations
between these numbers will now be established. In doing so we will also
develop an intuitive feel for the meaning of the numbers. The prototype for
our reasoning is the well known relation between bandwidth and rise time
for an electronic amplifier. A relation will first be derived mathematically
using several approximations. This gives the possible mathematical form of
the relation. A number of specific examples will then be solved to find the
numerical parameters of the coefficients of the relation. Since the equations
which we are searching relate open loop and closed loop properties they will
depend on the regulator structure and the design method. Throughout the
paper it will be assumed that Ziegler-Nichols tuning is used.

5.1 Rise Time Bandwidth Product

In the design of electronic amplifiers it has been noticed that the product of the
bandwidth and the rise time is approximately constant. This can be derived
as follows. Let G(s) be the closed loop transfer function of the amplifier and
H(t) the unit step response. It follows that

dH 1 [i
W:m/- "G (s) ds. (5.1)
—100

If the rise time ¢, is defined as in Figure 2.1 using the maximum slope of the
step response we get

dH
— |= = . .2
trolgri?éol 7 H(oo0) = G(0) (5.2)
Hence ®  Gliw)
w
,. —_— =. 5.3
.:/0|G,(0)|dww (5.3)

The integral on the left hand side is approximately equal to the bandwidth w,
of the system. Summarizing we find the following relation between rise time
and bandwidth

trwp = . (5.4)

With Ziegler-Nichols tuning and PID control the bandwidth of the closed loop
system is approximately proportional to the ultimate frequency w,. We can
thus expect that the product t,w, is constant. The empirical results obtained
in the previous section also supports this and we get

lLw, ~ 2. (5.5)

Compare with Tables 1-3.



5.2 Normalized Dead-time and Process Gain

As can be seen from Tables 1-3 there appears to be a relation between nor-
malized process gain & and normalized dead time §. For specific systems it
is possible to find the relations exactly, see the appendices. For first order
systems with dead time we have:

0 wy  m—arctanyv/k? -1

_qu_ K% —1

(5.6)

See appendix A. This relation is shown graphically in Figure 5.1.

It is possible to find exact expressions for the relations between s and 6
for the processes given by equations (4.1), (4.2) and (4.3). They can also be
obtained experimentally as discussed in Section 4. The relations are shown in
Figure 5.1. The graphs indicate that for processes with higher order dynamics
the product &6 is approximately constant. This is important because it means
that the normalized process gain x can be used instead of the normalized dead
time @ to assess achievable performance.

It is also interesting to note that the curve for the exact model given by
equation (5.6) deviates substantially from those of the higher order models,
particularly in the region 0.3 < § < 1.2. The normalized gain can be as much
as 0.5 to 1 unit higher for the same 6 in this range. If both & and 6 are
determined this information can be used to assess if the minimum phase part
of the dynamics is first order or not.

Apart from application as diagnostics to indicate whether the Ziegler-
Nichols tuning will work well the relation between x and § can be used for fine
tuning. For instance it is known that the Ziegler-Nichols tuning uses a ratio
T;/Ty = 4 which gives good response to load disturbance for processes with
high order dynamics. See Hang (1989). This ratio should be higher for pro-
cesses with first order dynamics and lower for processes with oscillatory poles.
This observation opens yet another possibility to incorporate intelligence in
the controller.

25

201

15}

101

0 0.5 1 1.5 2 2.5

Figure 5.1 The normalized process gain & as a function of apparent normalized
dead time @ for systems (2.1), (4.1), (4.2), and (4.3).
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5.3 Peak Load Error and Normalized Dead-time

Consider the closed loop system obtained with the process and the regulator.
Assume that the disturbance enters at the plant input. The transfer function
from the load disturbance to the output is

Gp(s) _ 1 Gp(3)Gr(s)

G = = : 5.7
) = T3 6,()60) ~ G 1T GG (3) (57)

A PID regulator with Ziegler-Nichols tuning has the transfer function

k. (s + a)?
= ——" 5.8
G (s) Y (5.8)
where ] 7

‘T T, (5.9)

This choice ensures near optimal load rejection, as discussed by Hang (1989).
With Ziegler-Nichols tuning the closed loop system has a time constant T}, =
0.85T%, which corresponds to a bandwidth of w = 7.4/T,. From (5.11) we thus
get the following approximate formula

1 2as

d(s) GT(S) kr(s n a)g ( )
The corresponding unit step response is
t
H(t) = 2};’ e—at (5.11)
which has a maximum ) 074 1.93
= R 5.12
ek, k, k., ( )
at 1
a

Summarizing we find that we can expect the parameter £\ to be constant.
This is also supported by the experimental results given in Tables 1-3 which
gives

KA~ 1.3. (5.14)

The knowledge of A can be used by an intelligent controller to check if a
PID controller with Ziegler-Nichols tuning can be used to satisfy the given
specifications to peak load error. From the analysis we also find that the peak
error occurs Ty, /4 time units after the step disturbance is applied.

