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THE IDENTIFICATION AND PREDICTION OF URBAN SEWER FLOWS
~ K PRELIMINARY STUDY.

M.B.‘Bedk+

ABSTRACT.

Dynamic models ars presented for the relationships bet-
ween rainfall-runcff and the influent flow to a waste~

water treatment plant; the data are taken from the Kappa- °.
la treatﬁent plant, Lidingd, and the district surrounding '
the city of Stockholm. Previously, models for predicting '
sewer f£lows have been constructed upon a consideration of
the many and complex physical characteristics that describe
the nature of the system. The black box approach applied
here to the identification of input/output relationships
gives simpler models and yet it appears that the degree
of empiricism inherent in this method is no more than that s
required to assign parameter values in the deterministic,
mechanistic models.

The method of maximum likelihood is used for the identifi-
cation and parameter estimation of stochastic models for
the influent plant flow and recursive least-sgquares algo-
rithme are employed in a sultable adaptive predictor for
the same process, To have the facllity for characterising
the dynanmic variations in the crude influx material: to the
plant is essential if the unit treatment processes, parti-
cularly those of sedimentation and activated-sludge, are.

+~Visitcr, Division of Automatic Control, Lund Institute

of Techrnology, and research fellow under the European
Sclence Exchange Programme. ‘




to be brgahised,and controlled efficiently. Some discus-
cion is made, therefore, on the practical implications
for control given the possibllity of using an on—line
gdapéive predictor for the influent flows.
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1., INTRODUCTION.

The analysis of flows Iin an urban gewer network ie an in-
tegral link in the relationships between ralnfall and the
municipal use of water and the malntenance of gquality in
river and coastal waters (figure 1). Within these relation-
ships three individual problems are recognised: {1} the de-
+ermination of the input to a sewer network from surface
runoff and municipal usage; (ii) the routing of flows across
the network to outfalls andwaste-water treatment facilitles;
{11i) the operation of treatment processes for the efficiept
removal of pollutant materials, ’
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In the recent literature the dynamic properties of sewer
network flows have been congidered for the investigation

of both the design and operational aspects of a sewer sys-
tem and its adjacent treatment plants. It 1s relatively
easy to characterise the variations in a dry-weather flow
(DWF) resulting from municipal users' waste-water; these
display observable dally, weekly, and seasonal fluctuatlons.
On the other hand, the transient effects of a storm event,
together with their attendant problems of untreated over-
flowe to natural water courses, are more difficult to mo-
del: a factor reflected in the considerable attenti&n gi-
ven to the'subject. Such events increase the loading on

the treatment process in both a quantitative and quallta-
tive manner and we may regard waste-water treatment as a
process plant which receives a raw input material of an of-
ten widely-varying and laxgely ill-defined nature. For con-
trol synthesls it would be advantageous for treatment plant
operation if-tﬁe influent could be characterised more ade-
qﬁately and its major variations predicted in advance.

ﬁithérto models for the prediction sewer flows have assumed
a large and purely deterministic nature vesulting from the

multitude of phfsical properties and phenomena which describe




the system. In this paper we take a different approach
using stochastic input/output models which are conceptu-
ally and in form simpler, The identification and predic-
tion problems are tackled using the methods of maximum
likelihood and recursive least-squares estimation, respec-—

_ tively; the data are taken from the Képpala treatment plant,
Lidingd, and the district surrounding the city of SBtockholm.
It appears that the degree of empiricism inherent in this
approach is no more than that required to assign parameter
values to other models based on physical reasoning.

The study is part of a project supported by the Swedish ;
Board for Technical Development (8TU) whose aims are to
examine improvements in the instrumentation and auntomatic
control of waste-water treatment plants with particular re-
ference to the activated sludge process [18]. Thus, the em-
phasig is pléced upon constructing models of the influent
flow for the purpose of plant control rather than the con-
trol and reduction of storm overflows from sewers. However,
gince the latter bears directly upon the former, and the '
two facets of the system are not really separable, it is
given some consideration in the following. The discussion

is by no means exhaustive and the results should be regarded
as those of a prelimilnary investigation. It émerges that one
particular limitation is the poor gquality of the data; for
this reason 1t is only feasible to consider the extensions
to control analyses and application in a gualitative man-
ner.




Z. THE MODELLING AND CONTROL OF URBAN SEWER FLOWS.

For the purposes ¢f the present- study the sﬁrvey of the
avallable models for urban sewer flow dynamies is vather
brief. Since it is our intention to uge models based on

a different conception of the gystem it is ﬁﬂﬂeéeggary to
discuss here the details of previous approaches to the prob-
lem. MNevertheless, it should be possible to obtain a reascn-
able picture of the complex nature of deterministic models
based on physical laws and arguments. The aspects of sevey
flow and runoff modelling which are control-oriented are
presented in Section §.

Punoff f£rom urbanised land surfaces.

An exemplary review and comparative study of methods for
predicting inlet storm flows to an urban sewer netwdrk are
given in Papadakis and Preul [19]. The several models de-"
veloped over the past céntury~are based upon considerations
of the surface topography and physical characteristics, é.qg.
turf covering, asphalt covering, etec., together with the —
simulation of submodels for processes such as infiltration,
surface retenticon, overland flow, and gutter flow. Verifi-
cation results lndicate that the models can reproduce suc-
cessfully the storm water runoff transients in small drain-
age areas but there remain significant errors in the mas-—
sively complex case of large urban watersheds. A complete
account of a t?pical model for urban storm water runoff is
presented by Chen and Bhubinski [6]; the amount of physical
detail included is quite remarkable. A more general treat-
ment of land runoff in both rural and urban localities can
be found, for example, in Offner [16].




The routing of flows thriough @ sewer network.

guite simply, as in figure 1, the output of a runoff no-
del forms part of the input to a sewer network flow model.
For the prediction of the influent flow to a trestment
plant, theory requires that a set of partial differential

 equations be solved in the variables f£low velocity and

depth. Computationally, the wmethod of characteristics ray
be employed, although for real—time applications to large
and complex geometrical arrangements of a network the “pro-
gressive average-lag" method gives a faster but (acceptabﬂ,

ly) less accurate solution [9]. Factors to be supplied for"

the analysis include roughness coefficlients, pipe-sizes
and slopes, and some consgideration of flow conditions at
all points within the system.

