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Heuristics for Assessment of PID control
with Ziegler-Nichols Tuning

K. J. Äström, C. C. Hang, and P. Persson

Abstract.

In this paper we attempt to develop formal tools to assess what can be
achieved by PID coutrc¡l of a class of systems with the Ziegler-Nichols tuning
formula and to characterize a class of systems where PID control is appropri-
ate. Based on enrpirical results and approximate analytical study, we introduce
two nunrbers, namely the norrnalised dead time d and the normalized process
gain rc, to characterize the open loop process dynamics and two nurnbers, the
peak load error À arrd the norrnalised rise tirne r, to characterize the closed
loop response. Simple methods of measuring these parameters are proposed.

It is shown that á and rc are related and either of thern can be used to
predict the achievable perforrnance of PID controller tuned by the Ziegler-
Nichols fornrula. A small 0 indicates that tight control is achievable with P
or PI control. Processes with d in the range of 0.15 to 0.6 can be controlled
well with PID regulators. Moderate performance can only be expected if 0 is
larger than 0.6 and hence a more soplústicated controller like Srnith Predictor
should be used for tight control. The intelligent controller can thus interact
with the operator and advise on choice of control algorithm.

'We have established useful relations, such as r x L and rcÀ c L.3, which
can be used to assess whether the PID controller is properly tuned. The sim-
plicity of the relations allows the developrnerrt of a first generation of intelligent
controller using current technology.
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1 o Introduction

The tluust of control theory for the past 30 years has beeu to provide exact
solutions to precisely stated problems. Much less work has been devoted to
finding crude solutions to poorly defined problems. One of the few exceptions
is the work on fazzy sets by Zadeh (1973). A typical example is control system
design where a lot of prior knowledge like a mathematical model, design criteria
etc. is required to carry out a design. To rnakè a good control system design
it is also very useful to have an assessment of some key features of the system
like bandwidth, achievable performance, etc. There are also several problems,
like integral windup etc, that have to be handled. This is normally done
manually by engineers. Not much is published about these craft-like aspects
of control. It is certainly not part of the standard control curriculum. This
has u[doubtedly contributed to the recurrent discussions on the gap between
theory and practice in control.

Why should we then be concerned with these issues? We have been led
into this iu efÌ'orts to design expert control system (Á.ström et. al. 1g86) where
some of the knowledge of design engineers is built into a control system. 'We

seek to extract and condense knowledge about control system design which can
replace the otherwise large mrnrber of possibly conflicting rules accunrulated
by different experts to ease the workload of a real-time expert system. We also
believe that it is useful to describe the heuristic aspects of control so that the
knowledge can be discussed and refined. This can also contribute to spreading
control engineering knowledge to persons with less formal educatiou. A long
range goal is to provide a framework for making qualitative reasoning about
control systems.

Tlús paper looks at a simple version of the protrlem. It tries to give formal
tools to assess what can be achieved by PID control of a restricted class of
processes and a sinrple turúng rule. The key result is that there are simple
dirnension-free parameters that give insight into the achievable performance.
These features will allow us to do forrnal reasoning about sirnple.control loops.

The paper is organized as follows. The restricted class of processes that
we are concertred with is introduced in Section 2. Some useful dimension-
less nunrbers are introduced in Section 3. In Sections 4 and 5 sorne relations
between tlre features are derived by approximate analysis and empirical re-
finernent based on sinrulation. The results are used in Sectic¡n 6 to discuss the
performance that rnay be achieved with PID control based on Ziegler-Nichols
tturing. A possible application of the process characteristics in detecting in-
strumentation errors is outlined in Section 7. Some conclusions are given in
Section 8.
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2. Process Characteristics

The processes we consider are restricted to simple feedback loops. It is as-
sumed that the process dynamics is linear and stable. The characteristics will
be further restricted both in the time and the frequency domain.

2.L Time Domain Characterization

It will be assrrmed that the step response has the general characteristics shown
in Figure 2.1.

