LUND UNIVERSITY

Interaction in Computer Aided Analysis and Design of Control Systems

Wieslander, Johan

1979

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Wieslander, J. (1979). Interaction in Computer Aided Analysis and Design of Control Systems. [Doctoral Thesis
(monograph), Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/1b0cc36e-9f12-45fe-9fbf-56fe33cc508d

W ABojouyog| O einpsy puny - [CHUOT) ooy O juewinde(]

I H L

dIANVISIM NVYHO(

SWeisAG [ouoD) Jo
Ubise(] puo SIsAjpuy
peply Jejndwion)

Ul uouonIalY|

(646L)/222-1/(6l0L-1441)/2A41M7 “N3A02D

Interaction .in Computer Aided
Analysis and Design of Control Systems

Johan Wieslander

Interaction in
Computer-Aided Analysis and Design

of Control Systems

Johan Wieslander

Tekn lic, Ld

Akademisk avhandling som f0r avldggande av teknisk
doktorsexamen vid Tekniska Fakulteten vid Universi-
tetet i Lund kommer att offentligen flrsvaras i sal
M:E, Maskinhuset, Lunds Tekniska HOgskola, mandagen
den 21 maj 1979 k1l 10.15.

S1S-
DB

DOKUMENTDATABLAD enligt SIS 62 10 12

Dokumentutgivare Dokumentnamn Dokumentbeteckning

Lund Institute of Technology REPORT LUTFD2/ (TFRT-1019) /1-222/(1979)
Handiaggare DePt of Automatic Control Utgivningsdatum Arendabsteckning
Karl.Johan Astrom May 1979

Forfatiare

Johan Wieslander

Dokumenttitel och undertitel

Interaction in Computer Aided Analysis and Design of Control Systems

Referat (sammandrag)

The thesis discusses the use of Interactive programs to solve common problems

of analysis and design of Control Systems. The two main interaction methods,

command dialogue and question & answer dialogue are compared in the light of

program structure and interaction needs. A program module that handles the

~man-machine communication is described. It realizes an interaction language

with a macro facility, which is demonstrated to provide the means needed for

interaction adaption. The role of data structures is explored, and here the

possibilities of a Simula67 extension are made apparent. Finally, some demands

on the ideal Interactive programming language are sketched.

Referat skrivet av
Author

Forslag till ytterligare nyckelord

Klassifikationssystern och -klass(er)

Indextermer {ange kalla)
Interactive computing, Man-machine interface, Computer-aided design,
Automatic control, Computer language.

| Omfdng Ovriga bibliografiska uppgifter

222 ‘pages
Sprak
English

Sekretessuppgifter ISSN ISBN

Dokumentet kan erhdllas frdn Mottagarens uppgifter
Department of Automatic Control

Lund Institute of Technology

Bos 725, S-220 07 LUND 7, SWEDEN

Pris

Blankett LU 11:25 197607

Interaction in Computer Aided

Analysis and Design

of Control Systems

Johan Wieslander

lund 1979

To Boel

who pvatiently asked when

CONTENTS

1. INTRODUCTION coceosescssscsseassossosssscsscscsosasssasncss 7

2. COUPUTING PROBLEMS AND AVAILABLE METHODS IN CONTROL
SYSTEEJI DESIG{-\] 4 8 9 6 8 ¢ 8 6 6 6 8 @ 8 6 & ¢ 0 6 @ 8 & 6 8 @a &8 6 6 3 @6 C O &6 6 6 0 6 G 0 O 14

MeasurementsS scccecoccsocossscsscssssssanssosannsoaa 1D
Preliminary Analysis of Measured Data cecesccccocs 20
Data Analysis - Non-parametriC secessscsssscsacaca 22
Identification ceeeccccccccssscacscncsasosscacancscs 23
Model Building ceoecocosccossoscacsscosssnscassscaanssase 27
AnalySiS cecesccosccacsacccascacscscscssansssccsccs 29
TransformationsS eoeocecocccoosscsssscssconsscssanssscss 31
SYNTLNeS1i5 tuecoecocosaccocossacacsssossoscssasssscsasce 32
Simulation eeeesssccosccsccoccsaossossassacasssssacase 40
Implementations cesceccccccccencccososcscoasasssssaca 42

OO ~NdCUT s Wb

et

3. INTERACTION PHILOSOPHIES, PROGRAM ORGANISATION AND
i{.‘dE IYJTERAC,I‘IVVE USER e 6 86 ¢ 6 8 6 @ 6 G 8 0 6 6 6 € 06 € @ 0 ® 6 6 &6 6 8 8 &6 © O 6 O 43

Interaction HeedS ceeessoacsscsocosssssosscscsasasssce 43
Interaction Models cocesessoccsoccccccsosssacscsasncecs 47
Question & Answer DialogUe cesscescsssscssocssscca 49
Properties of the Question & Answer Dialogue 51
Command Dialogue seeecccascccsscccssasscssscsssacscs D4
Properties of the Command Dialoglue ceessccccccasss 56
Demands on Program Organization c.ceccccsscssccsass HI
Bffect of Dialogue Type on Program Organization .. 62
Interactive User Cathegories seseccescssccsosccoscas 06
The Question of Initiative and What do We Choose . 69

T WO I GU b Wb

=

4, THE COMMUHICATION MODULE INTRAC weveeescsccscccnscceae 73

Command Structutre and the Data BaSe cecescoccssssee 714
Overall Program StrUCLUCE cossscccescscssccocssccs 10
Sketch of the Structure of INtrac ecsosesssscosscassa 719
Action Routine Structure. Decoding Primitives 82
Facilities in the Intrac Languade ccosccssocceaccaaa 87
Intrac Statements cooescccoeseasccsccssssscocnosaacscs 91
How to Use the Macro Facility ceccscescscscsccssas 906

~SLOY U LD RS

5'

DATA TYPES5 AND DATA STRUCTURES csscsescncoacas

SCAlArS cceecssoseccscossscososssscscscasascss
AYYBYS ccocossccsccscscccasosocosccscssccsssa
OSYSCEMS cosocoascscocassccossosaaocssscsassss
Review Of Requirements .ceccoecccsccosssasos
How it Could be DONE seevvossssccssssscsascs
Implementation in FORTRAN ceccescssccsscccos
Files in General ..cccsocsscscosscssssascsss
Data Files and the File Head coccocosscsaocs
Access Rules for Data FileS cesscesccocsccoas
19 Specific Examples of Data FilesS scecccsscas
11l AggregatesS coeseccscccccaococsscosansacsanscas
12 System FileS cceccsoccsccssososcnsaacasssasss
13 Access Rules for System FileS ceececscsccos
14 AtEribULeS coescavsscecosssocscaasasssscosss

i
]

IMPLEMENTATION EXPERIENCES AND HARDWARE

OFTWARE

REQUIREH}.EL‘Q;?S 6 8 0 86 06060 G©8 608 6 0¢ 6 866 6 ¢ 0 GG 6 0B G886 066 86006 & @

The Start cssseccscosscscosscossscsasssosccsas
The First Interactive ProgramsS secsssescess
Interactive Hardware ceecescecsocccossccoscas
Bvolution (1973 = 1976) .eescccocccccacssas
Software Problems ceesccossssscccoscsonascasca
MAtUration seceocssscccososccsssscocsosoacssa
ConcluSioNn coesescsccsscscscsosssscocaacossas
The FULUre cescesccssscocccscscsssossosssascses

CON OV UL = WIS

EXAMPLE 1. IDENTIFICATION ON THE BALL AND BEAM
PROCESS 6 6 @6 2 6 2 0 8 0 0 G 6 6 G @ © @ 6 8 06 G 06 S 6 0 6 6 0C 8 0 6 6 660 8 6

EXAMPLE 2. DESIGN OF A MULTIVARIABLE REGULATOR
A CliEf‘/iICAL REACTOR 6 6 6 88 66066 006G G636 006GCG 806G e 06 CG0Ga o

o
e
o
=
x
=i
=
@]
3
w

6 0 6 56 86 6 6 0 686 ¢ 606G G 0aeé s 6006606060663 6 606aea

APPELQDIX 9 6 6 6 6 6060 0006666 G4 60O0G6S6 806 060Ga 6 06066066668 06 ¢

1 Idpac Command LiSt .ecsssccsccsscoscccaascocs
2 Modpac Command LiSt.cescsccsossssccosssacsss
3 Synpac Command LiSt.cesssccocssoccasscocscesoe

FOR

106

167
198
111
114
116
125
126
128
131
134
137
149
142
143

146

146
147
149
159
152
158
159
164

187

204

207

207
214
220

1., INTRODUCTION

Automatic Control emerged as a separate discipline in the
late forties, when the great advances 1in servo mechanism
design made during the 2nd world war was made public. The
methods employed were largely based on the Laplace transform
and frequency response methods. They were largely restricted
to single input = single output systems but were otherwise
insensitive to the complexity of the system. The Jgreat
advantage was that the methods were ideally suited for
graphic representations. This allowed much of the design to
be done wusing diagrams, paper and pencil. Special purpose
templates were available to aid in the drawing of curves,
further decreasing the amount of computations needed. The
technigues developed in the forties and fifties are still
adequate for many problems encountered in control

applications.

The introduction of the general purpose digital computer had
a dramatic dimpact on control theory. One conseguence was
that a numerical solution to problems became both feasible
and acceptable. This in turn opened new directions for
research. The result was an expanding theory for control
systems Dbased on a description 1in the time domain,
Noteworthy examples are the linear-quadratic optimal control
theory and Kalman filtering theory. Among other important
characteristics are that they allow a solution to problems
with several inputs and several outputs. One decade later,
in the late =sixties, generalizations to the fregquency
response methods to the case with multiple inputs and
outputs became known. Common to all these methods is that
their application to ©problems other than mere textbook

examples leads to substantial numeric computations.

Thus the computer enters into the 1life of the control
engineer as the most important design tool. Important

guestions are then raised: What are the needs of the

engineer? How can the powers of the computer be made

available to him satisfying these needs?

Computer use

The normal use of a computer for design purposes in the
sixties was in the form of batch computation, i.e. a problem
and the intended way of its solution were formulated
entirely and in advance. This information was then fed into
the computer through some gueuing system. After some time,
ranging from minutes to several hours (or even days), the

result was available.

The use of a computer in batch mode was forced on the design
engineer by economic factors such as efficiency in the use
of expensive equipment. Some acute drawbacks of this way of
using a computer were the need to plan every detail in
advance, the idle hours in waiting for the result, and not
least the sensitivity of the wprocedure for simple errors in
the input data. A single misplaced digit or other typing

error resulted in the loss of time and money.

The principal and fundamental drawback with batch computing
was that it did not exploit the important and complementary
qualities of computer and man. The computer has great
ability for computing and data handling. ian is good at
things like using experience and prior knowledge in decision
making, detecting patterns in results and generally applying
"common sense". The combination of these good gqualities of
man and machine would have a great potential in any
application field. This 1is the goal in the design of

interactive programs.

Interaction

When computer power began to be available either through
time-sharing terminals or through mini- or midi-computers
run in open shop, there was an opportunity to realize the
desires for a closer interaction between computer and man. A
natural first step was to include guiding gquestions in the
input phase of the vprograms to avoid the annoying errors
caused by mistakes in order or format of data. The second
step would then be to show results as they become available
together with a list of possible next steps. The user could
then direct his future actions based on the results of

previous steps.

This approach which is called gquestion & answer interaction

is very common and has brought great advances in computer
use into many application fields. Although it meant a great
step forward, some properties of this interaction method may
be regarded as drawbacks, at least in some cases. This has

lead to an alternate approach, viz. command interaction.

This has different properties, with advantages and

disadvantages.

The discussion of typical interaction needs, how they may be
satisfied and what problems that have to be solved, are the
main topics of this thesis. Along with this material of a
general nature, there will be specific examples taken from

programs and program modules in actual existence.

The background

The background £for this thesis and the source of the
experience and results reported, 1is a project at the
Department of Automatic Control, Lund Institute of
Technology, Sweden. The goal of the project 1is to make

common methods of design and analysis available to the

control engineer in the form of interactive programs. The

result so far is:

a) Idpac, for identification and data analysis.
b) Synpac, for synthesis of multivariable systems.
c) HModpac, for analysis and transformation of models.

d) Polpac, for design of single output systems on transfer

function form.

e2) Simnon, the result of a parallel project, for simulation

of nonlinear systems.

All of these programs are identical in structure and use the
same library of support software, including the interactive
communication module Intrac. The first three are used in the
examples in Chapter 7 & 8. Their command lists are included

in the appendix.

Some of the programs have been available for a long time and
are used routinely by people outside the department to solve
real-life problems. They have also been exported on a

commercial basis.

An outline of the work

Chapter 2 is a survey of sonme computational needs
encountered in Automatic Control. The presentation is based
on a hypothetical design process starting with measurements
to obtain parameter values, the actual estimation of such
parameters, analysis and synthesis stages, simulation and
implementation of control strategies. The aim of this
chapter is to show that the needs for interaction are more
pronounced 1in some areas than in others, and that

interaction may play an essential role.

Chapter 3 starts by extracting the typical needs on
interaction found ian Chapter 2 into a wmore application
independent form. Then the two main contenders, the guestion

& answer dialogue aporoach and the command dialogue approach

are scrutinized and compared, also in the light of
programming requirements. Finally, the interactive user is
studied and found heterogensous. This gives rise to the
guestion of which type of user to have as reference in the
design of interactive programs. The discussion of this

matter concludes Chapter 3.

Chapter 4 is a presentation of the communication module
Intrac used 1ina the interactive programs mentioned above.
Intrac imposes a certain structure both on vprograms based on

his module and on command lines directed to such programs.
These structures as well as the internal structure of the
module itself are discussed. Intrac efectively defines a
language for interactive man-computer communication. The
properties of this language is examined and some of its
statements are defined. Intrac offers a oossibility to
dynamically define macro commands. This facility is shown in
the final section to allow the adaptation of the interaction

form to different levels of user needs.

Chapter 5 starts with a discussion on the different data
types encountered in programs concerning control systems. It
is demonstrated that in system descriptions there 1is a
strong desire to be able to reference data of different
internal structure. This reguirement 1is vossible to satisfy
in programming languages like Simula, and the possibility to
use this as a basis for interaction is briefly explored. The
rest of tne chaoter describes how these problems were solved
in down-to-earth FORTRAN,

Chapter 6 is the last one. It gives a historical account of
the development that resulted in this thesis. As side
effects, experiences with interactive hardware as well as
software ©problems are discussed. As a conclusion, some
thougnts on a desirable interactive programming language are

given.

finally, there are two examples. They are intended to give
some flavour of the use of the programs referred to in this
thesis. Example 1 describes a laboratory vrocess and a
measurement experiment performed on it. The result is used
to identify a model for the »nrocess. The example shows the

use of a straightforward command dialogue.

txample 2 describes the design of an output feedback for a
system taken from literature. The convenience of special

purpose user defined macros is obvious in this example.

A concise description of available commands in the programs

used for the examples is included as an appendix.

Acknowledgements

The thoughts and experiences reported here are results of a
project extending over several years, supported by the
Swedish Board £for Technical Development under contracts
73-3553, 75-3776 and 77-3548,.

Many people, directly or indirectly associated with this
project, have contributed to 1its success. Ivar Gustavsson
with his great expertise in identification problems has
played a significant part in the design of Idpac. The same
should be said about Gunnar Bengtsson, Lars Pernebo, and
Ann-Britt Wdilsson regarding HModpac and Synpac. The many
ideas of Hilding Elmgvist have influenced the command module

Intrac and much programming methodology. He also co-authored

[Wies78] from which much of the material in Chapter 4 was
taken. Tomas Schdnthal and Tommy Essebo did much of the
programming work and were responsible for the many

implementational details.,

A most important factor has been the never ending interest,
support, and stream of suggestions and good advice from my
thesis supervisor prof. Karl Johan Rstrdnm. Noteworthy is his
ability to create a nice athmosphere at the department,

which has made the work possible and worthwhile.

Eva Dagnegérd typed the manuscript with great interest and
Britt-Marie Carlsson was very helpful 1in the preparation of
the figures. Leif Andersson kindly read the entire
manuscript, <finding many errors. The access to a high
quality printer at +the Lund Computing Centre is also

gratefully acknowledged.

7. COMPUTING PROBLEMS AND AVAILABLE METHODS IN CONTROL
53YSTEM DESIGHN

In this chaoter we will view the task of control system
design through the various possible steps from measurement
(or experimental) phase to the implementation phase. Our
main interest will be 1in locating those points where a
computer may be essential, what methods are available, and
not least, the requirements on the man-machine interaction.
In this way, we will gather restrictions, requirements, and
criteria for the design of interactive programs for computer

aided design.

Some if not all of the following steps are likely to be
taken in the path that leads up to a working control system.
A model of the process to be controlled is likely to be used
in the design phase. This model could be obtained through
system identification or from model building based on basic
physical principles. Also in the latter case, experiments
may have to be done to obtain parameter values. Thus, a
measurement step is likely to be used in the early stages of

a design.

Having obtained measurement data the first task is to do a
preliminary analysis to locate obvious errors, to perform
scaling and <calibration etc. Dynamical properties can then
be estimated by non-parametric methods (correlation
analysis, spectral analysis etc.) or Dby identifying a
parametric model. An alternative is to use known or measured
physical properties to build a model. Doing this, analysis
and simulation of the entire model or part of it can be of

much helpo.

prior to the design phase, the designer will try to obtain a
feeling for the relevant properties given by the model. This
can be achieved through analysis, simulation, or

transformation of the model to various alternate forms. The

actual control design can be carried out using a variety of
methods, depending on the complexity of the problem and the
degree of detail given by the available model. Finally, the
implementation of the control strategy may in some cases be

included in this chain.

Thus measurement, identification, analysis and synthesis

will be the areas of computer use studied in this chapter.

2.1 Measurements

Through measurements in a controlled experiment situation,
it is often possible to gain the partial knowledge of the
process that is egsential in many control design methods.
The type and degree of this knowledge determines which path
to follow in the design. In some cases we know things in
advance, through experience, general knowledge of physics
and chemistry etc, or through component specifications. If
we intend to use this prior insight in the form of model
building, material constants, physical dimensions, heat
transfer coefficients etc, are likely to be used. The need

to measure such parameters thus arises.

Static and Dynamic Measurements

An experiment to determine parameters often consists of
keeping some variables at a number of different fixed values
and measuring one or several dependent variables. The
coefficient or <coefficients of interest are then obtained
througn some curve fitting method. Practical problems that
may arise 1includes the need to keep the independent
variables constant, and to wait until things have settled
before the actual measurement takes place. We might call
this a static measurement situation. In some cases though,

this implies some sort of regulation, making the »problem

semi-dynamic in nature. Figure 2.1 gives an example of a
system where some parameters are directly measurable with a

static experiment.

1

A dynamic measurement situation is when the system 1is

excited with time-varying test signals, and when both inputs

and outputs are recorded as functions of time.

The choice of

input signals will depend on

the expected properties of the

system; typical are PRBS-signals, sine-waves and earlier

measured and recorded plant

signals. This case 1is also

A dynamic measurement

followed by

indicated in Figure 2.1.
some identification step will give the system parameters

although in another form.

System
LL (j/ L L LSS
g:: Equations
k— |=]d
::j mx + d% + kx = f(t)
l) or
X m X + 2EwX + wex = K- f(t)
k d 1
= [= = K = —
f(t) “mF 2V mk m

Figure 2.1. A static measurement c¢ould for instance be:

Apply £(t) = f@, observe x(w) = x,4, then k = f,/x,.

A dynamic measurement situation: Apply time-varying f£(t),
Observe x(t), then use identification technigues to obtain
w, &, and K.

s

A practical problem that often arises 1s that the test
signals may have to be (partly) the output of a regulator in
order to Kkeep the system under test stable or within safe
operating conditions. On an industrial plant in normal
operation, a requirement that production 1is not to be
disturbed is natural. This gives restrictions on the test
signals. In conclusion, dynamic measurements are made when
at least part of the plant is in operation. For the ultimate
control design to be relevant, the conditions must be as

close to normal as possible.

Measurement Problems

A number of operations have to be performed during the
different stages of the measuring experiment. First the
channel assignments must be defined, i.e. the correspondence
between wvariables and the hardware addresses in the
measuring egquipment. Likewise, input range and scaling

factors have to be chosen.

After this, the hook-up has to be tested, to gain confidence
that it is indeed the intended guantities that are obtained.
Also, transducers have to be tested and maybe calibrated.
Further, it is often useful to be able to document the
conditions and parameters of an individual experiment, e.g.
which of the wvariables that are actually recorded. The
latter need stems from the fact that more variables may be
connected to the measuring equipment than are actually

interesting in a certain experiment.

During the experiment several facilities may be of interest.
Useful features are the ability to inspect data visually, on
a chart recorder or a computer's graphical display unit,
simultaneously with their aguisition. In this way, obvious
errors can be detected at once and the experiment can be

repeated. If data is to be wused to estimate process model

parameters, at least some methods allow this to be done in
real time. If this is done, the experiment can be terminated
conditionally, when the desired accuracy has been reached.
This may also be a method of detecting outliers, i.e. single

measurement errors,

Finally, during the experiment, data should be recorded in a
format suitable to the following analysis tools.

Use of a Computer

Special purpose equipment is available on the market that
performs some of the operations mentioned above. On the
measurement side, data loggers are common and can handle
basic checkout and data recording operations. Correlation-
or frequency analysers are useful to determine process

dynamics.

Most modern equipment of the kind mentioned above is built
around a mini- or micro-computer, maybe with some operations
implemented in firmware. This field 1is currently growing
very rapidly. Of course, a general purpose mini- or
midi-computer could be used as well, provided suitable
gsoftware and the necessary computer process interface
hardware were available. A general purpose computer will not
be as fast in such operations that the special purpose

equipment was designed for, but is more flexible.

In many cases, the final control design will be implemented
using a computer, maybe in a hierarchical configuration with
many small slaves. Using this computer for the measurements
ensures that the results reflect the situation where the
control is going to be wused. (E.g., time constants in
transducers will be accounted for in the models.) A computer
will also be tremendously useful 1in the intermediate steps.

The use of a general purpose computer for the initial

measurement phase will make the compatibility of programs
and data more easy to attain. Indeed the same computer might
be used for the computer aided measurement, analysis and

design steps, provided it is adeguately equipped.

Interaction

The aim so far has been to demonstrate the multitude of
measurement tasks and problems, our interest being the
interactive use of computers. Given that we choose to use a
general purpose computer to satisfy our needs, what demands

do we have on the interaction with the programs?

Clearly, although the path through the various stages of
testing the hook-up, calibration, selecting variables, doing
the measurement and documenting the experiment is generally
applicable, the number of possibilities 1left open at each
stage is large. Furthermore, measurement experiments may be
performed relatively infrequently. These two observations
point towards interaction methods with a high level of user

guidance.

In repeated experiments, a number of operations are usually
performed in a certain sequence with no or small alterations
between times. This situation contrasts with the initial
setup o©of a measurement series, when testing, channel
selection etc. are being done, and when improvisations are
common. All in all, the measurement situation exhibits a
wide variety of interaction patterns. There are conflicts
between desires for flexibility, guidance or for fixed
sequencies of operations for standard problems. Figure El.5
in Example 1 shows how this problem was solved in a certain

implementation.

2.2 Preliminary Analysis of Measured Data

After data have been measured and recorded, the analysis
phase follows. The first preliminary step serves to validate
data and to perform proper scaling and adjustment
operations. Data validation may e.g. be done by visual
inspection of a plot of the data. In this way isolated
measurement errors can be detected. Correction can either be
by eye or by some interpolation formula. Automatic detection
of measurement errors (outliers) could be done by various
techniques such as (adaptive) filtering with tests or

interpolation with tests.,.

The next thing to do might be to convert the measured values
to engineering units. At the same time a calibration value
is subtracted. In some instances a more complicated
operation should be performed. An example is the removal of
the effect of a known non=linearity in the measurement
transducer. Another one is correction for known
interdependencies between measurements, e.g. temperature
compensation of a flow measurement. See references [Jens76]
and [Hall78].

Following this phase, the data may have to be prepared e.g.
for a following identification step. Identification methods
are, at least 1in some cases, sensitive to DC-levels, or
trends, in the measurements. Thus, trend estimation and
removal is an operation that will be used here. Access to

digital filters may also be useful.

Finally, statistical data such as mean, variance, largest
and smallest value etc, may be of interest. Also more
special qualities such as amplitude distribution or level

durations may be desired.

Interaction

In general, operations to be performed in this area are
largely determined from time to time by the operator,
drawing on his experience and ability to detect patterns, as
e.g. in the detection of ‘"curious points" (errors) in a

measured signal.

Some of the possible actions are likely to be ready made,
such as displaying of data, modifying and scaling, trend
estimation etc. The user interaction is then to choose among

alternatives and decide on some parameter values.

A more difficult oproblem is with more special purpose
facilities such as linearization and the computation of more
exotic statistical properties. The problem is that they will
mean the inclusion of new code to be performed by the
computer, rather than a choice between parameterized
alternatives. This is a situation one order of magnitude
more difficult to handle, as will be discussed in Section
3.1 'Computation structure'. The ability to interactively
specify new computations is, however, very useful, as it
solves tne problem of how to provide facilities wich are

indispensable for some users and not of interest to others.

Finally, let us observe that although this preliminary phase
is typical for the case where operator interaction 1is
valuable, cases are likely to occur where a large number of
experiments are to be subject to the same treatment, i.e. a
possibility to automate the operations would be nice. This

is discussed in Section 3.1 'Interaction structure'.

2.3 Data Analysis - Non-parametric

This section serves to describe some standard methods used
to find the dynamic properties of systems or signals, and

the type of interaction likely to be used in applying them.

Dynamic properties of signals are often described by their
covariance functions or their gpectral densities. The
spectral density can be computed from the covariance
function or directly using a fourier transform technique.
What happens to these properties when a signal passes
through a dynamic system can be found theoretically, e.g.
assuming stationary signals and linear systems. This gives
some possibilities to determine the properties of the
systems, once input-output signals from the system or some

of their properties are known, see Figure 2.2.

Known Known
u(t) y(t)

ry(1) N S ry(T)
U(jw) Y(jw)
¢y lw) Dy (@)

Known relations:

+
g
il

o -8
=0
—~
~
SN
S

by () = H(=3u) o, (w)

Figure 2.2. Alternative known system input/output quantities
and their known relations, usable 1in order to extract a
description of a systen.

Algorithms to perform the indicated computations are
well-known; the PFast Fourier Transform to find the U(jw) and
Y(jw), numeric deconvolution to find h(t), and the

computation of ®uy(w) or oy, (w) from r,, (1) and ry, (7). In
practice, however, some problems occur, due to the influence
of noise. Elimination of noise is e.g. done by averaging
between different runs in the case of fourier transformation
or by the use of windowing in the <c¢ase of spectrum
calculation. These techniques are often an area for operator
intervention since parameters such as window width should be
selected with regard +to the noise 1level and the actual

results obtained.

Interaction

Summarizing, we f£ind that the needs for interaction in the
task of data analysis are moderate. The basic need 1is for
the operator to be able to specify which data to use and
then to select a suitable algorithm. The only remaining need
and where some experience and judgement capability can play
a role 1is in the choice of the noise reduction parameter,

i.e. the window width.

2.4 Identification

In this section we treat the computation of parametric
models from measurements of the inputs and outputs of the
system . A parametric model is e.g. a state space model or a
rational transfer function as opposed to e.g. a transfer
function given as a table in w of amplitude and phase. The
importance of parametric models is due to the fact that a
number of design methods require this description of the

given system.

Let us first assume that the system indeed is given by a
tabulated transfer function, either as a result of a direct
frequency analysis experiment, or as a result of operations
described in the previous section. The adaption of a
rational transfer function to exhibit roughly the same
frequency response would be one way of obtaining a
parametric model. This operation has been investigated in
the literature [Bosl72] using various numeric methods to
minimize the difference between the given frequency response
and the one computed from the model. Problems have sometimes
been encountered. Several of the difficulties are typical of
situations where a human operator would be able to play a
role, e.g. to determine a desired model parameterization;
order, real or complex poles/zeros etc. The operator would
also be able to indicate wnich part of a given

amplitude/phase characteristic is most important to imitate.

Identification means the computation of parameters in a
model of some assumed structure from a registration of the
input and output of the system as functions of time.
Examples of model structures used are transfer functions,
multi input ARMA models and state space representations. A
noise input is often included. Depending on the assumptions
made on the disturbances and on the structure of the model,
several different methods are known from literature.
Usually, the methods give results with known statistical
properties. This gives a possibility +to answer questions on
the selection of a proper model order, either through a test
on the achieved loss function reduction, or through tests on
the residuals, i.e. the estimated white noise in the noise

model.

There is not yet any totally satisfactory way of choosing
model order and other structural indices. Hence, this
operation can not be automated, rather this is an area where
a human mind still can contribute. This is so because the

desision must be based not only on the value of test

guantities, but also on a-priori knowledge of the identified
system and gualitative judgements of the properties of the
achieved model. The final choice will also be influenced by
the intended use of the model. The desired properties of a
model to be used for control design will depend on the
design method and will be different from those of a model
used to gain detailed understanding of the ©process itself.
Cf. Example 1.

Other things may come up, calling for human aid. One example
is to guarantee that convergence to a global extremal point
has been achieved. This is typically done by altering the
starting point in the cases where a hill-climbing algorithm
is part of the identification method. Finally, some
conditions may arise where a decision to revert to an
earlier stage might be necessary, maybe as early in the path

as a new experiment. A few examples illustrate this.

a) A previously undetected measurement error is likely to
show in the residuals. Go back to the preliminary
analysis phase and try to correct the erroneous point.

b) If the results are not as expected, one possible cause is
that the measurements contain a bias. Go back to the
preliminary analysis phase and try to subtract mean
values or remove trends.

c¢) The accuracy in the parameters are poor. This is probably
due to the measured input-output sequence being too short
or containing too little power in the important freguency
range. Redesign the experiment and go back and make a new

one.