¢
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3. THE PROBLEM FORMULATION..

The most striking feature of the currently available mo-
dels for urban storm runcff and flow routing through sewer
networks is their purely deterministic and complex struc-
ture. Of course, the problem is inherently complex since
it is governed by considerations of highly diversified sur-
face topographies and coverings together with rainfall
events whose intensities vary spatially and temporarally
and which travel spatially in time. Especially with the
advent of the digital computer the approach has been to "
include as much detail as possible; this has led to a bet- ;
ter understanding of the processes involved. ¥et a theore-
tically complete analysis would produce an unwieldy and .
largely intractable mathematical wmodel with a multitude

of parameters required to be estimated or evaluated. In-
deed, particularly in models for urban runoff it is ack-
nowledged that "to a varying degree most of these methods
rely upon empirical relationships and experience” [19].

It seems, therefore, tﬁat a2 stochastic model derived from
time~series analysis, herein the maximum likelihood method
[4], can Yield equally usable results. Such an identifica-
tion procedure assumes little a priori knowledge of the
physical system and takes a relatively macroscopic view

of the cause-effect relationships involved. As we have re-
marked earlier, many previous studies evolved from design
problems of sewer networks or from a desire to reduce storm-
water overflow. Our current emphasis, however, is upon the
characterisation of the guality and flow of the influent

to a waste-water treatment plant with a view to improved
operational control of the unit processes for waste remo-

val.

%f Thus, given the combined sewer network of the Kippala Re-
1 ningsverk in the city of Stockholm {gection 4) the problem




is formulated as follows: .

(i) = To identify input-output models for the dynamic re-
lationships between the input, rainfall Uy, at se-
veral spatial locations (i = 1, 2, v esy m} and the
Gutpﬁt, the influent flow to the Kippala plant, v

- (see figure 2): to evamine whether any particular
dynamical properties attach Lo individual locaticons
of the input at i; or, alternatively, to exsmine the
feasiblility of using a single spatially-averaged rain-~
fall input.

{1i) To construct an adaptive predictor for the influent
Yy glven an auxiliary signal v or v' for the flow re-
sulting from municipal wastes; to evaluate the bene-
fit of using additional measurements of u in such a
predictor.,

(111} To investigate the use of models or predictors;for
the feedback of information on y in sewer network
fiow control synthesis and the feed forward of in-
formation on vy in uvnit treatment process operation
control.

As 1t is given, the prcblem formulation has been posed in

a fairly general sense. Even so, we have not considered the
rider problems of applying the same kind of analysis to gua-
lity variables or the identification of submodels. {e.g.
transfer functions) between intermediate points in the sew-
er network. It is guite likely (see section 8) that the dy =
namiceg and control~df the influent flow to the plant are
sénsitive‘tp those of certain sections of the system.

Furthermore, we should bear in mind that black box models
are often specific to the data from which they are derived

and are not necessarily amenable to a thsical'interpretan
tion. However, experience shows that in many situations i1t




is‘indeed,possible to draw inferencesg on the nature of
the physical systen and it is edcouraging to refer to the
successful application of similar techniques in the ana-
logous preblem of predicting river flows in real tine
[113, [z22].




4. THE KAPPALA SEWER TUNNEL, STOCKHOLM,

Figure 3 shows the sewer tunnel system which collects
waste-water from an area of some 1181 kmz'covering part
of the city of Stockholm and its surrounding districts
and serving a population of QQO,DOGS For the purpose of
this study it can be assumed that none of the flow is
diverted from the Képpala tumnel after entry Ffrom subsi-
diary sewers. The Kippala treatment plént {design DWF

2 mss“l} includes seversl modern features, being commig~-
sioned in 196% and employing a Siemens 304 procéess com-
puter for data-logging and some control.

Within the sewer system continuous flow records are taken
from 17 locations using Parshall flumes and the Rippala
Works receives hourly sampled data on the mean influent
flow t¢ the plant. As with many other variables monitored
by the plant, historical data on the influent flow are
stored on the process computer for up to a period of three
months behind the current time. 24-hr rainfall, and in
some cases l2-hr and shorter, sampled observations are
available from a group of ten stations within the Stock~
"holm area.

An approximate assessment of transportation delays within
the sewer system can be obtained from isolated tracer ex-
periments; for instance, at a typical mean flow-rate of

3.32 most
ween Edsberg and Kippala (20 km) is close to 8 hrs. This

s~ the mean residence time of the sewer flow bet-
gives asome idea of the time available for "feed forward"
prediction of the influent flow if regquired for on-line

purposes.




§ . M#rsta

!

Vallentuna

G

PUMP STATION

Jdrfilla

STOCKHOLM-BROMMA
&
(FLYGPLATS)

j:j}eVALLENTUNA

Osterdker

L/ LIDINGO

e = Meteorological station

o = Kippala treatment plant

Figure 3 The Kippala sewer tunnel system




5. IDENTIFICATION AND BPREDICTION.

The class of models to he examined is one of parametric,
linear, time~invariant modeLs of a canonical form. They
are black box wmodels 1ln the sense that they assume no
knowledge of physical relationships between the systemts
inputs and output other the&n that the inputs should pro-
duce observable responses in the cutput. Our concern is
wlth the identification of rainfall-urban sewer f£low dy -~
namice and the adaptive prediction of the influent flow
to a treatment plant, see figure 2, assuming that the sys-
tem is subject to stochastic disturbances and random er-

rors of measurement.

5. . Maximum Likelihood Identification.

In the general case, given the set of input/output data
samples {ui{t}, Io= 1, 2, ouay myoy(E)s £ =1, 2, ..., N},
whare ui(t], i=1;, 2, ..., m are the m input signals,
vit) iaithe output signal and t iz the time of the tth
sampling instant, the identification problem is to find an
estimate of the parameters of the system model [7]

-1 B | ool
Alg D)y (t) ﬂ-izl By (g “Juy (€) + aC{q e(t) (1)

in which e{t) is a sequence of 1ndepan&ent normal. (0 1}
random variables and g denotes the shift operator

q{y(t)} y {(t+1) ete. {2}

A(q }, Bi(q '), i=1,2, ..., m, and C{qﬁl)'are'the po-
lynomials - :
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S IS _—
A(q }. == :E_ + alq , { © & g + Einq 3

1. . =1 _ .- .