5.4 Closed Loop Rise Time

The experimental results given in Tables 1-3 show that the normalized rise
time is approximately constant. Hence

Tl (5.15)

In physical terms this implies that ¢, ~ L, compare with equation (3.6). This
means that the Ziegler-Nichols method gives a closed loop system with a rise
time approximately equal to the apparent dead-time of the open loop system.

11



6. Ziegler-Nichols Tuning

The results obtained will now be used to evaluate PID regulators with Ziegler-
Nichols tuning. We can first observe that the Ziegler-Nichols tuning procedure
is very simple. It is based on a simple characterization of the process dynamics,
either parameters a and L from the step response or the critical point on
the Nyquist curve parameterized in k, and w,. We have also obtained two
relations 7 ~ 1 and &\ ~ 1.3 which characterizes the closed loop performance.
The condition 7 ~ 1 implies that Ziegler-Nichols tuning tries to make the
closed loop rise time equal to the apparent dead-time.

6.1 When can Ziegler-Nichols Tuning be used?

The results obtained show that Ziegler-Nichols tuning will give good results
under certain conditions and that these conditions can be characterized by
one parameter, ¢, or & = kykj,.

The results are summarized in Table 4.

Tight Control is Tight Control is Required
0 Not Required
High Measurement Low Saturation Low Measurement Noise
Noise Limit and High Saturation Limit
Class I < 0.15 r PI PI or PID P or PI
Class II 0.15 ~ 0.6 PI ri PI or PID PID
Class 111 0.6 ~ 1 IorPI I4 A PI+ A PlorPID + A+ C
Class IV > 1 I I+B+C Pi+DB+C PI+B+D

Figure 6.1 Table 4. A: Feedforward compensation recommended, B: Feedfor-
ward compensation essential, C: Dead-time compensation recommended, D: Dead-
time compensation essential.

Four cases are introduced in the table. They are classified as follows:

Case 1 6 < 0.15 or k > 20 : Ziegler-Nichols tuning may not give the best
results in this case. The reason is that it is possible to use comparatively high
loop gains. There are many possible choices of regulators. A P or PD regulator
may be adequate if the requirements on static errors are not too stringent. A
proportional regulator could be chosen if a static error around 10% is tolerable.
(This estimate is based on the assumption that the regulator gain is half of
the ultimate gain). If smaller static errors are required it is necessary to use
integral action. Performance can often be increased significantly by using
derivative action or even more complicated control laws. Temperature control
where the dynamics is dominated by one large time constant is a typical case.
We have observed that the derivative time Ty = T;/4 obtained by the Ziegler-
Nichols rule is too large in this case. It gives a long tail in the step response;
a better value is Ty = T}/8.

Case 2 0.15 < § < 0.6 or 2 < k < 20 : This is the prime application
area for PID controllers with Ziegler-Nichols tuning. It works well in this case.
Derivative action is often very helpful.

Case 3 06 <8 <1lor 1.5 <k < 2: When 0 approaches 1 Ziegler-
Nichols tuning becomes less useful. This is easy to understand if we recall

12



that the tuning procedure tries to make closed loop rise time equal to the
apparent dead time. It is difficult to achieve tight control with Ziegler-Nichols
tuned PID regulators. Other tuning methods and other regulator structures
like Smith predictors, pole placement, or feedforward could be considered.

Case 4 0 > 1 or k£ < 1.5 : PID control based on Ziegler-Nichols tuning
is not recommended when 6 is larger than 1. The reason why the regulators
work so poorly for § > 0.6 is partly due to inherent limitations of PID con-
trollers and partly due to the Ziegler-Nichols tuning procedure. Modifications
of the Ziegler-Nichols rule were proposed by Cohen-Coon (1953). By choosing
other tuning methods it is however possible to tune PID regulators to work
satisfactorily even for 6 = 10, see Astrom (1988).

A parallel effort by Hang and Astrom (1988) has gone further than merely
using @ to predict the effectiveness of the Ziegler-Nichols tuning formula. The
following modification to eliminate manual fine tuning has been recommended.
When 6 < 0.6 the main drawback of the Ziegler-Nichols formula is excessive
overshoot. This can be overcome by setpoint weighting where the weighting
factor is a simple function of §. When 6 > 0.6 the integral time computed by
the Ziegler-Nichols formula needs to be modified by a factor which again can
be expressed as a simple function of §. These modifications are essential to
obtain high quality PID control without manual fine tuning.