Methods exist for identification of models of many different
forms. The problems and needs for interaction described
above are always relevant, but in some cases there are new
ones. A demanding problem and one where interaction would be
of great importance is in the identification of non-linear

models. Known practical techniques allow determination of

parameters in such a model, but the specification of the
model structure, 1i.e. the form of the non-linear
differential equations, has to be done through human
intervention. The problems arising in interactive
specification of equations are discussed in Section 3.1

'Computation structure’,

Interaction

The interaction needed in the identification field is of
several types. Of course, there are the basic needs, the
specification of method (and desired model order) and of
which input-output data to be used. Then there may be a
second 1level where initial estimates are defined or
parameters are fixed to certain values, additional outputs
are demanded etc. After the identification the results
obtained will be scrutinized by various methods, including
visual inspection. The operator will probably then change
the set of parameters governing the identification algorithm
in order to improve the result. Thus, the identification
process 1s an iterative one, with heavy numeric computations

interspersed with operator actions of many different kinds.

In the case of a series of gimilar measurements on the same
object, it is reasonable to expect that a certain procedure
will evolve that will solve the problems intrinsic to that
object and its environment. For that particular application
it would orobably be desirable to be able to define such a
procedure once and for all and be able to invoke it easily
and also to be able to easily make minor modifications.

2: 27

2.5 Model Building

in the preceeding two sections we encountered methods to
obtain a system model by mathematical operations on measured
data, assuming that the system already existed. This may not
be the case, or measurements may not be feasible because
they would violate safety requirements or impair production.
In this situation, a model <could be obtained through
application of general knowledge of physics, chemistry,
mechanics etc. Modelbuilding on this basis may show
difficulties, maybe severe ones, not generally in the area
of computing and datahandling, but rather in assessing what
are essential properties and relations of the system. This
is a task for the model designer and no computer can do this

for him. However, some sub-problems can be handled.

A good simulation facility, see later and [Elmg75], may be
helpful. It would give a possibility to check the
credibility of partial results during the various stages of
development. Likewise, an advanced facility 1like the one in
[Elmg78] will offer services like generic submodels, a
powerful connection operation and the wuse of implicit

relationships.

A risk in model building is to include some aspects in much
detail just because the details are known. A good simulation
facility can help to determine those details that contribute

to the overall credibility of the model.

The modelling effort might give a result in the form of a
system of non-linear first order differential equations.
Although very valuable for the assessment of the final
design and for other purposes, such a model would have to be
linearized before it could be used in most design schemes.
This could be done either by formula manipulation methods,
or through numeric differentiation. Although techniques for

formula manipulation are known and have been so for many

years, no application of this type 1is known. In general,
such methods seem to imply more severe demands on the
programming language than are otherwise common in
interactive programs. Linearization by numeric methods would
not be too difficult to include in an interactive non-linear
simulation program., The additional reguirements on
interaction would probably be limited to the specification

of an operating point and one or two algorithm parameters.

A model of a system may also be obtained from another and
more detailed one. A high order model might be required to
describe all aspects of a given system but could be
unnecessarily complex for control design. Techniques are
availlable that tries to retain essential dynamic properties
of a model but with lower order. The methods are all
somewhat arbitrary, so human interaction 1is <certainly
advantageous. Criteria such as step- or impulse-response oOr
frequency response agreement would have to be Jjudged. The
performance can be improved by altering weighting factors,

the order of the reduced model etc.

Interaction

Summarizing, the field of interactive model puilding is to a
large extent unexplored. Reguirements are mostly basic -
choosing method and algorith parameters. 1In model order
reduction, elements as result Jjudgement and iteration are

found.

2.6 Analysis

The analysis phase serves to gain knowledge of the
properties of the system model. The type of questions asked

are e.9.:

- Which input influences which output?

- what is the bandwidth?

- What is the degree of stability?

- Is the stepresponse oscillatory?

- Is the system observable (controllable)?

- Is there a steady state error in the control loop?

Such questions could be asked during the model building
phase. Some are relevant only for linear systems, some can
be given a guantitative answer, others are more gualitative
in nature. Answers to questions like the ones above will
indicate if the model is sound, or if something is wrong.
Likewise, during system construction, guestions about
observability and controllability will give answers on what
transducers and actuators have to be included in a new
system. In control system design, answers will indicate what
method to use, what design results and performance to expect

and during the work, will help to evaluate the achievements.

In general, many control system design methods are based on
certain analysis techniques. This will be elaborated on in
3ection 2.8. As have been hinted at above, analysis methods
are bound to play a significant role in modelling and system
construction as well. The analysis methods are thus likely

to be used iteratively, bringing interaction into focus.

Let us first observe that simulation may in many cases serve
as a powerful tool for analysis. The trained human operator
will draw many useful conclusions from the curves obtained.
Although the information may be in a less quantitative form,
it is likely to have a strong intuitive appeal. Simulation
is treated at greater length in Section 2.9.

It 1is important to note in the following that some
gquantities of interest may be found Dby inspection if the
system is on a special form, while if not, quite complicated
computations might be needed. Thus there 1is a strong
connection to the next section, Transformations. The system
order is such a guantity. In many cases (e.g. state space
form) it is apparent directly. For a transfer function

matrix, however, the computation is much more difficult.

The question of controllability/observability can be
answered for systems on state-space or polynomial matrix
form. With some additional effort, a decomposition in state
space of controllable and observable, uncontrollable and
observable etc. etc. subsystems can be obtained. The
practical problem of assessing "how controllable" etc. is

more difficult, but can be solved.

The question of stability is similar in that methods exist,
and are used, that give the same type of YE3/NO answers.
However, many analysis tools such as root locus computation,
eigenvalue - pole computation etc. not only give a direct
answer concerning stability, they also give an indication of
the degree of stability. These methods are also often the
basis for design. Frequency responses often convey the same
type of information, i.e. stability and degree of stability
can be determined. With some experience, qualitative
properties of the system responses can also be extracted.
Furthermore, the computation of the frequency response of
systems on transfer function or state eguation form 1is
rather straightforward, and the display of the result in the
form of Bode, Nichols & Nyguist diagrams have strong

traditions.

Finally, it should be emphasized that quite a number of
guantities Llike pandwidth, step resgponse, rise time,
solution time, error & stiffness coefficients, etc. in most
cases are easy to compute. The inclusion of such facilities

is more or less a matter of taste.

Interaction

The needs on the interaction are mainly the basic ones:
choice of operation and specification of the system and
representation in Qquestion. Operator intervention in an
analysis method as such is not generally needed. However,
the analysis operations may be intimately connected with
other (iterative) operations such as design, and it is quite
pogssible that it would be natural to group sSome steps
together into a seguence to solve common subproblems.

2.7 Transformations

A system may be represented in many different forms, see
Section 5.3. Transformations between different forms exist.
Generally speaking, no special needs for interaction are
oresent, mainly because of the nature of the problem. For a
transformation to be interesting, it should be one-to-one

and independent of explicit choices.

There are two exceptions to this, one is the transformation
from a polynomial matrix form to state space form. The
selection of state variables may not be unique but could be
done interactively to ensure that the most natural choices

be made.

The other one is where several subsystems are combined into
a single transformed system. The specification of the
desired connections would differ according to which quantity
of the combined system is considered interesting, e.g. the
control signal or an internal wvariable in a closed loop
system. Interesting signals should be included as outputs of
the system. An example is the command SYSOP used frequently

in Example 2.

2.8 Synthesis

This section will discuss synthesis of linear automatic
control systems. In this treatise this problem is considered
the main one, the earlier sections and the following ones
describe subproblems encountered. Therefore this section
will be somewhat 1longer. The first subsection will discuss
general ideas on control system design. The next will serve
to classify the problem and to treat some design methods.
Frequency domain methods and time domain methods are then
treated in two separate subsections. Finally an attempt to

condense the interaction requirements closes this section.

General Ideas

The synthesis procedure aims at obtaining a certain goal.
Sometimes, this goal can be expressed as a set of relations
to be satisfied. Examples are requirements on bandwidth,
error coefficients, amplitude- and phase margin, solution
time, rise time, overshoot etc. etc. These aguantities
represent knowledge of desirable and/or attainable
characteristics in terms of precision, speed, and stability.
It should also be noted that these guantities often describe
the same thing. The rise time measures the speed of
response, as does the Dbandwidth; the amplitude and phase
margin measures stability, as does overshoot and solution
time. The type of specifications used are a function of the
intended use of the system, the design method and the
designer's intuitive feeling, experience, and preferences.
In some cases, aspects of the design goal are hard or
impossible to define in terms of numbers. Instead, the
designer has to use his own notion of what "nice" properties
might imply. An example is the design of aeroplane dynamics,
where subjective «c¢riteria (pilot rating) play an important

role.

In many cases, synthesis consists of extending methods and
theory to a new field where they approximate the real
oroblem. An obvious example is the use of linear methods
almost everywhere although the real 1life in most cases is
non-linear. The art 1in synthesis, as in engineering 1in
general, is to choose the appropriate method of
approximation, to apply common sense, intuition, and
a-priori knowledge. Some ways of doing this has proven
sufficiently successful to be referred to as synthesis
methods. They are a combination of some analysis method,
maybe in a slightly modified form, together with special
rules and concepts that help in altering some defined design
parameters in such a way that the resulting change 1in the
analysis is predictable and the desired one.

It is clear from the above discussion that synthesis methods
are with few exceptions iterative, and hence, if wused on a
computer, interaction is essential. In the following, we
will try to show that this general characterization fits on

some of the commonly used metnods.

Classification of the problem

Figure 2.3 is an attempt at a <classification of design
problems and methods. Generalizations are dangerous 1if they
are treated as the ultimate truth, but it is hoped that this

figure may convey some useful notions.

Starting at the 1left hand side, we see that 1f it is
possible to use a high gain, this is <correlated to the
possibility to solve problems with low a-priori knowledge,
simply because then a tight feedback loop is feasible. On
the other hand, if available gain is low, one 1is forced to
try to learn as much as possible about the dynamics of the
system and its disturbances. The available gain is

determined by practical considerations such as the amount of

Available A-priori System Methods
Gain knowledge Description
High State Space (5tochastic)
observers
Low Internal High order Linear
quadratic
Detailed Differential Pole
equations assignment
Low Transfer Root locus
function Frequency
High External response
Impulse Transfer
Input-=-Output response function

specification

Figure 2.3 An attempt at a general classification of design
problems

power Or energy possible to put into the system, the size of
actuators etc. Another limiting factor is the noise level in

the system, i.e. a constraint on the information side.

The next two columns correlate the degree of knowledge with
the type of system description used. High knowledge is taken
as meaning a detailed model describing the internal
structure of the system, i.e. we know what 1is going on
inside. System representation forms that utilize this type
of knowledge is of course a state space representation or a
system of high order differential equations. In contrast to
these two we have transfer function or impulse response
representations, which forms only describe the dependence
between inputs and outputs of the system. What 1is going on
inside is not known, and, which is important, can not be
utilized by any design method.

Of course, knowledge means effort and money. Therefore,
methods with less demands in this respect have a great

importance. On the other hand, little knowledge means that

it is hard to judge achievements in relation to what might
have been attainable, i.e. what is good and what is bad?

Some Synthesis Methods

Some methods of synthesis will be described here. First we
treat transfer function methods. The main method, or rather
class of methods, are frequency response methods, described
in a separate subsection. Other methods, treated here, are
the root-locus method and the "transfer function
specification" method. Finally, one method based on state
space system descriptions is mentioned, namely nole

assignment.

Root locus

The root-locus method is a good example of the situation
where the computational powers of the computer can
interactively serve the control system designer. The
method, primarily applicable to single 1input - single
output systems, is basically a stability analysis method.
The important and valuable feature is that the degree of
stability as a function of the varying parameter is
assessible from a graph produced by the computer program.
Thus a method of studying the influence of varying
parameters is offered. Any parameter could be varied, but
the case with varying loop gain is the most important and
here, simple rules of modifying the regulator to achieve
desired improvements exist. The root locus method has
recently been extended to the multivariable case,
[MFar77].

Needs on interaction are: good means of obtaining a nice
graphical output, specifying which is the parameter of
interest, what range of values it may take, and what is
the structure of the system (it might be composed of

subsystems) .

#

36

Transfer function specification

The formulation of the synthesis problem simply as an
equation: "Given a system so and so, compute a regulator
so that the closed loop system becomes", might be the
first thought of the novice. Indeed, the problem could be
solved that way, only that there are some pitfalls to be
avoided. Here too, the computer can offer some help. It is
natural to assign the numerical solution of the equations
to a computer. Care must be exercised to make a reasonable
specification, i.e. results from the analysis of the given
system must be incorporated. The solution might not be
unique, so some choices would have to be made, and their

consequences analysed.

Again, interaction represents the important factor that
makes this method practically useful. By structuring the
computations to allow suitable interaction points,
existing analysis methods and parameter alteration
operations can be Dbrought to bear on the difficulties

above.

Pole assignment.

Pole assignment methods are similar to the "transfer
function specification" methods in that the system is
given together with a desired dynamical behaviour. Also
the solution is similar; it consists of a computational
part, suitable for computer implementation and a
specification part. The specification part contains an
analysis of what is reasonable to demand, and a choice (in
the general case) of a legal feedback structure. The needs

on interaction are as before.

Frequency domain methods

These methods depend on a stability analysis result
formulated asg restrictions on the graph of G(s) for certain
values of s. Design aims at through proper choice of
regulator parameters and regulator structure make the graph
"behave nicely". Although objective definitions of "nice" do
exist - amplitude and phase margin, the precise
interpretation from shape of curves to that of corresponding

time responses is left to the designer and his experience.

In the classical B5IS0 problem, the curves can be represented
in different forms - Bode, Nichols and Nyquist diagrams,
familiar to a generation of engineers. Recent developments
[Rose©9] and [MFar73}, tries to draw on this familiarity of
thinking for the MIMO case. In addition to the shaping of
individual <curves, problems arise from the multivariate
nature of the system. In the INA method (Rosenbrock)
analysis tools in the form of e.g. Gershgorin c¢ircles are
integrated into the design scheme. They are used to help in
making the system diagonally dominant, whereafter reasoning
familiar to the 8IS0 case will apply. The numerical
computations involved are the evaluation of a matrix of
rational transfer functions for different values of s=jw and
computing the inverse of the complex matrices obtained. The
characteristic loci method (MacFarlane) can be thought of as
making HNyguist plots of the eigenvalues of the transfer
function matrix, again evaluated for s=jw. The eigenvalue
plots together with plots of the angles between eigenvectors
are used to determine and influence the degree of stability
and interaction 1in the system. Recently it has been
suggested to use singular values rather than eigenvalues
[Doyl79].

Unlike the SIS0 case where graphical methods with pen and
paper is able to solve the problems, the MIMO methods relys
for their ©practical wusefulness on interactive computer
programs. The effort needed to draw the graphs by hand would
be formidable. The needs on the interaction facility
includes functions to guide in the display of curves on a
graphical computer output, as well as for help in designing
compensation dynamics. The order in which these operations
are called wupon is not predictible and some of them, e.g.
editing graphical output and connecting elementary
controllers together, may be available in a more general
framework. Again the need for a basically unstructured but

structurable interaction tool ariszes.

Some paths in the design, for instance simulation of the
closed loop system in its current stage of development, will
use many general purpose facilities. Examples are forming
the closed 1loop system from its subsystems, transformation
to a form suitable for simulation, the actual simulation and

the display of the resulting time-responses.

Time domain methods

Although the historically oldest method, design in the time
domain became feasible for practical problems in the sixties
when computers began to be available as tools in
engineering. The methods are characterized by the type of
model used - systems of 1lst order 1linear differential
equations. Such an internal description not only describes
now outputs are dependent on inputs, but also the
interdependence of internal variables, often state

variables.

Results from synthesis are typically in the form of a linear
feedback from all state variables, giving a rich class of
controls. The most important design method is based on what
is known as linear gquadratic control theory, giving a result
in the form mentioned above. Analysis/evaluation of the
achieved results could be by a number of methods, but most
importantly through simulation of transient responses.
specifications in the time domain are then easily checked.
Changes 1in the performance is accomplished by altering
weighting <factors in a gquadratic «criterion, a procedure

which is intuitively simple and easy to learn.

It is important that the behaviour of internal variables and
control signals is available for study. Also, physical
knowledge can be used to judge whether the performance is

reasonable or not.

In practice, all state variables are not available for
feedback, and if they are, their measured values might not
be suited for direct wuse due to noise corruption. One
solution 1is to include dynamics 1in the feedback through
state observers. They could be of different Kkinds, Kalman
filters, Luenberger observers etc. Encouragingly enough,
they can be designed by the same algorithms and with similar
interaction as wused for feedback design. An important
feature with feedback from reconstructured states is that
measurements need not be the same as the controlled

variables.

As before, the design is iterative and interaction is most
important. Some operations will be svecific for this design
method, but many means of analysing the current design stage
will pe general purpose in nature. Examples are eigenvalue
computation, composition of a closed 1loop system from

subsystems, simulation, and plotting of time responses.

Interaction

Synthesis methods use tools in analysis for specialized
purposes. In many cases though, general purpose analysis
tools can be wused, 1if adequately designed. A synthesis
method often includes a planned form £for the change of
design parameters. Again, there is a competition between
generality and specialization. Here interactive facilities
may play a role. It might be possible that the system for
interaction allows an adaptation of the interaction to

different needs. An example is given in Section 4.6.

Most important, however, 1is that synthesis methods require
an interactive approach. In the iteration loop, operations
like editing output in graphic form, changing design
parameters, analysing results and computing an improved
design will be found. The details of this sequence are
likely to vary £from case to case, but they may also be
unchanged within the solution of a specific case, or class
of cases. Thus (local) standard procedures will develop. It
is of prime interest that an interaction scheme will allow
this to happen. This is discussed in Section 3.1
'Interaction structure' and is exemplified in Section 4.6

and in Example 2.

2.9 S8imulation

Simulation is a problem area in its own right, treated e.g.
in [Elmg75] and [Elmg78]. Aspects relevant in this context
are the uses, needs, and demands on interaction as a tool in

analysis and synthesis of control systems.

Simulation as a tool is important in three different

functions:

a) As analysis tool to learn things of the system, viz. the
dynamical behaviour of the system in a wide sense: signal
paths, time constants, type of response etc.

b) As analysis tool in synthesis. To inspect how the dynamic
behaviour is changed by the ©proposed design and evaluate
how well specifications in the time domain are fulfilled.

c) As a cheap, safe and easy-to-use testing tool of the
design on a maybe more complex (non-linear) model prior

to the implementation.

It is important to note that in case b) (synthesis) and many
times 1in case a), the model 1is 1linear. This makes the
simulation problem simple, the model having a known
structure, easily and efficiently implementable in a
computer program. In the case of a non-linear model,
however, as might be used in cases c¢) and a), not only the
parameter values but also the structure of the model must be
specified. To do this interactively poses a much greater

problem, cf. Section 3.1 'Computation structure'.

Interaction

When simulation is used in design, it is 1in principle used
as a transformation, viz. from a system represented in e.q.
state space form to a representation as a pair of inputs and
outputs. The analysis 1is ©performed by eye after the
time-series have been visualized. The interaction needed
restricts itself to the choice of operation, of input and

output and of the system in qguestion.

In the more general simulation problems a) and <c),
interaction plays an extremely important role. The
possibility to alter ©parameters and maybe change the
structure of the system while rapidly being able to study
the corresponding behaviour of the system for different

inputs and/or initial conditions, is a most powerful way of

examining the system and of gaining an intuitive feeling for
its behaviour. Here the demands on interaction facilities
are high indeed. Not only must the means of freely accessing
the model be flexible and easy to use, the means of
displaying results must also be well developed. In this kind
of application, the freedom available to the user is of
major concern, as is the possibility to automate some of the
interaction. Examples are the running of Monte Carlo
simulations and batch simulations (sic!). Cf. the discussion

in S8ection 3.9.

2.10. Implementation

This chapter has described in varying degrees of detail the
steps taken in the design of a control system. We started
with the aquiring of measurement data to determine parameter
values, and the natural last step would be the
implementation phase. Can that be supported by interactive

software?

Yes, in some cases this would be natural. A company which
either makes control hardware or 1s a big user of such
hardware is 1likely to design many control loops where the
hardware to be used in the implementation is known. In such
a case, it would be reasonable to include in the software a
facility, to output the result of a design process in a form
suitable for direct transfer to the intended hardware. A
special and very interesting case would Dbe when the
implementing hardware is a computer, either the same as the
one running the design software or connected with it. Then
the +transfer of the resulting regulator parameters could
take place without human intervention. The facility sketched
here is however not known to have been tested anywhere, and

there is no experience to report.

3, INTERACTION PHILOSOPHIES, PROGRAM ORGANIZATION AND THE
INTERACTIVE USER.

This chapter will begin by examining the different desirable
interaction forms found in the previous chapter. This 1is
done in Section 1 while Section 2 tries to formalize these
results, also taking into account +the general need £for

guidance and information and the correction of errors.

The two main forms of organizing an interactive program,
question & answer dialogue and command dialogue, are treated
in Section 3 to 6. Their intrinsic properties, vossibilities
and needs are discussed. Bection 3 treats the guestion &
answer type dialogue while Section 5 treats the command
type. ©Sections 4 and 6 have an identical structure,

comparing the two dialogqgue types property for property.

In Section 7, we review the demands that stem from program
organization considerations. How these demands are satisfied
by programs constructed according to the two interaction

strategies are then discussed in Section 8.

Section 9 tries to characterize the interactive user and
demonstrates that he may take several different shapes.
Section 15 finally ©presents the proposed policy in

interactive program designe.

3.1 Interaction Needs

We are now going to discuss the needs we have on
interaction. The interest will be focused on the type of
information that has to be exchanged between the problem
solver and the computer. The form of the interaction will be
discussed later. The previous chapter will serve as

reference and motivation. The four typical needs are called:

Choices and parameters

(1)

(2) Multi level interaction

(3) Computation structure

(4) Interaction structure

Note that the interaction needs 1listed here are typical not
only to automatic control problem solving, but are general
to a wide class of situations where a computer is used to
help a designer with heavy computations or data handling
operations. Typical are also the existence of well
structured data objects (Chapter 5) and the element of human

intervention in the operations.

There certainly are disciplines with other interaction
needs, e.9. circuit design, computer draughting and

inventory control.

(1) Choices and parameters

The most common and most basic information the user of an
interactive program will have to pass is what choices he has
made and what parameters he wants to use. The choices to be
made include the action to be performed and the datasets
which are inputs and outputs of a given program module.
Parameter values must also be specified. They represent a

possibility to influence the operation in a predefined way.

In this type of interaction, the operation 1is fixed and
given by the program code, and the input and parameters are
the only freedom left for the user. This situation is by far
the most common one. It is typically found 1in analysis and
specification type operations. Hence it also plays an

important role in the synthesis and measurement situations.

W

45

(2) Multi-level interaction

With multi-level interaction 1is simply meant that the
interaction is split into two or more levels. This situation
occurs when proper parameter values, appropriate secondary
input or other choices in the applied method are not
apparent until some preliminary computations have been
performed. It is often possible and most attractive to
divide such operations into two or several parts, allowing
common analysis tools to be used to determine suitable
future steps. If, however, the information to pass between
the different parts is special in structure or the analysis
needed is not of a general nature, it would be more natural
to implement the method in a single nrogram module but allow
interaction in several levels. This would also be the case
where a number of options exist. If they had to be specified
all at the same time, it would be clumsy, difficult to

comprehend and remember and would be generally unaestetic.

The solution is to allow interaction in several levels. The
first level 1is used to specify the problem. On the next
level the problem is analysed, or details of 1its solution
are entered. In the general case, temporary results could be
asked for and allowed to influence the user's actions on the

lower levels.

Examples were found in the section on Identification (2.4).
One applies to the fitting of a transfer function to a
freguency response, where the second level of interaction
treats details of the curve fitting method. The second
example was found in the maximum likelihood identification
method, where the lower level of interaction 1is used to
optionally specify the starting point, vwvalues of £fixed

rarameters etc.

46

w
va

{(3) Computation structure

A need was found in the general data analysis operation, in
identification of non=linear models and primarily in the
simulation of non-linear gystems, to be able to
interactively specify a series of computations. Unlike the
previous needs where the computations are fixed and only
data sets and and parameters are changed, we here encounter
a need to specify the series of operations themselves. In a
computer system, this is a task solved by what 1is called
compilers or interpreters, usually 1large and expensive

Programs.

The difference with this interaction need compared to the
previous ones is that it involves to parse statements in
some arithmetic language, obeying its syntactical rules, and
to generate a sequence of (computer) instructions that
performs the intended task. It is indeed possible to include
such facilities in an interactive program, see references
[Elmg75] and [Hall78]. In this report, however, we will not
explore this need any £further, apart from the notes on
hypothetical future programming languages in Sections 5.5

and 6.6,

(4) Interaction structure

In many places in Chapter 2, it was noted that there was a
desire of being able to specify an interaction structure,
see e.g. Sections 2.1 and 2.8 (Measurements and Synthesis).
Such a facility would be useful either for temporary or more

Dermanent use.

By interaction structure is understood a fixed sequence of
interactions that c¢an be invoked easily, maybe with some
planned alterations. The temporary use of such a seguence
would be very natural for the interactive user that solves a

problem with a partly iterative method.

The more permanent interaction seguence serves to build new
functions from other more basic ones. This could be used to
implement methods applicable to certain problems, e.g. a
synthesis method, or to construct interaction modules aimed
at a certain cathegory of users, e.g. students. See more

details in Section 4.7.

Note that this so called 'interaction structure' Dbears
strong resemblance to the earlier 'computation structure'.
To a degree, the same desired result could be achieved by
this facility, provided suitable basic functions were

available and called in proper order.

In fact, this is the key difference between the two
concepts. Here, talking of 'interaction structure', a very
simple syntax is assumed. The elementary operations in the
interactive program are called one at a time, with pnrover
operands. The only rules to obey 1is in the choosing of
operands, something that in any case must be checked,
presumably in the code implementing the elementary

operations.

3.2 Interaction Models

In the following sections we will try to formalize =some
interaction types satisfying the needs listed in the
previous section. Their properties will be listed with some
discussion. In addition to the needs that have been noted so
far, coming from a typical application field, we will also
include needs of a practical nature, such as possibility of
error correction and acquisition of guidance and help. The
interaction types will be described using state diagrams, as

has been done in [Aaro77].

757
I8

The states are indicated with circles with numbers,
connected by lines marking vpossible state transitions. A
state represents an interaction point, i.e. a point in the
program where the user must respond to a result or a
guestion output on the terminal. His answer may influence
the future state transitions, i.e. the way to follow along
the lines as in Figure 3.1, Note that the computer
calculations are done between interaction points, i.e. along
the state transition lines, but the type and amount of work

is not indicated.

The two dialogue types discussed, question & answer dialogue
and command dialogue, are both directed towards the
situation assumed in this dissertation; interaction through
a computer terminal with keyboard and most often a graphical
outout. Reference [Aaro77] also treats what is called Mixed
Dialogue and Escape Dialogue, applicable in this context.
Mixed dialogue is a trivial combination of the main types.
It has some nice properties in special situations and is
treated as an example in Section 4.7. The second one is a
way of alleviating the key problem in the question & answer
dialogue, how to escape irrelevant guestions when it is
apparent that the current operation should be aborted. An
example of how this facility could be employed is also found

in Section 4.7,

Figure 3.1 The type of state diagrams we will use.

Using a graphic output device with light-pen facility
enables completely different forms of interaction. Section
0.3 describes some features possible and why these have not

been further explored in this dissertation.

3.3 Question & Answer Dialogue

This type of dialogue is characterized by 1its large number
of interaction states, see Figure 3.2, State 1 represents
the situation where the user has received the question "what
next?", and should answer giving his choice. One of several
paths will be followed depending on the answer. The one
marked ? represents the possibility of requesting a list of

alternatives.

Each alternative the wuser may choose corresponds to an
interaction loop such as 11-12-13 or 21-22, Lef us assume
that these states are used to 1learn the user's desires on

input data, parameter values, options and outout data. If

Figure 3.2 State diagram for a simple question & answer
example.

3: 5@

80, we have thus obtained the facilities asked for in the

paragraphs on 'Choices and parameters' in Section 3.1.

The compound state 3 serves as a more complicated example.
Suppose it has the detailed state diagram shown 1in Figure
3.3. Interaction point 33 offers a choice of three
alternatives. The first one doubles back into state 33 while
the second goes directly to 34. The third reaches 34 first
after additional interaction including another fork on the
path in 3322.

Now assume states 31 and 32 serves to gain knowledge of the
problem and its parameters. The path 3311 = 3312 might offer
means of analyzing the problem while the two paths to 34 may
represent different ways of its solution. We thus find that
what we called multi-level interaction is easily included in

the guestion & answer approach.

Figure 3.3 State diagram for the second level of interaction
in Figure 3.2,

3.4 Properties of the Question & Answer Dialogue

The most important properties of the question & answer

approach will be listed, together with some comments. They

should be read in the context of BSection 3.1, A

corresponding list for the command dialogue 1is given in

Section 3.6.

a) Meets demands (1) & (2) in Section 3.1 easily.

As demonstrated, state diagrams for gquestion & answer
interaction allowing choices and parameters to be passed
to the program can easgily be constructed, also in a
multi-level form.

b) Can be implemented using simple programming languages.
The interaction represented by the states shown in
Figures 3.2 and 3.3 consists of the displaying of text,
often in the form of a guestion, and of reading the
user's response. This can readily be done in simple
programming languages such as FORTRAN.

¢) Defaults, typing error immunity.