By(d 7)) =Dyg +byya "+ ..+ b g ot=1,2,..0,m b (3
- ) -1 . -

C{g ) :1-?(:1(_:{ +=”+-cnqn )

Ir

The residual errors of eqgn. (I}, {e{t), £t =1, 2, ..., N},

defined by

-1 ~1 T -1 :
Clg Treft) = a{g “Jy(t) - 'Zl By (g "huy (t) (4}
i= ’

are thus an inﬂependeﬁt and nermal (0,)) sequence. The
logarithm of the likelihood function 1ls now

A T - , '
L o= = =%} g“(t) ~ N log A + constant (5)
237 t=1

and the maximisation of L is equivalent to minimising the
ioss function '

V(o) =3 V. 4 | (6)

where 8 is the column vector of pavameters in the model,
egn. (1),

¢ b _

i 3 | ‘
9 &= [a_l,biofa lgfﬂﬂu;bln’ sz;oréfbmnf Gl}tt-’cn] {?)

n

{(superfix T denotes the transpose of a vector or matrix).
When & has been found, =such that V{é) is minimal,; the
maximum likelihcod ésﬁimate'cf‘x is given by

22 oAy | ’
A= V{g} (8)




Strictly spesking, the model of eqn. (1) applies only to
stable, linear, time-invariant systems. A more conmplete
discussion of the medel structure, the minimisation of

the loss function V(8), and the conditions for +the esti-
mates to be consilstent, asymptotically normal and efficient
are glven in the original source references {4], [51, {71.

Notice that in this application the inputs of the systen
corregpond to the rainfall u; measured at the locations
i=13, 2, ..., m and the output v is the influent flow to
the treatment plant.

5.2. Adaptive Prediction.

For the derivation of an adaptive predictor [23]1 let us
consider the discrete-time stochastic process,

g™y = actghe(w) (9)

with all variables defined as for the model of agn {1):

at this stage no knowledge is assumed for any deterninig-
tic gsignals u which may be related to the time-series Y.
Now denote the k—-step ahead prediction of the output sig-
nal y based on the sampled observations vy (%), yiE~1), «u.y
by §(t+k[t), Introducing the loss function

vy (£). = Ble (t+k) %) | | ‘ T

where B{...} is the'eXpectation'operation and &(t+k) is’
the prediction erxor

B (t4k) = y(trk) - y{t+klE) an

the prediction problem is solved in [3] for the process
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eqn.. (2) having known A and C polynémials. Alternatively,
if these parameters are unknown they can be estimated ac-
cording to the procedure outlined above and then used in
the construction of a predictor.

However, for an adaptive predictor of an unknown procegs
it ie not reguired that the parameters of that process,
e.g. egn. (9), be estimated explicitly; rather, the para=-
meters of the predictor ltself dre estimated. Wittenmark
[ 23] solves the problem by'transforming it into the pre-
viously solved problem of an adaptive requlator; the adap;'
tive predictor algorithms for an unknown process with
constant parameters can then be derived by separation of
the estimation and pre&iction steps. ’

In the particular application to be discussed here a
slightly modified version of Wittenmark's algorithms Are
used since there iz some indication that they have better
stability properties, see [10],

Thus, for the adaptive predictor of the process, egn. (9},
we have:

Step 1l: Estimation.
At time t, upon the receipt of a new observation y(t), the

paramneters Oy reeerd Bl""’ﬁg are estimated in the model

pF

SRR s

vit) = aly(ﬁ—k) + ... + upy(t_k-p+l) -

- By (E-Llltk-1) = ... - B oY (t=2[t=k=£) (12)

by the method of least squares;
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Step Z: Prediction.
The estimates obtained inm Step 1 are used to calculate the

predicted output am -

§{t+klt} = aly(t) +.,‘k +‘pr(t—p+l) -
= ByY(eHk-Lltm1) 4 o, 4 By (tHk-£lE-8)  (13)

More conclsely, if we define +he polynomials

A{q"l) =0y + agq“l + el mpq”pTl ‘ E

~1 -2 ~£
By PR Tk il 4+ Bug

it

Blg™)

the adaptive predictor is given by
Estimation: yi{t) = A{qﬁl}y(tmk) - B(qwl)Y(tlth) {14)
Prediction: §{t+k!t) = A(q“l)y(t} - E(qaliy(t+klt) © (15)

In other words, the a&aptive'predictor is a function of
both the past observations and the' previous predictions
of the out?ut. Since a leastwsquares estimation is readi-
1y implemented in recursive form the predictor is well
suited to real-time applications with each step of the
procedure being repeated at each sampled instant of time.
This is found to be feasible even if C(qﬂl} + 1 in eqn.
(9}, in which case the least-squares parameter estimates
of egn. (12} may be blased )

The algorithiis are'fairly flexible such that, for example,
-trends in the process can be treated without difficulty.
But of more importahce‘hére, time-varying parameters may
be accounted for by introducing suitable exponential
weighting of the data. Further, auxiliary variables vi(t)
improve the prediction if pexiodic functions are present




—
=]

in the process y(t) or additional measurements of another
signal disturbing the system are available. Thus, defining
the polynomials

~r

-1, _ : =1 . ; T
Ci{q )”Yil+Yizq t e +Tirq l-"’l! 217 £ &£y mt.

eqns. {(14) and (15} become

Bstimation: y(t) = A(q D)y (e-k) - B(q L)y (tle-k) +

m' -1
+ _Zl C, (g "dvy{t) (16)
1=

prediction: y(t+kit) = Alg D)y (t) - Bla L)y (t+klt) +

m' -1
+ _Zl Cy g “hvy (t+k) (17)
1=

In this case vi(t} may be some representation of the pe-
riodic variation in the influent flow y(t) caused by the
waste from municipal users, oxr it may be a measurement of
the rainfall (at a point location, or spatially averaged).
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6. MAXIMUM LIKELIHOOD IDENTIFICATION OF, RAINFALI~URBAN
SEWER FPLOW RELATIONSHIPES.