A system with a positive impulse response clearly has a monotone step
response. The fact that the iurpulse response is unirnodal ensures that the
step response has a unique inflexion point. An irnpulse response is essentially
positive if it is positive possibly apart from a srnall initial part. This is the
essential feature that we will use because for such systerns the quantities hp, L,
anrl ? can be defined. The nurnber fro is the staúic process gain,the nurnber .L

is the apparent dead time anð, the nunrber ? is the apparent time constanú. The
parameters 7 and L are obtained by the graphical construction indicated in
Figure L where the tangent is drawn in the inflexion point of the step response.
An alternative is to define .û by drawing a line between the points where the
step response has reached 10% and 90% ofits steady state values, The transfer
function

G(s): ko{:- (2.1)L+s?
is a crude analytic approxinration of the the transfer function of the class of
processes that we are considering. Notice however that the transfer functions
considered are not restricted to this class. It is sufñcient to have a step response
with tlre shapes shown in Figure 2.1"a or Figure 2.1-b, characterized by le* L,
and ?.

P
kk p

b b

Figure 2.1 Step response of a system whose irnpulse response is a) positive and
unimodal and b) essentially positive and unirnodal.

¡ a

TLTL
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Figrrre 2.2 Nyquist curve for system with a) rnonotone frequency response and
b) essentially monotone frequency response.

The class of systerns considered is the sanne as that used in the classical
works on Ziegler-Nichols tunirtg. There are iruportant classes of systerns that
are excluded, e.8., systems having integrators and systems with resonant poles.
Systems having integrators may have moltotone step responses but they are
not stable. Systems with resonant poles do not have a monotone step response.

2.2 Frequency domain characterization

A different frequency domain characterization of process dynanúcs will also
be introduced. It is assumed that the Nyquist curve has the shape indicated
in Figure 2.2.

To be specifìc it is assumed that both the phase and the arnplitude are
rnonototte functions of the frequency. This guarantees that the the intersec-
tions with the real and imaginary axes are unique. The first intersection with
tlre negative real axis defines the ultimate þequency, ø,, and the ultimøte gain,
k.,. Lack of monotorúcity can be accepted at high frequencies.

l/Ì
80

k
l

k p k
p
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3. Features

Dimensiort'-free-parameters; like-Reynoltl's'nurnbers; 'lrave fourrd rmrch use-in"
many branches of engineering. They have however lot beel much used i¡
autonratic control. In this section it is attempted to introduce some numbers
that are useful in assessing control system performance.

S.L Normalized Dead-time

The normalizecl dead-time is defined as the ratio of the apparent dead-time
and the apparent tinr,e constant, or formally

o=:=1. (J.1)T lcp'

See Figure 2'1". This nunl:er is thus easily obtained from a record of the step
response. lt has been knowu from practical experience that the 1or¡ralized
dead-tirne may be used as a measure of the difficulty of controlling a process.
Processes with a small d are easy to control and processes witir a large g
are difficult to control. The parameter 0 was actually called the controllabitity
ratioby Deshpande and Ash (1981). Fertik (19?5) introduced the name process
controllability for the quantity e lG * d). To avoid possible confusion with the
standard terminology of modern control theory we will use the word, nortnalized,
d,ead, time.

3.2 Normalized Process Gain

The process gain &o is not dimension-free. It carr however be made dimension
free by rnultiplication with a suitable regulator gain. The ultirnate gain &,,
i.e., the regulator gain that makes the process unstable rrnd.er proportiolal
feedback control, is a suitable norrnalization factor. With refererr." [o Figure
2.2 the normalized process gain, rc, can thus be defured as

n = lcpku. (3.2)

This nunrber is easily obtained as the ratio of the pïocess gains where the phase
is 0o and 180o, see Figure 2.2. Tlte nunrber also has a physical interpretation as
the largest process loop gain tltat can be achieved under proportiolal coltrol.
The nurnber is useful to assess the control performance. Roughly speaking,
a large value indicates that the process is easy to control while a srnall value
indicates that the process is difficult to control.

The normalized process gain is directly obtained from a Nyquist curve of
the process' It carr also be obtained from an experiment with relay feedback,
see Åström ancl Hägglund (lgSa).

Since the processes we consider are stable they have a static error u-nder
proportional feedback. The static error obtained for a u¡it step comrna¡d

11
' 1+kok"- 1*n (3.3)
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Figure 3.1 Block diagrarn of a simple feedback system with a load disturbance
acting at the process input.

wlrere &" is the proportional gain used. The inequality follows because krh. <
tt. The nurnber ñ can thus be used to estimate the static emor achievable
untler proportional control and also to deterrnine if integral action is required
to satisfy the specifications on static ertor.