The use of so called defaults is often desirable. By this
is wunderstood the practise of showing the current or
initial values of the requested variable and allowing the
user to retain this value, e.g. by simply typing an empty
line on his terminal. This is usually not possible within
the framework of standard I/0 1in common Pprogramming
languages. Typing error immunity implies that a simple
typing error, such as including an alphabetic in a
number, should not cause a serious run-time error. This
is often the case though, and these two desires usually
forces that input routines other than the standard ones
be used in an interactive program. C£f. b) and Section
6.5,

52

The questions give good guidance.

The output to the user at the many interaction points may
be formulated so that also the unaccustomed user will
know what type of answer is expected of him. Likewise his

answers will be tested for legality immediately.

Interaction fixed by the programmer.

As all interaction points are implemented in the program
code, the programmer has a very responsible task. All
oossible tricks, options, or variations the user may want
to use must be anticipated. Conversely, the user will
only be able to perform precisely those functions the

programmer has planned.

Large volume interaction, boring to the experienced user.
Many and detailed questions will be Dboring to the
experienced and frequent user. Naturally, alternate forms
of the questions could be provided, but this adds extra
complexity to the program. Also, the question could be
inhibited if the user has anticipated it and already has
provided the answer. Again, this 'type ahead' facility
costs extra complexity and specially designed input

routines.

Fixed interaction, frustrating when a mistake has been
made.

Quite frequently, it happens that a user finds that he
has made an error or he changes his mind too late, so
that he finds himself 1locked into an interaction path
without interest or meaning to him. Indeed, it might
eventually output results destroying things he wants to
retain. What is needed is some escape mechanism, allowing
the abortion of an unfortunate interaction path. Again
this raises demands on the input routines of the program

as well as pre-planned paths out of program modules.

No concise description; lengthy log.

It 1is always good practise to plan the work at the
computer terminal prior to the actual interactive
session. What is needed then is a description of all
possible interaction points together with their
interdependence. Such a description will be rather
lengthy, as will be the log of a session. Such a log is
valuable to document the results obtained, bobut to be
useful it must include not only results but also the
user's response to the guestions, and the questions
themselves. The risk with many and detailed questions is
that valuable data in the log may be drowned by a lot of

transient information.

Interaction structure is not natural.

The key to this facility is to be able to store 1in
advance the answers to questions to come. This could be
done, using facilities mentioned in e) and g). However,
the exploring of these possibilities would 1lead to an
itemization of +the interaction, and introduction of
notions belonging to the next interaction form (command
dialogue). Strictly speaking, the program would not be

qguestion & answer oriented any more.

In the program, interaction is mingled with computations.
Typical question & answer programs with state diagrams
like those in Figures 3.2 and 3.3 will contain
interaction code mingled with computation code. This is
the major advantage with this type of interaction, viz.
the close connection between the program and the user,
cf. d). However, from a programming point of view, such a

program structure should be avoided, cf. Section 3.8.

A time-sharing implementation should use few interaction
points.
In a time-sharing environment, an interactive program

will be swapped out of primary memory when either it has

used up a time gquantum, or it awaits input from the user
terminal. Thus it 1is advantageous, from efficiency
reasons, if computations are separated from interaction
and if interaction points are few. Also, the user will
experience a certain response time at each interaction
point. Many such points will 1lengthen the time needed to

solve a given problem.

3.5 Command Dialogue

The distinguishing property of the command dialogue 1is the
simplicity of its state diagram, see Figure 3.4. This figure
describes the same interaction problem as Figures 3.2 and
3.3 combined. The basic interaction state 1 demands a new
command from the wuser. In many cases as in commands Cl and
C2, they are executed immediately and we return directly to
state 1.

In a case 1like command C3, we enter a second level of
interaction. Here a number of subcommands are available,
similar but distinct from the commands on the main level. As
in the analogous example in Figure 3.3, subcommand C21 might
serve as a tool for analysis, while C22 and C23 are
alternative ways of solving the problem, chosen with the

help of the previous analysis.

The way the commands convey information on the user's
choices and his desired parameter values is by means of
arguments in the command. A gimple command could have the

form:

CMND ARGl ARG?2 (E1)

C? C1

22 “

C2
C3

C21

Figure 3.4 State diagram for a command dialogue equivalent
to the actions in Figures 3.2 and 3.3.

This command line contains three information carrying items:
the action reguired, and the two arguments. Thus this single
line, that might be the generic form of Cl in Figure 3.4,
could be equivalent to the state sequence 1-21-22-1 in
Figure 3.2. The reason why the state diagram of the command
dialogue is simple 1is that the command line contains more
information than does a single answer in the question &

answer dialogue.
By defining syntax rules also the form of the argument
string can be used to bear information. Thus a generic

command form

CMND [ARG34 =] ARG3321 ARG3322 [ARG3323] (B2)

3: 5%

where [] indicates that the argument is optional, could be
used to describe how to go from state 3 to state 1 in Figure
3.2. Note that the notation is <chosen in accordance with
that figure. The reason to include the equal sign is
twofold. By separating arguments relevant to the output
(ARG34) from the other, the argument string becomes easier
to memorize. Also, the extra structure introduced allows an
unambigous decoding of the command string, in this case when
three arguments are used (Which one 1s missing? ARG34 or
ARG3323? Look for the equal sign!).

3.6 Properties of the Command Dialogue

Again we will try +to 1list the main properties of the
dialogue form under discussion. An assessment of their
relative importance and their relation to those of other

dialogue forms will be made in a later section.

a) #eets demands (1) & (2) in Section 3.1 easily.
Very simple state diagrams can be constructed meeting

these needs. An example was given in Figure 3.4.

b) Specially designed decoding routines.
The reading and decoding of commands like the examples El
and E2 in the previous section is not possible wusing
standard facilities 1in some programming languages in
general use. Special application independent decoding
routines can be constructed in all modern programming
languages. Generally available FORTRAN implementations
does not, however, allow computer independent coding of
such routines, because of its lack of standardized

character handling. This is further discussed in 6.5 b.

c)

Syntax rules for the argument string.

The form of the argument stfing can be specified so that
a number of objectives can be met. Arguments can be
allowed to be optional and the inclusion of delimiters
may make possible an unambiguous decoding with extensive
checking of formal <correctness. The extra structure
introduced, grouping arguments together, will make the
command look logically natural and therefore easy to

memorize,

No guidance.

At all interaction points, the wuser is supposed to enter
some command line, «consisting of a command identifier
(CMND in the examples above) and a string of arguments.
The number of possible commands at any interaction point
may be large and they may be of different forms. The
novice is 1likely to feel abandoned. Of course some
commands might be constructed to offer help by displaying
a list of alternatives, command forms etc, but there is

no step-by-step guidance.

Freedom from predefined interaction.

The proper sequence of actions to solve a problem is left
entirely to the user. This relieves the programmer of the
task of defining the intended use of the program. Rather,
he should allow access to all possible parameters of the
algorithm he is implementing, using optional arguments,
optional subcommands etc. If there also are sufficient
general purpose functions available, a wuser of the
program might put the available facilities to a use the

implementor might not have been aware of.

Free interaction; suitable to the experienced user.

The experienced user, i.e. the person with good knowledge
of the underlying theory and who uses an interactive
program regularly is 1likely to be prepared or indeed

anxious to take the initiative in the communication with

n)

58

the computer. In such a case, the command dialogue offers
the possibility of a natural language in which the user

can freely express his wishes.

Free interaction; good when a mistake has been made.

Mistakes do occur, either as a result of actual errors in
thought or in typing, or in the form of a change of mind
from the user's side. The free interaction where any
command at a certain interaction point 1is egually
possible, poses no objection to a Jjump back in the
command seguence to a suitable point where to start

again.

Concise description; concise log.

A command oriented interactive program can be thought of
as implementing an interpreter for a specific problem
solving language. The set of available commands are the
statements in that language, and there are well
established and applicable methods available to describe
the syntax of the commands. Similarly, the log of the
actions performed during a session will be short and easy
to survey. The log is important as it shows the names
given to the data and the way they were generated.

Examples are given in the appendix.

Interaction structure is natural.

The close relationship between command dialogue and
programming languages was mentioned above in h). It is
very natural to carry across well-known principles such
as procedures, I/0-statements and structural statements.
The influence of such facilities on the possibilities of
the command dialogue is explored in Section 4.7.

Programming structure; interaction isolated.
The form of the interaction state diagram for a command
dialogue was shown in Figure 3.4. It is apparent that

interaction, i.e. calls to command recieving and decoding

routines will be localized to a few points and that the
computations are performed in a number of parallell paths
void of interactions. In the case of subcommands, the

same applies at a lower level.

k) Ideal for time-sghared use.
By the arguments given 1in paragraph Kk in Section 3.4,
greatest efficiency in an implementation on a time-shared
computer is achieved for programs that seldom read from
the terminal and that have interaction separated from

computations. These rules are well satisfied.

3.7 Demands on Program Organization

In this section we will try to list some of the demands on
interactive programs that arise from the programming point
of view. Some are gdgeneral with no specific influence on this
type of programs and will not be discussed to any great

length, others have already been encountered.

Portability

The portability of a program means 1its ability to be run on
other computers of comparable or greater size but with other
organization. There are some simple rules to follow in order
to achieve a high degree of portability. First of all, the
orogramming should be done in the standard dialect of a
commonly used programming language. Secondly, parts of a
program that have to be computer dependent should be
confined in small separate program modules, so as to be
easily identified and modifiable. Examples of such computer
dependent parts are file 1/0, non-standard I/0 of
textstrings, graphic (display) handling, and anumeric test
quantities.

Mlaintainability

tere we are interested in the vossibilities to
correct/modify portions of a program without affecting the
rest of it. The solution lies in the ©proper structuring of
program code, and not least, structuring and storage method

of data. The last problem is discussed in Chapter 5.

A practical problem arises because programs tend to be
large, consisting maybe of several hundred modules. A way
out of this situation would be to split the program into
several separate parts that, being smaller, would be easier
to maintain. In the case of a command dialogue, the parts
performing the computations would be a natural <choice. The
idea would then be to make the main part of the program call
the other parts as separate programs when their services are
needed. Unlike subroutine (procedure) calls, the existence
and way of implementation of this facility is a function of
the operating system on a specific computer. However nice,

this solution thus violates the demands on portability.

Expandability

The ease of including a new facility may be of importance in
many projects. There are a few factors that will promote
this quality. One is the freguent use of primitives, i.e.
common operations are made available as separate modules
forming a pool of ready-made building blocks to glean from.
Another one is that the data objects, the program is made to
handle, are so structured that different portions of the
program can be independent and be able to communicate

through them only.

Segmentation

Interactive programs for general use will always be
segmented on computers lacking some form of virtual memory
system. The reason is either that the primary memory is too
small or that there are restrictions on how much that may be
used by any one user. The last situation applies to
time-shared implementations. The ease with which such a
segmentation can be made depends on the internal structure

of the program.

Locality

On computers with wvirtual memory systems, programs need no
segmentation, at least if the address space 1is sufficient.
Instead there is a desire to have good locality in the
program. This means that the points 1in address space
referenced during a short pveriod of time should be grouped
together as well as possible. This will minimize the number
of pages to be kept in primary memory as well as the number

of page transfers from mass mMemMoOry.

Modularity

There is a desire that the program code 1is divided into
suitable modules, i.e. subroutines or procedures. Apart from
being a result of good programming practice in general, this
will be the key to the satisfying of the other demands

above.

3.8 Effect of Dialogue Type on Program Organization

The difference in the general form of the state diagram for
the question & answer dialogue and the command dialogue is
reflected in the corresponding vprogram flowcharts. Figure
3.5 shows a skeleton flowchart for a question & answer
dialogue ©program, corresponding to Figures 3.2 and 3.3.
QUANDA, short for QUestion AND Answer, 1is assumed to be the
name of a general routine to output a question and await the
answer. The common action Compute signifies that some
operations are done on the basis of answers recieved up to
that point. Of course, the computations will be performed by
many different routines, and naturally only a few of the
instances will signify substantial computational effort. The
point with guestion & answer dialogue is, however, that
guestions indicate the state of computations carried along
as far as possible, and that answers are tested dynamically.
Therefore the distinguishing property is that computations

and interaction are heavily intermizxed.

In the command dialogue case, however, this is not so, cf.
Figure 3,6. COMMAND 1is assumed to be the name of a routine
that reads a command line and divides it into its different
items. When a proper path has been selected, depending on
the command recieved, the items in the command line are

decoded, presumably by routines logically close to COMMAND.

To each of the possible commands there is a corresponding
path in the flowchart. All such paths look the same and are
parallel. Only in the presence of subcommands is the simple
parallel structure broken, but only to reappear at the lower

level.

Initialize
e
CALL QUANDA
|
Select

CALL QUANDA CALL QUANDA
Compute Compute
CALL QUANDA CALL QUANDA
Compute Compute

T CALL QUANDA

CALL QUANDA Compute
l .
Select
/ \‘\
L 4

CALL QUANDA CALL QUANDA
Compute Comp.ute

l CALL QUANDA
CALL QUANDA Compute

| 2
]
Select
s

CALL QUANDA Compute [

L Compute -

CALL QUANDA
|

Compute

Y

Figure 3.5 A skeleton flowchart fog a guestion & answer
program realizing the dialogue in Figures 3.2 and 3.3. (The
path 21 - 22 is omitted).

3: 64

Initialize

#F

CALL COMMAND
l

Select

e N

!

Decode Decode Decode
4
CALL COMMAND Compute Compute
l
Select
\
- Decode " Decode
l I
Compute Compute
L

Figure 3.6

Skeleton flowchart for a command Drogram

realizing the dialogue in Figure 3.4.

Question & answer dialogue

The portability of this type of dialogue is positively
affected by the basically simple form of interaction.
Normally available I/0 facilities will suffice, at least in
principle. If more flexible input-output routines should be
used, as discussed in Section 3.4c, they may very well have

to be machine dependent.

Maintainability and expandability is largely dependent on
the structuring of data. However, the program structure will
also play a major role, and here the more complex flowchart
of the guestion & answer program may show as a drawback. For
instance, 1if we were to modify, or include, a new
possibility in the interaction state diagram, it might give
cause to a major redesign, or more likely, result in a

"patch", eventually with a messy flowchart as consequence.

Segmentation and locality properties are similar in that
they are reflected in the form of the flow chart. The many
calls to I/O-routines mixed with computations indicate that
these two properties are likely to be weak points when the

pros and cons are to be counted.

Command dialogue

The portability of a command dialogue program will to some
degree depend on the programming language used. The special
purpose I1/O-routines that are used to read and decode
commands will include character manipulation. If this can
not be done in the programming language, these parts will be

computer dependent.

3: 66

Maintainability and expandability have prospects for good
values. The flowchart exhibits such simplicity and overall
uniformity that modifications and expansions are simple and
safe. For instance, a change in one of the commands will
influence only the decoding portion of that part of the
flowchart, while the inclusion of a new command or

subcommand just will add a new path.
Likewise, the flowchart gives direct information on how to

segment the program, or how to order the modules so as to

achieve good locality.

3.9 Interactive User Categories

The wusers of an interactive program will differ in the
relative importance they attach to the facilities offered.
They also differ in the freguency with which they utilize
these facilities. When designing an interactive program, it
is of cource important to realize what the intended users
will expect from it. The following 1is an attempt to
summarize a few possible user categories together with their
typical needs:

- the batch user

- the experienced user
- the casual user

- the beginner

- the assistant

The batch user can (and must) select in advance a Seguence

of actions that the program is going to follow, with a
specified set of inputs.

It may sound strange that an interactive program might be
used in batch mode. It is, however, not at all unnatural.,
In many cases, a set of similar problems is to be solved.
The first two or three may with advantage be solved
interactively. After that, the proper way of solving the
remaining problems may be known and interaction is no
longer valuable. Indeed, it may cause additional costs, as
it requires constant human intervention and a more
expensive way of running the computer. Therefore an easy
and efficient way of running the interactive program in

batch mode would be useful.

The experienced user is the one with the most exacting

demands on the interaction. He has good knowledge and
intuitive feeling for the methods he is using and knows
and uses the facilities the interaction offers. He might
be trying to solve a new and complicated problem
exercising his prior knowledge, skill, intuition and
common sense combined with the data handling power of the
computer. In this situation he wants a maximum of freedon
in the choice of solution steps. It is of great importance
to him to be able to view the results from the computer as
they become available and to be able to communicate his
desires promptly. He is likely to be able to spot an
erroneous or uninteresting result at an early stage and
should have the possibility to abandon such an unpromising

road.

The casual user could typically be a student solving a

laboratory exercise. He would then have to solve a
well-defined problem, which is known to be solvable by
means of the program in question. Being a casual user, he
would not be particularly interested in anything but the
facilities necessary for his task. He would consider it an
extra burden to be forced to learn a list of commands and
command syntax, although this could be considered an
advantage from didactic reasons. Rather, a dialogue

offering guidance would be preferred, decreasing the risk
of serious mistakes and lessening the burden of the

supervisor.

The beginner is initially in the same situation as the
casual user, simplicity is important to be able to get
started. There is a distinction though; the beginner has a
desire to become an advanced user some day. He 1is
interested to learn what facilities are available and to
master them. He would want facilities for help and
instruction and if possible, a means of gradually growing

accustomed to the details of the program.

The assistant is someone that performs routine
investigations, typically designed by the experienced
user. The assistant 1s not required to know the fine
details, neither of theory nor of the program. He 1is
primarily engaged in providing the program with proper
data and collecting the results. The means by which the
experienced user instructs his assistant and whether or

not primitives can be constructed is of great importance.

Naturally, the ideal type of interaction is quite different
for these users, ranging from no interaction in the batch
user case to the heavy demands of the experienced user. It
is most important to realize however that the same program
may have to meet these varying requirements. A few examples

on this situation will be given.

First of all, the 1ideal situation <for the beginner has
already been described as a gradual change from interaction
with much guidance to the full freedom of the experienced

user.

Secondly, let wus regard the casual user 1in the form of a
student doing a laboratory exercise. Although he is using an
interaction scheme with good guidance, he is 1likely to get
stuck sooner or later. He will then <call the help of his
supervisor, presumably a more or less experienced one. In
the correction of the student's mistake, the supervisor

would prefer a more direct form of interaction.

Thirdly and finally, the experienced user may take many
shapes. He may turn into a batch user if he finds that the
interaction of a part of his Jjob will be entirely
predictable like 1in a Monte-Carlo simulation situation. Or
he may be oreparing primitives for routine investigations to
be done by himself or by his assistant. Or, after a few
months of disuse, he may be regarded a £fast-learning
beginner and will appreciate some of the informative

functions created for the beginner.
Summarizing, it may well happen that the desired type of

interaction is very varying and in the design of a program,

the satisfaction of these demands will pose some problems.

3.1 The Question of Initiative and What do We Choose

In the choice between a question & answer dialogue and a
command dialogue interaction, there is also a consideration
of a philosophical nature. It could be formulated as the

"Question of initiative" or "Who is who's slave?".

The cook=-book engineer

The cook-book engineer functions with the help of tables,
handbooks, and ready-made design ©procedures, maybe in the
form of programs. The routine and exclusive use of these
aids is likely to cause a loss of the intuitive feeling for
the soundness of results. Similarly, knowledge, if there

ever were any, will soon be forgotten.

The cook-book engineer might be dangerous if set to seek a
solution beyond the normal range of problems. He 1is apt to
fail to realize when basic assumptions are violated, and may
produce results which are only subtly wrong. A typical error
is that quantities that normally can be neglected and
therefore are not accounted for, may grow to be significant
if results are based upon mere extrapolations. Examples,
sometimes wellknown ones, can be found in many disciplines

of engineering and in society in general.

The quality of life

The industrial revolution and the resulting general
prosperity was the result not only of mechanization but also
of the specialization of jobs. The ultimate result is the
assembly line organization where workers perform the same
few movements hundreds of times a day. The resulting low
interest in the work has created some interest in the
re-organization on the workshop floor to encourage a deepver

envolvement.

There 1s a danger that today's work in designing interactive
programs for analysis and design will invite the same
development in our own area of interest. Let us try to
prevent the control engineer of tomorrow from simply
becoming an input device to a computer with some

superprogram. The task in our program design is thus to

promote the use of the computer as a tool, so that the
control engineer still can Dbe the master not only of the

machine but also of theory.

Thus we find a possible conflict between the task of making
advanced methods easily available and simple to use, and the
interest of an active knowledge of the underlying theory.
Questions of this type has been discussed and elaborated in
e.g. [Rose75] and also in general literature, among many

examples in [Asimov].

Qur favorite user

Our favorite wuser will thus be the one with a deep
understanding of what he is doing. That implies we are to
avoid setting restrictions to his use of program facilities,
and where defaults are used it should be apparent when and
how such defaults should be reconsidered. The user should be
encouraged to take the initiative, and hints from the
program as to possible future actions should be avoided,
simply because of the risk that other choices might be more

awarding in some special situations.

Our favorite user is in other words the one that in the
previous sections were <called the experienced user. The
proposed concentration on the experienced user should not be
construed as a recommendation that the other cathegories of
Section 3.9 should ©be neglected. Rather, the task is to
construct a program with means to take care of all
cathegories. This can be done as will be demonstrated in the

next two chapters.

The choice

The conclusion of this chapter is then that an interactive
program should use a command dialogue. The reasons are
several. In the sections on the influence on program
structure, the command dialogue solution got higher or equal
marks in all respects. The same applies £for the comparison
of Sections 3.4 and 3.6, with one exception (d). The
question & answer dialogue makes possible a closer contact
between the wuser and the algorithm he is wusing. This is
because the input of parameter values and the like can be
delayed until the information 1is about to be used. In
principle the same effect may be achieved for the command
dialogue through an appropriate division of the algorithm
into many minor commands (subcommands). This would however
be impractical and contrary to other requirements. In the
practical wuse of an interactive program, however, the
interest is not as much on the actual algorithms and their
detailed behaviour, so this advantage of the guestion &

answer dialogue may be of minor importance.

The command dialogue suits the experienced user, but leaves
e.g. the casual user or the beginner entirely on their own.
The next chapter will among other +things show how this
deficiency may be eliminated by inclusion of the

"interaction structure' feature already mentioned.

4, THE COMMUNICATION MODULE INTRAC

This chapter has three closely related themes. The first one
is the description of an actually implemented communication

module, Intrac [Wies78].

Intrac is a subroutine package designed so that it can be
easily combined with application modules to form an
interactive program. Intrac itself contains no application
dependent features, so it can be used in any application
field. 1In Idpac it has Dbeen supplemented with tools for
identification and data analysis. Intrac is the main topic
of Section 3 where its internal structure is discussed. The
required interface to Intrac in the application modules is
discussed in Section 4, while BSection 6 describes the major

application independant commands available within Intrac.

The second theme is of a more general nature. Here we
explore the effect of a communication module like Intrac. In
Section 1 the command structure and the data base are
described, indicating the general form and philosophy of the
command interaction available through Intrac. In Section 2
the effect on the overall program structure is examined.
Section 5 finally ©presents Intrac as a basis for an
interactive problem solving language. The material in these
sections strongly depends on Intrac in details, but many
other forms of a communication module could be concieved,
providing the same basic facilities and influencing the host

program in the same manner.

The third theme is found in Section 7. Here the concept of a
problem solving language is exploited. It is shown that the
possibility to write procedures, here called macros, in this
language provides a considerable freedom. This freedom can
be applied both in the practical wuse of the language and in
the recasting of the interaction to suit various situations.

The ideas of this section ares completely general in the

sense that the facilities and possibilities mentioned are
natural consedquences of the command dialogue approach to

interaction.

4.1 Command Structure and the Data Base

A command in Idpac has the generic form:

<command identifier><argument list>

The <argument>s in the <argument list> convey information on

the problem or its solution:

<argument>::=<integer>/<real>/<identifier>/
<delimiter>/<variable>

A few examples will serve as illustrations of the command
form adopted for Idpac. The command (written following the

prompting character >)

>PLOT DATA

consists of the <command identifier> PLOT and a single
argument that is an <identifier>. PLOT signifies the action
desired, viz. to draw a diagram on the display output, and
DATA is the name of a set of values we want to visualize. An

alternative form of this command could be, cf. the appendix:

>PLOT (1¢9) DATA -5. 10.

Here we actually have six arguments, an <integer> 1is
enclosed within parentheses, i.e. two <delimiters> and the
argument list 1is ended by two <real>s. The effect of this
extra information is to specify that 1808 values should be
plotted along the horizontal axis, and that the vertical
axis should be scaled with -5 and 19 as minimum and maximum

respectively.

Another example from Idpac is:

>ML (5C) MODEL = DATA 2

The effect is to specify a maximum likelihood identification
on the data set DATA, producing a model of order 2 stored in
the data base under the name of MODEL. The <identifier> SC,
delimited by parentheses, is a flag saying we want to enter
a subcommand seguence further specifying the actions to be
taken. The <delimiter> = has an important function as
'syntactic sugar'. It is used to divide the arguments into
an input part and an output part. Thus it is an aid for the
computer in decoding, and for the human in memorizing and

understanding the command line.

In Idpac, the use of an <identifier> is often interpreted as
the name of a set of data, to be acted upon or to receive
the results. In the current implementation, the data base is
located on mass memory, and the names refer to files. This
is, however, not at all the only possible way to do it. An
{identifier> could egually well be regarded as a pointer in
a data area contained in the address space of the program
itself, In a properly structured program, like the one in
question, the decision whether to 1look in vrimary memory or
mass memory lies in the data interface routines, and their

abilities is under the implementor's control.

Important is, however, that the data structures referenced
in the argument list> are properly defined and
standardized. In this way an inter-command and inter-
program compatibility is achieved that 1is valuable. This is

the topic of Chapter 5.

4.2 Overall Program Structure

An interactive program built around Intrac will in principle
have the structure shown in Figure 4.1, which illustrates
the logical relationships between program modules, Intrac,

the data base, and the user at the terminal.,

There is a program module 'Main' which calls a number of
subroutines, ARl, AR2, ... ARN, called action routines, and
Intrac. When Intrac 1is called it will (normally) read a
command line from the user's terminal and analyse it. The
index of the received command in a command table sent to
Intrac from the main module is found, and the rest of the
command line is processed and stored in memory. If the
command received is an application command, Intrac returns
to the main module which in its turn uses the command number
to select the proper action routine to call. Thus each
application command generally corresponds to a specific

action routine.

Intrac has the possibility to read the commands off mass
memory, this is the case when a macro is to be executed.

This will be described later.

The parallellism of the action routines 1is a noteworthy
feature of the program. This reflects the situation of a
state diagram with a single state, as is shown in Figure
3.4, The dashed lines in Figure 4.1 illustrate the flow of
information when the arguments in the command line are
analysed by the appropriate action routine. Note here, that
when the command line has been analysed and the computation
started, Intrac is no longer needed. This property may be
used to segment a program so that computation code and
Intrac share the same area in memory. This is important on

small computers.

Main
B Database
Action | (1) - - - User's
_____ e e terminal
, AR1T | 1 |AR2 | | | ARN| | |INTRAC]
routines | (2) | : |
| T
:__ N L1

Figure 4.1 The principal structure of a program built around
Intrac.

(1) indicates the command analyzing part.

(2) indicates the computing part.

It 1is possible for the selected action routine to call
Intrac too, in order to receive commands to further specify
the required action. Such subcommands have to be fully
implemented within the corresponding action routine, i.e. it
has to include the same things as the main module. This
facility 1is discussed together with the action routine
structure in Section 4.4. This 1is no great difficulty,
however, since the main module is gquite simple in structure,
cf. Figure 4.2. The definition of the command table, i.e. a
table of the legal apvplication command names, is usually
done using a DATA-statement, and the following
initialization refers to data in Intrac and the application
routines. The following call to Intrac causes a command line
to be read. After ©processing it, Intrac returns with the
index of the received <command identifier> in the command
table. In case of a formal error, an error message routine
is called. The index, ICHMND in the figure, is used in a
CASE-type statement (FORTRAN computed GOTO), to call the

Define command table

l

Inttialize

]

Call Intrac with command
table as argument
Receive ICMND as result

" Error Yes

No

Case ICMND of

AR#1 AR+#2 AR#3 AR#N

%‘ f\fo Error?

Yes

- Give error message

|

Figure 4.2 The main module structure.

appropriate action routine. After the return therefrom, a
test is made to gee if an error message 1is due, and the

program is ready for the next command line.

Note finally, that not all commands entered on the terminal
correspond to an action routine. Some commands of a general
nature are processed entirely within Intrac itself. Others
are interpreted as calls to macro commands. Both these cases

are treated in the following section.

4,3 Sketch of the Structure of Intrac

Figure 4.3 gives a brief sketch of the internal structure of
Intrac. A call to Intrac causes a command line to be read
from the current input device, normally the user's terminal.
In COMLIN, the command line 13 divided into its constituent
parts, 1.e. the arguments (if any) are recognized as
{identifier>s, <integer>s, <delimiter>s etc., and their
values are stored as a vector together with their respective
type. The wuse of this argument vector is described in the

following section.

Only the first item in the command line is wused by Intrac,
namely the <command identifier>. Intrac implements a set of
application independent general purpose commands. Intrac now
interrogates the table containing their names. If a match is
found, the routine RESEX is called upon to carry out the
desired action, otherwise the <command identifier> 1is
compared to the entries in the table of application command
names sent to Intrac by the calling routine. An example is
shown at the top of Figure 4,2, If a match is found here, we
know that an application command was reguested and the
caller will receive an index specifying which action routine
to call. Before the return, however, the routines SUBST and
RECLIN are invoked.

MACHDL Read command
* v
: COMLIN

>

v _

ERR=.TRUE. | RECLIN ERR=.TRUE.

Figure 4.3 The internal structure of Intrac.

4: 81

RESEX includes code to execute the general purpose commands
LET, FOR etc. detailed in Section 4.5.