In this section part (1) of the problem formulation is
addressed. The observed influent flow-rate %o the Kappa-

la plant is analysed for thexpericd between October lst
(66.00¢ hre) and October 3lst (07.00 hrs), 1973, a total

of 720 hourly samples. For the same interval data have

been obtained from 5.M.H.I. (Sveriges Meteorologilska och
Hydrologiska Institut), Stockholm, and these relate to

the rainfall measured at the four stations, ROskdr, Stock~ -
holm-Bromma (flygplats), Stockholwm, and Lidingd (see fig.
3}« While these data reflect both typical rainfall events ;
and dry-weather flows, they are not representative of.any
short and intense storm counditions. ‘

Figure 4 shows the data for the defined period; the in-
fluent flows are computed from depth measurements and f£low
measurements downstream of the pumps, to the Kippala plant.
The rainfall is a “"spatially"-averaged time-series for the
four stations: at Roskdr sampled values are calculated by
distributing a 24 hr measurement equally ameng hourly ob-
servations on the timing of the precipitation {excent for
the interval 00.00 -~ 07.00 hra): at Stockholm~Bromma, Stock-
holm, and Lidingd, the measured precipitation is distribu~
ted equally at each hourly sampling instant from observa-

tions taken at 12 hx, 12 hr, and 24 hr intervals, respec—
tively. ’

In figure & a larger scale plot of the first week's data
gives a good indication of the hature of typical éry-wea-
ther flows. The data display several features of an easi~
ly receygnisable form. Firstly, there is the daily pattern
with an approximately half sine-wave structures working
days display fluctuations of similar magnitudes, while
the flows for Séturday and Sunday have a somewhat lower
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Figure 4~ Rainfall (spatially averaged) and influent flow data for October 1973
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smplitude and mean level. Referring again to figure 4 it

is obsgervable that thig weekly process is repeated thfoughw
out the month with the runoff from rainfall events produc-
ing a temporary increase in flows as expected. The daily
and weekly periodicities are correspondingly visible in
the autocorrelation function of the influent flow data,
figure 7.

Both figures 4 and 5 show the large "spikesg® superimpased
on the daily variations which result from ?umping opara-
tiong. Such a procedure anables the treatment plant to ope-
rate on a more or less constant flow-rate throughout the
major part of the day by detaining the natural flow in a
buffering well upstrvean of the influent gates and regular-
ly (usually between 08.00 and 10.00 hrs) releasing the ac-—
cumulated excess Flow. Figure 6 gives the pattern of this
manipulated fiow to the treatment plant over the gsame in-
terval as the natural Fflowe of figure 5. That the pumplng
effects are sgtill significant in tha conputed natural in-
fluent flow is a function of the sampled nature of the da-
ta and unavoidable inaccuracies in the relationship between
" the stored volume of sewage and depth measurements,

Indeed, among other fagtors, the large and relatively high-
freguency disturbances inposed artificially by the pumping
operations are a considerable drawback in the analysis of
the data. Since lower-frequency oscillations of a determi~
nigtic nature, particularly the dally cycle, are recognig-
able in the time-series it might be appropriate to diffe-
rence the data accordingly and apply the identification pre-
cedure to the resulfing output process Ay(t) given by

Ay(e) = y(t) - yle~24)

However, it is well krown that this tends to emphasise the
level of noise in the data, Thus, we prefer to adopt alter-
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alternative approaches using data which has been low-pass

filtered in order to smooth the pumping disturbances; the

rainfall time-series isg filtered in an identical manner *o
preserve the original input-ocutput relationships.

- Given that the real problem of identification is the sepa-

ration between the dry-weather flows and the excess flows
from rainfall-runoff sources, two types of model are pro-
posed. The first, caila& a general flow (GF) model, con-
sists of a stochastic model for both kinds of Fflows the
second, a vainfall-runoff flow (RRF) model, uses a deter—
minlstic nodel to describe the dry-weather flows and a sto- ¢

$
chastic model to describe the additional effects of runoff.

6.1. A General Flow {(GF) Model.

Table 1 and figure 8§ give the identification results for a
CF model. The output and input time-series are suita&ly
smoothed using a discrete low-pass filter, see [8], of first
order and with a cut-off frequency-of 0.% rad/hr. The & pa-
iameters of table 1 are estimates of initial values y(0},
y{-1} of the output and their inclusion improves the genéu
ral accuracy of the idehtificatioﬂ,

Table 1 - 2nd-order mddel: y(t) fuy(t), u,(t)

a;  ~0.916:0.014 ¢y 0
&q 3] ‘ cz‘ g
byy 6.072+0.018 dy 0.880£0.045
biy 0 d; ¢
by,  0.418%0.030 R 0.045£0,001

b

. 22 “0133?$0003G
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i . The notation y(t)gql{ﬁ);lugit) indicates a single output/
two input system where y(t) is the {low-pass filtered) in-
fluent flow-rate to the treatment plant {mssml}; the input
i ﬁl(t) is the spatially-averaged (ap& filtered) raianfall
\ (mm} and the signal uz(t)’ﬂ y{t=23), in this particular
model, is an artifilcial input. This means that the output,
" nowinally observed 24 hrs behind the curvent time, is fed
forward to give a characterisation of the periodic {or
‘approximately dry-weather flow) functions in the process
vi{t) . Conseguently, differencing the data is avolded.

Hence, substituting the estimates of table 1 into the de-
terministic part of eqn. (1), we have, after rearrangement,

vt} = 0.916y(t~1) + 0.418y(£-24) -

- 0,337y {t=-25) + 0,072u1(t—1} . {18}
? The modsel output of figure B8{c) is then given by eqn. (18)
with y{0) = d; and the observed values of y(t-24), y(t-25)
and ul{t=l} inserted at each discrete-time instant t. Cle-

arly, the model errors do not exhibit a good correspondence
between the purely deterministic model output and the ob-
servations of the influent flow-rate. '

: On the other hand the residuals, &(t), which can be inter-
| preted as the prediction errors of the one-step ahead pre-
! dictor '

(£} = y{t) - y(eit-1) (19)
are quite small and have a standard deviation of #0.045

(m3s7Ly . Yet it 1s noticeable from figure 8{e) that the
raesiduals contain periodic high frequency spikes and these

S"’.

are synchr¥onous with the residues of the smoothed pumping
effects and the “discontinuous" nature of the half sine-wave

|,_
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Figure 8 Maximum likelihood identification results for the GF model of table 1
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pattern of the flow data. More precdise statistical tests
of the residuals [8] confirm that they are gignificantly
correlated in time, not normally distributed and correla-~

ted with the signal u,{t}: Ffactors which indicate that

;i : the identified model ig not consistent with the assump-

. ~tions for thé validity of egn. (1). Of course, some of

k these anomalies might be accounted for by the use of a
least~aguares estimation (C{qml} = 1 in egn. {1)}. However,
any attempt to estimate Q(qml}'$ 1 proves abortive gince
the € polynomial is found to be uvnetable.