Table 4 indicates that a broad classification of Ziegler-Nichols tuned PID
controllers can be made based on the normalized dead-time. This observation
is useful if we try to build control systems with decision aids where the instru-
ment engineer or the operator is advised also on regulator selection. Table 4
indicates that such recommendations must be based on interaction with the
operator because the choices will depend not only on the process characteris-
tics, i.e. @ or &, but also on performance requirements such as static errors. If
tight control is not required then PI control is often adequate and PID control
which is more difficult to tune and more sensitive to noise can be avoided.
Notice that the choice may be different if regulators with automatic tuning
are available, since it is then easier to use regulators with derivative action.

6.2 Implications for Smart Controllers

There are several simple auto-tuners that are based on the Ziegler-Nichols
tuning procedure. A drawback with them is that they provide tuning but that
they are unable to reason about the achievable performance. The result of
this paper indicates that there is a simple modification. By determining one
of the parameters 6 or « it is thus a simple matter to provide facilities so that
a simple auto-tuner can select the regulator form P, PI, or PID and also give
indications if a more sophisticated control law would be useful. For an auto-
tuner based on the transient method this can be achieved by determining not
only a and L but also k, and including a logic based on Table 4. For relay based
auto-tuners it is necessary to complement the determination of w,, and k,, with
determination of k,. This can easily be made from measurement of average
values of inputs and outputs in steady state operation. It is also possible
to modify the relay tuning so that the static gain is also determined. The
accuracy of the tuning formula over a wide range of #-values can be markedly
improved by the use of the correlation formula of Hang and Astrém (1988) as
discussed above.
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6.3 On-line Assessment of Control Performance

The results of this paper can also be used to evaluate performance of feed-
back loops under closed loop operation. Consider, e.g., the relation (5.15) for
the normalized rise time. The rise time can be measured when the set point
is changed. If the regulator is properly tuned then the closed loop rise time
should be equal to the apparent dead time. If the actual rise time is signif-
icantly different, say 50% larger, it indicates that the loop is poorly tuned.
This type of assessment is particularly useful when the damping is adequate
but the Foxboro’s Exact, based on pattern recognition, Bristol (1977), cannol -
make this kind of judgement.

Similarly the relation (5.17) can be used by introducing a perturbation at
the regulator output. If the maximum error deviates from that predicted by
(5.18) we can suspect that the loop is poorly tuned.
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7. Control System Critiqueing

A good control system performance is achievable provided that the control
system design is sound, the instrumentation is adequate and undersized the
process input will saturate and a fast response cannot be obtained. This is
reflected in a small input saturation threshold and a small process gain. On the
other hand an oversized control valve will provide the necessary extra power
for rapid response and significantly increase the threshold for input saturation.
However an excessive oversizing would result in a very small valve motion in
steady state regulation and a poor resolution. This is reflected in a very large
process gain and a large input saturation limit. Likewise the process output
measurement range or calibration can result in too low or too high a static
process gain due to over-ranging or under-ranging. In summary, the knowledge
of the process gain can indicate control system limitation due to inadequate
instrumentation. This knowledge can be improved by on-line monitoring of
actuator saturation.

The normal instrumentation practice is to ensure that static operating
conditions are satisfied and that appropriate allowance is given for dynamic
performance. A static process gain from actuator input to sensor out put of 0.5
to 2 is quite common. If the process gain is lower say 0.1 and @ is small, say
0.1 which implies & = 15, the regulator gain will be very high k, ~ 90. A set
point change as small as 1.1% will then saturate the actuator. If the actuator
is resized such that the static process gain becomes 2 then the regulator gain
becomes 4.5 and the actuator will not saturate unless the set point change is
larger than 22%. In other words, too high a controller gain should be avoided
and if required it should be shifted to the process.

In the examples discussed above it has been assumed that the process
output is correctly calibrated. The small process gain is then caused by the
under-sized actuator. It may however also be due to the measurement being
oversized. For instance, if the full range of the output is 10V and the full
control range only gives 1V the static process gain is 0.1. If the measurement
is re-ranged so that full output range is used the process gain is 1. It is of course
the task of the instrument engineer to make sure that the instrumentation is
properly sized but it is nevertheless useful to have diagnostics that indicates
that there may be a problem. A reasonable rule is to determine if the gain
is in the range 0.5 to 2. There are systems where higher process gains occur,
a typical case being a process with a very long time constant, almost like
an integrator, where the normalized process gain may be much higher. This
occurs, e.g., in some systems for temperature control.