SUBST will take every occurrance of an <identifier> among
the arguments and check if it is the name of a <variable>
known to Intrac. If this is the case, the <identifier> is
substituted by the value of that variable. 1Intrac (and
SUBST) can do this because it maintains an internal table of
variable names and values. Variables are discussed at
greater length in Section 4.5. Due to the substitution in
SUB5T, the actual command line seen by the action routines
is not the wone initially read by Intrac. To allow the
actually oprocessed command line to be output to a log,
RECLIN will reconstruct a text string with the same effect
as the one seen by the action routine. Thus if V is the name

of a variable with the value 2.9, the command

CMND V

will in the log look like:

CMND 2.0

Finally, if the <command identifier> is not found in the
command table, the data base 1is searched for a macro,
Section 4.5, with that name. If one 1is not found, the
{command identifier> is illegal, i.e. it does not correspond
to an action known to Intrac at that time. If a macro is
found, the macro handler MACHDL is called. Apart from
changing the input device for the command read operation, it
sets up the correspondence between actual and formal

arguments in the macro call.

The change in input device <causes the following command
lines to be read from the data base. Simple as it is, this
idea allows complicated actions to be stored in the data
base and invoked in a form entirely like a single although

very powerful application command, hence the name 'macro'.
Apart from the actions 1in RESEX, the operations within
Intrac are fairly straightforward. Note that as long as no
errors are found, general purpose commands, i.e. those
executed by RESEX, are treated entirely within Intrac

regardless of subcommand levels etc.

4.4 Action Routine Structure, Decoding Primitives

Error detection and error recovery is an important aspect of
interactive programs. THis is clearly reflected in the flow
diagram of an action routine as is shown in Figure 4.4.

Figure 4.4 shows the principal logic flow of an action
routine. After an initialization, the argument 1list is
decoded wusing primitives from Intrac. The details are
described below. If an error is detected an error indicator
is set and the routine terminates. Otherwise a flag is
tested to see whether the command actually should be
executed or not. If not, LPCOM is called to allow a command
log to be produced. This mode serves to decode command lines
with a check for possible errors during the generation of a
macro, without a command being executed. If it 1is to be
executed, which is the normal case, and also a possibility
during macro generation, we start reading input data (1f
any). After having started opening files, it is necessary to
keep track of them so that they are closed, also in the
event of errors detected. When inputs have been read without
errors, the main algorithm is applied. When it has been
completed without errors, still it is necessary to check
that it 1is possible to output all results before actually
doing so. This 1is to ensure that the data base is kept
consistent, i.e. to avoid modifying one part of a dataset
while a second part is left unaltered because of the late
detection of an error. Finally, the command line is logged
only if no errors were detected and before any output is

produced.

The decoding of the argument list is an important aspect of
the action routine. The arguments in the command line were
extracted in Intrac by the routine COMLIN and placed into a
vector (or rather several in parallel in the sense of
FORTRAN, cf Section 6.5c), containing the value of the i:th
argument and its type (<Kdelimiter>, <identifier>, <integer>,

or <real>).

This ‘'argument vector' is accessible from the action
routine. To simplify the programming of action routines,
Intrac contains a set of 1logical functions called command
decoding primitives. These will aid considerably in decoding
and checking the argument list.

The primitives have the form of logical functions that look
at a specified position in the argument list and return the
value true if the item 1is of the desired type. As a side
effect the 'function' returns the actual value of the
argument through the function parameters. This idea is best
shown via an example. It is taken from Idpac and contains
the essential code from the argument decoding in the command

FILT, see Pigure 4.5.

Example
The command syntax for FILT is
FILT SYST = TYPE NO T OML [OMH]

The left hand side has a single argument; the name of a
dynamic system to Dbe generated. That system should be a
Butterworth filter specified by the right hand side;
low-pass, band-pass, or high=-pass determined by the flag
TYPE. The order of the filter 1is specified by the integer
NO. The sample time is given by T and the cut-off frequency
oy OML. In the case of a band-pass filter, the high cut-off
frequency is given by a fifth right-hand side argument, OMH,

Action routine

Initialize

!

Decode and check
argument list

Yes

LPCOM

Input data

Yes

Error

Apply algorithm

Yes

LPCOM

v

Output data

Allowed
to produce

outpy

Close input files

l‘_____

Set error indicator

|

Figure 4.4

The structure of an action routine., Only
algorithm and the I/O data is application dependent.

the

The code example in Figure 4.5 starts with the definition of
three text constants 'LP' etc. and two integers NRL and NRR
belonging to a common block. The two integers are returned
from COMLIN and indicates the number of arguments to the
left of the equal sign (including the <command identifier>)
and the number of arguments to the right respectively. The
two arithmetic ifs thus give an initial test on the argument
list.

The detailed examination starts in the second (ICNT=2)
position in the command line. Here an <identifier> is
expected. The call to the function LHNAME will return the
value true if this is indeed the case, otherwise false is
returned, followed by a GOTO with the result that the error
message 'BAD FILE NAME' is output. As a side effect of a
successful call, ICNT is incremented to point at the next
argument and SNAM receives the value of the <identifier>.

The first arguments on the right hand side are then decoded
in a similar fashion. The type of filter is obtained through
a call to LHOLLS, which compares the actual argument with a
list of three alternatives. If a match is found, The integer
IFILT tells wus which alternative, otherwise an error
"BAD FILTER TYPE' 1is produced. The filter order is found
with the help of LINT while the sample interval and the
first cut-off frequency is found using LNUMB. LNUMB accepnts
a number i.e., either an <integer> or a <real> argument.
Finally, the correct position of the terminator in the
argument list wmust be checked. For a case other than the
band-pass filter, we should reach the terminator after the
fourth argument, otherwise a fifth argument should be

allowed.

This fairly detailed example shows how the command decoding
is actually implemented in ©vrograms using Intrac. The
required type of arguments is represented by the choice of

decoding primitive, while the structure of the argument list

SUBROUTINE FILT

C
DIMENSION TYPES (3)
COMMON /COMINF/ NRL,NRR, ...
DATA TYPES /'LP','HP',6'BP'/
o
IF (NRL-2) 500,100,518
100 IF (NRR-4) 550,105,105
105 ICNT=2
o OUTPUT FILE NAME
IF (.NOT. LHNAME(ICNT,SNAM)) GO TO 520
C FILTER TYPE

IF (.NOT. LHOLLS (ICNT,TYPES,3,IFILT)) GO TO 5849
C FILTER ORDER

IF (.NOT. LINT(ICNT,NO)) GO TO 530

IF (NO .GT. MAXO) GO TO 549

C SAMPLE INTERVAL
IF (.NOT. LNUMB(ICNT,DELTAT)) GO TO 590
C CUT-OFF FREQUENCIES
IF (.NOT. LNUMB(ICNT,OML)) GO TO 590
OMH=0ML
IF (IFILT .EQ. 3) GO TO 180
GO TO 209
C GET OMH
180 IF (LTERM(ICNT)) GO TO 559
IF (.NOT. LNUMB(ICNT,OMH)) GO TO 590
200 IF (.NOT. LTERM(ICNT)) GO TO 560
C START COMPUTING
C
C ERROR CONDITIONS
509 TOO FEW LEFT ARGUMENTS
518 TO0 MANY LEFT ARGUMENTS
529 BAD FILE NAME
539 BAD INTEGER
549 FILTER ORDER TOO HIGH
559 TOO FEW RIGHT ARGUMENTS
561 TOO MANY RIGHT ARGUMENTS
579 A FREQUENCY IS OUT OF RANGE
580 BAD FILTER TYPE
590 BAD NUMBER

Figure 4.5 The essentials of the command decoding in FILT.
The error condition statements are indicated in a condensed
form.

is represented Dby program code. The task could be solved
more elegantly in a programming language other than FORTRAN.
The ultimate solution is however a new level of interactive
programming language, usable both in the implementation of
application software (action routines) and directly in the

daily use of the program, cf. Sections 5.5 and 6.7.

4.5 Facilities in the Intrac Language

The user of an interactive program based on Intrac interacts
with the program wvia a terminal and expresses wishes
concerning the solution of his wproblem in the form of
commands or answers to questions. The commands can be
divided into different categories. Some general purpose
commands (or Intrac statements) are handled by Intrac
itself, while others, application commands, are analyzed by
Intrac and then passed on to the main program module which
selects the appropriate action routine to handle them. The
form of the commands was exemplified in Section 4.1. In some
cases the action routines may need or offer further
interaction in order to carry out the desired actions. This
is then accomplished by means of subcommands, i.e. commands
received through Intrac but with a different command table,

depending on the specific action routine.

The Macro

Macro commands is another facility supported by Intrac. They
are calls to previously defined command sequences on mass
memory. Technically, when Intrac recognizes a reference to
such a command sequence, it starts reading commands from a
mass memory file, rather than from the user's terminal. A
macro corresponds to subroutines or procedures in ordinary

programming languages.

A macro consists of a sequence of Intrac-statements, macro
calls and application commands. They are stored as a text
file on mass storage. The first 1line in the macro should be

a MACRO-statement which has the following forml).

MACRO <macro identifier> [<formal argument>/<delimiter>/

<termination marker>]*

The statement declares the formal arguments of the macro.
After the MACRO-statement follows a sequence of
Intrac-statements, macro calls and application commands. The

last line in the macro should contain an END-statement:
BND

A macro is called by giving its name followed by actual
arguments in the same way as a command. If the <termination
marker> is not used then the number of actual arguments
should be egqual to the number of formal arguments in the
MACRO-statement. The delimiters appearing among the formal
arguments should be given at corresponding positions in the
call.

The <termination marker> 1is used when a variable number of
actual arguments 1is allowed. It indicates that the formal
arguments and delimiters appearing following the symbol need
not have corresponding actual arguments. If the <termination
marker> is wused several times in the macro, then it gives

1,

alternative places where the <call can be terminated. The
formal arguments which have no corresponding actual

arguments will be 'unassigned’.

1) The notation []* denotes that the enclosed item is

optional or may be repeated several times.

Intrac as implementing a language

Actually, a program built around Intrac may be regarded as
an interpreter for an interactive problem solving language
with the same type of facilities as found in many other
languages for interactive programming. An important
difference is, however, that here we are aiming towards a
specific problem area, by the inclusion of special problem
oriented action routines / commands. Macros (subroutines /
procedures) in this problem oriented language can ke used to
implement common subproblem solutions, give user guidance or
implement guestion / answer dialogue. In this way many of
the demands mentioned earlier in Section 3.1 can be met. In
order to emphasize Intrac as the basis of a language, its
data handling capabilities are discussed in the following
subsection. The constituent statements of Intrac are listed
in Section 4.,6. A detailed account of Intrac is found in
[Wies78].

Variables

In Section 4.1 we saw that a <variable> was a possible item
in an <argument list>. A variable can be of three different
types:

<variable>::=<{formal argument>/<local variable>/
<global variable>

where

{formal argument>::=<identifier>
<local variable>::=<identifier>

<global variable>::=<identifier>.[<identifier>]

The value of a variable can be either an integer number, a
real number, an identifier or a delimiter. A variable can

also be unassigned.

When processing the argument list of a command, Intrac will
try to substitute a value from its internal tables for every
occurrance of an <identifyer>. This was described in detail
for the routine SUBST in 3Section 4.3. The substitution rule
does not always apply to Intrac-statements. The items which
can be substituted are underlined in the syntax for the
Intrac—-statements. With these exceptions, the substitution
enforces what in common programming languages is called
'call by value'. Although guite appropriate in most cases,
this compulsory substitution is too restrictive in some
cases. If Intrac ever is to be redesigned, the substitution
rule should be made conditional. It would then be possible
to return values from a command through 1its arguments. The
potential is that such results could be used in conditional
GOTO statements, making the future actions of a macro
dependant on the results. This facility is currently

avalilable using global variables.

The arguments listed in the definition of the macro are
called formal arguments. When the macro 1is called, a
corresponding list of actual argument values should be
specified. The substitution rule is then applied so that
every occurence of a formal argument in the macro 1is
replaced Dby its value Dbefore the command arguments are

passed on to the proper routine.

A local variable has the same form as a formal argument and
it is in fact treated in very much the same fashion. It is
local to the macro level and is defined when it 1is first
given a value in a READ, FOR, LET, or DEFAULT statement.

A <{global variable> is distinguished by a dot following the
identifier. It is always accessible and may be used to pass
information between macros. An important use is to define a
set of problem dependent parameters stored as <global
variables> that can be referenced in several different but
related application commands or macros. The value of <global

variable>s may also be used and returned directly by
application command routines. In fact, <global variable>s
are the only means by which results may be returned from
application commands within the framework of Intrac. Other
possible ways, files, data areas, etc. are not administered
by Intrac. It should also be mentioned, that the imolementor
of an interactive program package has the possibility to
initialize the table of <global variable>s so that there
always will be a set of "reserved" <global variables> for
special use.

Under certain circumstances, a global or local variable, or
a formal argument may have been defined without having been
assigned a value. The type 'unassigned' may be transferred
in a LET-command. The action on 'unassigned' wvalues by
IF...GOTO commands is defined, and most importantly, the
DEFAULT command is specifically designed to handle them. If
an unassigned variable appears as an argument to an
application command it will be totally invisible to the

corresponding routine.

4,6 Intrac statements

Intrac implements a number of statements of an application
independant nature. They provide many of the functions found
in any general purpose programming language. They therefore
further emphasizes the 1idea of Intrac as a basis for

application oriented problem solving languages.

a)

92

Generation of macros

There are some different ways to generate a macro. Since
a macro is implemented as a text file it 1is possible to
generate and modify a macro using a text editor. A macro
can also be generated by entering the MACRO-statement
from the terminal. This statement was defined in the
previous section. In generation mode all correct commands
entered from the terminal are stored on a file. This
continues until generation mode is left by the
END-statement. Whether the commands in the macro should
be executed during generation or not is determined by the
switch EXEC. If EXEC is OFF then the commands are only
checked for formal errors and if correct stored on the

file. If EXEC is ON the commands will also be executed.

The FORMAL-statement can be used to extend the 1list of
formal arguments anywhere in the macro. It is placed
after the MACRO-statement automatically when the

generation is finished.

Assigment of variables

Formal arguments are allocated and possibly assigned when
a macro is entered. Their values can be changed with the
LET-, DEFAULT-, FOR-, and READ-statements. Among the
forms allowed is the usual arithmetic statement, and the

main form is:

LET {<variable>=}*{<numbggz[{+/—/*//}<number>]

The DEFAULT-statement 1is a conditional assignment

statement. Its form is:

DEFAULT {<variable>=}" <argument>
The assignment 1is performed only if either
- the named variable is 'unassigned'
- the named variable does not exist.
In the last case a new variable is allocated.
Branching
To make macros flexible it is necessary to have a way to
change the sequence of commands executed. This may be
acieved through branching statements and labels. The
labels used in branch statements are declared 'on site'
using the LABEL-statement:

LABEL <label identifier>
<label identifier>::=<identifier>/<integer>

The unconditional GOTO-statement is:

GOTC <label identifier>

Since the argument in the GOTO-statement could be a
variable whose value is a label identifier it is possible

to use the statement as the assigned GOTO of FORTRAN.

The conditional GOTO statement has the form:

IF <argument> {EQ/NE/GE/LE/GT/LT} <argument>
GOTO <label identifier>

(0]

94

The effect of this statement is the same as for the
GOTO~statement if the relation is true. If it is false

the next command in sequence is executed.

Looping (FOR, NEXT)
It is possible to introduce loops among the commands in a
macro. This is done with the FOR- and WEXT-statements.

The FOR-statement begins the loop and has the following

form:
FOR <variable> = <number> TO <number> [STEP <number>]
The NEXT-statement ends the loop and has the forms

NEXT <variable>

Output and input

The macro facility can be used to implement guestion and
answer interactive programs. Questions are written on the
terminal with the WRITE-statement and the answers are
read wusing the READ-statement. The WRITE-statement is
used to write variables and text strings. Its form is

WRITE [([DIS/TP/LP] [FF/LF])] [<variable>/<string>]"

The READ-statement reads values from the terminal and

assigns variables. Its form is:

READ { {<variable> {INT/REAL/NUM/NAME/DELIM/YESNO}} /

<termination marker>}*

After each variable a type specification for the expected

value is given:

INT - integer number

REAL = real number

NUM - integer or real number
NAME - identifier

DELIM - delimiter

YESNO ~ identifier YES or NO

When the READ-statement 1is executed a orompting # is
written on the terminal. The <termination marker> has the
same function as in the MACRO-statement. It gives
alternative places where the answer could be cut off. The
variables that are not given any value become

'unassigned’.

There are two means of escape from the READ statement,

resulting in the suspending of the macro.

If the answer is just a > the READ-statement will have no
effect and the macro is suspended. If the macro is
resumed by the statement RESUME the READ-statement will
be re-executed.

If an acceptable answer 1is given followed by a > the
variables will Dbe properly assigned and the macro
suspended. If the macro 1is resumed with RESUME, the
command following the READ will be executed.

Suspending a macro

There are cases when the freedom to have formal arguments
in a macro is not enough. At generation time it wmay for
example not be known which command is appropriate at some
point in a macro. It is then possible to switch to
command input from the terminal (i.e. suspend the macro).
When the command input from the terminal is finished the
macro is resumed. This facility is handled by the
statements SUSPEND and RESUME.

A macro is automatically suspended in some cases.

- When an error is detected during the execution of a macro
then an error message is printed and the macro is
suspended. The user can then e.g. enter a correct form of
the erroneous command and then RESUME the macro.

= When the READ-command has been executed in a macro, the
user has to input the requested values from the terminal,
or he can enter a special escape character (>) which

causes the macro to be suspended.

4.7 How to Use the Macro Facility

The macro facility is based on a simple and basic idea, viz.
that a character string is interpreted as a name of a body
of text that is to replace that string. This is the macro
concept found in many assembly languages £for computer
programming. In Intrac the effect 1is achieved simply by
altering the input device so that commands are read from a
mass storage file. An assembly language macro offers the
possibility of arguments, which are treated as text strings
that replace the occurrance of the argument in the macro
body. Macros in Intrac also allows arguments, although they
are replaced with their values vrather than their text
representation. This was a more natural way to go, since it
is wvalues that are ultimately vassed on to the action
routines. Also, values are easier to handle, since they have
constant "length", i.e. they are stored in a known number of

locations in memory, as opposed to text strings.

Having come +this far, 1t is natural to realize that the
inclusion of structural statements like branching and
looping, simply boils down to a search for specific
positions within the text file. Likewise, being able to
handle values for actual arguments, it is natural to allow
variables local to a macro, and I/0 statements that transfer

variable values. In short, the facilities included in Intrac
and described above are natural extensions to the Dbasic
command philosophy. The rest of this last section will show
that they are indeed also useful.

In the context of Chapter 3, the Intrac language |is
primarily suited for the needs of the experienced user,
giving access with few restrictions to all available
commands, in any order. As indicated there, this complete
freedom may not always be desirable, so other forms of
interaction should be provided. This can be done by means of
the macro facility, and we will now demonstrate the main

ideas in how to obtain the desired result.

Commonly used command sequences

The experienced user will often find that a command sequence
is frequently executed with only minor changes. It is then
convenient to introduce that special command segquence as a
macro. This procedure can also be thought of as a mechanism
for generation of new commands, suitable for a specific

problem. This case is illustrated in Chapter 8.

This type of macros may serve as a short hand facility for
the experienced user, and as simple-to-use primitives for
his assistant. In the examples, the macros were generated in
the mode EXEC OFF. The mode EXEC ON is suitable when, during
the solving of a problem, it is apparent that the following
actions will be used more than once. By starting the
definition of a macro during the first time through, the
command segquence is then immediately available for repeated

use.

Simplified command forms

Figure 4.6 shows a method of implementing commands with two
possible call formats. One form allows a single 1line call
with arguments, while the other form consists of only the
command name. The necessary arguments are then asked for,
one by one. Finally, the proper action routine 1is called.
This is the mixed dialogue mentioned in Section 3.2. The
reason to use the mixed form 1is that a simplified
interaction may be Dbetter suited for the infrequent or
casual user. This example demonstrates a possible
implementation of the command EIGEN available in Synpac and
Modpac. The actual computations are supposed to be
implemented in the action routine <called by the command
CREIG (eigenvalues by the Q-R method).

a) Note the use of the <termination marker> ; and the use of
the 'unassigned' global variable UNASS..

b) Note the use of a <delimiter> 1in the 1list of formal
arguments. The rules state that the same delimiter must

appear in the same position among the actual arguments.

The command syntax for EIGEN as implemented by Figure 4.6
thus looks like:

EIGEN [<matrix of eigenvalues> <matrix of eigenvectors> =
<matrix identifier>]

MACRO EIGEN ; EVAL EVEC = A
IF EVAL NE UNASS. GOTO XCT
WRITE 'Name of eigenvalues?'
READ EVAL NAME

WRITE 'Name of eigenvectors?'
READ EVEC NAME

WRITE 'Name of matrix?’

READ A HNAME

LABEL XCT

QREIG EVAL EVEC A

END

Figure 4.6 A macro implementing a command with mixed mode

interaction. If no arguments are given, they
one by one.

Question & answer interaction

are asked for

A guestion & answer dialogue, giving good guidance for the

infrequent or one-time user, may be realized
a macro. A simple example using commands from

in Figure 4.7.

The READ and WRITE general purpose commands
used to communicate with the user, presumably
student of stochastic processes. Instead of

around' with some of the commands in Idpac,

in the form of
Idpac is shown

of Intrac are
in this case a
just 'playing

requiring some

familiarity with specific details, he is taken in an orderly

fashion by a macro through a sequence of commands showing

the effect of a class of dynamic systems on

input. Some points are worth noting:

a) If an error is detected, the macro will

a white noise

be suspended,

i.e. the ©oprogram goes into command mode. Any Idpac

command is then legal. The inexperienced user is advised
in the description to use GOTO RESTART, which will allow

a complete description of filter parameters.

b) The use of the <termination marker> ; in

the reading of

cut-off frequencies allows input of only one real value.

4: 190

MACRO NOISEDEMO

INSI WNOISE 209

HORM

X

LABEL DESCR

WRITE 'The effect of filtering white noise through’

WRITE 'Butterworth' filters will be demonstrated. You can'
WRITE 'choose filter type, order, and cut-off frequency.'
WRITE 'In the advent of errors, type GOTO DESCR to receive'
WRITE 'this description again, or type GOTO RESTART to'
WRITE 'start from the following.'

LABEL RESTART

WRITE 'Choose filter order and type (LP, BP, HP).'

READ N INT TYPE NAME

WRITE 'Now enter cut-off frequency. Enter two frequencies'
WRITE '(low and high) if you chose BP.'

READ CF REAL; CF2 REAL

FILT FILTR < TYPE N 1. CF CF2

DSIM COLNOISE < FILTR WNOISE

WRITE 'Hit the return key to see 50 samples of gaussian'
WRITE 'noise coloured by your choice of filter.'

READ ; I INT

PLOT 50 COLNOISE "Plot of coloured noise

WRITE '"Hit return key to see Bode plot of theoretic and'
WRITE 'computed power spectrum.'

READ ; I INT

KILL

ASPEC NSP < COLNOISE 549

S5PTREF (POW) FSP < FILTR B/A

BODE FSP NBSP

WRITE 'Do you want another run?’

READ ANS YESNO

IF ANS.EQ.YES GOTO RESTART

END

Figure 4.7 A simple gquestion & answer demonstration of
coloured noise, implemented via a macro containing
informatory text and questions.

The local variable CF2 will then be 'unassigned', and its
appearance in the command FILT will be invisible to the
action routine.

¢) The dummy read statements READ ; I INT, where the
allows the user to respond with an empty line, serves to
include a pause so that the display is not erased until

the user is ready.

Macros giving help and information

For the user with ambition to learn the possibilities of an
interactive package in order to some day be an experienced
user, facilities other than those above are needed. Also,
the experienced user may need occasional short advice, e.qg.
on a seldomly wused facility. For such purposes, a help
facility is often made available. Here we will show that the

macro facility well serves to implement such a function.

The macros given here (Fiqures 4.8 - 4.11) will be used as
examples. HELP is intended solely for the use of the novice.
It implements a form of programmed instruction where the
student may choose when to change to a more advanced level
of training. HELPSYN and HELPINF serve to write some
informatory text, chosen through the argument. They are
called by HELP, but used separately, they will prove useful
also to the advanced user. HELPSYN will give the syntax of
the command in question, while HELPINF will give information
on the nature and use of the different command arguments.
HELPEX, shown here giving an alternative to the example in

Figure 4.6, will ask guestions to execute a command.

The operation of the macro HELP is as follows: The beginner
wanting to get to know the interactive program on his first
session at the terminal types HELP as response to the
promting character. The presentation and the information on
the different modes of the help offered is then output. The
mode will initially be #. The beginner should keep this
value the first time and will then get the menu, i.e. a list
of all available commands, shown. He then indicates his
interest for one of the application commands, and then,
being in mode 0, receives information on the chosen command.
In this way, a certain familiarity with the orogram is

gained.

After a while, the user will feel ready to execute the
commands. Specifying mode 1 in the section 'MODES' will
cause HELP to execute the command chosen by the user in a
guestion & answer type mode. Finally, the user will try his
wings by writing the complete command with arguments. Mode 2
will still give some help in that the proper command syntax
is displayed.

In this way, the beginner will recieve support according to
his current state of training. Finally the user won't need
the detailed help the HELP macro gives. The subfunctions
HELPSYN and HELPINF will however still be useful also for

the experienced user, and can of course be used separately.

Some parts of the macro HELP are worth further comments:

a) The DEFAULT statement in the beginning of the macro gives
the possibility of initialization the first time the
macro is called.

b) The repeated use of WRITE statements to output large
amounts of text is somewhat clumsy. It is done here so
that the text is possible to read in its context. In most
implementations, there will probably be an application
command available +to output text files to a terminal.
Here we use the command LIST from Idpac to output text
describing the menu, i.e. a list of possible operations
in a hypothetic application.

c) LIST has a possibility to output portions of a text file,
utilized in HELPSYN and HELPINF. In fact, the mechanism
used is the same as the one used to recognize sections
within a system file, cf Figure 5.12.

d) Note the wuse of global variables +to allow the mode and
state of the macro to be saved so that at the next call,

the desired options are still in effect.

MACRO HELP

L]
" Demonstra

DEFAULT HEL

tion HELP function.

P.STATE=0

IF HELP.STATE EQ 1 GOTO ACTIVE

IF HELP.STA
n

" Initializ
LET HELP.ST
LET HELP.MO
Wl

LABEL PRESE
WRITE 'PRES
WRITE 'This
WRITE 'func
WRITE 'The
WRITE ’'sele
WRITE 'The
WRITE 'be ¢
WRITE ' !
WRITE 'HELP
WRITE 'HELP
WRITE 'HELP
WRITE ' !

[

LABEL MODES
WRITE 'MODE
WRITE 'You
WRITE ' !
WRITE '
WRITE '
WRITE !
WRITE '
WRITE '
LABEL CHOOS
LET TMP=HEL
WRITE 'Choo
WRITE 'The
WRITE 'this
READ TMP
IF TMP LE @
IFr TMP GT 3
LET HELP.MO
GOTO MENU
LABEL WRONG
WRITE 'Your
GOTO CHOOSE

Figure 4.8a

TE EQ -1 GOTO MENU1

e
ATE=1
DE =9

NT
ENTATION, '
is a demonstration of some possible help’
tion facilities.'
help function can work in different modes,'
ctable in the MODES section.'’
help function utilizes functions that also can'’
alled upon directly. They are:'

SYN CMND - Displays the command syntax for CHND'
INF CMND - Displays information on command CMND'
EX CMND = Ask questions to help execute CHMND'

s."
may now choose the mode of this help function.'

Obtain information only'

Obtain help to execute'

Obtain command syntax, execute by yourself'
Execute by yourself with no help'

B
P.MODE
se mode by typing the appropriate integer.'
current value is (' TMP '). You may accept'
with an empty line.'’
INT
GOTO WRONG
GOTO WRONG
DE=THMP

answer must be in the range #-3'

First part of a macro realizing a HELP function.

4: 104

LABEL MENUL
LET HELP.STATE=1
LABEL MENU
LIST (T) MENU
WRITE '
WRITE 'MODES

Change help mode'

WRITE 'PRESENT - Obtain the presentation of help’

WRITE 'EXIT
WRITE ' !
WRITE 'What is your interest?’

READ ANSWER NAME

IF ANSWER EQ MODES GOTO MODES

IF ANSWER EQ PRESENT GOTO PRESENT

IF ANSWER EQ EXIT GOTO EXIT

" Must be a request for an application command
Act according to mode

IF HELP.MODE EQ # GOTO INFO

IF HELP.MODE EQ 1 GOTO XCT

IF HELP.MODE EQ 3 GOTO LEAVE

" Must be mode 2

HELPSYN ANSWER

LABEL LEAVE

WRITE 'Now you are in command mode.'
WRITE 'Return to HELP by typing RESUME.'
SUSPEND

GUTO MENU

1]

LABEL INFO

HELPINF ANSWER

GOTO MENU

"

LABEL XCT

HELPEX ANSWER

GOTO MENU

n

LABEL ACTIVE

WRITE 'HELP is already active!'

WRITE 'Use RESUME to obtain more help.'
GOTO END

LABEL EXIT

" HELP not active any more.

LET HELP.S5TATE=-1

LABEL END

END

Exit from the help function'

Figure 4.8b The second part of the HELP macro.

MACRO HELPSYN CMND
LIST (T) SYNTAX(CMND)
END

Figure 4.9 This macro is intended to give information on the
syntax of a given command. It assumes that the informatory
text is stored on a file SYNTAX with sections referencable
as in Figure 5.12.

MACRO HELPEX CMND

GOTO CMND

WRITE 'There is no command with name ' CMND
GOTO EXIT

" Here code for other commands could be inserted.
"

LABEL EIGEN

WRITE 'Name of eigenvalues?’