The choice of two sz coefficiente in the model of table 1 °
gives better properties of the residuals than the corre-
sponding first-order model. But, owing to the low magni-
tudes of these "gains" in the feedforward process, the
added complexity of estimating the coefficlents of a third
input, say

ug () = = uy (£-23) - (20)

§ affords negligible improvement in the results. Inctheory,
| l this should eliminate the spurious -feedforward, through
az(t} = y(t-23}, of excess flows resulting from rainfail.
runoff on the previcus day.

Notice that the particular artificial signal u, {t} here is
only one of several options

; ( y(£-24) . (1)
l v y(£-168). (i) .
i uy {e) = 4 - . ‘ S {21)
3 ¥glt) (114)
| ¥, (k) C(4¥)

which might be used; ¥, (t) and y,_(t) are mean daily ang
weekly periodic time-series, respectively, with -




20.

1

ol = Fy(t-24)

I

Vi (B) = v, (£-168)

and can be computed a priori from the available data *

Different choices are used in other modals {sections 6.2
and 7} but, for reasons. uhlch are discussed below, they
AT 1iPeiy to bhe of llmlted value in a GF. model,

6.2. A Rainfall~Runcff Flow (RRF) Model.

Evidently the structure of a GF model fails to describe
adequately the pericdic dry-weather flow variations in

the data. However, observing in figure 4 that the first
and fourth weeks of the data, samples 1 - 168 and 505 -

~ 672 inclusive, represent virtually dry-weather condi-
tions, it is possible to compute a mean weekly dry-weather
flow pattern §W{t)e Operating again on the low-~pass £il-
tered obhsexvations,; a time-series

v (8) = y(t) ~ 3, (%) (22)

is prepared, where Yy {(t} may be considered locsely as tha
excess flow 1esultiﬁg from rainfall~runoff sources.

We can now identify & single input/single output stochas~-
tlic model for'yr{t)iul(t) having removed a priori the de-
terministic dry-weather and periodic flow components. In
fact, the results fé: this RRF model, given in table 2
and figure 9, apply to the model yr{t}iui(t}; usy(t) in

® . :
In longer term forecasting etc. these prodedures may

have to include some acecount of seascnal vaxriations.
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Table 2 -~ lst~order modelr yr(t}'uifij, ué(t)‘

a, ~0.739+0°, 028
. 0.063£0.032
by 0.086%0.031
oy 0.98420.007
T 0.027+0.001

which ui(t} = ulit»2} and ué(t} = ul{tﬂs}; this is simply
& more convenlent way of estimatlng what would otherwise
be a 6th~ovder system.

The cholice of the model structure reguires some explana-
tion. Typically, the identification of Ffirst-order models
yr(t}}uift) where

ui(t) = U.l(t“i) i = G_y l' @ & 6 F 7

gives less than & 1.5% variation in the nminimised loss
function V{é} o% egqn. {6} and the largest difference in
the estimates (of the b coefficlient) is little more than
10% for any two values of i. Accordingly, the egtimation
of higher-order models, with low values of i, vields on-
ly one significantly non-zero b parameter. This is not
gurprising when we consider the nature of the rainfall
data ul(t} which‘ihherently distributes any precipita-~
tion event over a wide interval of one-hourly samples.
The model of table 2, therefore, is no more than a coun-
terbalance to the data and equally good results could
have been obtalned with other suitably separated inputs
ui and aé._ '

The statigtical properties of the residuals are similar
to, but slightly better than, those of the GF model, al-
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though they have & smaller standard deviation of =#0.027
(mgsml); However, the estimate of ¢, indicates that the
C(qfl) polynomial ls still only marginally stable. Subgti-
tuting the detemministic output of the RRF model,

v lb) = = 0,739y, (k-1) + 0.063u (£~3) + 0.086u (£~7)  (23)

into eqn. (22) allows more obvlious comparison with the GF
model and figure 10 shows the overall deterministic model
raesponse y{L) and model error for the pericd October 8th
(11.00 hrs) - October 3lst (07.00 hrs). In a determinis-
tic sense the RRF model achieves a better characterisa-
tion of both the dry- and wet-weather dynamics of the in-
fluent flow to the treatment plant.

6.3. Comments.

It cannot faithfully be claimed that the ldentification
process yvields models that can be used with complete con-
fidence in any forecasting or control synthesis context.
Nevertheless, in & preliminary study where planned expes-
rimental work has not been possible we should try to ana-
lyse the failures and project a course for further inves-
tigation. '

We may surmise that the identifiable models are only as
good as the data permit and those available here leave
mich to be desired on several accounts. In the first in-
stance, the method of constructing once-hourly sampled
time-series from the'rainfall‘observations means that the
majority of preéipitation events are distributed (neces-
sarilY} over a wide time interval. Hence, our knowledge
of the timing of a particular event is very imprecise ’
and it isg not obvious which‘of the coefficients of the
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rainfall input uy{t} ‘are most significant. This is clear-
iy the case with the RRF model. Yet, while the nature of
the rainfall data may be obscuring the identification of
the true dynamics of arban runoff processaes, it is also
true that spatialliy-distributed runoff inputd are ohzerved
as temporally distributed in the influent flow to the plant.
'Thusf theoretically, an adaptive predictor which assumes nc
observations of rainfall should be capable of “recognising"
such disturbances in advance of the time reguired for the

peak response.

On the second account it is doubtful that the influent da-
ta describe the true flow at the downstream boundary of the
Réppala tunnel. For example, we might have expected the na-
tural flow to bea reasonably free of pumping effeects and to
display smoother daily variations. The central problem here
is the apparent discontinuity in the flow dynamics caused
by the colncidence of the punp start-up with the minimum
point in the 2Z4hr cycle. A problem which is exacerbated by
small differences in the timing of the pumping activity from
one day to the next. Thus, whatever attempts are made at
circumvention a satisfactory model cannot be identified
withcutsubstantiallyﬁwdifying the data.