3.3 Peak Load Disturbance Error
The response to step load disturbances is an inrporta,nt factor when evaluat-
ing control systerns. The effect of a load disturbance depends on where the
disturbance acts on the systern. In this section it will be assumed that the
disturbance acts on the process input, see Figure 3.1.

With a regulator without integral action a unit step disturbance in the
load gives the static error

",- 
ko 'r &o' 1 + k.k:> îft (3'4)

Tlre quantiiy etf lc,p is dimension-free.
When a regulator with integral action is used the static error due to a

step load disturbance is zero. A rneaningful measure is then the maxirmrm
erro¡ due to a load disturbance. To obtain a dirnension-free quantity it is also
divided by the process gain. The following variable is thus obtained

v

1

^: ùmax 
e(r)

where ls is the arnplitude of the step disturbance

(3.5)

3.4 Normalized Closed Loop Rise Time

The closed loop rise time is a measure of the response speed of the closed loop
systern. Again, to obtain a d.irnension-free pararneter it will be normalized by
the apparent dead tirne ,t of the open loop system. The parameter is thus

tr,: T. (J.O)
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4. Empirics

The Ziegler-Nichols-closed.loop trrning procedure-was-applied.to*a,large nülD:
ber of different processes. It was attempted to correlate the observed proper-
ties of the open and closed loop systems to the features introduced in Section
3. In this section we will present the empirical results. Processes with the
transfer functions

G1(s): e-tD

GTry
1

G2(s) = (1+s)'' 3<n<20 (4.2)

1 ^"Ge(s):ffi,0<a<2.5 (4.3)

will be investigated. These rnodels cover a wide range of dynamic ch¿racter-
istics such as pure dead-time and nonmininrum phase response. The rnain
features of the nrodels are summarized in Apperrdix A.

The normalized apparent dead-tirne was rneasured frorn the step res-
pollses. The ultirnate gain was determined by sirnulation. Parameters of PID
regulators were deternúned by a straight forward application of the Ziegler-
Nichols closed-loop method without fine tuniug, i.e. with values of propor-
tional gain &r, integral time ?¿ and derivative time ?¿ set as 0.6&,r, 0.5T,
and 0'L257¿ respectively. The closed loop perforrnance is judged based on the
closed loop step and load resp()nses.

The results obtained are summarized in Tables l--3. The tables give a
pararneter that characterizes the process, the ultimate period T.r, the over-
shoot os, the undershoot us of the closed loop step response, the apparent
norrnalized dead-tinre 0 = LfT, the normalized loop gain rc, the product rcd,
tlre norrnalized closed loop rise time r : tr lL, the normalized peak load error
À, and the product, uutr.

The results for the first process are summarized in Table 1. The closed
loop behaviour was judged to be satisfactory for 0.15 < g < 0.6. The overshoot
for d in the low range is too high. Tb.is is however easily reduced by using the
setpoint weighting factor modification, see .Â.ström and Hägglund (1gs8). For
large values of d there is a prorrounced undershoot in the step response.

(4.1)

DTu os uE g nn9T
^ 

rÀ uut,
0.1
0.2
0.4
0.6
1.0
1.5
2.0
2.5
3.0

L.4
2.0
2.8
3.6
4.8
6.0
7.2

8.3
9.4

26

L4

5

2

3
o

L4

L7

20

2T

10.5
5.7
4.0
2.7
2.0
1".7

1.5

L.4

0.80
0.95

1.0

0.94
L.02
0:93
0.85
0.82
0.79

0.06
0.15
0.27
0.37
0.52

0:66
0.73
0.83
0.89

75

60
50

35
26

19
L4

L2

20

0.L6
0.19
0.26
0.34
0.49
0:69
0.89
1.09

L.26

3.2
2.0

1.5

L.4

1.3

t:4
1.5

1.6

1.8

L.26
1.57
1.53
1.48
1.40
1.35
L.26
L.28
1,.25

1.5

1.5

1.6

L.7

t.7
1.8
1.8

1.8

1.8

Figure 4.L Table 1. Experirnentol results for a systenr with the transfer function
G(r) = e-'D lþ ¡ t)2 .
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The results for the second process are summârized in Table 2. The closed
loop behaviour was judged to be satisfactory for 0.22 < 0 < 0.64. The over-
shoot for d in the low range is too high. This is however easily reduced by
using the setpoint weighting factor modification. For la"rge values of 0 there
is a pronounced urtdershoot in the step response. Sinúlar results are obtained
for the third process as summarized in Table 3.