READ EVAL NAME

WRITE 'Name of eigenvectors?’

READ EVEC NAME

WRITE 'Name of matrix?'

READ A NAME

EIGEN EVAL EVEC = A

LABEL EXIT

END

Figure 4.10 This macro shows how help to execute commands
could be offered. Only one example is shown. Note the action
taken for an illegal argument.

MACRO HELPINF CHND
LIST (T) INFO(CMND)
END

Figure 4.11 A macro exactly similar to the one in Figure 4.9
used to output informatory text.

5. DATA TYPES AND DATA STRUCTURES

An interactive program package is likely to be required to
deal with data of many different types. Therefore it is an
important task £for the designer of such a package to find

generally applicable methods to handle different data types.

The fist data type considered is scalars. A nice point with
scalar data 1is that they do not occupy much space in
storage, therefore they can be Kkept in tables in main
memory. Still, some method of addressing them must be

devised.

Nonscalar values (vectors & matrices and similar things) may
take considerable storage space. They are therefore best
stored on mass memory devices such as disc either directly
or indirectly. The designer must then decide how these data
types are to be structured. The easy way is just to dump the
internal data structure onto a file, and then to read it
back, when needed. 1If, however, such files are to be
exchanged Dbetween program packages, a predefined vet
flexible file format must be constructed. If the program is
to be portable, the operations to open and close files must

also be given some thought.

Finally, dynamical systems present some difficulties.They
can be represented in many different ways., e.g. state
egueations or inpht - output relations. In particular linear
systems can be represented by a guadruple of matrices, by a
matrix of rational functions, by polynomial matrices or by
tables of 1impulse responses or frequency responses. It is
desirable to allow many such representations simultaneously,

and to be able to distinguish between them.

This chapter aims at presenting these problems in more
detail and to review two possible solutions. The first four

sections deal with the problems mentioned above. Then a

skeleton implementation in a Simula like language 1is shown
and finally details on an implementation with mass-memory
files in FORTRAN is discussed.

5.1 Scalars

Generally speaking, scalars in an 1interactive ©program
package are very often used to specify a problem and details
on the method of its solution. Examples of integers of this
kind are orders, iteration counts and indices. Reals are
e.9. bounds, weighting factors, scaling factors and the
like. The list can easily be made longer and more specific.

Character strings are a type of scalars of a different
nature. The typical use is either as flags or as names. A
flag 1is used as an indicator that one of a number of
possible options should be wused, the choice being made
through the use of a string rather than an integer selector
constant because of obvious mnemotechnical advantages.

Names can be used to identify data stored in various forms.
The importance of using names rather than other possible
ways 2.9, record numbers, memory addresses, indices in
tables etc.) 1is the possibility of using mnemotechnically

natural names of the user's own choice,

An interactive program based on Intrac (Chapter 4) will
handle much data of scalar form, viz. the command arguments.
Then scalar values of the above types are transferred from
the command line. Also Intrac substitutes scalar values from
its internal tables when they are referenced through their

variable names.

5: 1038

On the whole, however, scalar values do not present great
problems; there are no problems with structure and they

occupy little storage.

5.2 Arrays

One or two dimensional arrays represent the simplest example
of structured data. Here a set of elements of identical type
(e.g. real numbers) are forming a pattern of rows and
columns. This structure 1is characterized by one or two
integers, viz. number of columns and maybe number of rows.
Strictly speaking, this structure corresponds to vectors and
matrices, but as we will see it is possible and useful to

treat a number of other guantities in the same way.

Vectors and Matrices

Vectors and matrices are very basic data structures,
essential in many methods applicable in automatic control.
The most obvious use 1is in the description of 1linear
multivariable systems on state space form. As such they are
included in the discussion on system representations later

Oon.

It may be interesting to handle matrices (vectors may be
regarded as a special case) independently. This poses no
problem since matrices as an array of real numbers is a
primitive data structure in most high level programming

languages.

5: 109

Time Series

A time series, i.e. a signal represented by its values at
different points in time is a very common object in control
engineering and other disciplines. It may be the result of
measurement on the real world, the result of a simulation,
or it may Dbe the value of some function of time, e.g.

sin(wt).

In Idpac almost every command will use a time series either
as input or output. Also Synpac, wich is used for the design
of control systems in the time domain 1is heavily denendant
on generating and visualizing time series, simply bescause

the time behaviour of the system is the design criterion.

Most theory and many practical methods assume that the
distances in time between different points in the time
series are equal. This makes it ©possible to condense the
time information and include a single specification of the
time increment. At each time instant, more than one signal
is wusually measured, or simulated. In many cases it is
natural to store values from more than one measurement point
into the same series, e.g. output #1, #2, ... etc. into
series Y, and input #1, #2 .. etc. into series U.

All such signal values belonging to the same time instant
could then be stored in a single row in a matrix (array)
while values belonging to other time instances are stored in
other rows. Thus the number of rows is equal to the number
of time instances while the number of columns is the number

of individual signals represented.

Thus apart from the information on time increment, the
number of individual signals and the number of sample times,
a set of related time series are conveniently treated and

stored as an array, cf. Figure 5.1.

Frequency Responses

A frequency response consists of a seqguence of complex
numbers, i.e. amplitude and phase, each associated with a
real number, the freguency at that point. By including the
frequency value at each point, total freedom in frequency
spacing 1is achieved. This may be of great value in cases
where frequency responses are measured. A frequency response

is conveniently storad as an arrav.

Loci

A locus 1is an array of complex numbers. These numbers are
typically either matrix eigenvalues or polynomial zeroes. Of

course this would as examples include system poles/zeroes.

For each set of values, there is a real variable wich is the
current value of a varying parameter. A typical example
would be the loop gain in a root locus analysis. This is
also the main intended use of such an object; by plotting
the complex numbers in the complex plane for each value of
the parameter, a locus for eigenvalues / zeroes may be
obtained. It is easily parametrized in the parameter
variable. Again we see that the basic structure of a two

dimensional array will accomodate this type of object.

Polynomials

Polynomials are common objects in program packages for use
in automatic control. They could be the numerator and the
denominator of a rational transfer function or operator
polynomials in the description of a system on matrix
polynomial form. The 1latter case is more demanding in that
it requires the possibility of a polynomial with matrix

coefficients. Such a polynomial matrix can ian a natural way

5: 111

be regarded as a three dimensional array. The coefficient
matrices are stored in the normal fashion using the first
two dimensions, while the third dimension is wused to
distinguish the coefficients for the successive powers in
the independent variable. The scalar case where coefficients
are scalar quantities 1is included by letting the first two

dimensions parameters be equal one.

5.3 Systems

Granted that we deal with program packages for automatic
control applications, the notion of a system in the meaning
of a dynamical system, to be controlled, analyzed, modelled
etc, 1is of wvital importance. We want to perform certain
computations on such systems, so we have to represent them
in a computer 1in some way, but above all, we have to know
what we mean Dby the word "system". It must be decided what
is meant by a system representation and when different
representations should be considered to represent the same
system. It must be decided which representations should be
legal and what safety measures should be put in the program.

Let wus regard the system as a "box" (black, misty or
transparant) with some inputs and outputs, possibly
classified 1in some way as command inputs, disturbance
inputs, measured outputs and controlled outputs. See Figure
5.1. We assume that the operations of this box can be
described by differential equations, linear or non-linear.
The black box case then refers to the situation when the
nature of the underlying equations is largely unknown, while
the transparant box represents the opposite case. Naturally,
the misty box «case 1is when the system is described by

equations of known form but with unknown parameters.

ENVIRONMENT
DISTURBANCES

Measured

disturbances Unmeasurable disturbances

—» Measurements
System

Control Controlled
signals . - variables

Figure 5.1. A general system with inputs and outputs.

A given system in this sense can be described in many
different ways, depending on the insight we have in the box.
One way is for example to record inputs and outputs and use
these time responses as a system representation. If we know
or are prepared to postulate a model structure there are
different ways to compute estimates of parameters in such
models. The models may be of different orders, giving
different goodness of fit to the data. Also different model
structures are possible: difference equations, state space
differential equations etc.A transfer function description
requires for example few assumptions other than linearity,
giving the system characteristics as amplitude and vphase

Curves,

If we approach the problem from the opposite direction, we
may have sufficient knowledge of the system to be able to
write down complete (high order) differential eguations,
based on fundamental laws in physics, chemistry, mechanics
etc. At least 1linearized versions of such differential
equations are in a natural way represented as (matrix)
polynomials in the differentiation operator. Following
certain restrictions, such a system can be transformed e.qg.

to state space form or transfer function form.

5: 113

This discussion, more elaborated in Chapter 2, 1is repeated
here to stress that several different ways of representing a
given system is possible, and that all of them in some way
describe the dynamical properties of that system. It 1is
therefore strongly desirable that what is to be called a
system in a program package includes the facility to allow
simultaneous descriptions. On the other hand, a free
inclusion of different system representations into a
"system" is of <course unnatural. There must be some
restrictions, so that unrelated representations cannot, at
least easily, be put together into one "system". Care must
also be exercised when any representation 1is changed to

ensure that all representations are equivalent.

Wote that we already have tools at hand to deal with some
aspects of the problem of storing a system description.
Polynomials <can store the coefficients of a difference
equation while matrices are ideal to store coefficients of
state space models. Frequency responses are available to
store the transfer function as it is computed by spectral
analysis. Time series can be used to store impulse & step
responses and so on. Now, the ability to store sets of data
is not enough, their interrelations must be given somewhere.
An additional grasp on the subject is needed. Thus we find
that the notion of a system leads us to the requirement that
several different representations of a given system should
be allowed. To the program package, they should appear as
different instances of a "system object". The access to such

an object must be subject to some conventions.

We could for instance demand that it would be possible to
reference a system with a name, specifying the system as an
abstract object, plus a representation name, specifying a
representation from a set of available choices. The
conventions should ensure that the representation forms
available for a certain system indeed describe the same

object. It should be legal to obtain a new representation

5: 114

through transformations of already available ones. It should
not be possible to freely include new representations
because of the risk that they might actually describe a
"different" system. An example of such conventions is given
later in Section 5.13. The conventions have to allow great
flexibility, since many representation forms must be catered
for. Other requirements include the possibility to get a
quick overview of the system in its available representation
forms. Coupled to this is a need for compactness. This need
is apparent from a quick estimate of how many numbers are
used even in a moderately complex model on e.g. state space
form or transfer function form. Storage for all this
information must be dynamically allocated to allow a great

expansion potential.

Finally, it would be nice if the interactive user could
start operations on a system or a representation of a system
without having to specifically state the type of

representation. As an example, a command of the type

SIMU Y < SYST(REPR) U
should be allowed (meaning simulation of the representation
REPR of system SYST with input U and output Y) regardless of

whether REPR happens to be a state space or a transfer

function representation.

5.4 Review of Reguirements

The reguirements on data handling in an interactive program
is by no means an elementary exercise in programming. We are
required to handle objects referenced by the user via names.
The naming mechanism is straightforward, but the objects are

of different shapes and sizes.

Scalar objects were found in the form of iteration counts,
parameters, dimensions etc.

Array objects were encountered as matrices and vectors,
time series, frequency responses, loci etc. They pose no
structural problem but they may be large. As an example, a
time series may in a practical application contain 18
signals sampled at 1000 points.

System objects are the tricky part

System Objects

One problem is to allow several representations of a single
"abstract system". This can be achieved by means of a
suitable naming strategy. Another ©problem is to allow
representations to be of different types. This can be solved
by brute force in FORTRAN. It may be done more elegantly in
high level ©programming languages, as is discussed in the
next Section. The last and most demanding problem is that a
system is a structured object, consisting of scalars, such
as orders and dimensions, and arrays, such as matrices,
polynomials etc. Also, some parts of a system representation

may be optional, such as a noise input.

From practical considerations, there is a requirement that
storage for these objects can be allocated dynamically. This
should be feasible both for the total size of an object and
for its internal representation during processing. The size
problem can be exemplified by a state space system with A,
B, and C matrices. It 1is quite conceivable that these
matrices have to be stored temporarily inside a procedure
(subroutine) during processing. If available temporary
storage must be decided prior to startup of the interactive
program, which is reasonable to assume, it 1is then also
reasonable to demand that it is utilized efficently. This
implies that if storage space corresponding to 675 real
numpers were available, this space would be enough to store

either a 15:th order system with 15 inputs and 15 outputs
(152 + 152 + 152 = 675) or a 25:th order system with 1 input
and 1 output (252 4+ 25%1 +1%25 = 675).

Finally, some operations in the interactive program 1is
likely to be applicable to several kinds of objects. An
example 1is simulation of a system which <c¢an be defined,
although differently, for a state-space representation and a
transfer function representation. It would be desirable from
the wuser's point of view to be able to specify this
operation without considering the actual representation
form, and reguire the program to apply the correct
algorithm. In other words, operations should be
automatically typed according to the kind of objects they

reference.

5.5 How It Could Be Done

This section will show a skeleton implementation of a Synpac
like program package (synthesis of 1linear multivariable
systems). It 1is written in a hypothetical high level
programming language which 1leans heavily on the c¢lass
concept of Simula [Birt73]. It also uses the type
declaration and case statement of Pascal [Jens74]. A major
new facility 1in this hypothetical language 1is that it is
interactive. This will be commented upon at the end of this
section. It should be emphasized that the examples are
intended to illustrate some general ideas and are by no

means complete,

Figure 5.2 shows the environment of the following figures.
It shows the main idea of this section, that the objects
such as signals, matrices etc., are naturally implemented as
Simula classes. A class in Simula is a definition of a data
structure together with operations applicable to that data
structure. Several instances of a class may exist,

referencable through reference +type variables (pointers).
Also, predefined concepts allow the objects to form sets.
Moreover, Simula classes inherit properties in a controlled
and natural way. As will be shown, this framework will make

it easy to satisfy our requirements.

SIMSET begin
type reptype
type sigtype
class signal

begin
end;
class matrix
begin
end;
class polynomial
begin

(85,TF) ;
{(5tep,8ine,Norm, Zero) ;

end;
HEAD class systen
begin
end;
LINK class representation
begin
end ;
representation class statespace
begin
end;
representation class transferfunction
begin

end:

Figure 5.2, The overall structure of the Simula examvle.

Definition of Data Structures and Procedures.

The details of Figure 5.2 are then: first two scalar
datatypes are defined; their wuse will be apparent later.
Then three classes realizing signal, matrix and polynomial
objects are defined, detailed in Fig. 5.3. Finally a family
of classes realizing the system concept discussed previously

are defined.

Figure 5.3 details the classes signal and matrix. As an
example of their use, assume that the following declaration

has been made:
ref (matrix) a,b,c:

and that a and b have been assigned suitable values. Then
c:-a.mult(b);

would compute the matrix product a*b and generate a new
matrix-object, referenced by ¢, containing the result.

Examples with signal objects will follow later.

The design of a set of classes depicting the properties of
systems is more complicated. These basic properties are that
a system may have several representations of different
internal structure. By prefixing the entire data structure
by 'SIMSET', a linking mechanism in Simula is made
available. Then by prefixing the c¢lass system with 'HEAD'
and the class representation with 'LINK', several
representation objects may be linked together into the same
system object. Predefined procedures 1like FIRST and SUC
allow the referencing of connected representation objects,

see Figures 5.4 and 5.5.

class signal (nsampl,nsig); integer nsampl,nsig;
begin
real array s(l:nsampl,l:nsig);
nrocedure plot;
begin
end;
procedure define(sig,typ); integer sig; sigtype typ;
begin
end;
end;
class matrix(nrow,ncol); integer nrow,ncol;
begin
real array m(l:nrow,l:ncol);
ref(matrix) procedure mult(b); ref(matrix) Db;
begin
end;

end;

Figure 5.3. Some details of the classes signal and matrix.
The class polynomial would be very similar.

The actual definition of statespace objects and transfer
function objects are done in Figures 5.6 and 5.7. Because
they are prefixed by 'representation', they inherit the
properties of that c¢lass, viz. the linkage into the system
object and the representation name. The two classes define
some procedures that were declared virtual in class
representation. This mechanism allows the procedure body to
be defined in its natural context, different for a
statespace or transfer function object. A call to such a
procedure, referenced by a ref(representation) variable,
will automatically be routed to the correct wversion
depending on whether the representation object is of type

statespace or transfer function.

HEAD class system;
begin
ref (representation) procedure as(rname); text rname;
comment This procedure searches a list of objects
for an object with the name 'rname';
begin
Boolean ok;
ref (representation) X,y:
ok:—-false;
X:=FIRST;
y:-NONE;
while x=/= NONE and not ok do
if x.name=rname then
begin
Vi=X;
ok:=true
end
else
X:=X.50C;
as:-y
end;
procedure generate(t,n); reptype t; text n;
begin
ref (representation) x;
CLEAR:
case t of
55: X:-new statespace(n):
TF: X:-new transferfunction(n);
end;
X.Create
end;
end system;

Figure 5.4 The definition of the class system. The procedure
as will be used to select a specified system representation.

LINK hidden class representation(name); value name;
text name;
begin
virtual orotected procedure create;
virtual ref(signal) procedure simulate;
virtual procedure transform
end;

Figure 5.5 The definition of the <class representation.
Several represention objects may be linked into a system
object (being a HEAD).

representation class statespace;
begin
ref (matrix) A,B,C:
ref(signal) procedure simulate(u); ref(signal) u;
begin
end;
procedure transformto(newtyp,newname) ;
reptyp newtyp; text newname;
begin
ref (representation) x:
case newtyp of
SS:begin
X:-new statespace (newname) ;

end:;
TF:begin
Xx:=new transferfunction(newname) ;
end
end
end
hidden procedure create;
begin
end;

INTO(this HEAD)
end statespace;

Figure 5.6 The definition of class statespace.

How to Use the Data Structures

So far, we have encountered definitions of data structures
and procedures that would implement operations similar to
those of existing programs such as Synpac. We will now see
how these tools can be used, cf Figure 5.8,

First, two identifiers are declared to reference signal
objects, one identifier 1is declared to reference system
objects. Then a new system is created, and the procedure
generate 1is called (line 4). This procedure removes all
previous representations if any (in case this was not a new
system object) and then creates a new representation
according to the desired representation type. The name of

the representation is passed as an argument, and the body of

representation class transferfunction;
begin
ref (polynomial) P,Q;
ref (signal) procedure simulate(u); ref(signal) u;
begin
end;
vprocedure transformto (newtyp,newname)
reptype newtype; text newname;
begin
ref (representation) x:
case newtyp of
SS:begin
X:- new statespace (newname)

e o e

end:
TF:begin
X:=new transferfunction(newname) ;
end;
end;
end
hidden procedure create;
begin
end;

INTO(this HEAD)
end transferfunction:

Figure 5.7 The definition of class transferfunction.

ref(signal) u,y;

ref (system) Adam;

Adam:=-new system;

Adam.generate (SS,'Bertil'):
Adam.as('Bertil') .transformto (TF, 'Caesar');
u:=-new signal (1900,1);

u.define(l.Step);

y:=Adam.as ('Caesar’') .simulate (u):

v.plot

\C OO~ OCY U W N

Figure 5.8 A simple example of the use of the earlier
definitions.

the class statespace is executed. It consists of a single
procedure «call: INTO, which sets the linkage of this
representation into the system object referenced by Adam.
Finally the procedure <create is called. Its vprocedure body
is not shown but should contain actions to input the details

Of the desired representation.

Next, line 5, the list of available representations in Adam
is scanned by the procedure as to £find the one with name
'Bertil'. as returns a reference to that representation
whose procedure transformto then creates a new
representation of the desired type and name. The details of
the transformation are not shown. Note that the new
representation object will be linked into the system object,

Which Adam points to.

A new signal 1is generated on line (6) and defined to be a
step signal (7). With this step signal as argument to the
procedure simulate (8), referenced through the
transferfunction object with name 'Caesar', simulate returns
a reference to a new signal object with the step response as
value. The step response is displayed through the <call to
the procedure plot (9).

Special Features in the Hypothetical Language

Note that most of the skeleton Synpac shown in Figures 5.2 -
5.7 could be described in standard Simula with some imports
from Pascal. One addition 1is the wuse of the keyword
'hidden'. It is wused to prevent the use of classes or
procedures from the user level. The procedure create is such

a case. If the user could write

Adam.as ('Bertil') .create

he would be allowed to input new values into that
representation, with the result that the system Adam would
contain two completely unrelated representations (Bertil and
Caesar). The keyword hidden is intended to prevent this.

Similarly the class representation itself is 'hidden'. This

is to prevent the following construction:

ref (representation) R;
R:=Adam.as('Bertil’);

This is not desireable because a system is the object to bhe
seen from outside, not independent representations. The

following construction would be really dangerous:

R.0UT;
R. INTO (Eve) ;

The effect of the two lines is to move a representation out
of one system and into another. This ruins the intended
integrity of system objects. The £following two 1lines show
how part of the data inside a representation is changed,
also destroying the intended strict relation between

representations of a single system.

R.A:-new matrix(2,2):
R.A.m[1,2]:=20;

These examples were made impossible if the keyword 'hidden'

in

p hidden class ¢

5: 125

were to imply that:

a) The user is forbidden to use ref(c) variables,
b) Data in the hidden class is not directly accessible.
c) Only procedures defined at the same or lower levels

are accessiple,

The most important addition to Simula used here is, however,
that we assumed an interactive mode of operation.
Unfortunately this 1is not possible in current high level
programming languages. Otherwise, the design of an
interactive program would have been possible using the same
strategy used in many Simula programs. First the objects and

procedures operating upon them are defined. This is a major

task, Figures 5.2 - 5,7, Then the wuser, here 1in an
interactive fashion, 'sets the wheels in motion' [Birt73],
Fig. 5.8.

The next sections will show how these concepts actually have
been implemented in FORTRAN. Structured objects are
implemented as files, and keywords are used to distinguish
between alternatives. It is 1less elegant and many things
that was solved by the Simula language itself has to be done
by program code.

5.6 Implementation in FORTRAN

There are one very important reason to choose FORTRAN as
implementation language for an interactive program, viz.
that no other programming language is generally available on
medium sized computers. Yet, FORTRAN is inadequate for some
functions that have to be performed, so the implementor will
sometimes have to cheat, hopefully in a way that will not
impair the portability of the program. The following problem

areas will have to be solved.

a) Dynamic allocation of work areas.
FORTRAN does not provide for dynamic work areas (as
Simula does). The use of wvariable dimensions in
subroutine <calls can partially solve this problem. An
example is given in Figure 6.2,

b) Storage of, and operations on, non-standard values such
as character strings.
FORTRAN has very limited data types. Operations on data
of non-standard type <can be introduced via calls to
subroutines, maybe coded in a machine-dependent language.
Allocation of and reference to such values will on the
other hand have to go through standard data types.
Compare the discussion in Section 6.5.

c) Dynamic storage of structured objects.
FORTRAN does not provide structured objects such as the
ones in the Simula example, nor is dynamic allocation of
program adressable data areas included. What is available
on most medium-sized computers is, however, a dynamic
allocation of files on mass memory. Although not
standardized, the operations are very similar from
computer to computer. This therefore provides a solution

to the problem of dynamic storage.
The rest of this chapter describes the <considerations that

may be made wusing files as the vehicle for storage of

structured objects.

5.7 Files in General

A file 1is an area on mass memory with some imposed
structure. Like a data area in primary memory, it has some
address which 1is used by the computer. For the user it is
more natural to refer to the file/data area by e.g. a name.
To accomplish this, the name is entered in a directory
together with information on the file/data area. This
information would be the hardware address, but could also

include size, usage status etc. Most operating systems
support mass memory files referenced by name. A directory is
then maintained by the system programs outside the
interactive package. The Lund vrograms depend heavily on
such a feature because nearly all oproblem dependent data
resides on mass memory and the names occuring in the command

arguments are actually filenames.

Files may be of different types, sequential vs. random
access and formatted vs. unformatted, to use FORTRAN
terminology. A sequential access file can only be read or
written sequentially from top to bottom. Random access files
on the other hand offer the vpossibility to read and write
values in the file in arbitrary order. This could be
advantageous in a number of instances. An exanmple in the
Lund programs is the command PLMAG in Idpac where a short
section of a datafile is plotted and individual data points
may be altered. Another one is in the plotting command PLOT,
where all data points have to be read twice, once to compute
scaling coefficients and once to perform the actual
plotting. In this case random access would allow less
overhead, and the scaling information could be recorded for

future use.

A severe problem with random access files, however, is that
they must contain records of constant 1length known in
advance. As we will see, the possibility to start reading a
file without knowing details on its contents is of great
value, and as sequential access files are quite adequate in
most cases, such files have been used exclusively in the
Lund programs. Sequential access files also have the
advantage that they seem to be implemented in the same way

on most computers.

5: 128

The other distinction was between formatted and unformatted,
or synonymously, symbolic and binary, files. Binary files
contain information in the internal representation of the
computer, thus requiring 1little overhead and offering
compact storage. Symbolic files on the other hand contain
information in an external representation, 1i.e. in e.qg.
ASCII or EBCDIC form. This means that data may be
transferred to other computers or can be directly sent to a
printing device. Such files <can be checked, changed or
generated virtually without restrictions using an ordinary

text editor,

Symbolic files have the nice feature that they allow
information to Dbe associated with keywords. This means a
great freedom when organizing such files, since no strict
positioning rules have to be followed, i.e., "free format”.
Symbolic files are therefore advantageous where direct human
interaction with the files is common, or when the files will
be of vastly different types or structures. BSuch files are

e.9. the system fileg in the Lund programs.

5.8 Data Files and the File Head

Data files is the common name of files of binary form in the
Lund programs. Here some general considerations will be

given.

To be able to read a binary file, one has to know in detail
how it was written. This is because each WRITE statement in
FORTRAN generates a logical record, while each READ
statement may read more than one, namely if its I/O-list is
longer than the record being read *). Thus WRITE statements
and subsequent READ statements must agree. This is in many

cases no restriction. Take as an example a program that

*) Ekman - Eriksson: Programmering i standard FORTRAN.
Studentlitteratur, Lund 1973, vpage 78.

handles dynamical systems in, say, SIS0 transfer function
form. Then the system would internally be represented mainly
by two integers, the degrees of the numerator and the
denominator polynomials, and the coefficients of those
polynomials. Now, if we want to save this system on mass

memory, we could do with a single WRITE statement:

WRITE (IDEV) NN,ND, (CNUM(I),I=1,NN),CDEN(J),J=1,ND)

This statement will produce a single logical record. When we
want to restore the saved system, this could (and must) be
done with a single READ statement with an identical 1I/0
list. Simple as it is, this method has some drawbacks:

a) There will be a lot of files around with different
internal structures. Attemts to read a file with wrong
internal structure will almost certainly be catastrophic.
The only way to avoid this is a naming convention, which

reduces the freedom offered by user defined file names.

b) When program packages tend to grow or even multiply, they
sometimes tend to be improved in other respects. Some of
these are 1likely to bring changes in the internal
representation of the objects that are handled by that
program. This will also be reflected in the file contents
and the programs must thus be changed in many places. If
several programs should communicate with one another,

changes must be made in all such programs.

¢) Particularly in research work but also in general
practice, it may happen that some operations of interest
are not available in a ready made program package. In
such a case, it would be desirable to be able to use the
package up to the point where the special operation was
needed and then to leave the package, pverform the
operation on data saved on mass memory and then return to

the package and continue. In order to write the program

5: 130

to pverform the special operation, detailed knowledge of
the file organization of both input and output data types

is needed.

The remedy to these problems 1is to introduce a flexible
standardized file structure and try to stick to it. In the
Lund programs, this has been done in the following manner.
Files, Jjointly termed as data files and implemented as
binary (unformatted) ditto, contain a first record of fixed
length, the file head. The file head specifies the number of
records to follow, and their 1lengths which are constant
within a file. Figure 5.9 shows a detailed description of
the file head. I1l, I2 and I3 describes the structure of the
file. Note that 1I2 specifies the record length, thus it is
possible to correctly read the file, once the file head has

been read and decoded.

Other information in the file head is the sampling interval
wich is relevant if the file <contains either measurement
data or parameters etc. of a discrete time model. The date &
time information in integers 5 & 6 is valuable as they give
an identity to measurements and to results derived from
them. The 7:th integer serves as an "escape" function as it
allows non standard files and provides a means to stop
reading such a file before any harm is done. The 8:th

integer is a "fingerprint" in the sense that all commands

I1 (number of rows)

I2 (number of columns)

I3 (time dimension)

Sampling interval in time units

Date recorded

Time recorded

If zero, the record length is constant
"Fingerprint" (number of the generating command)
File type

Skip count

(RO O JOWUL B W

Figure 5.9. The file head format.

that generates a file puts its command number there. This
can be used to check compatibility requirements. It may also

serve as a debugging aid.

The 9:th integer is used to indicate the logical contents of
a file. Examples of where and why this is useful is given in

the special sections on data files etc. below.

The 1@:th integer, finally, svecifies a skip count, i.e. a
number of records to be passed before the file can be
treated in the standard fashion. This too is a kind of
escape facility and is primarily intended as a way to extend

the file head. In Simnon [Elmg75] this is wused to indicate
9variable names and associated system names in a STORE file,

to allow reference by name to the variables in a subsequent
SHOW command. Conceivably, this extended file head could be
used in a time series file to include scaling information,

other statistical data, variable names etc.

5.9 Access Rules for Data files

There has to be some rules for controlling the use of data
files. A few examples will illustrate this need. The
examples show desired action types, but they also reflect
the basic command vhilosophy of programs 1like Idpac and
Synpac. Assume that DATOP is a command taking as input a
column of the input file and that the output will be a
column in the output £file. The input and output could
bethought of as a time series. Thus a simple example would
be:

a) DATOP OUTFIL < INFIL (3)

Here column number 3 (i.e. signal #3) in INFIL is read,
operated upon, and the result is a new single column output
file OUTFIL. We have met the first rule:

1) If an output file name but no column number 1is given, a
new file is generated. Any old file with the same name as

the new output file is lost.