Notwithstanding the imperfections of the rainfall data, it
is the nature of the flow data that dominates the identifi-
.cation, The algorithms for parameter'estimation are reguired
to treat the subsequent errors as statistically significant
but are not prcviéed with a model structure which accounts
for their dynamics. Such conditions are more restrictive
for the identification of a GF model, However, the struc-
ture of this type of model is more directly related to the
probable structure of an adaptive predictor; the resultis
presented here'are'anuseful reference framework against
which the discussion of the next section can be compared,

On the other hand, if a strictly off-line analysis and con-
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trol synthesis is to be undertaken, then an RRF model is
preferable since it has the capacity to simulate more ade-
quately the dynamic features of dry-weather flows and rain-
fall-runoff disturbances.
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7. ADAPTIVE PREDICTION OF THE INFLUENT FLOW TO THE
TREATMENT PLANT:

There are a considerable number of structures which could
be hypothesised for an adaptive prédictor described by
eqns. (16) and {17). Ideally, the identification analysis
should indicate a suitable choice for the orders p, £,

and r. of the polynomials A, B, and Ci, respectively. How-
ever; in view of the uncertainty surrounding the validity
of the GF model and the facility for parameter tracking
afforded by the recursive algorithms of the predictor, it
is advisable to reconsider and reassess several combina-
tions of wvalues for p, £, and ry. In addition, the auxi-
liary variables vy may be any of the options given in egn.
(21), or measurements of the rainfall Uy s and we must
choose k, the number of steps ahead for which prediction
is required.

At this preliminary stage we shall restrict the discussion
to simple and low-order structures of the predictor for

k¥ =1, 4, and in the assumed absence of any measurements
of the rainfall. Thus, several aspécts of part (ii) of

the problem formulation, particularly the use of rainfall
data, are not examined. On the other hand, the resulting
predictors give a first impression of the aceuracy obtain-
able for short-term on~line prediction, one-step aheaé,
and longer-term prediction, four hours in advance of the
current time. And, most important of all, since thgy re—
quire no on-line measurement of rainfall conditions, the
predictors are of a form which can be more readily imple-

mented in practice.~
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7,1, A One-8tew Ahead Predictor.

An appropriate structure for the one-step ahead predictor
is given in table 3. The a priori estimates of the parame-
ters are based on those values to which the estimates con-
verged after one run through the data in which éO = 0 aﬁd
Py = (L0)I. Figures 11 and 12 show the prediction, predic-

tion errox, recursive parameter estimates and loss function

Table 3 -~ The one-step ahead predictor, X = 1, with 2 auxi-"
liary ~wvariables, m' = 2,
auxiliary variables: v,(t) = §w{t)
vylt) = ya(t)

Ly, 1

I

Polynomial orders: Alg

B(ghH; £ =1

-1

Cz(q—l); X, = 2

w

A priori estimates of the parameters, 80:

1.20 Y11 0.47 . Yoy - 0.37

%y

. 0.42 -0.27 -0.30

By Y12 Y22
Exponential welghting factor, u = 0.995, -

A priori covariance matrix of the estimation
errors, PQ = {Dml}I%‘

Purther definition of the use of this matrix in the al-
gorithms for recursive least squares can be found in ma-
ny texts, see e.g. [24]; I denotes the unit identity mat-

rix.
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Vl{t) for this predictor, i.e. from egn. {17},
y(E+11E) = apy(t) ~ Byy(tlt-1) + ypqVy (E+1) +
+ YV (E) + oy v, (E41) + YoqVa (£) (24)

Once more the results are given for the low-pass filtered
time~series v{t), from which the weekly profile §w’ see
section 6.2, and the daily profile §d’ using all the ob-

servations, are computed, figure 13.

Despite the now almost inevitable errors coincident with
the pumping operations, visible as spikes in the errors
and giving the stepped form of the loss function, the one-
step ahead prediction is very close to the observed data.
In particular, the runoff from rainfall events is well
described,; although the errors are somewhat larger over
these periods and the slope of the loss function is in-
creased temporarily. Notice. that the parameter estimates
are relatively insensitive to these events, which are
tantamount to an apparent change in the dynamic structure
of the process. Thus, as suggested in section 6.3, the
temporally—digtributed observation of additiconal flows
allows the predictor to recognise quickiy this determinis-
tic disturbance through y{t) and g{tit~l), in eqn. (24},
and significant adjustment of the parameters, e.g. oy and
Bl’ becomes redundant.

The standard deviation of the prediction errors is 20,029
(m3s™) ang thi's compares favourably with that for the

equivalent (residual) errors of the GF ﬁodel, section 6.1.
Since the structure of the GF model and the predictor are

With notable differences in the use of two auxiliary va- -

riables, v; and v,, and the signal u; (the rainfall).
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between the A, B, C, and A; B, C, polynomials, see t107,
that the parameter estimates of the two descriptions of
the process are in good agreement,

TV, K FOut—StEp‘ﬁhé&d'ﬁd&ptive'Predictdr.

Table 4 and figures 14 and 15 give the structure and re-
sults of a four-step ahead predictor; the recursive esti-
mates are shown for those parameters which are signifi-
cantly non~zero. The prediction errors have a standard_
deviation of £0.074 (n°s™ ). There 18 a marked decrease,
with respect to the one-step ahead predictor, in the de~
rendence of §(t+4iﬁ) upon y(t) and §(t+3!t~l) to the ex-
tent that the estimate of %y is much reduced and the
B(qml) polynomial is found to be dispensable to all in-
tents and purposes. The process of prediction is now more
a function of the auxiliaxy variables and particularly
the weekly profile vl(t). Thus, for the four-step aheagd
predictor the effects of rainfall~runoff are not quickly
recognised through the signal y(t); the prediction of the
resultant peak flows are substantially attenuated and si-
multaneously the estimate of %y, for example, is congi-
derably "adapted" in order to describe the changes in the
system dynamics., However, after the tenmporary additional
flow Gy returns slowly to its Steady-state value for dry-
weather conditions. Hence, in spite of the inaccuragies
¢f the four-step ahead prediction we have a good example
of the adaptability of the predictor.
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Table 4 - The four-step ahead predictor, k = 4, with
2 auxiliary variables, m' = 2.