n Tu os us 0nn0T,\nÀØut,
3

4
6

I
10

15

20

3.7
6.0

10.6
L4.6
18.8
29.0
39.0

13

10
1L

L4
L7

24

30

1.3

t.7
1,9
2.0

50

40
26

L7
1,2

0

5

0.22
0.32
0.49
0.64
0.76
1.05
1.28

8.0
4.0
2.4

1..88

1.60
1.36

L.25

t.52
L,4

1-29
L.L8
L.1"8

1.L5

1.14

L.07
1.16
L.L4
1.08

0.96
0.9

0.8

0.19
0.35
0.54
0.64
0.74
0.85
0.91

L,52

1.40
1.30

L.18

1.L8

1.L6
r.t4

?

'l

Figure 4.2 Table 2. Experimental results for a syotem with the trangfer function
G(s)=r/(sfI)".

aTuosus 0 Kn0rÀæÀuut,
0

0.L

0.25
0.5
L.0
1.5

2.0

3.7
3.8
4.3
5.0
6.0
6.5
7.4

50

50
48

38
2L

9.6
-1..9

13

L5

11.

3.8
3.8
7.7
L6

I
6.2
4.5
3.2
2.0

t.45
1.15

t.52
L,49
L.44
1.41
L.34
L.30
L.24

1.3
1.5

L.7
2.0
2.2
2.4
2.7

0.22
0.23
0.28
0.38
0.58
0.76
0.98

L.54
t,49
L.44
t.4L
L.34
1.31

L.24

1.r_5

L.09
1.09
1.16

0.98
0.89
0.84

0.r 9
0.24
0.32
0.44
0.67
0.90
L.08

Figure 4.3 Table 3, Experinrental results for a systeur with the transfer function
G(s):(1-as)/(c*t)3.

I



5. Relattons

We have thus introduced two norrnalized numbers, namely the normalized
dead-time d and the normalized process gain r, to characterize the open loop
dynamics and two numbers, the peak load error À and the norlralized closed
loop rise time r to characterize the closed loop response. Some relations
between these numbers will now be established. In doing so we will also
develop att irttuitive feel for the mearúng of the nunrbers. The prototype for
our leasolling is the well known relation between bandwidth and rise time
for an electrorúc amplifier. A relation will lîrst be derived mathematically
using several approximations. This gives the possible mathernatical form of
the relation' A nunrber of specific examples will then be solved to find the
rtumerical pararneters of the coeffi.cients of the relation. Since the equations
which we are searching relate open loop and closed loop properties they will
depend on the regulatof structure and the design rnethod. Throughout the
paper it will be assumed that Ziegler-Nichols tuning is used.

5.L Rise Time Bandwidth Product
In the design of electronic amplifiers it has been noticed that the product of the
bandwidth and the rise time is approxirnately constant. This can be derived
as follows. tet G(s) be the closed loop tra.nsfer function of the arnplifier and
//(ú) the unit step response. It follows that

t_: e-"tG(s) ds (5.1)

If the rise time ú' is defined as in Figure 2.1 using the maxirnurn slope of the
step response we get

t'ot)?ä t#l:n(*)=c(o). (5.2)

Hence

,, 
lo* I iffi ld, =n. (5.3)

The integral on the left hand side is approxirnately equal to the bandwidth ø6
of the system. Sumrnarizing we find the followiug relation between rise tirne
and bandwitlth

t,u6 x r. (b.4)

With Ziegler-Nichols tuning and PID control the bandwidth of the closed loop
systern is apprrrximately proportional to the ultirnate frequency ø,. We can
tlrus expect that the product truu is constant. The ernpirical results obtained
in the previous section also supports this and we get

t,uu x 2. (5.5)

dH
dt

1

2"'i

I

Cornpare with Tables 1-3



6.2 Normalized, Dead-time and Process Gain

As can be seen from Tables 1-3 there appears to be a relation between nor-
malized process gain rc and normalized dead time 0. For specific systems it
is possible to find the relations exactly, see the appendices. For first order
systems with dead time we have:

zr - arctan \Æ1
(5.6)

-1"

See appendix A. This relation is shown graphically in Figure 5.L.
It is possible to find exact expressions for the relations between r and d

for the processes given by equations (4.1), (4.2) and (a.B). They can also be
obtained experimentally as discussed in Section 4. The relations are shown in
Figure 5.1-. The graphs indicate that for processes with higher order dynamics
the product rd is approximately constant. This is important because it means
that the normalized process gain r can be used instead of the normaüzed dead
time 0 to assess achievable performance.