If on the other hand we want to keep old information in an

existing output file, we can do so:
b) DATOP OUTFIL (2) < INFIL (3)

In this case only column 2 in the output file 1is changed
while all others are kept as before. As all files are
accessed sequentially, this implies that the 0ld version of
the output file 1is read and copied to a new file with
modifications made to, in this case, column 2. This 1is

governed by the second rule which reads:
2) If an output file with a column number is given, the new
column must replace an old column or be number N+1 if N

is the number of previously existing columns.

There 1is a shorthand description £for the case where the

input and output files have the same name:

c) DATOP < INFIL (3)

The rule describing this case is:

3) If the output file name is omitted, the input file name

is assumed. If a column number is given for the input

file, it is also used for the output.

It should be noted that these general rules have to be
implemented in the command decoding part of the command
modules. They may be augmented by other rules, specific for

a single command or for a group of commands.

Note also that these rules stem from a set of desirable
properties rather than from imposed ©properties of an
operating system. Indeed, these rules will violate some
limits posed by many existing operating systems. The
seemingly innocent first rule states that it is 1legal to
generate a new file with an already existing name, and that
the old file should be automatically deleted (made
inaccessible). Although this operation shouldn't lead to any
problems, it may be illegal in some operating systems. The
solution is then to demand the file handling interface to
use a temporary name for the output, and then, in the
closing operation on the output £file, explicitly delete the

old file and rename the temporary file.

It is more understandable that the operation to
simultaneously read the o0ld file and write a new file with
the same name (example b & c¢) may cause the operating system
to hesitate. If the files are ©private or if the system is
single user, it should suffice to demand that the inout is
closed before the output. Anyway, the (transparant) use of

temporary filenames will solve also this difficulty.

Summarizing, the rules 1,2 & 3 are natural to allow some
desirable operations. If they are incompatible with the
operating system, the file handling interface can be made to

simulate the missing functions.

5: 134

5.10 Specific Examples of Data Files

Some specific details on how the data objects of Section 5.2
actually are stored 1in data files within the Lund programs

will be given here.

Time Series

We refer here to Figure 5.19 for a description of the file
organization and the file head. A time series £file |is
implemented as a standard data file with Il equal to the
number of time points, I2 equal to the number of measured

signals (and the record length) and I3=l.

I2

Signal # 1 l

Time instant 4 1—»

rI1

Figure 5.10, The format of a time series file.

135

Ui
oo

As indicated earlier, such a file will be produced in the
Lund programs when performing a simulation or generating a
function of time (i.e. using command INSI). There is also a
logging ©program available, which generates a time series
file. Here we encounter the reason for including the integer
7 in the file head. Such a logging facility is also provided
in Simnon. In the logging program, it is possible to include
a regulator to compute the input to the system, and it is
also possible to have different sampling rate in the control
loops. It is natural to put the contol signals into the log
only at the points in time when they change. This implies
that the signals will have different sampling rates. In this
situation, our data logging program will use a non standard
file format with non constant record length. Still the file
contains the standardized file head with integer 7 flagging
the special nature of the file. In such a case the file has
to be treated and reeorganized in a special program before
the data can be analyzed with programs 1like Idpac which
assumes that the data has constant sampling period.

Matrices and Vectors

Matrices and vectors are easily stored within a data file.
It 1is natural to store a matrix row wise, i.e. I2 (cf.
Figure 5.9) is the number of columns in the same way as for
time series. The number of rows is stored in Il. A vector is

stored as a n*l or l1l*n matrix.

The time dimension I3 is used as a way to store time varying
matrices (vectors). For each time instant (sampled data
systems), the matrix is stored as above. The number of
different time points is in I3. In the time invariant case
I3=1., A 3*2 matrix is then stored with Il=3, I2=2 and I3=1,
If it were time variable, it would be stored as I1=3, 1I2=2
and I3=19#, assuming one hundred different time points were
available. Compare this with a time response file with 3
signals: I1=100, I2=3 and I3=1.

5: 136

Note that the method described here 1is influenced by
history. A more natural way might have been to reserve one
index, e.g. the 3:rd, for time information. This would leave
the matrix method unchanged but the time series would be
stored as Il=1, I2=3 and 13=104.

Frequency Responses

A frequency response could be nicely stored in three columns
of a two dimensional array. The frequency values can be
stored in the first column and the amplitude and phase in
the 2:nd and 3:rd.

The main feature wich distinguishes a frequency response
file from a time series file, 1is that data is recorded in
groups of three columns. Some commands (like FROP, BODE and
ASPEC, see Appendix) should recognize this and therefore
this kind of file has a file code (integer 9) of its own.

Loci

The file format for a locus file is that of a data file with
the parameter wvalue in the first column. The complex
eigenvalues / polynomial =zeroes are stored with their real

and imaginary parts in the following 2n-1, 2n columns, n=1,2

Polynomials

A polynomial matrix can naturally be represented in the same
manner as a time varying one, if the matrix coefficients for
various powers of the independant variable is stored in the
same way as matrices for various points in time. Thus a 2*3
polynomial matrix of degree 3 is stored with I1=3, I2=2 and
I3=4, I3 being the number of coefficients.

5: 137

Note that a scalar polynomial of degree N is stored as Il=1,
12=1 and I3=N+l1. According to convention, the highest degree
coefficient 1is always included explicitly and is stored
first in the file.

5.11 Aggregates

g0 far we have treated data with a simple structure, stored
in binary form. We have assumed that each such data set is
interesting in itself. It thus makes good sense to store
them separately, each in a single £file. In many cases, such
data sets are natural outputs oOr inputs from/to program

modules, or are generated or inspected by such modules.

In other cases, however, the data sets are but different
aspects of a greater entity. In automatic control, examples
are descriptions of systems, seé Section 5.12. In a complete
description of a system on state space form according to
Figure 5.12, eight or more matrices may be required and in
the case of say a 5%4 system on transfer function form, the
total number of polynomials in denominators and numerators
would equal 40. After an initial phase when matrices or
polynomials are entered and/or changed/corrected, they tend
to lose their individual significance and are usad only as

parts in a greater gcheme.

To store information on separate files would mean no
conceptual difficulty, but would be a major ©practical one.
On the computer systems where the Lund programs have been
implemented so far, the time for opening, reading/writing
and closing a single mass storage file, however short, is in
the order of 1 second. A module to read in, modify and write
back a system description on state space form might easily
require 16 seconds only for file handling. In an interactive
program package, this would lead to unacceptably 1long
response times. The situation would be catastrophic even for
moderately sized multivariable systems on transfer function

form.

5¢: 138

The solution to this problem is to introduce the notion of
aggregate files. An aggregate file is the concatenation of
several individual files of formats described above, into a
single sequential file. Figure 5.11 illustrates an aggregate
file. It consists of a file head with standard format. It is
flagged as an aggregate by the file code being 100 in excess
of the file code of the individual files it is made up of.
The number of concatenated files is recorded in Il which is
also the record count for the records immediately following
the aggregate file head. These records contain the file
names of the constituent files. These files are then
included sequentially in the order of their names, and are
preceded by their file heads in the usual manner.

Aggregate head

Records with file names
Head, file # 1

Records, file #1
Head, file # 2

Records, file #2
Head, file #3

Records, file #3

Figure 5.11, The format of an aggregate file.

The advantage of this scheme is that the file administration
overhead in the computer system is paid for only once for a
large set of related files. On the other hand, the advantage
of the ability to handle these files separately, as in
checking and modifying the data, 1is not lost. The program
modules that do these operations can easily be made to allow
a specified file to be a member of an aggregate. The time
penalty for this is usually small since reading/writing past
other files in the aggregate is a fast operation compared to

the file administration.

To the benefit of the programmer, the file interface
routines in the Lund programs are written to automatically
handle files that are members of an aggregate file. The way
this is achieved is by 1letting the file interface recognize
and remember that an aggregate is opened. Open and close
operations on that logical unit are then simply converted to
operations that positions the file to the filehead of each
successive file in the aggregate. Note that the file
interface routines always have the possibility to know the
format of the file and the position in 1it, due to the

individual file heads.

Finally, note that although aggregate files serve as a means
of increasing efficiency in accessing the data base, they
also give the possibility of a nice naming convention. As an
example, the matrices are not required to have distinct
names any longer. They may be given standard names as found
in literature such as A, B, C etc., functioning as
'forenames'. Only the name of their aggregate has to be
distinct 1like a 'family name'. Examples on the use of
aggregates are found in Chapter 7.

Ui

149

5.12 System Files

As was pointed out in Section 5.3, a system can be
represented in a number of ways, with different types of

data of varying structure, matrices, polynomials etc.

These facts speak for the use of text files. They give a
greater freedom of structure since information is easily
tagged with Kkeywords and the recordlength is no major
problem. Great amounts of data, e.g. matrix elements,
polynomial coefficients etc., are stored in data files as
described above; in the system file only the appropriate
file names are given, sometimes within a "keyword
structure", see the example in Figure 5.12. If matrices,
polynomials etc are available as parts of aggregates, the
aggregate filename 1is included. There are a number of
standardized Kkeywords specifying the type of system
representation wused. If there are more than one type of
system representation present in the system file, they are
enclosed within a pair of keywords BEGIN - END. Such
sections within a system file are named separately, the name

appearing after the BEGIN keyword.

A simple example of a system file is given in Figure 5.12,
As we see, the system file contains a single section,
delimited by a BEGIN - END oair. After BEGIN the section
name appears, in this case 'cont'. Then the type of system
representation is specified by a segquence of keywords:
CONTINUOUS STATE SPACE REPRESENTATION. The initial state of
the system 1is specified to be stored in a file with name
x@vec. (In the example, filenames are written in lower case

letters, keywords are in upper case).

5: 141

BEGIN cont
CONTINUOUS STATE SPACE REPRESENTATION
INITIAL STATE VECTOR: x@vec
DYNAMICS, AGGREGATE: sysagg,
DX/DT= a*X + bu*U + bw*W + bv*V
Y= c*X + du*U + dw*W + de*E
Z= g*X + hu*U + hw*W
LOSSFUNCTION, AGGREGATE: gagqg,
Q0: 9B, Ql: ql, Ql2: gl2, Q2: g2
COVARIANCE FUNCTION, AGGREGATE: ragg,
RO: r@, Rl: rl, R12: rl2, R2: r2
EXTENDED LOSSFUNCTION, AGGREGATE: geagq,
QEZ: gel, QEl: gel, QEl12: gel2, QE2: ge2,
QE3: ge3, QE4: ged, QE5: geb
END

Figure 5.12, A section within a system file

After this, the state space system equations are specified
following the keywords DYNAMICS and AGGREGATE. The aggregate
name for the system matrices is given. The egquations are
written in full. They contain elements recognizable by the
program such as DX/DT, *X, *U, Y= etc. These constructs
serve to delimit filenames where the aporopriate matrices
are stored, a, bu etc. A matrix together with its key
construct may be omitted and is then assumed to be zero, eg

if dw*W is absent, then dw is assumed zero.

Optionally, a lossfunction, a covariance function and an
extended loss function with respective aggregate names are
specified. These things are wused in the design of linear
guadratic feedbacks (lossfunctions) or Kalman filters
(covariance function). The use of the extended lossfunction

is exemplified in Chapter 8.

In the case of lossfunctions etc. they are given 1in a form
where standard keywords: Ql, R12, QE4 etc., are used. The
definition of what one of these matrices actually stands for
must be given separately in a User's Guide. One can ask why

the same equationlike format that was used for the system

5: 142

equations is not used here. The reason is simply that such a
representation would be more "messy", eg. the matrix qgl2
would have to be specified by

ssessse t XT*gl2%u + ..eeeo

Here the keyword would be split into two: xT* and *u.

5.13 Access Rules for System Files

In the case of data files, the generation of a new file with
a given name 1implies that any existing file with that name
is lost and replaced by the new version. The reasons for
this are explored in Section 5.9. In the case of a system
file however, the <corresponding situation is when a new
section within an existing file is generated. Of course, the
deletion of the entire 0ld system file is out of question,
it may contain much useful information in other sections.
Therefore the 0ld file is merely copied with the new section
added at the beginning. This can only be allowed to happen
when the operaton that generates the new section (system
representation) is such that the new representation is just

another way of representing the system.

Use as example the command FILT (in Idpac). Here a discrete
time system with a certain transfer function 1is generated,
to be used as a digital filter. Clearly it would be highly
unnatural 1if it were possible to insert that filter
description in a file describing a result of an
identification experiment. A difficulty is that special
cases always can be contrived. If for instance the filter in
question was used to filter the raw data wprior to the
identification operation, it may be arqued that the filter
system in some way should be allowed to be connected to the
resultant system file. On the other hand, if we are to stick
to the basic rule of a system file containing different

5: 143

representations of the same system object, the inclusion of
the filter cannot be justified. Note that it is possible for
the wuser to include comments in the system file, being
symbolic. Therefore, a note of the effect that filtering of
the data prior to the identification has taken place,
together with a reference to the filter system used, is

qguite feasible.

The access rules are as follows:

a) A command that generates a new system description will
check that there is no already existing file with the

output name.,

b) If a command is used to transform system representations,
a new section name must be specified if the output file
name 1is the same as the input file name (or is omitted).

If the output name differs, rule a) is applied.

¢) A new section 1is placed first in the file. Any old
section with that name is retained but may be accessed
only through the text editor, rule d).

d) Only the first section with a given name 1is accessible

through commands operating on system files.

5.14 Attributes

A system has a 1lot of properties which are more or less
apparent from the system equations. Some of these, although
of vital importance, are found very easily, but most often a
rather complicated computation is needed. An interesting
example is the degree of a system. This 1is trivially found
by inspection for a system on state space form or on SISO
transfer function form. For a system on MIMO transfer

function form however, finding the degree of the system is a

5: 144

quite delicate problem,

These properties, characteristics or attributes are commonly

computed and needed. It would be nice to have them stored
somewhere, available for easy reference. There are two
reasons for this, one being that it would give a valuable
overview, the other being that in the cases where
complicated computations were needed, they won't have to be

done more than once.

Following the same arguments as for system files, we find
that the attributes are most conveniently stored in a text
file. It could be separate from the system file or it could
be one or more sections, maybe with default names, within
the system file. In either case there is a special problem
that stems from the fact that some attributes will be
invariant wunder transformations while others won't. An
example is again the degree of a system. For a system on
state space form the degree 1is unchanged for coordinate
transformations but if we transform the system to transfer
function form, the degree may change Dbecause only the
controllable and observable modes are retained. Thus we have
a situation where attributes are computed for a specific
system representation but may or may not be valid for other
representations of the same system, i.e. other sections in

the same system file.

If we propose to store the attributes on a special file, we
have to decide on the rules for this file. Two main
principles are available. One would be to make the attribute
file a mirror of the system file. It would contain sections
each corresponding to a certain section of the system file,
storing attributes for that system description rather than
the description itself. When a new attribute was to be
computed, all sections for wich the computation was valid
were to be updated by the program, the ruless governing the
updating being known and possible to program.

5: 145

This would be the ideal situation for the inexperienced user
(cf. Section 3.9) who then doesn't have to bother with rules
maybe unknown to him. On the other hand, the programming
problems would be more difficult than they may seem at first
sight. One is that in order for the program to decide if an
attribute computed for one system description is valid for
another, the entire history of transformations that has lead
up to them must be analyzed. The transformations must
therefore be stored. The other is: What should be done when
a new section, i.e. system description, is added to the
system file? Then a corresponding section in the attribute
file would have to be generated, taking into account all
previously available information and the relation of the new

section to the previous ones.

A much simpler method is to let all command modules that
compute attributes enter them into the attribute file under
the section for which they are computed only. This would
probably do for most cases, especially since a certain
section is likely to be a "progenitor" for many others, If
this is so, it would seem reasonable to use this section for
computing all attributes applicable to the others. The
method, however, does require the user to be aware of the
rules and to be able to draw the proper conclusions
regarding attributes for other descriptions himself. The
user must therefore be the "experienced user" of Section
3.9.

Attributes are currently not implemented in the Lund
programs, but are a considered expansion. The implementation
as a file as discussed here 1is of course due to the
assumption of FORTRAN as the implementation language. In the
context of Section 5.5, the attributes would be naturally

located in the system objects.

6: 146

6. IMPLEMENTATION EXPERIENCES AND HARDWARE-SOFTWARE
REQUIREMENTS

This chapter will try to give a rationale to some of the
views given in the preceding chaoters. The background will
be a short historical account of the development of
interactive programs at our department. This will serve as a
framework to a discussion on choices made and regquirements

encountered.

6.1. The Start

One of +the ©projects at the department in the vperiod
1965-1970 was to develop a library of subroutines for the
numerical solution of many basic problems in control theory.
Examples are solving linear equation systems, computation of
eigenvalues, computing the matrix exponential, solving the
stationary Riccati eguation etc. This vroject was initiated
by prof astrom who insisted that all software should be

modular and conforming to certain programming rules.

The thing that started the work on interactive programs was
the aquirement by the depvartment of a "process control
computer", ordered mid =69 and delivered mid =72. The
specification for the computer stated that FORTRAN should be
available. & reguirement for any other high-level language
would have cut down possible choices to very few. FORTRAN
was a natural choice also because of the fact that most of
the numerical routines mentioned above were written in that
language. We will see later that the choice of FORTRAN
caused problems later on, but there were no real alternative
at that time.

6: 147

50 called interactive programming languages were considered,
mainly BASIC. It was investigated whether routines from a
FORTRAN library could be called from programs written in
BASIC. It was indeed found possible but only in a rather
limited way. The language as such was considered too limited

for general use.

The first projects done on the process computer included the
development of a program for logging of data, and as an
extension, a program for on-line identification. The
projects resulted in the program LOGGER (Sture Lindahl) and
an on-line identification program [Jons71l] Dbased on
recursive lesast squares. The real time environment made
interaction natural. These first programs were question &

answer oriented.

6.2, The First Interactive Programs

The availability of computing power open shop' made

interactive computing to solve common every-day problems of
control system analysis and synthesis feasible and
attractive. It turned out that the "process computer" was

used rather heavily to run small "one-shot" programs.

The first project to develop a general purpose program for
this type of problems never left the writing desk [Wies70].
It was, however, a good exercise. The objective was to
evaluate matrix expressions, allowing inverses and matrix
exponentials etc. The lesson learned was the importance of
user—-defined names for results and temporary variables.
Expressions were written and immediately evaluated,

therefore the program actually was command oriented.

The first full scale project was Synpac [Nove72]. This
program was intended to implement Dbasic linear gquadratic
design. It included operations to handle dynamic systems on
state space form, as well as an algorithm to solve the
stationary Riccati equation. Already this first version of
3ynpac featured a command line with many of the
characteristics of today's programs. The command decoding
was done in assembly language routines, a natural choice due
to limitations in FORTRAN and a scarcity of core space.
Egqually natural was to decode arguments immediately and pass
them on to the application routines as values. The prime
concern was a centralized code to allow a flexible and free

format input.

This early version included a macro facility in its simplest
form; the 1input to the command decoder was switched to a
mass memory file. No arguments were allowed, nor any
"general purpose commands" as in Section 4.5. Similarly,
systems (Section 5.12) were implemented simply as a file of
file names. Several lessons were learned from Synpac. After
the basic version was developed, there were intensive
discussions among several different users concerning
suitable commands and features of the program. This then

lead to further extensions of the package.

A project to develop a program to aid in simulating
non-linear differential eguations was started as a direct
consegquence of the success with Synpac. The result was the
first wversion of Simnon, [Elmg72], which later was
expanded, [Elmg75]. 1In fact, what evolved as 3Simnon was

actually concieved as a command in Synpac.

6.3. Interactive Hardware

The hardware used to interact with the computer and its
programs was from the beginning a mechanical teletype
(KS8R35), and a storage tube oscilloscope. The Tektronix
401l9-series display terminals which are now in common use
were not yet advertised when the project was started. The
generation of curves as well as text on the display

oscilloscope was done entirely by software.

Later experience with more modern equipment, i.e.
4010-series graphical displays or a separate alphanumeric
and graphic display, shows that the original setup was
ideal. The drawbacks of the printer, its low speed and its
noise, is made up by its paper copy of the data entered or
received from the computer. The 4010-type display mixes
figures and diagrams with the input to the computer and
after a while, the display screen will be virtually
unreadable, unless it is erased. Once the screen 1is eraszd,
you have to rely on your own memory. Two separate screens,
not very common, one for alphanumeric the other for graphic
information is better, but not good. Also in this case, the

past actions will soon scroll off the alphanumeric display.

The solution to this problem is to design the program to
generate a log of past actions that any time may be
displayed. Eventually the log would be output on a printing
device. The importance of the log was emphasized in Section
3.6 h.

Recent hardware development, mainly low-cost semiconductor
memories, has made ©possible display units with separate
alphanumeric and graphic capability. The result 1is two
separately scrollable displays, one containing past
operations, the other text and figures output from the
computer. This seems to be a satisfactory solution, although
it demands some dexterity in handling the hardware on the

part of the user. Still the problem of a paper copy remains.

Note that the use of the more expensive graphical displays
with display processor and light=-pen facility has not been
treated here. Their fundamental way of operation 1is
advantageous in other types of applications, viz. where the
ability of the light-pen to point not only on the screen,
but effectively directly into the display memory, is of
prime importance. The predominant use of the display in the
applications described in Chaoter 2, 1s to output results in
the form of diagrams etc. With few exceptions, the user's
response 1is not to alter the data presented directly, they
are but representations of the result. Rather, the user's
action will be to apply another algorithm or to change
parameters to obtain new results. They are again presented
in graphical form, maybe also compared with the previous

results.

The light-pen is sometimes used to implement the man-machine
interaction to specify the desired actions to be taken. This
"pressing of light-buttons" as it is sometimes called, can
not be considered more expedient than to press kevs on a

keyboard.

6.4. Evolution (1973-1976)

The experiences with Synpac gave a taste for more. The
on-line identification program already mentioned was the
next to be considered. It was interactive, but question &
answer oriented. Furthermore, it was limited with regard to
available operations. It was now expanded with spectral
analysis routines, maximum=likelihood identification
routines and above all, it received the same set of
interaction routines as was used in Synpac. The on-=line
capability was discarded, not being generally useful. The
reason not to retain it was that identification algorithms
usually are sensitive to things like bias or trends in the

measurements. The removal of biases and trends, scaling of

data etc., is thus an essential capability, cf. Sections 2.2
and 2.4. Therefore, identification is in practice an
off-line operation, and Idpac, as the name of the new
program was, was amended with operations to perform these
tasks, [Gust73] and [Wies75%].

Three tendencies became apparent during this period. The
first was that commands were being designed as natural steps
in a design or analysis process, rather than just reflecting
the different wvparts of an algorithm solving the ©vproblem,
This meant that the first idea of making subroutines in the
subroutine library interactively available was abandoned. In
parallel with this trend, data were being organized in a
structured way (i.e. systems), not only as primitive data

types like matrices and polynomials.

Sécondly, the possibility of the macro facility became
evident, Macro arguments and general vpurpose commands were
included. As argument transfer by value was implemented in
the command decoding, it was natural to retain this rule,
although restrictive (Section 4.5).

Thirdly, as more effort were put into these programs,
incentive to avoid their being prisoners on the process
computer grew. In other words, portability became a main
concern. This resulted in the interaction routines being

1

rewritten into FORTRAN, They are then known as the
subroutine package Intrac [Wies78]. Other areas of
importance for portability are treated in the following

section.

6: 152

6.5. Software Problems

As mentioned in Section 6.1, FORTRAN was chosen as the
implementation language. FORTRAN has two advantages: it is
available on virtually all computers, and many
implementations give efficient code for many kinds of

algorithms for solving numeric problems.

The programmer has to cope with many drawbacks though.
FORTRAN 1is extremely weak on nonnumeric problems due to its
few primary data types and lack of structural elements, both
for data and code. FORTRAN also shows strong influence by
its origin as a language for batch-oriented operations. An
example is the response to a run-time error in input data:
immediate return to the operating system. The following is a

list of problems encountered and how they were solved.

a) Differences in FORTRAN Implementations

Although programs are constructed in accordance to all known
rules on standard FORTRAN, it happens that they compile and
run without problem on one implementation, but fail in
either respect on another. This seems to be due to a lack of
precision in the language definition. The only way to solve
this problem 'is to wead out the constructions that cause
problems as they become known, sometimes causing much extra

work and expense.

Different interactive orograms from this project have been
implemented on a number of computers. Examples of
minicomputers that have been used are the PDP-15 where the
initial parts of the project were implemented, PDP-11, Nova
and HP 3000. Larger computer systems used are the DEC-10,
UNIVAC 1108 (the home for the later parts of the project)
and CDC Cyber. There has been problems of the type above,
and sometimes due to a more restrictive implementation. A
general problem on the mini computers is the smaller orimary

memory.

b} Character B5trings

Wwhen decoding a command 1line, the input, received as a
string of characters, is to be scanned, subdivided into
items, and interpreted. These operations call for handling
character data, not available in traditional FORTRAN,
although many implementations allow nonstandard constructs

for this purpose.

The approach taken was first to decide how to store
character strings such as filenames, variable names, and
flags. The objective was to accomodate computers with at
least 16 bit wordlength. On such computers, a real datum
will be stored in at least 32 bits. These 32 bits would in
turn allow at least 4 characters to be stored in whatever
internal representation for characters used on a specific
computer, although this scheme is 1likely to waste some bits
in many cases. The storage of <character strings having a
maximum length of eight characters thus reguires two

adjacent real variable locations.

The resulting rules thus specifies that whenever a data area
or some variables are needed for operations on character
strings, they are declared as real variables or real (2,.)
arrays. This allow us to reference such objects in FORTRAN
in a machine independent manner, and then by svecifying that
all actual operations be carried out inside a small set of
subroutines, only those routines will be machine dependent.
The precise definitions are found in [Esse77al.

The recently standardized FORTRAN 77 allows a primitive type
'character' and associated operations. This version of the

language 1is not yet generally available.

6: 154

c) Variables of Varying Types

The decoded command line arguments are stored together with
relevant type information in a "vector", cf. Section 4.3.
Due to the lack of structured variableg in FORTRAN, this
vector actually has to be implemented as a number of arrays;
one of integer type to hold a code specifying the type of
data in position I, another to hold a possible integer
value, one of real type to hold a possible real value, and
finally a two-dimensional array to hold character strings.

This somewhat clumsy method would not be necessary in a
language 1like Pascal, which allows wmuch more elegant

constructions as is illustrated in Figure 6.1.

d) Problems of Unknown Size

In a program package like Synpac, it would be very unnatural
to write the algorithmic subroutines to reflect a certain
maximal problem size in the definition of temporary data
areas, especially in the 1light of the comment made in
Section 5.4 on systems. In Algol-like programming languages,
like Algol itself and Simula, this is no problem since
temporary arrays of any shapve and size may be defined and
passed as parameters to ©procedures. Unfortunately Pascal
suffers a severe deficiency in this respect as the size is
considered part of the type of an array variable, making

this problem impossible to solve.

type argvectyp = record
case argtype: (int,re,str) of
int: (iarg:integer):
re: (rarg:real);
str: (sarg:string);
end:;
var argvec: array[l..n] of argvectyp;

Figure 6.1 The type definition and declaration of the
argument vector as it could be done in Pascal.

In FORTRAN, many (but not alll) implementations allocate
temporary storage internal to subroutines statically and
require its size to be a compile time constant. The
"variable dimension" feature applies only to formal
arguments in subroutine/function definitions. The solution
to the problem used in Synpac etc. is based on this feature,
although it also involves a certain amount of "cheating".
What is wused is that all known FORTRAN compilers seem to
allow an array element as actual parameter to correspond to
an array formal parameter. The array element could be a
suitably situated element of a vector used as a common
resource of temporary storage. This 'allocation' vector
would be wused by several subroutines, which receive their
temporary storage areas through their formal arguments and
redefine them into suitable shavne and size through a
variable dimension declaration. Rules for this and other
programming issues are found in [Elmg et al 76], where more

complex examples than the one in Figure 6.2 are found,

SUBROUTINE SUBI(N,A,B,IA,IB,W)
DIMENSION W(l)

KWl=1

KW2=KW1+N

CALL SUB(¥,A,B,IA,IB,W(XKWl),W(KW2))
RETURN

END

SUBROUTINE SUB(N,A,B,IA,IB,Wl,W2)
DIMENSION A(lA,1),B(IB,1)
DIMENSION W1 (N,1l),W2(N,1)

RETURN

END

Figure 6.2 Subroutine SUBI, which is the one seen by a
subroutine library wuser, allocates temporary storage from
the vector W, and calls SUB to do the actual job.

6: 156

@) Passing References to Data Items Declared on a Lower

Level

This is a problem that originated in Simnon, when a "FORTRAN
system" ([Elmg75] <Chapter 5) notifies the main section of
the program that it contains variables that should be
interactively accessible as 'parameters'. That 1is, they
should be accessible through a suitable name in e.g. the
commands PAR and DISP. This can not be done in traditional
FORTRAN, since it is reguired to handle the address of a
datum, called a pointer. The solution used in [Elmg75] is to
include two assembly language procedures to fetch and
deposit real variable wvalues passed as arguments at an
address contained in an integer valued argument. Again we

fool the compiler with a machine dependent solution.

In languages that allow pointer variables there will not be
any problems. The datum used as parameter will be allocated

'new' and handled

on the heap by a procedure normally called
through its associated pointer variable at both the low and

main level.