Auxiliary variables: vi(ﬁ) =y

vy lt) = ya(t)

Polynomial orders: A(qnl); po=1
=1y, -
leq }§ rl-=5
-1
Cholg ") xy =5

~

A priori estimates of the parameters, 0.:

: g’
a;  0.49 Ty, 0.53 Yoy 0.32

Yy, 0.16 Yy,  0.00

Y13 0.00 Yoy 0.00

Y14 0.00 Yogu 0.00

Yig =0.26 Yys =0.22

Exponential weighting factor, p = 0.995

A priori covariance matrix of the estimation
srrors, Py = (0.1)I.
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7.3. Comnents.

From,such a brief study of adaptive prediction it is a
little dangerocus to make generalisations on the method
of evaluating predictor structures; for a more complete
discussion the reader is referred to the work of Holst
[10]. Bearing in mind that the choice of , Pyr 8, and
the integers p, £, £, are all factors which affect the
initial rate of convergence of the parameter estimates,
the criteria  for predictor analysis should be based on

the steady-state performance.

Here, we merely indicate that first~order A and B poly~
nomials are preferred, partly because of the limitations
of the data which emerged from the identification studies
and partly since there is no immediately visible improve-
ment when higher-order polynomials are used in the pre-

dictors. Of the possible profiles for v i.e. those.gi~

T4
ven in egn. (21}, the following orderin; of goodness of
prediction (with 1 = 1} is noted: (1) y(t); (i) y4(t);
(1ii) y(t-168); (ilv) y(t-24). The inclusion of two pro-
files gives of the order of 5% reduction in the cumula-
tive loss function Vy (720) over the best single profile
predictor. However, the important conclusion is that the
mean profiles are seen to be consistently better than a
feedforward process from the previous day ox week. Further-
more, while only a short interval of observations for one
month have been examined, it is likely that seasonal vari-
ations and longer-term trends should be recpgnised'in any
practical application. In this case it is not difficult to
envisage a simple scheme for updating the profiles them-
sélves, although the adaptability of the predictor may ren-
der . this unnecessary.

The exponential welghting factor, ;,'is found to glve ge-
nerally improved results. The added flexibility that this
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affords is not required for the one-step ahead predictor.

} In contrast, the value of ﬁ might be reduced for the four-
staep ahead predictor where there is more difficulty in the
speed of adaptation between dry- and wet-weather flows.
For higher values of k the use of rainfall measuremenés

wonld be advantageous. Consider the case for rainfall be-
} ginning at time ty such that we have the rainfall obser-
vations ul(téi # 0, ul(tﬁﬂl) = {. Due to a mean transpor-
tation delay of Lty in the sewer network the runcff input
is first observed in y(t0+td) and the peak additional flow

Ed

in y(ta+ta+tp}; say. Let tm be a pure time delay in the

receipt of rainfall measurements, then

(1) we reguire k < tp if the predictox is to recognise
runoff flow early enough to glve reasonable predic-
tion of y(t0+td+tp) in the absence of rainfall mea-
surement; oOr

{1i) we require tm < tﬂ, if k& » tp; for similar obijectives
with the availability of rainfall measurements.

At the present time it is not easy to give anv precise

guantification of tg or t.,; we may guess, however, that

p

for the Kippala tunnel 2 < tg < 4 (hrs), while 1 < tp <
< 4 {hrs) as implied by the predictor results.
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8. SOME IMPLICATIONS FOR SEWER SYSTEM AND WASTE-WATER
TREATMENT PLANTS,

Thus far we have considered the solution of some aspocts
of parts. (i} and (ii) of the¢ problem formulation. The mo-
dels and predictors which have been obtained express the
dynamics of influent sewer flows to a treatment plant in
a relatively simple and compact form. Such knowledge of
the sewer network/waste-water treatment plant system is
important in two senses, as stated in the third section
of the problem formulation: firstly, in a "feedback' con-
text it may be used in schemes for the regulation of flows
within the sewer network; and secondly, it characterises
the crude material influx to the treatment processes,

The manner in which these dynamic models are incorporated
in control analyses and applications remains to be seen.
However, it 1s a reasonable assumption that the initial
synthesis of control laws will be constrained by the‘curw
rent practical limitations of automatic monitoring eguip-—
ment and final control elements - the perennial stumbling
block of water guality maintenance.

This section, therefore} takes a first look at the possi~
bilities for implementing control of the system. As such
it 1s an amalgam of factors absorbed from the avallable
literature and matters arising from the preceding identi-
fication and predictor analyses. In some ways the follow-
ing classification of sewer network/treatment plant con-
trol into two categories is a little arbitrary. However,
for the time-being it fulfils our requirements of clari-

fying those aspects which are relevant to the overall ob- -

jec@ives of improving plant operation.

]

[
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8.1l. Sewer Network Control.

Since transient flows should be estimated for both the
design and operation of a sewer network system it is un-
necesssary here to make the usual distinction between the
two problems. Nevertheless, the more specifically design~
oriented studies of Rogers [21] and Lindholm [143, {151,
for example, are only pertinent in so much as they impinge
upon our presgent concern with the control of a given ope-

ratlomal system.

Of more immediate interest are two major projects which
have dealt with the on-line monitoring and operation of
sewer flows although to a large extent they are also de-
sign studles. In a series of papers Anderson and co-
workers [1]1, [2], {201, describe a computer-based real-
time data acquisition system which has been installed and
is in operation for the city of Cleveland, Chio. Motivated
by & desire to reduce the pollution caused by untreated '
storm-water overflows they summarise their objectives as
follows: (i) the delivery of an essentially uniform flow
and pollution load to the plant during dry-weather condi-
tions, (ii} the reduction of high transient loads imposed
on the plant by urban runbff, {1ii) the elimination of by~
pass of untreated sewage at the treatment plant, and (iv)
the elimination of overflows from the sewer network during
both dry and wet weather [2]. The second project, con-
cerning the computer management of the sewer system of
"the city of Seattle, is reported in a comprehensivé docu~—
ment by Leiser.[l3]. 7