It is also interesting to note that the curve for the exact model given by
equation (5.6) deviates substantially from those of the higher order models,
particularly in the region 0.3 < a < L.2. The normalized gain can be as much
as 0.5 to L unit higher for the same d in this range. If both rc and 0 are
determined this information can be used to assess if the rninirmrm phase part
of the dynamics is first order or not.

Apart from application as diagnostics to indicate whether the Ziegler-
Nichols tuning will work well the relation between rc and d can be used for fine
tuning. For insta,nce it is known that the Ziegler-Nichols tuning uses a ratio
T¿lT¿ = 4 which gives good response to load disturbance for processes with
high order dynamics. see Hang (1989). Tlús ratio should be higher for pro-
cesses with first order dynamics and lower for processes with oscillatory poles.
This observation opens yet auother possibility to incorporate intelligence in
the controller.

5

0

uuL

't"f
0

25

20

0 0.5 1.5 2.52

Figure 5.L rhe normalized process gain rc as a function of apparent normalized
dead time 0 for systems (2.1), (4.1), (a.Z), and (a.3).

::::Ìl::---
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5.3 Peak Load Error and Normalized Dead-time

Consider the closed loop system obtained with the process and the regulator.
Assurne that the disturbance enters at the plant input. The transfer function
from the load disturbance to the output is

1 Go(s)G"(r)
(5.7)G'(") 1 * Go(s)G,(s)

A PID regulator with Ziegler-Nichols tuning has the transfer function

G'(s) =
lc,(s * a)2

2as
(5.8)

where
L4

": 2h= ù. (5.e)

This choice ensrlres near optimal load rejection, as discussed by Hang (lgsg).
With Ziegler-Nichols tuning the closed loop system has a time constant T,' :
0.85% which corresponds to a bandwidth of w : 7.417*. Fbom (5.11) we thus
get the following approximate fornrula

G¿("):i;ffi,

G¿(") =#=
The corresponding unit step response is

H(t) = T"-",

2as

k,(t + o
(5.10)

(5.11)

which has a maxirnum 2 0.74 L.23
(5.12)ek, k, lcu

at 
t:L-2T¿. (b.lg)

a
Sumrnarizing ïue find that we can expect the parameter rÀ to be constant.

This is also supported by the experirnental results given in Tables L-3 which
gives

rcÀ = 1.3. (5.14)

The knowledge of À can be used by an intelligent corrtroller to check if a
PID controller with Ziegler-Nichols tuning can be used to satisfy the given
specifìcations to peak load error. From the analysis we also find that the peak
er¡or occurs T"f 4 tirne units after the step disturbance is applied.

5.4 Closed Loop Rise Time

The experimental results given in Tables 1-3 show that the normalized rise
time is approximately constant. Hence

r x L. (5.15)

In physical terms this irnplies that ú, * .t, compare with equation (3.6). This
means that the Ziegler-Nichols rnethod gives a closed loop system with a rise
tirne approximately equal to the apparent dead-tirne of the open loop system.

L1



6. Ziegler-Nichols Tuning

The results obtained will now be used to evaluate PID regulators with Ziegler-
Nichols tuning. We can first observe that the Ziegler-Nichols tuning procedure
is very simple. It is based on a sirnple characterization of the process dylamics,
either pararneters a and ,t from the step respouse or the critical point o¡
tlre Nyquist curve pararneterized in ku antd uu. We have also obtained two
relations r = 1 and rcÀ p l-.3 which characterizes the closed loop perforfitallce.
The condition r t 1 implies that Ziegler-Nichols tuning tries to make the
closed loop rise time equal to the apparent dead-tirne.

6.L \Mhen can Ziegler-Nichols Tuning be used?

The results obtained show that Ziegler-Nichols tuning will give good results
under certain conditions and that these conditions can be characterized by
one parameter, 0, or n = leuþo.

The results are summarized in Table 4.