£) Deficiencies in I/0

The output - editing facility in FORTRAN, the
FORMAT-statement, is obviously aimed at business or batch
applications, where large amounts of data are to be output
in tabular form, possibly on preprinted paper. For such
applications, the FORMAT statement is powerful and adeguate.
For an interactive ©program, where the output occurs in
smaller amounts, usually as a mixture of alphabetic and
numeric text, the importance 1is rather to automatically
achieve a neat output format of individual data, devending
on their type and numeric size. It is a simple programming
exercise to write such routines. However it can not be done

in a machine independent way.

Also the operations to open and close mass memory files, a
frequent type of operation, are poorly standardized, not
even available in FORTRAN on some systems. For use in Idpac,
Synpac etc., an internal standard has Dbeen developed
[Esse77b]l. This is largely based on the operations available
on the PDP-15. It later turned out that this computer was
unusually well equipped in this respect. However, with some
exceptions the operating systems on other computers seem to
offer the same type of capabilities, so it has been possible
to rewrite this standardized interface to suit other

environments.

g) Plotting Routines

Software to generate diagrams of various forms to be outout
on plotters or graphical disvlay terminals is of course
essential for interactive programs. Such software is
available on a license or leasing basis from software firms
or hardware vendors. Although the functional capabilities
are very similar, differences do exist, and differences in
hardware capabilities may be exaggerated rather than
depreciated.

The approach taken to increase the portability of our
programs was to ignore a possible use of features other than
the basic operations of drawing 1lines and moving the 'pen'.
These operations were to be performed in two subroutines
MOVTO (X,Y) and LINETO(X,Y) which would be implementation
dependent and should be written to utilize software
hopefully already available on a specific host computer.
Around these two routines, and two others used to output
character strings and initialize, a complete plotting
package was desgsigned. Due to this very basic FORTRAN
callable interface, the rest of the plotting package could
be implemented entirely in standard FORTRAN. Thus the many
routines generating graphic information in Idpac, Synpac,

Polpac etc. use a self-contained and portable plotting

package, documented in [Scho77].

h) Segmentation Software

The need for a nice program structure allowing =easy
segmentation was mentioned in Section 3.7. The power
available on the PDP-15 1in this respect was of great
importance 1in the early stages. In fact, the lack of a
proper segmentation program is one of the main causes of
trouble found in moving e.g. Idpac to other minicomputers.
The PDP-15 operating system was amended to allow random
access to segments during execution [Wies73]. On most
computer systems, segmentation has never caused any

problems.

6.6, Maturation 1976-1979

During these years, the set of interactive programs reached
a more stable state. Two new programs, Modpac and Polpac
were also designed., These two £ill some gaps between Idpac
and Synpac (and Simnon). Modpac deals with models, i.e. it
allows transformation and analysis of system
representations, while Polpac is a package using algorithms
for polynomials to solve design and analysis problems for

systems on transfer function form.

During this period no great new inventions were made, rather
the activity included correction of errors and
implementation of new application facilities. Substantial
portions of the programs were also rewritten to simplify

their structure and to make them more portable,

This activity of consolidation was a natural consequence of
both the earlier expansion and the experiences gained when

exporting the programs to other computer systems.

6.7. Conclusion

Looking back on the project, now when most of the work has
been done, it is evident that many details could or should
have been done in a different way. The first observation is
that the final dimensions of the project, both with respect
to size and ability of the resulting programs, far exceed
those originally anticipated. With today's knowledge,
detailed specifications could be made and a substantial
initial effort would be put into the design and
implementation of suitable modules for use in the later
stages of development. Among the old application routines in
Synpac and Idpac, some have been revised or rewritten many
times as conventions have been changed or common operations

have been modularized.

The project grew organically. Many features available today
were not originally planned. Rather, the possibilitites
occurred as a result of using the programs on ©practical
problems. Several design decisions were also based on the
avalilable hardware. All original work was made on a PDP-15
with 16k memory, later expanded to 32k. After 1975, more and
more of the development work was moved to UNIVAC 1148,

offering a more efficient environment to the programmers.

A very coarse estimate of the manpower put into the project
ends at about 15 manyears. The effort required for the first
implementations was comparatively moderate, in the order of
3 or 4 manyears. The work to make the programs portable and
finding a set of suitable primitives was more time
consuming, about 5 manyears. The rest of the time has been
used actually designing new application routines. One should

169

<h
o0

not forget the importance of the environment in wich the
work has been done. It has in many cases been possible to
use experience either in the form of good advice or asactual
library routines. It is impossible to estimate this in

manyears, but they would be many.

Programming Language

A question that could be asked 1s whether the choice of
programning language would have been different 1979 than
1969, what are the candidates? HNew languages to Dbe
considered are Simula 67 and Pascal. Pascal can not be used
due to the difficulty in passing matrices as arguments to
procedures. This makes general opurpose matrix routines
impossible. The language Simula 67 is sufficiently powerful
for our DUrpPoOses. Some of the implementational
characteristics might have looked quite different if Simula
had been used because other solutions to some problems would
nave been possible, cf. Section 5.5. Note that the

3,

interaction sketched there needed not be used, an
Intrac~type command dialogue could still be implemented,
using only the data structure ideas of Section 5.5. The
drawback with Simula 67 is that it seems to demand a rather
powerful computer system. The language is not available on
most mini- or midicomputers. If portability was a major
criterion, the choice would probably again fall on FORTRAN.
For this language also sveaks the great number of numerical

algorithms already available in FORTRAN.

Basic and APL

The final version of the interactive language implemented by
Intrac, the command decoding module, bears at least some
superficial resemblance to Basic. One could again ask the
gquestion if it would not be possible to use Basic as an
environment to the application modules. There are
considerations that still speak in favour of a new language

although maybe similar to Basic:

a) For portability reasons, the interpreter should be

written in a common high-level language.

b) Standard Basic contains constructs of no interest, such

a3 READ & DATA statements.
¢) A procedure call statement should be included.

d) The allowable forms of identifiers are not sufficient.

These incompatabilities are so serious that it is safest to
take the decision at an early stage: It is not Basic we are

interested in.

APL on the other hand is an extremely powerful language with
many of the properties 1listed as desirable in the next
subsection. APL has indeed been used to implement
interactive Programs, also for Automatic Control

applications, as reported in [Shan77].

APL is a rather old programming language, [Iver62], and has
for a long time only been availablzs on big computer systems.
It should not be denied however, that the failure of APL to
become more widely used is also due to the peculiarities of
the language; it is not like any other programming language!

Two further comments on APL will be made:

APL uses a notation for expressions and procedure calls
different from what might be called 'mathematical
notation' used in most other programming languages. This
means an additional effort for any new user which might be

prohibitive for some of the categories of Section 3.9,

One of the main features of APL is its powerful set of
operators or operations on operators. By using these
features, complex data structures with associated
operations could be constructed. Unfortunately, this power
also involves a great danger in <case of errors. If
extensive checks have to be built into a program, the
possibility of a short and elegant formulation of the

operation of actual interest is of minor value.

Although it is hard to rule out the use of APL in a project
to develop interactive programs of the type discussed here,
the decision to use APL would be equally hard to take.

The Ideal Interactive Language

The task to briefly formulate some criteria on the ideal
interactive language is of course difficult. Let wus first
emphasize that we are not interested in the situation where
the user is a programmer who interactively designs a program
or tests an algorithm. We are interested in the case when
the user is actively solving application problems. The list
of criteria for a langueage in this type of interactive use

is then:

a) It should be a powerful general purpose language, similar
in syntax and semantics to languages commonly available
today. It should be efficiently applicable where FORTRAN,

Algol, Simula etc. are being used.

b) There should be no distinction in the language on

statements used in interactive or noninteractive mode.

c) It should be possible to call for the inclusion of a
predefined set of declarations (types, structures, and

procedures) at any time.

d) There should be no difference between preprogrammed
facilities (as in c¢)) and user additions.

e) It should be possible to protect a specified set of

procedures and data from direct use.

f) There should be a discernible distinction in access
method for actual arguments in procedure calls as well as

in procedure definitions.

g9) It should be possible to draw on the huge amount of well
tested numeric software written in FORTRAN available

today.

The rationale for these demands 1is:

a), b), ¢), and d) defines a language that will behave and
look like present day languages, and hence will be easy
to understand and learn. The additional facilities
enables the user to remain at the program main level
where he/she can execute statements to call orocedures,
to incrementally include new procedures and to declare

types or variables.

b) and c). Note that these two points demand incremental

compilation.

@) recognizes that there must be one or several mechanisms
for protection available. This was exemplified in Section
5.5,

f) tries to improve readability and the intuitive appeal of
procedure calls. Many modern programming languages allow
several ©procedure parameter passing methods; call by
value, call by reference, copy on output etc.
Astonishingly enough, no known language forces or even
allows these <choices to be visible in the call to the
procedure, although it would improve readability

considerably. In an interactive situation, where the user
often will rely on hisg memory for the form of a procedure
call, a possibility of a memorically and intuitively
appealing vprocedure call form is of course especially
important. In fact, this was one of the main objectives

in the design of the currently available programs.

g) This a very natural demand, dictated by economic reasons.
The earlier investiments of money and manpower available
in FORTRAN software libraries must be possible to use.
This interest could be satified through a standardized
call facility to separately compiled FORTRAN routines.
Another solution would be a possibility to automatically
translate FORTRAN code into a subset of the new language.
Note that FORTRAN is guite adequate for numeric
applications, so there is no real incentive to rewrite

such algorithms other than for compatibility reasons.

6.8 The PFuture

Certainly, the future will see additions to the existing
programs in the form of new commands. Some changes in the
existing software could be discussed. Intrac could e.g. be
made to allow a distinction between call by value arguments
and call by reference arguments. This would allow the return
of scalar values as results of commands, see Section 4.5. To
be useful, such a change would require the redesign of the
command syntax for a number of commands. It 1is doubtful if
the benefit of this feature would be enough to warrant the
amount of work needed. It will in any case not be done in

the near future.

There are some points of a more general interest. One is the
language problem. The new language, ADA, developed for the
US Department of Defence seems very promising. According to
the demands set forward bu the DoD committee (the 'Ironman'

report), this new language would solve all problems

mentioned in 6.5 except for plotting software. In a longer
perpective, a revised implementation in this new language
would seem natural. Still, the problem with numerical
software written in FORTRAN would have to be solved and
interaction would have to be built in through an Intrac like

communication moldule.,

The development on the hardware side will have much greater
impact in the near future. There are two aspects of
importance., One is the trend of the traditional minicomputer
to grow both in computing power and in addressing
capability, the 1latter coupled with virtual memory
techniques. This will make the present somewhat arbitrary
division of the available commands into several packages
unneccessary. Also the implementation of all temporary
datastructures as files could be abandoned. The file
interface <could simulate the file structure in virtual
memory, making the hardware and memory paging system locate
the data items, thereby gaining much speed.

The other development on the hardware side is the new
generation of micro computerse They are characterized by
comparatively high computing power and most importantly, a
significant addressing capability. Together with cheaper and
cheaper memory, they will make an implementation of Idpac,
Simnon etc. in a desktop calculator economically quite
feasible within a couple of years. This would bring about a
revolution to the practising engineer and a great challenge

to Automatic Control education.

7. EXAMPLE 1. IDENTIFICATION ON THE BALL AND BEAM PROCESS

As an example of the use of Idpac, an identification

experiment on the ball and beam process will be described.

The process

The ball and beam process was designed and built shortly
after the agquirement of a process computer to the
department, cf. Section 6.1. It consists of a beam, rotated
by a torque motor. On the beam, a steel ball is rolling in a
groove, The principles are shown in Figure 7.1. The rotation
of the beam is controlled through the voltage to the motor.
The measured variables are the angle of rotation, ¢ in the
figure, and the position, x, of the ball along the beam. The
angle 1is measured in the standard fashion with a rotary
potentiometer, while the position is measured using a linear
potentiometer formed by the sides of the groove and the ball
itself, see Figure 7.2 for a schematic diagram. Note the use
of a capacitor and a high impedance voltage follower to
reduce the effect of spotwise bad contact when the ball is

rolling.

Expected process dynamics

The process is naturally divided into two subprocesses, the

motor with beam, and the ball.
The dynamics from motor voltage to beam angle is determined

by the electric <characteristics of the motor and the
inertial moment of the beam. A linear model would be:

FI(s) K

Torque Motor

Figure 7.1. A schematic illustration of the ball and beamn

system.
Constant current source
g
High resistive wire
~ TN
4 \ \\
(W —
{ 4 — 5—1 h
Py ~ X
Brass rod Contact made °

through the ball

Figure 7.2, The measurement principle of the ball position.

This model is derived from the linear eqguations for the
motor with inertia included assuming that the electrical
time constant can be neglected. A torque balance for the

rotor is:

a’¢ C_ do K
J'—'—_+_—'=—"U.
dt2 Rl dt Rl

J, the inertial moment is estimated from the geometry of the

beam: .06 HNms®, ¢, the induced voltage in the rotor is
given: 0.56 Vs/rad. R., the internal resistance in the

rotor: 4.9 ohm. k, the specific torgque: 9.556 Nm/A. This

gives

= .95 s and K = 1.8 rad/vVs.

il
Ol

The dynamics from beam angle to ball position is, |if

linearized, simply:

K

FI(s) ;5

=
n
[\

A constant angle will give a constant acceleration, hence
the double integrator dynamics. When determining the gain,
it is necessary to consider not only the 1inertia, but also

the inertial torque and the rolling radius of the ball.

Figure 7.3 shows the notations used. We have

2 2
dx do, d"x d o
£ = roa ;7 Ir = L 3T 7 =r
dt dt dtz dtz
2
J Qﬁ% = PFr
dt
2 J 2
N g mg sin ¢ - F = mg sin ¢ - - Q—%
dt r” dt

With J = m(2R2/5) we finally have

[N
(61187 s}

For a ball with diameter 3¢ mm rolling in a groove with
width 10 mm, K, gets the value 6.75 mr/sz.

The experiment

A series of experiments on the ball and beam system was
made. The problem was to excite the system without the ball
falling off. The experiments were performed in the fall of
1975 and were partly inspired by the then current interest
in the identifiability of closed loop systems
[Gust et al74]. Two <cascaded PD regulators were used 1in a
configuration as shown in Figure 7.4. Several runs were made
with varying parameter settings and varying perturbations.
The experiment shown here is one with fairly good regulation
and with the PRBS perturation as setpoint for the position

Figure 7.3. The symbols used in the discussion of the
motion of the ball.

7: 178

- Angle Position
u_|Torque | ¥ X
> Motor = Bal =

Figure 7.4, Block diagram of the control system for the ball
and beam Drocess.

of the ball. The samoling interval was short, @.04 s, The
experiment length was 700 samples, aquired during 28

seconds.

The regulation, the disturbance generation and the data
recording was done with the data logging program mentioned
in Section 6.1, Figure 7.5 shows the commands used to run an
experiment in an interactive way. Note the use of guide
lines. To each command there 1is a suggested successor
although any command actually is legal.

The identification

The acquired data was later used for identification
experiments using Idpac. The sequence of commands used for
one of the runs is shown in Pigure 7.6. A compact
description of Idpac commands is included in the Appendix.
On line 1 of the figure, the measurement data are converted
to a standard time series file, and on lines 2-6, scaling
and calibration operations are performed. After these
operations X, the ball position, is in meters, FI, the beam
angle, is in radians, and U the motor voltage, is in volts.
The data thus obtained are plotted (lines 8 and 9) and the

result is shown in Figures 7.7 and 7.8.

LOGGER V6A

COMMAND 'GUIDE ON' GUIDES YOU THROUGH THE LOGGER.

>GUIDE ON

COMMAND 'INFO' GIVES YOU INFORMATION ABOUT THE LOGGER ON LP.
> INFO

DEFINE VARIABLES FOR THE EXPERIMENT. VARIABLE NAMES WITH
DEFAULT ASSUMPTION WITHIN PARENTHESIS: COSAM(T), CORIT(T),
NVAI(2), NVAO(l), NWRAI(¥), NWRAO(P), NWRUC(O), NWRSL(D),
NUSAM (D), IH(9), IM(D), IT(9), NWTOT(9).

>NVAIK3

>NVAOK2

>NWRAIL3

>NWRAOK2

>NUSAMLKT709

>IT<2

>DONE

SET ANALOG INPUT MULTIPLEXER VECTOR (PRESET TO 0,1,2,3c¢64)
>DONE

SET ANALOG OUTPUT MULTIPLEXER VECTOR (PRESET TO 2,1,2,3....).
> DONE

SET INPUT SCALE INDICES (DEFAULT 4).

> DORE

IT MAY BE USEFUL TO SAVE THE EXPERIMENT CONDITIONS ON DT.
>SAVE BEAM

INPUT TASK NAME FOR REGULATOR AND 'ON' IF THE REGULATOR IS
NOT TO BE STOPPED WHEN THE EXPERIMENT IS OVER. DEFAULT
ASUMPTION 'NONE OFF',

>REGNM IDREG

RUN THE EXPERIMENT. OPTIONS LP AND DT FOR CONVERT DURING
EXPERIMENT AND ALION IF ALIO IS RUNNHING (DEFAULT ASSUMPTION
NOT RUNNING) .

>RUN BEAM1

LOGGER Vb6A
CONVERT DATA TO LP AND/OR DT.
>CONV < DT

LOGGER V6A

VERIFY EXPERIMENT.

>VERI

DOCUMENTATION OF EXPERIMENT,

>DONE

NEW EXPERIMENT.

DEFINE VARIABLES FOR THE EXPERIMENT.ccescosoas

Figure 7.5. The interaction used to obtain data for the
following identification. The guiding information hints at a
possible next command, but it need not be followed.

T7: 172

1 >CONV ODATA < UNIDAT 5 0.04
>SCLOP FI < ODATA(l) - ©.8781
>SCLOP FI < FI / 20.
>SCLOP X < ODATA(2) / 20.

5 >SCLOP U < ODATA(3) + ©.13672
>3CLOP PRBS < ODATA(4) * 1.004
S>LET NPLX. = 350 .
>PLOT FI X / (dP) PRBS(1l) (HP) U

>PAGE

19 >CUT TX < X 340 352
>CUT TU < U 348 352
>STAT TX
>STAT TU
>CUT TX < X 440 470

15 >CUT TU < U 440 470
>STAT TX
>STAT TU
>3CLOP T < X * 4,333
>VECOP NU < U - T

20 >PLOT U NU

>PAGE
>

Figure 7.6. The preliminary analysis of the measured data.

Observe that the input U does not have zero mean value when
the ball position is constant. This is due to the disturbing
torgque from the ball, requiring a non-zero voltage to the
motor for compensation. The least complex way to eliminate
this effect, which would upset the identification results,
is to use the measured ball position. This is
(approximately) proportional to the disturbance. Lines 19-17
show how the proportionality constant was found, while lines
18 and 19 is the actual removal of the disturbance. The new

voltage signal NU is thnen used for the identification.

The identification procedure is shown in Figure 7.9. First,
on lines 1 and 2, the input (FI) and the output (X) of the
ball system are moved into a file WRK, whereupon the maximum
likelihood identification command is used to obtain a model.
The results from the first try indicate that some parameters
are not significantly non-zero. (The complete output from
the ML command 1s omitted here.) Therefore a second

7: 173

))
(FH] (W]
- o
(nl Q.
b .2
a a«
" = oy
-l |
L o =
S | S
™ | ™
|

A

| {
200.
PRBS
] |
200.

L S = - S
= = S
R _‘-——‘_‘—I g
-
_:="__‘__‘_‘___—
[
db
T | ! | o s ! 1 o
lo @ a 2 [y
. O ‘Q o O o
O (@] -— —
I I

Figure 7.7. The beam angle (FI) and ball position (X) is
recorded in the upper diagram, while the position setvoint
(PRBS) and motor voltage U is shown in the lower diagram.

T: 174

/00.

| j k&HMPLES
|
/00.

600.
| /L
|
600.

500.
500.

400.

. PRBS
V\MWWW J\f

400. |

Figure 7.8. The continuation of Figure 7.7.

7: 175

identification is performed (line 4) with the same starting
values (line 5) but with some parameters fixed to zero. The
resulting model is tested by a residual test, lines 1§ and
Figure 7.18, and through deterministic simulation, lines 12
and 13 and Figure 7.11.

The identification of the motor and beam dynamics is done in
a quite similar fashion shown on lines 15-24. The residual
test is shown on Figure 7.12 and the deterministic

gimulation on Figure 7.13.

1 >MOVE WRK(1l) < FI
>MOVE WRK(2) < X
>ML MLBALL < WRK 2
>ML (SC) MLBALL2 < WRK 2
5 >INVAL ABC MLBALL
>SAVE STDEV
>FIX B(2) @.
>FIX C(2) 0.
>X
19 >RESID RB < MLBALL2 WRK
>PAGE
>DETER DX < MLBALL2 FI 280
>PLOT FI / X DX
>KILL
15 >MOVE WRK(1l) < NU
>MOVE WRK(2) < FI
>ML (SC) MLMOTOR2 < WRK 2
>SAVE STDEV
>X
20 >RESID RM < MLMOTOR2 WRK
>PAGE
>DETER DFI < MLMOTOR2 350
>PLOT FI DFI / (HP) NU
>KILL
25 >

Figure 7.9. The Idpac commands used in the identification of
the ball and motor dynamics.

0.8

0.6

0.4

0.2

o. | /N A
—

. 3. 10.

Figure 7.18. Autocovariance function for the residuals in
the ball model. If the function stays within the two lines,
the residuals may Dbe assumed to be independent, which they
should be.

0.5
0. Fl
} SAMPLES
0.5 T] T 1 ¥ T 1
0. 100, 200, 300,
.|
0.
7 X
-1 DX SAMPLES
°] 1 I 1 1 1 1
0. 100, 200, 300,

Figure 7,11, The input to the ball model (FI) and the
measured position (X) and the deterministic output of the
model (DX). There 1is a good agreement in high frequency
behaviour, poor for low fregquencies.

0.75

0.3

0.25 |

0. 8. 10.

Figure 7.12. Autocovariance function for the residuals of
the motor model.

10 I NU
0. |
-10.4 SAMPLES
i) L 1 Ll I 1
0. 100, 200, 300,
DF1
Fl
0.5 DF!
R DFI
0. _
Fl
. DF I F
-05 4 SAMPLES
T I 1 I I 1 k|
G. 100, 200, 300,

Figure 7.13. The input to the motor model (NU) and the
measured angle (FI) and the deterministic output of the
model (DFI). Again we have good agreement in high frequency
behaviour, poorer for low freguencies.

7: 178

Analysis of the models

The analysis of the models obtained in the previous section
served to demonstrate that the identification procedure had
been reasonably successful. The result will now be further
discussed. First we are going to compute the system poles.
Then the Bode diagrams of the obtained models will be

compared with the theoretically expected curves.

The parameters in the 'Ay=Bu+Ce' model for the ball were:

ay; = -1.9965 +- 1.9 E-3
A, = -0.98988 +- 1.9 E-3
bl = -1.05294 E-2 +- 2.3 E-4
02 = P

Cy = —-0.695909 +- 3.2 E-2
C2 =

A= 0.00193

The corresponding parameters for the motor model weres

-1.9775 +=- 3.1
9.98341 +- 3.2
1.33906 E-3 +- 6.9 E-5

7.1
5.0
4,2

il

1.13159 E=3 +-
-0.49411 +=
-2.13521 -

3.1784 E-3

H

> 0O Q0 U U o 9
NN N
i

Refer to Figure 7.14! First two systems are defined on line
1-6, using the Modpac command SYST. Each system consists of
three sections (XDPOL, XDS5, and XCSS where X=B for the ball
and X=M for the motor). The first section is a discrete time
transfer function representation B/A. The other two are a
discrete time and continuous time state space representation

with A, B, and C matrices. Then the identified wmodels are
transferred to the corresponding system representation using
polynomial files used in Modpac with POCONV, lines 7 and 8.
Then the poles for the two discrete time models are
computed, lines 9 and 19. HNote the aggregate filename
specification. The numerator polynomials of both
representations are called A, but they are members of
different aggregates. The default action of SYST is to name
the aggregate file as the section name. The location of the

poles is shown in Figures 7.15 and 7.16.

Finally, we are interested in the Bode diagram for the two
models. First the models are coanverted into discrete time
state space representations, lines 11 and 12, and then into
the corresponding continuous time representations, lines 13
and 14. Finally the frequency responses for the two models

are computed, lines 15 and 16.

Now, before we look at the result, the two theoretic models
would be nice to have for comparison. To accomplish this
within the framework of Modpac, two new systems are defined,

lines 1-4 in Figure 7.17.

1 >SYST BALL(BDPOL) < (MTF) AB 0.04
>S5YST BALL(BDSS) < (S8S) ABC .04
>8YST BALL(BCSS) < (53) ABC 0.
>SYST MOTOR(MDPOL) < (MTF) AB 0.04

5 >5YST MOTOR(MDSS) < (SS) ABC §.04
>SYST MOTOR(MCSS) < (S5S) ABC 4.
>POCONV BALL(BDPOL) < MLBALL2
>POCONV MOTOR(MDPOL) < MLMOTOR2
>POLZ BDPOL:A

19 >POLZ MDPOL:A
>TRFS51 (BDSS) < BALL(BDPOL)
>TRFSS1 (MDSS) < MOTOR(MDPOL)
>CONT (BCSS) < BALL(BDSS)
>CONT (MCS83) < MOTOR(MDSS)

15 >5PSS BBODE < BALL(BC3S) 1 1
>5PS5 MBODE < MOTOR(MCSS) 1 1

Figure 7.14., Modpac commands used in the first part of the
analysis of the ball and motor models.

7: 1890

RE

0.9699
1.0206

Figure 7.15,
There is one

RE

0.9888
0.9883

M M

0.0000
0.0000

Y
%

The pole configuration for
unstable mode.

I

7.6049 -2 1
-7.6049 e-2

the ball

|/

model.

Figure 7.16. The pole configuration for the motor model. The
model is stable but poorly damped.

19

15

29

39

35

49

Figure 7.17.

>SYST BT (BTCPOL) < (MTF) AB 0.
>SYST WT (MTCPOL) < (MTF) AB 0.
>SYST BT (BT(CSS) < (3S) ABC 4.
>SYST MT (MTCSS) < (SS) ABC 9.
>POLY A

>INS =1 < 9.

>INS < 0.

>INS < 1.

>X
>POLY B

>INS =1 < 6.75

>INS < @

>X
>AGR BTCPOL

>INS A

>INS B

>X
>POLY A

>INS -1 < 0.

>INS < 1.05

>INS < 1.

>X
>POLY B

>INS =1 < 1.895

>INS < 0.

>X
>AGR MTCPOL

>INS A

>INS B

>X
>TRF381 (BTCSS) < BT (BTCPOL)
>TRFSS1 (MTCSS) < MT (MTCPOL)
>SPSS BTBODE < BT(BOCSS) 1 1
>SPSS MTBODE < MT(MOCSS) 1 1
>BODE (AO) BTBODE BBODE
>BODE (AO) MTBODE MBODE

>ASPEC FISP < FI 399
>ASPEC USP < NU 290
>BODE FISP USP

analysis.

Modpac commands used in
(Lines 40-42 are actually from Idpac.)

the second part of the

7: 182

On lines 5-13 and 18-26 the denominator and numerator
polynomials for the theoretic ball and motor models. On
lines 14-17 and 27-30 the polynomial files are aggregated
for use in the two systems BT and MT (theoretic ball and
motor model). A continuous time state space representation
is then formed for both ball and motor, lines 31 and 32, and
then the frequency response is computed, lines 33 and 34,
and plotted, lines 35 and 36. The results are shown in
Figures 7.18 and 7.19.

1000. | amp
100. | EXPECTED
0. |
IDENTIFIED
o
0.1 |
0.01 _|
— RAD/S
I I l I [T I T B |
. 1 10. 100.

Figure 7.18. The Bode diagram for the identified ball model
together with the theoretically expected curve.

AMP

EXPECTED

IDENTIFIED
0.1

0.01

E-3

0.1 1. 10. 100.

Figure 7.19. The Bode diagram for the identified motor model
together with the theoretically expected curve,

The striking characteristic in both cases is the poor
agreement between theoretic and identified models for low
frequencies, while the high frequency agreement is good to
excellent. In order explanain this, the last three commands
were executed in Idpac, lines 49-42, The power spectra of
the input signals were computed and plotted, Figure 7.20. It
is obvious that the identification algorithm succeeded in
picking up the correct system dynamics only for the
frequency range 1in which the input had any power. This is

also intuitively very natural.

7: 184

10, |
-
| usP
0.1
0.01 |
E-3 _‘ FISP
] RAD/S
I 1 I I 1 | I I T
0.1 1. 10. 100.

Figure 7.20. The power spectrum for the ball input, i.e., the
angle (FISP), and the motor input (USP). Note the low
spectral density for low frequencies.

Conclusions

The main objective of this example was, to give a flavour of
the use of Idpac and Modpac in solving a practical problem.
Some minor details have been omitted and the command
sequences have been edited in some places to make the
solution somewhat easier to follow. Unfortunately, the
creative feeling and the suspense in awaiting the result
from the computer are qualities not possible to pass on to
the reader. Interactive programs should be run to be fully

appreciated.

A lesson learned from this example is that results from
identification experiments in closed loop should be judged
with care. Models obtained in such a way can only be
expected to show the system behaviour for those frequencies
in the disturbance that the vregulators were unable to
cancel. Results with better agreement with the expected
results were obtained in other experiments not shown here
when the sample interval of the regulators were increased

and with the regulators badly tuned.

186

S
N

o

ion.

in operat

The ball and beam

Photo

Rolf Braun.

8. EXAMPLE 2. DESIGN OF A MULTIVARIABLE REGULATOR FOR A
CHEMICAL REACTOR

This example will show how Synpac can be applied to the
design regulators. The system to be controlled is taken from
the 1literature, [Rose74] and [Munr72]. The design method
used there is the 1INA-method resulting in the use of two
simple PI-controllers. As emphasized in Rosenbrock's book,
the existing instrumentation of the ©process, a chemical
reactor, called for a design which could be implemented
using standard three term pneumatic controllers. We will
here endeavour to show that the same goal may be achieved
through state space methods. Indeed, the initial system
description is given in state space form in the references,

so this is no unnatural approach.