In the Cleveland study a mathematical flow model, drawn
along the lines of those described in section 2, forms the
basis of a dynamic programming routine for exercising au-~
tomatic control throughout the system. Specdific control
objectives would be, for example, to organise flow deten-
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tion and release . within thé network during and after

storm events; the final actuation of control is realised

by an ingenious combination of gates and inflatable dams

[20]. The Seattle scheme, in contrast, implements control

according to so-called rule curves for storage in a trunk

sewer and these are updated as the understanding of the

system improves, i.e. a prescheduled, but "adaptive", type

of contrel. Significantly, both studies suggest that down-

streamn storage of the flow, especially near the treatment

plant, is less effective than storage distributed at cri-

tical points throughout the sewer network,

It is beyond the scope of this discussion to comment Ffur-

ther upon the details of sewer network Flow control; clear-

ly, a consideration of such factors is necessary for even~
tual regulation of the influent to the plant since the net-

work has a sizeable and useful buffering capacity. It suf-~

fices to point out that, as these studies have demonstra-

ted, the first steps towards the innovation of automatic

control for sewer flows have yvielded encouraging benefits

in terms of economic investment, operational efficiency,

and water quality maintenance. Tt is particularly satig-

fying to note the attention paid to the problems of moni-

toring and data retrieval ‘and the referenced material pro-

vides an excellent background from which future applica-
tions may advance.

E S

Primarily through the use of storage tanks, but alsc,
to a limited and closely monitored degrea, within the
sewers thenmselves.
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8.2. Waste-~Water Treatiment Plant Controil.

Unlike many process industries a waste-water treatment
plant receives a raw input material whose variations with
time are large and of a poorily-defined character, Té be
able to guantify that character and predict 1ts time-va-
riations in advance of the event may be regarded as the
"raigon df&tre" of this study. However, éven if the re=-
sults of the identification and predictor analyses were
conclusive, our task of discussing the implications for
plant control is not an easy one: the reason being that
the dynamics of the various unit processes of treatment
are not well understood.

Nevertheless, some conjecture can be made on the problems
to be tackled at a future stage. Recent and continuing in-
vestigations of the primary sedimentation [12] and acti-
vated-siudge processes [17], [18] indicate that a know-
ledge of flow dynamics is crucial to the efficlency of
sedimentation and offers the possibility of flexible énd
tangible automatic control of the step-feed form of acti-
vated-sludge units. Thus, a good adaptive prediction of
the influent flow permits in theory the prior organisa-
tion of flows through the plant such that diurnal fluctua~
tions and the damaging shock loads of storm events may be
attenuated. Especially in the case of lamella sedimenta-
tion processes and the secondary clarifiers efficiency is
a function of maintaining the flow at acceptably low le-
vels. .

- A st
Indeed, this leads us to guestion the value of the Rippa-
la treatment plant operating practice. Referring back to
figure 6 it is evident that influent flow manipulation
produces large pulse inputs to the plant. Such disturban-
ces almost certainly mean that there is a transient pericd
when a large portion of the suspended solids pass through
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sedinentation process without settling. Whether the in-
troduction of this inefficiency is compensated by the in-
creased efficiency of solids-settling over the remaindex

of the 24 hr period is difficult to state for there are
other operational factors to be considered. As reported

in Olsson et al [18) the crude sewage buffering‘basin it~
self acts as a sedimentation tank; subseguently, flow de-
tention of more than one day is found to cause overloading
of the influent screens when the accumulated volume iz re-
leased.

0f course, the characterisation of the plant influent flow ¢
iz only half the information reguired for describing the '
crude material influx; a knowledge of the guality varia-
tions is impliea by the above. In this area the problems

of instrumentation are more restrictive to on-line predic-
tion and control., For instance, in order to obviate the dif-
ficulty, methods referred to in [14] propose a set of expo-
nential-decay curves for the quality (biochemical oxygen de-
mand) transient of storm runoff flows. Alternatively, while
some quality indices can be monitored automatically, Pew et
al [20]1 suggest the use of linear multiple regfession mo~
dels for the generation of runcff and sewer flow guality

as a function of the more traditional (and less easily mo~
nitdred) guantities of biochemical oxygen demand, suspen-~
ded solids, and coliform organisms. It is precisely this
kind of application where an adaptive predictor as presen~-
ted here can be of most benefit.

But much remains to be done and, as so often occurs in this
field, one has the feeling that we have only scratched at
the surface of a complex problem. It emphasises the real
need for further examination of the properties of treat-
ment plant dynamics and the clavdfication of control ob~
jectives. Egsentially, the synthesis of operational con-
trol laws for the individual units of treatment is a pro-~
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cess of creating or discovering flexibility in designg
which are at first sight rather inflexibie. Tn this senss
it is pleasing to note that, purely with respect to the
Kippala plant, the buffering well adjacent to the influ-
ent gates has an (observed) capacity of up to 20,000 mg,
This creates a retention capability of some 5 hours {at
typical existing flow-rates) with which to modulate the
influent flow to be consistent with contrelling the se-—
dimentation and activated-sludge dynamlcs. A feature which
is, therefore, not only significant in treatment plant conm
trol, but also reinforces the practicability of the flow ,
detention schenes proposed by Young and Beck [25] in their °©
studies of in-stream water quallty control., And that, in
the wider sense, is the ultimate aim of any examination of

treatment plant operation.
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9. CONCLUSIONS.

The major limitation of the study has been the nature of
the obgerved rainfall and influent flow data and, there~
fore, it is recommended that for any future developments
better data be obtained Or a more accurate synthesis of

the true influent flow be examined. However, if the er—

rors of pumping disturbances are ignored the models and

predictors presented here give gquite reasonéble results,
and it may be agsumed that the effects of pumping would

be less or even negligible in the true flows.

In off~line applications of a model for rainfall-runoff/
influent flow relationships the RRF model is more appro-~
priate and for on-line purposes the l-step ahead predic-
tor approaches the satisfaction of those practical con-
straints to which the system is subject: namely that as
little avtomated instrumentation as possible should be
agsumed. But the salient advantage of the black box me-
thodology over the models based on physical laws and ar-
guments ig the simplicity and compactneés of the rela-
tionships which are =20 derived. In whatever context the
models are used they should be consistent with the over-

all objectives of synthesising control laws which are
practicable. And at the present time the technology of
wvaste-water treatment is more amenable to the simple
rather than to the sophisticated.
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