Tight Control is

Not Rc<¡uircd

Tight Control is Rcquired
e

High Meæurernent Low Saturatio¡r Low Measuremcrrt Noise

Noise Linrit and High Satur¿ti<¡¡r Limit
Cl¿r¡s I < 0.15

Cl¿rss II 0,1õ ru 0.6

Cl¡s¡ III (ì.6 ru 1

Clnn¡ IV ) 1

PorPI
PID

PIoTPID+A+C
PI+B+D

Figure 6.L rable 4. A: Feedforword cornpensation recommended, B: Feedfor-
ward compensation eesential, C: Dead-time conpensation ¡ecornnrended, D: Dead-
time conrpensation essential.

Four cases are introduced in the table. They are classified as follows:
case I d < 0.15 or rc ) 20 : Ziegler-Nichols tuning may not give the best

results in this case. The reason is that it is possible to use comparatively high
loop gains. There are many possible choices of regulators. A P ol PD regulator
nr.ay be adequate if the requirements on static erïors are not too stri¡gerrt. A
proportional regulator could be chosen if a static error aroull d l0% is tolerable.
(This estimate is based on the assumption that the regulator gain is half of
the ultimate gain). If smaller static errors are required it is necessary to use
integral action. Performance ca:r often be increased significantly by using
derivative action or even more complicated control laws. Temperature control
where the dynanúcs is dorninated by oue large time constalt is a typical case.
We lrave observed that the derivative tirne ?¿ =T;f 4 obtained by the Ziegler-
Nichols rule is too large in this case. It gives a long tail in the step response;
a better value is Ta = T¿18.

Case 2 0.15 < d < 0.6 or 2 < n < 20 : This is the prime applicatio'
area for PID controllers with Ziegler-Nichols tuning. It works well in this case.
Derivative action is often very helpful.

Case 3 0.6 < 0 <L or 1_.5 < K< 2: Whendapproaches L Ziegler-
Nichols tuning becomes less useful. This is easy to understand if we recall

P

PI

IorPI
I

PI

rI
r+A
I+B+C

PI or PID

PI or PID

PI+e
PI+B+C
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that. the tuning procedure- tries to make close.tl loop rise time equal to the
apparent dead time. It is difficult to achieve tight control with Ziegler-Nichols
tuned PID regulators. Other tuning methods and other regulator structures
like Snúth predictors, pole placement, or feedforward could be considered.

Case 4 0 > L or r < 1.5 : PID coutrol based on Ziegler-Nichols tuning
is not recommended when d is larger than l-. The reasou why the regulators
work so poorly for 0 > 0.6 is partly due to inherent limitations of PID con-
trollers and partly due to the Ziegler-Nichols tuning procedure. Modifications
of the Ziegler-Nichols rule were proposed by Cohen-Coon (1g58). By choosing
other tuning methods it is however possible to tune PID regulators to work
satisfactorily even for 0 : L0, see Á.ströru (1gSB).

A parallel effort by Hang and ^A.strörn (1983) has gone further than rnerely
using d to predict the effectiveness of the Ziegler-Nichols tuning fornrula. The
following modification to elinrinate manual fine tuning has been reconunended.
Wlren 0 < 0.6 the main drawback of the Ziegler-Nichols forrnula is excessive
overshoot. 'Ihis can be overcorne by setpoint weighting where the weighting
factor is a simple function of d. When 0 > 0.6 the integral time computed by
the Ziegler-Nichols formirla'needs'to be modified by a factor which again can
be expressed as a sirnple function of 0. These modifications are essential to
obtain high quality PID control without manual fine tuning.

Table 4 irrdicates that a broad classification of Ziegler-Nichols tuned PID
controllers can be rnade based on the norrnalized dead-tirne. This observation
is useful if we try to build control systems wiùh decision aitls where the instru-
rneut engineer or the operaùor is advised also on regulator selection. Table 4
indicates that such recomrnendations must be based on interaction with the
operator because the choices will depend not only on the process characteris-
tics, i'e. 0 ot n, but also on performance requirernents such as static errors. If
tight control is not required then PI control is often adeqrrate and PID control
which is more difficult to tune and more sensitive to noise can be avoided.
Notice that the choice may be different if regulators with automatic tuning
are available, since it is then easier to use regulators with derivative action.