The static process gain can be measured from an open loop step response
or from an experiment with relay feedback. It can also be determined from
set point changes in closed loop. In view of the importance of the static gain
it is advisable to provide tools for its determination even in simple control
systems.

It may be argued that instrumentation problems can be identified by the
operator or the instrument engineer when they occur. It is, however, useful to
have controllers with facilities to indicate potential problems. It seems quite
reasonable that future systems will include a critiqueing system which will
advise if the sensors and actuators are appropriately chosen.
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8. Conclusions

In this paper it has been attempted to analyze simple feedback loops with
PID regulators that are tuned using the Ziegler-Nichols closed loop method.
It has been shown that there are some quantities that are useful to assess
achievable performance and to select suitable regulators. These quantities are
the normalized process gain (k), the normalized dead-time (), the normalized
closed loop rise time (1), and the peak load error (A). Simple methods to
determine these parameters have also been suggested.

It has been shown that x or @ are related and that they can be used to
assess the control problem. A small 6 indicates that tight control is possible
with P or PI control but also that significant improvements may be possible
with more sophisticated control laws. Processes with 8 in the range from 0.15
to 0.6 can be controlled with PID regulators with Ziegler-Nichols tuning. The
results show clearly that Ziegler-Nichols tuning gives poor results when the
normalized dead-time 6 is larger than 0.6. There are also relations like 7 ~ 1
and kA ~ 1.3, that may be used to assess the closed loop response time and
the load rejection properties. The results indicate that it would be useful to
determine at least one of the parameters & or 6 in connection with regulator
tuning because these parameters are so important for assessment of achievable
performance. Some empirical rules for controller selection and assessment have
also been given. Knowledge of # also allows us to incorporate the modified
Ziegler-Nichols formula recommended by Hang and Astrom (1988). This can
be used at both small and large 6 so as to eliminate manual fine tuning for
good control performance.
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Appendix A.

A.1 Properties of systems with G(s) = k,e=*L/(1 + sT)

The ultimate frequency is defined by
wuL + arctanw, T =7

and the ultimate gain is given by

kukp = /1 + W2T2.

Hence
and
Wyl =7 — arctan w, T

Introducing  we get

0 — wyL m— arctan/ K2 -1
B qu B K.z —:1

which is the exact relation between x and 8.

]

(A1)

(4.2)

(43)

(A4)

(A.5)
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A.2 Properties of systems with G(s) = k,1/(1 + s)

The impulse response is

tn—-l B
hn(t) = kp-(n—_me y (AG)
which has maximum
kp(n — 1)"2 n
math(t) = p(n—_z)!—*e +1 (A7)

at t, = n — 1. The step response H,(t) satisfies the relation

Hp(t) = Hpo1(t) — ha(2). (A.8)

Hence .
Ho(t) =1- ) hi(t). (A.9)

Furthermore ;
= 0~ :cp((:: = f))iwzen_1 (410
Ln=n—1- %H =n—T+ E:':il(:‘(_”;) b, (A.11)

The ultimate frequency is given by

narctanw, = 7w

T
wy = tan —,
n

(4.12)
and the ultimate gain is
2\ 2
k, = (tw)? (A.13)
kp
Numerical values for a few values of n are given in the following table.

L T 0 K

0 1 0 o0
0.282 2.718 0.104 00 00
0.806 3.69 0.218 8 1.74
1.42 446 0.318 4 1.27
2.10 5.12 0.410 2.88 1.18
2.81 570 0.493 237 1.16
4.31 6.71 0.642 188 1.21

K6

OO R W =S

19



A.3 Properties of systems with G(s) = ky(1 — as)/(1 + s)°

The impulse response of the system is

2

h(t) = et — oG = [(1 - 2) — atle™

This has its maximum for

The step response is

Hence

and

The characteristic equation of the closed loop system is

This equation has roots tiw, for the ultimate gain x = kk,. Hence

Hence

L=

t3 t2
= [50(1 +a)+ 50(1 —a)+t,+ et —1.

8° +35% + (3 — akky)s + 1 + kk, = 0.

lo

t2
— 1 _ ot s =
Ht)=1- et 4 o+ %),

to

d t

2

1+«

1
=)

H(t,)  toh(to) — H(t,)

14204+ V14 2a+ 2a?

at?

"~ h(t,)

h(to)

0 = toh(t,) — H(t,) =

8
= 1+ 3a
_ 3+ a
“w=V1its

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(4.20)
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