6.2 Implications for Smart Controllers

There are several simple auto-tuners that are based on the Ziegler-Nichols
tuning procecLure. A drawback with thenr is that they provicle tuning but that
they are unable to reason aborrt the achievable performance. The result of
this paper indicates that there is a simple modification. By deternúning one
of tlre pararneters 0 ot n it is thus a simple rnatter to provide facilities so that
a sirnple auto-tuner can select the regulator form P, PI, or PID and also give
iudications if a more sophisticated control law would be useful. For an auto-
tuner based on the transient rnethod this can be achieved by determining not
only ø and ^t but also &o and including a logic based on Table 4. For relay based
auto-tuners it is necessary to cornplemerrt the determination of ar, and /c., with
determination of fro. This can easily be made frorn measurernent of average
values of inputs and outputs iu steady state operation, It is also possible
to rnodify the relay turúng so that the static gain is also determined. The
accuracy of the tuning formula ovel a wide range of d-values can be markedly
improved by the use of the correlation formula of Hang and .A"strôm (1g88) as
discussed above.
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6.3 On-line Assessment of Control Performance

The results of tlús paper can also b-e used to evaluate performance of feed-
back loops under closed loop operation. Consider, e.g., the relation (b.15) for
the ilormalized rise tirne. The rise time can be measured when the set point
is changed. If the regulator is properly tuned then the close<l loop rise time
should be equal to the apparent dead time. If the actual rise time is siglif-
icantly different, say 50% larger, it indicates that the loop is poorly tuned.
This type of assessment is particularly useful when the clarnping is adequate
but the Foxbc¡ro's Exact,, based orr pu[tenr recognitiou, Bristtil (1g77), carrrrol,
make this kincl of judgernent.

Similarly the relation (5.17) can be used by iutroducing a perturbation at
the regulator output. If the maximum error deviates frorn that predicted by
(5.1S) we can suspect that the loop is poorly tuned..
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7. Control System Critiqueing

A good control system perforrnan.ce is achievable provided that the control
system design is sound, the instrunrentation is adequate and undersized the
process input will saturate and a fast response camrot be obtained. This is
reflected in a small irtput saturation tlneshr:ld and a small process gain. On the
other hand an oversized control valve will provide the necessary extra power
for rapid respolrse and significantly increase the tlrresholcl for input saturation.
However an excessive oversizing would result in a very srnall valve motion in
steady state regulation and a poor resolution. This is reflected in a very large
process gain and a large input saturation linrit. Likewise the process output
lnea,surement range or calibratiorl can result in too l,rw or too high a static
process gairr due to over-ranging or under-ranging. In surnmary, the knowledge
of the process gain can indicate control systern limitation due to inadequate
instrumentation. This knowledge can be improved by on-line morútoring of
actuator saturation.

The normal instrurnentation practice is to ellsure that static operating
conditions are satisfied and that appropriate allowance is given for dynamic
performance. A static process gain frorn actuator input to sellsor output of 0.5
to 2 is quite conunon. If the process gain is lower say 0.1- and 0 is small, say
0.L which irnplies ru : 15, the regulator gain will be very high &, p g0. A set
point change as small as t.L% will then saturate the actuator. If the actuator
is resized such that the static process gain becomes 2 then the regulator gain
becomes 4.5 and the actuator will not saturate unless the set point change is
larger thatt22%.In other words, too high a controller gain should be avoided
and if required it should be shifted to the pïocess.

hr the examples discussed above it has been assumed that the process
output is correctly calibrated. The small process gain is then caused by the
under-sized actuator. It may however also be due to the rneasurernent being
oversized. For insta,nce, if the full range of the output is i-0I/ and the full
coutrol lange only gives lV the static process gain is 0.1. If the measurernent
is re-ranged so that full output range is used the process gain is L. It is ofcourse
the task of the instrument engineer to make sure that the instrurnentation is
properly sized but it is nevertheless usefiil to have diagnostics that indicates
that there may be a problern. A reasonable rule is to determine if the gain
is in the range 0.5 to 2. There are systems where higher process gains occur,
a typical case being a process with a very long time constant, allrost like
an integrator, where the normalized process gain may be nruch higher. This
occurs, e.g., in some systerns for temperature control.

The static process gain can be measured from an open loop step response
or from an experiment with relay feedback. It can also be deternúned from
set point changes in closed loop. In view of the irnporta¡rce of the static gain
it is advisable to provide tools for its deternúnation even in sirnple control
systems.

It may be argued that instrumentation problerns can be identified by the
operator or the instrument engineer wheu they occur. It is, however, useful to
have controllers with facilities to indicate poteutial problems. ft seems quite
reasonable that future systems will include a critiqueing system which will
advise if the sensors and actuators are appropriately chosen.
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8. Conclusions

In tlús paper it has been attempted to analyze simple feedback loops with
PID regulators that are tuned using the Ziegler-Nichols closed loop method.
It has been shown that there are some quantities that are useful to assess
achievable performance and to select suitable regulators. These quantities are
the normalized process gain (n),tlte normalizeil dead-time (0)rthe normalized
closed loop rise time (r), and the pealc load error þ,). Simple rnethods to
determine these parameters have also been suggested.

It has been shown that r or 0 are related and that they can be used to
assess the control problem. A small d indicates that tight control is possible
with P or PI control but also that significant improvements may be possible
with more soplústicated control laws. Processes with d in the range from 0.1-5
to 0.6 can be controlled with PID regulators with Ziegler-Nichols tuning. The
results show clearly that Ziegler-Nichols tuning gives poor results when the
normalized dead-time 0 is larger than 0.6. There are also relations like ¡ = l-

and rÀ = L.3, that may be used to assess the closed loop response time and
the load rejection properties. The results indicate that it would be useful to
determine at least one of the parameters r or d in connection with regulator
tuning because tlr.ese parameters are so important for assessment of achievable
performance. Sonre empirical rules for controller selection and assessment have
also been given. Kuowledge of 0 also allows us to incorporate the modifìed
Ziegler-Nichols formula reconunended by Hang and .A,ström (1988). This can
be used at both small and large d so as to eliminate rnanual fine turúng for
good control perforruance.
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App*ndix A.

A.L Properties of systems with G(s) = hee-,Lf (L* c?)

The ultirnate frequency is defined by

uuLlatctanuuT:r (,4.1)

and the ultirnate gain is given by

lsukp: \Fr{F. Ø.2)

Hence

ur¡T = Jr, -L (,4.4)

aud
uuL=r-atctantwuT (A.4)

(,4.5)

Introducing d we get

^ uuL n - arctan \/7-- uuT {F-
wlúclr is the exact relation between n and 0.
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4.2 Properties of systems with G(s) : kpt lg + s)

The impulse response is

tn-L

þ:1nu
rvhich has maximum

maxå,"(t) =
n - L)n-z -n*1(n-2

at tn - n - L. The step response H"(t) satisfies the relation

H"(t)=H"_{t)-h_(t).

Ilence 
n

H.(t) - 1- Ð¿,(r).
i=!

Furthermore

hn(t) = ¡o

oo

oo

I
4

2.88
2.37
1.BB

oo

L.74
t.27
1.1,B

L.16
L.2.1

(A.6)

(A.7)

(,4.s)

(,4.9)

(A.10)

(,4.11)

(A.12)

(,4.13)

Tn
1îM4

=,._r*ftff;!Ln=n-1-- IIn "-1)h.(n - L)

The ultimate frequency is given by

narctanuu = l¡

uu = l¿11!,
n

and the ultimate gain is

ku= L + uf;)i

Numerical values for a few values of n are given in the following table

n L T 0 tí n0
L0
2 0.282
3 0.806
4 L.42
5 2.10
6 2.81

8 4.31

I
2.7L8

3.69
4.46
5.L2
5.70
6.7L

0

0.L04
0.218
0.318
0.410
0.493
0.642
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.4..3 Properties of systems with G(c) = ko! - as)/(l* c)g

The inrpulse response of the system is

t2
h(t) ='2e (A.13)

This has its maximum for

The step response is

, _ 1làal\ÆTfaTZãr

-

l+a

ã(ú)= r-e't(t*f;*$l

- "*t'r.') = [(1 - ù+ - .,t]e-t.

tTt _t-

r -t 
Hþ")

u_bo _æJ

(A.r4)

(,4.15)

(,4.16)

(A.17)

(A.1s)

(,4.19)

(,4.20)

Hence

1

M
_ t"h(t") - H(t")--;(il-

and

0 = t"h(t") - /f(r,) :
= t$tr + a) * lO -a) * úo I lle-¿" - r.

The characteristic equation ofthe closed loop system is

cB + 3¡2 + (B - akle)s+ 1 + lelao : g.

Tlris equation has roots tiør, for the ultimate gain rc - kko.Hence

u?'=3-o.n
3w2u=L*n'

Hence

I
1*34

3*auu:
L+3a
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