One problem 1is that we have no knowledge available of the
relevant physical constraints. Unfortunately, the sqguations
given 1in the references have been transformed and time

scaled. They are given as:

¥ = Ax + Bu
y = Cx
with
1.3800 =0,20770 6.7150 =-5.06760
A = -0.58149 -4 ,2900 0.90000 9.67508
1.96790 4.,2739 ~-5.6549 5.8930
4 .80008E-02 4.,2739 1.34390 -2.1040
D.00000 2.00000
B = 5.6790 0.000009
1.1369 -3.14690
1.1369 D.00000
C = 1.9009 b.00000
2.00000 1.0000

The A-matrix has the following approximate eigenvalues: +2,
b, -5 and -9. This gives us a hint as to reasonable time

constants for the closed loop system. There may very well be
modes in the system corresponding to poles to the left of
-9, although not included in the wmodel. In order not to
interfere with such hypothetical modes, we propose that the
control poles of the closed loop system should not have real

parts less than -2, say.

Furthermore, we may propose not to allow the control signals
to be large compared to the state wvariables. This will
impose the same kind of restriction, namely on the allowable

speed of response.

Preliminaries

The program package Synpac, mentioned in Section 6.2, did
not exist in its proposed mature form at the time when this
example was prepared. This means that some details shown
here are not in accordance with conventions discussed
earlier, mainly 1in Sections 5.11 and 5.12. Systems are a
mere list of filenames and are restricted to state space
representations with A, B, C, and D matrices only. A
lossfunction (used in 1linear quadratic design) 1s not
included in the system representation, but 1is a separate
entity. Aggregates are not implemented. The result is that
some things could have been done more elegantly today, but
on the other hand, we get an opportunity to discuss some
details.

In Figure 5.12, an "extended lossfunction" is defined. The

reason 1is the following: The integrand in the usual

guadratic lossfunction looks like

T T, T
X le + 2% leu + U Qzu

In simple cases when the state variables have physical

significance, the successive change in the matrix elements
to obtain a desired behaviour is intuitively natural and
straightforward. Very often, however, le is not used and Ql
and Qz are Kkept diagonal. To increase the easily available
freedom offered by the method, the extended lossfunction

with the following integrand was introduced:
T T . T . T . T .
X QElX + u QE2u + X QE3x + vy QE4y + v QE5y

Here the outputs, as well as derivatives of state variables
and outputs, are directly included and easy to specify in
the design. Naturally, the extended lossfunction does not
offer anything new, it can (and must) be converted into the
standard formulation, but it provides more intuition and

ease of use,

In the version of Synpac to come, the extended lossfunction
is converted into the standard formulation by a single
command, but in the version used here, this facility was not
available. By the wuse of a macro, however, this was easily
overcome, see Figure 8.l. The macro PENAL computes Ql’ Q15
and Q, from the matrices QEy, QE,, QE3 and QE,, and the
system matrices AE, BE and CE. This is an example of a macro
used to implement a facility not originially planned by the
program designer, cf. Section 3.1l. (The present version of
MATOP accepts more complex expressions than those used

here.)

A few other macros were written when this design example was

planned. They will be discussed when used.

Finally, one reason to allow the system representation shown
in Figure 5.12 will Dbe apparent in this example. This
representation allows a distinction to be made between
control inputs, known disturbances, and unknown (stochastic)

disturbances, as well as between controlled variables (z)

8: 199

MACRO PENAL

MATOP T<TR AE
MATOP T1<T * QE3
MATOP T<KT1l * AR
MATOP QIl<QEl + T
MATOP Q12<T1 * BE
MATOP T<KTR BE
MATOP T<KT * QE3
MATOP Q2<T * BE
MATOP Q2<Q2 + QE2
MATOP T<KTR CE
MATOP T<KTR CE
MATOP T<T * QE4
MATOP T<KT * CE
MATOP Q1<Q1 + T
END

Figure 8.l1l. This mwmacro 1is wused in the absense of a
corresponding application command to convert an extended
loss function into the standard form.

and measured variables (y). Here we will, in the absense of
this facility, have to include a new block into the B-matrix
in order to allow the input of the impulses used to study
the closed loop behaviour. (Line 16 & 17 in Figure 8.2). The
design will then be performed in two phases. First a state
feedback will be designed giving nice performance for
impulse disturbances. In the second phase, this state
feedback will be used as a basis for an output feedback from
the outputs, their integrals and their derivatives, i.e. a

PID regulator structure.

The LQ design phase

The commands used +to perform a linear guadratic design for
the system in gquestion will be shown here. We start in
Figure 8.2 with the initial steps. On 1line 1 we call the
macro START, shown in Figure 8.3. START defines the systems
we are going to use and defines the plotting length to 30
samples and the sample interval, used in the simulations, to
¥.05 s. Then we move the A, B, and C matrices from backup

storage. (DT = magnetic tape).

1 >START
>MOVE A <(DT) A
>MOVE B <(DT) B
>HMOVE C <(DT) C
5 >MATOP CA < C*A

>8YST INTEG < AI BI CI NULL X8I
>ZEROM AI 2
S>UNITM BI 2
>UNITM CI 2
16 >ZEROM X0I 2 1
>3YS0P ESYST < CSYST INTEG CA
>Ul < UR
>U2 < -yl
>U3 < -X1
15 >Y < =Yl / Y2 / Y3
SUNITM Io6 6
>EXPAN BT < B (1 1) 16 (1 3)
>INSI UR 180

>PULSHE
29 >LET IFP. = IFP. + NPLX.
>PULSE
>LET IFP. = IFP. + NPLX,
>PULSE
>LET IFP. = IFP, + NPLX.
25 >PULSE
>LET IFP. = IFP. + NPLX.
>PULSE
>LET IFP. = IFP. + NPLX.,
>PULSE
39 >X
>
Figure 8.2, The start-up and construction of system

representation to work with and the generation of a test
input.

In the design, we are interested in the output errors, their

integrals and derivatives. In the feedback design we assume

the reference signal to be Zero SO e = =y and
¢ = -y = -C*A*yx, On line 5, CA = C*A 1is computed and on
lines 6=10, a system of two wvarallel integrators 1is

constructed. On line 11-15, we then build an extended system
ESYST from the original one, CSYST, the integrators INTEG
and the Jdifferentiators CA, to achieve the desired 6 output
signals. For use later on, we define the input matrix in
TSYST as [B I] and a vector of input signals consisting of
unit pulses at suitable intervals.

MACRO START

TURN LPCOM ON

SYST CSYST<A B C NULL X@C

SYST CCSYS<AC BC CC DC X@ccC

SYST DCSYS<KFIC GAMC THC DDC X9DC
SYST CLOSS<NULL Q1 Q12 Q2

SYST ESYST<AE BE CE NULL X#@E
SYST LOSYS<ALQ BE CE NULL X%E
SYST TSYST<AE BT CE NULL X0E
SYST PIDSY<APID BPID CPID DPID XfPID
LET NPLX.=39

LET DELTA.=0.05

END

Figure 8.3, The macro START used to define systems and to
initialize.

We are then ready to design a state feedback with a
quadratic criterion. The procedure is shown in Figure 8.4.
On lines 1-8 all extended lossfunction matrices are zeroed
except QEZ' which is set as the unit matrix and QE,, which
is set to punish the two output errors. Then the macro
TOTAL, which does the actual job, 1is called. It is shown in

Figure 8.5.

TOTAL first «calls PENAL, Figure 8.1, to convert the
lossfunction into standard form. Then ITER is called. 1In
ITER we start with a trick. We multiply the lossfunction
integrand with e'z*ALPHA*t. Thus we £force the closed loop
eigenvalues to have real parts less than ALPHA, see
[Ande71], p. 58. (Again, the present version of MATOP would
have accepted a more concise formulation.) Thus the matrix

ALQ is computed:
ALD = A - ALPHA * I

Then we solve the LQ problem for the system LQSYS, where ALQ
substitutes AE in the system ESYST.

1 >ZEROM QE1L
>UNITM QE2
>ZEROM QE3
>ZEROM QE4

Y O DO OO

5 >ALTER QE4
>1 1 1.
>2 2 1.
>X
>TOTAL -1,

19 >MOVE YIl < YI
>ALTER QE4

>1 2 -1,
>2 1 -1,
>X

15 >TOTAL -1.
>MOVE YIZ2 < YI
>ALTER QF4

>5 5 1.
>6 6 1.
20 >X
>TOTAL -1,
>ALTER QE4
>3 3 1.
>4 4 1,
25 >3 4 -1,
>4 3 -1,
>X
>TOTAL -1,

>MOVE YIF < YI
30 >PLOT YI1(1 2) YI2(1 2) YIF(1 2)

Figure 8.4. The design of a state feedback using 1linear
guadratic theory. The macro TOTAL is shown in Figure 8.5.

The macro TOTAL then computes the state feedback matrix L,
constructs the closed loop system CCSYS with 6 reference
inputs and with the two control signals appended to the
output vector. The eigenvalues of the closed loop system are
computed and printed. Finally the closed 1loop system is
transformed to discrete time form and simulated. The result
of the first <call to TOTAL was a state feedback L
(reproduced with two digits):

2.97 1.3 .55 =-0.61 -1.29 -6.1

B: 194

MACRO TOTAL ALPHA
PENAL

ITER ALPHA

END

MACRO ITER ALPHA
MOVE YIOLDKYI
ZEROM TMP 6
ALTER TMP

ALPHA

ALPHA

ALPHA

ALPHA

ALPHA

ALPHA

P OY U B W N
Gy Ul o= W N+

MATOP ALQ<AE - TMP
OPTFB L<LQSYS CLOSS
PRINT L

SYSOP CCSYS<TSYST L
Ul(l 2)<-¥2

Ul(3 4 5 6 7 8)<UR
U2<X1

Y<Y1l / -¥2

POLES EVAL EVEC<CCSYS
PRINT EVAL

SAMP DCSYS<CCSYS

UNITM GAMC 6 DELTA,
SIMU YI<KDC3YS UR

PLOT YI(1l 2) YIOLD(l 2) -1.5 9.5
TYPE L

END

Figure 8.5. The macros TOTAL and ITER.

Figures 8.6 and 8.7 show the transient behaviour of the two
error signals following a step change in states 1 and 5
respectively. It was found that ©¢; and e, showed a tendency
to have opposite sign. Therefore their difference was
included in the lossfunction, lines 11-14 in Figure 8.4. The
resulting curves are shown as '2' in Figures 8.6 and 8.7.
Next, to improve the damping the two derivatives were
punished, 1lines 17-2¢, and finally the difference in

integrated error, without much effect, lines 22-27. This

8: 195

e i
2 2 — |
t(s)
l [[[[|
0 0.25 0.50 0.75 10 1.25 150
Figure 8.6. The response of the errors e, = -y; to a step
disturbance in the first state wvariable for different

designs, first (1), intermediate (2) and final (3).

final choice of lossfunction produced the following state

feedback L (again with only two digits shown):

.30 4.3 0.22 -0.53 2.00 -14,

We observe immediately that the first control signal will
depend mainly on the second state variable and its integral
(X6). Similarly the second control will depend on the first
state variable and its related integral (x5) but also on
states 3 and 4, which were not available as outputs. The
final curves are marked '3' in Figures 8.6 and 8.7. Note
that the interaction was vastly decreased in the first step
and that a clearly noticable improvement in damping was

achieved in the second step.

t(s)

I
6.0 6.25 6.50 6.75 70 7.25

~l

Figure 8.7. The same as Figure 8.6 but with the step
disturbance in the fifth state variable (i.e. the integral
of e,)

l e

Of course, some other choices 1in design parameters were
explored in the preparation of this example. Similarly, the
behaviour of the control signals as well as the responses to

other disturbancies were studied, although not shown here.

The PID design phase

The specifications called for a simple control scheme which
should be implemented with pneumatic three term controllers.
We will therefore try to convert the state feedback obtained
into an output feedback with PID regulators. This is done
through the method given in [Beng73]. The macro PIDGE, shown
in Figure 8.8, exploits the fact that the outputs from the
system was chosen as the error, error integral, and error
derivative. Thus the conversion of the state feedback into

an output feedback effectively gives the parameters in a set

[| l |]

50

of PID-regulators. The details of PIDGE are then: first the
resulting response of a previous design is saved, then the
output feedback is computed for a specified feedback
structure (i.e. choice of available outputs). The resulting
matrix, here called LR is printed. Then the closed loop
system is formed as before. Note that the derivative of the
reference input is not included in the forming of the error
derivative. Finally the closed 1loop eigenvalues and the
closed loop system matrices are printed and the system is

simulated and the response is plotted.

fFigure 8.9 then shows the commands entered to perform the
design. First of all we increase the time scale on the plots
(line 1) and define two step inputs (actually long pulses so
as to allow the system to return to the zero state). Then we
define the weighting matrix for the reduced feedback command
together with a matrix specifying the feedback structure.

MACRO PIDGE

MOVE DK YPIDOKDK YPID
REDFB LR<KESYST L FBS W
TYPE LR

PRINT LR

5YS0P PIDSYLKCSYST IWTEG CA LR
Ul<-Y4

U2<UR~-Y1

U3<-%X1

U4 (1 2)<UR-Y1

U4 (3 4)<y2

U4(5 6)<¥3

Y <Y1(1 2) / =-Y4

POLES PIDEV EVECKPIDSY
PRINT PIDEV

PRINT APID

PRINT BPID

PRINT CPID

PRINT DPID

SAMP DCSYS<PIDSY

SIMU YPIDKDCSYS URPID
PLOT YPID(1 2) URPID
END

Figure 8.8. The macro PIDGE, generating a PID-type feedback
from a given state feedback.

8: 198

Initially we have egual weighting and include all possible
outputs. We then call PIDGE, line 12. The resulting output

feedback matrix is (two significant digits):

0,949 -2.1 2.9043 -14. -0.9032 B.52
LR

0.9 3.0 6.6 -1.8 1.9 9.69

the <closed 1loop eigenvalues remain unchanged. The most
striking property 1is though that output 1 of the original
system does not seem to influence the first control signal
very much (recall the order of the extended system outputs:

output errors, their integrals, and their derivatives). The

1 >LET NPLX.=60
>INSI URPID 249
>LET IFP.=1
>PULSE 649
5 >LET IFP,=121
>PULSE 60
>X
>UNITM
>FBS 2
19 #1 1
#1 1
>PIDGE
>ALTER
>1 1
15 >1 3
>1 5
>X
>PIDGE
>ALTER FBS
28 >2 2 9
>2 4 0
>2 6 0
>X
>PIDGE
25 >ALTER FBS (1 6) 0
>ALTER W
>1 1 14,
>2 2 14.
>X
39 >PIDGE

- = oy S
el =
=
=

(SRS IRy

Figure 8.9. The commands used to reach the desired control
configuration.

obvious next step is therefore to exclude these coefficients
completely, lines 13-17. The next call to PIDGE results in a

new value for LR:

Note that the coefficients for output 2 do not change
(actually not within 5 digits). The eigenvalue <closest to

the origin moved from =-1.75 to -1.41.

Next we try to exclude the second output from the second
control signal, 1lines 19-24. The resulting feedback has a
comparatively small contribution £from the second error
derivative, so we try to eliminate it (effectively
introducing a PI regulator rather than a PID). 1In the same
time, we increase the weight put on the two eigenvalues
closest to the origin, lines 26-19. The final call to PIDGE

(line 39) produces the following LR:

The eigenvalue closest to the origin has now moved to -1.25,

Some of the step responses obtained for the initial and
final design are shown in Figures 8.10 and 8.11l. The control
signals for the final design are shown in Figures 8.12 and
8.13. The step responses for the state feedback are
included.They were computed for the closed 1loop system

Obtained through:

3: 200

>SYSOP CCSYS<CSYST INTEG L
>UL<-Y¥3
>U2<¥1-UR
>U3(1 2)<¥1-UR
>U3 (3 4)<X1(3 4)
>U3(5 6)<X2
>Y<Yl / -Y¥3

An Observation

It can be observed in the responses that least interaction
was achieved for the state feedback regulator. The theory
behind the reduced feedback command says that modes
corresponding to unchanged eigenvalues also remain
unchanged. Thus one might expect the step responses for the
state feedback <regulator and the first PID regulator
structure to be identical. That this is not the case is due
to the fact that the reference input enters differently into
the closed 1loop systems. The result is that the =zeroes of
the system change. Similarly, the fact that the step
responses improve when some feedback loops are cut out is a
fortunate effect and depends on the properties of the

original system.

Finally, it may be noted that it would have been quite
possible to use a dynamical system more closely
approximating the D part of a real life controller, instead

of the static system used here.

0.5

T 23 .
[[[I t(S)I
I
0 0.5 10 15 20 25 30
Figure 8.19. The responses for a step command in Yi. (1) igs

the first PID-design, (2) the final one. (3) is the state
feedback. |

3 % ,
I_ e
2
1
0.5
1
2 A
0_.
3
I I I I I US%
I .
60 6.5 70 7.5 8.0 85 90

Figure 8.11l. Otherwise similar to 8.10, the step is now in
Yoo

' [t(s)
0 05 10 s 20 25 30

Figure 8.12, The two controls Y3 and u, for the final
PID~design when there is a step demand in Yqe

54
)
0 —_ 7
Y
5L l , l , t(s)
60 65 70 75 8.0 8l.5 TB!O

Figure 8.13. The continuation of 8.12 with the step in Yoo

8: 203

Conclusion

The purpose of this example was to give some flavour of the
power attainable with an interactive design program. In this
case, much of the usefulness of the program did not lie only
in the availability of the numerical algorithms as such, but
to a large extent in the way relevant data structures could
be used and constructed. Specifically, the possibility to be
able to connect a given system with suitable subsystems to

form various closed loop systems, was of main importance.

Another factor of great importance for this kind of work is
the macro facility. Here, a macro was used to initialize the
program with some problem dependent information. The main
use of macros was, however, to allow the iterative loops in
the design scheme to be defined in a form, simple to use,
simple to modify, and adapted to the specific problem at
hand.

Finally, a lesson learned from this example is that it is
indeed possible to construct regulators simple to implement
using linear quadratic design. The key to this possibility
was the derivation of an output feedback according to the

method given in [Beng73].

R: 2064

9, REFERENCES

[Aaro77] 47, 48
I, Aaro: Intraction Models. TRITA-NA-7704. Department of
Information Processing and Computer Science. The Royal
Institute of Technology, Stockholm, Sweden.

[Ande71] 192
B.D.0. Anderson, J.B. Moore: Linear Optimal Control.
Prentice-Hall.

[Asimov] 71
I. Asimov: Foundation. 1951,

[Beng73] 1393, 2063
G. Bengtsson: A Theory for Control of Linear
Multivariable Systems. LUTFD2/(TFRT-1006). Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden.

[Birt73} 1lo
G.M. Birtwistle, 0.J. Dahl, B. Myrhaug, K. Nygaards:
SIMULA BEGIN. Studentlitteratur - Auerbach.

[Bosl72] 24
M.J. Bosley, F.P. Lees: A Survey of Single Transfer
Function Derivations from High Order State Variable
Models. Automatica, Vol. 8, Nr. 6.

[Doyl79] 37
J.G. Doyle: Robustness of Multiloop Linear Feedback
Systems. 17:th IEEE Conference on Decision and Control.
San Diego.

[Elmg72] 148
H. Elmgvist: SIMNON - Ett interaktivt Simuleringsprogram
for Olinjara System. (Master Thesis). LUTFD2/(TFRT-5113).
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden. (In Swedish)

[Elmg75]1 27, 49, 46, 131, 148, 156
H., Elmgvist: SIMNON - An Interactive Simulation Program
for Non-linear Systems. LUTFD2/(TFRT-3091). Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden,

[Elmg et al 76] 155
H. Elmgvist, A. Tyssg, J. Wieslander: Programming and
Documentation Rules for Subroutine Libraries. The
Scandinavian Council for Applied Research.

[Elmg78] 27, 40
H. Elmgvist: A Structured Model Language for Large
Continuous Systems. LUTFD2/(TFRT-1015). Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden.,

[Esgse77a) 153
T. Essebo: Character and String Handling in Intrac.
Programming manual. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

[Esse77b] 157
T. Essebo: File Handling in Program Packages. Programming
manual. Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

[Gust73] 151
I. Gustavsson, S. Selander, J. Wieslander: IDPAC - User's
Guide. LUTFD2/(TFRT-3061). Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

[Gust et al 74] 169
I. Gustavsson, L. Ljung, T. SOderstrdm: Identification of
Linear, Multivariable Process Dynamics Using Closed Loop
Experiments. LUTFD2/(TFRT-3069). Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

[Hall78] 208, 46
L-G. Hallstrdom: Generella Berdkningar pa MAtdata. (Master
Thesis). LUTFD2/(TFRT-5210). Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden. (In
Swedish)

[Iver62] 161
K.,E. Iverson: A Programming Language. Wiley.

[Jens74] 116
K. Jensen, N. Wirth: Pascal - User Manual and Report.
Springer-Verlag.

[Jens76] 20
L. Jensen: DATPAC - Programpaket for Matdataanalys. BKL
1976:13. Department of Building Function Theory, Lund
Institute of Technology, Lund, Sweden. (In Swedish)

[Jons71] 147
B. JOnsson: Konservativt Datororogram £0r
Processidentifiering. (Master Thesis) LUTFD2/(TFRT-5091).
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden. (In Swedish)

[MFar73] 37
A.G.J. MacFarlane, J.J. Belletrutti: The Characteristic
Locus Design Method. Automatica, Vol. 9, p 575.

[MFPar77] 35 A.G.J. MacFarlane, I. Postlethwaite: The
Generalized Nygquist Stability Criterion and Multivariable
Root Loci. International Journal of Control.

R: 200

[Munxr72] 187
N. Munro: Design of Controllers for Open-loop Unstable
Multivariable System Using Inverse Nyquist Array. Proc.
IEE. Vol. 119.

[WoveT72} 148
T. Noven: SYNPAC - Ett Interaktivt Program fdr Syntes av
Reglersystem. (Master Thesis). LUTFD2/(TFRT-5104).
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden. (In Swedish)

{Rose69] 37
H.H. Rosenbrock: Design of Multivariable Control Systems
Using the Inverse WNyquist Array. Proc. IEE. Vol 116,
[Rose74] 187
H.H. Rosenbrock: Computer—-Aided Control System Design.
Academic Press.

[Rose75] 71
1.H. Rosgsenbrock: The Future of Control. Sixth IFAC
Congress. Boston.

[Shan77] 16l
5. Shankar, D.P. Atherton, D.G. MacHeil: Computer Aided
Design of Control Systems Using APL. IFAC Symposium on
Trends in Automatic Control Education, Barcelona.

[Scho77] 158
T, Schonthal: Implementation Procedures, Plot Routines.
Programming manual. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

[Wies70] 147
J. Wieslander: Matpac - A Conversational Matrix Program.
Unpublished material.

[Wies73] 158
J. Wieslander: ABSOLU and RANDEX, Fast Overlays Using
Random Access. Programs submitted to DECUS.

[Wies706]
J. Wieslander: IDPAC - User's Guide, Revision 1.
LUTFD2/(TFRT-3099) . Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

[Wies78] 12, 73, 89, 151
J. Wieslander, H. Elmgvist: INTRAC - A Communication
Module for Interactive Programs - Language Manual.
LUTFD2/ (TFRT-7132) . Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

APPENDIX

This appendix contains an abbreviated list of the commands
in the programs Idpac, Modpac and Synpac. A few commands of
a specialized nature have been omitted, and in some cases,
the most general form is not shown. This list is included
for two reasons. It will give information on the facilities
available in these programs, and secondly, it will serve as

a reference in reading the examples in Chapter 7 & 8.

A list of the commands available within Intrac is not given
here. Those commands were described in detail in Section

4.6.

The list also shows the command syntax. Optional arguments
are contained within [], and the argument names should
suggest their meaning. Many commands are available in more
than one program. Therefore, commands in Modpac also found
in Idpac are not repeated in the Modpac list. Similarly, the
commands in the Synpac list have a different form or are not

found in either of the other two programs.

Idpac Command List

Acor Computes the autocovariance for a column in a data file
ACOF FNAMI[(Cl)] < FNAMZ2[(C2)] NOL [EXT]

ASPEC
Computes the autosgpectrum for a column in a data file
ASPEC FRF[(F)] < FNAM2[(C2)] NOL [FREQ]

BODE

Plots amplitude and phase versus angular freguency in a
logarithmic diagram on display

BODE [(SW)] FRF1[(F1ll F12 ..)] [FRF2[(F21 ..)] ..
Subcommands:

PAGE
KILL

CONC

CONV

CsPEC

cuT

DELET

DETER

DFT

DSIM

Computes the «c¢ross covariance for a column in a data
file

CCOF FNAMI[(CLl)] < FNAMZ2(C21 C22) NOL

CCOF FNAMI[(Cl)] < FNAM2[(CZ2)] FNAM3[(C3)] NOL

Concatenates two data files

CONC [DNAM1] < DNAMZ DNAM3

Transfers a free format data file to a binary data file

CONV DNAME < FNAM[(Cl..)] NCOLX [TSAMP]

Computes the cross spectrum for a column in a data file

CS5PEC FRF[(F)] < FNAM2(C21 C22) NOL [IALIGN] [FREQ]

CSPEC FREF[(F)] < FNAM2[(C2)] FNAM3[(C3)] NOL [IALIGN]
[FREQ]

Picks out a part of a data file

CUT [DWNAM1] < DNAMZ2 IB IE

Deletes files from disk

DELET FNAM1[(DMODELl)] [FNAMZ2[(DMODE2)] ...]

Performs simulation of a multiple input - single output
linear discrete dynamic system as an addition of
simulations of single input - single output systems

DETER DNAM1[(Cl)] < SNAME[(NAME)] DNAM2[(C21 ..)]
[DNAM3[(C3L o)) [eseeles] [NP]

Performs the Discrete Fourier Transform on a time
series

DFT [(RES)] [(WND)] SPEC < DATA[(IND)] [START NSAMP]

Similar to DETER but includes a noise input

DSIM DNAML[(CLl)] < SWAME[(NAME)] DNAM2[(C21 ..)]
[DNAM3(C31 ..)] leeaesles] [NP]

EDIT

FHEAD

FILT

Symbolic text editor

EDIT FNAME

Displays file head and enables the user +to change its
parameters

FHEAD [AGGREG:]FILE

Computes a digital low- or high-pass Butterworth filter
of given order and with given cut-off frequency. A band
pass/stop filter is constructed by combining a high-

and a low-pass filter and has the double order.

FILT PNAME < FITYP NO DELTAT OML [OMH]

FORMAT

Converts a binary data file into a formatted data file

FORMAT [FFILE] < BFILE[(Cl C2 ..)] [BEGIN COUNT]

FROP
Adds, subtracts, multiplies or divides two £frequency
response files for freguencies which coincide with an
error less than .090001.
FROP [FRFL1[(F1)]] < FRF2[(F2)] OP FRF3[(F3)]
FTEST
Performs a file existence test
FTEST FNAME [(DMODE)]
GETFIL
Retrieves a file from back-up storage
GETFIL PROGFILE FILESPEC [FILESPEC..]
IDFT

Performs the 1Inverse Discrete Fourier Transform on a
frequency response

IDFT DATA < SPEC[(IND)]

INSI

LIST

ML

Generates data seguencies
INST FNAME [(C)] NP [TSAMP]

Subcommands:
PRBS [IBP [NBIT [ISTART [OPT] 1 1 1

NORM [RMEAN SIGMA]
RECT [A B]

SINE [OMEGA FI]
ZERO

STEP

RAMP [A B]
PULSE [LENGTH]
SRTW [P3]

LOOK

KILL

X

Lists on display, 1line printer or teleprinter the
contents of (a part of) a data file, a macro file or a
system file - for a data file the columns and the first
record and number of records may be specified, for a
system file sections of interest may be specified

LIST [(DEV)] [(FEED)] [(DMODE)]

[AGGREG:]FNAME[(Al A2..)] [IF NUM]
Performs Least Squares identification
LS [(SW)] SBSYST[(SECT)] < SFIL [EXT]
Subcommands :

SAVE STDEV
SAVE COMAT
KILL

X

Performs Maximum Likelihood identification
ML [(SW)] SYST[(NAME)] < DATA[(Cl ..)] NO [EXT]
Subcommands:

INVAL 'ABC'/'C' SYST[(NAME)]

FIX A (2) [vA2] (3) [VA3] B (21) [VB21l] .sese
SAVE [STDEV] [GRAD] [EVALS] [COMAT]

LOOK

KILL

X

MOVE

PICK

A: 211

Transfers a data file, a system file, a macro file or
specified columns in a data file from one kind of mass
storage to another. <Can also be used to rearrange the
columns of a data file

MOVE [(OUTP)] [(DMODE)] [[AGOUT:] FOUT [(Cll..)]l [O] <
[(INP)] [AGIN:] FIN [(C2l..)]
Picks out equidistant records from a data file

PICK FNAML1 < FNAM2 NR

PLMAG

PLOT

Makes it possible to plot small parts of a data vector
and alter data values or remove data points

PLMAG DATA [(C)]
Subcommands:

[LOCK] NB
[LBEG] NR
[LTER] NR [WUM]
PA[GE]

D[ELET] NR [NUM]
KILL

X

B
P
A

Plots data files on display

PLOT [(NP)] [FNAMX[(Cl..)] <
)

1 [(OPT1)] FNAM1[(Cll..)]
[[(OPT2)] [FNAM2[(C21l..)]]

J1 .. 1 [YMI YMA]

Subcommands

KILL
PAGE
SKIP [WN]

RANPA

Generates a Gaussian random vector with given
covariance matrix and adds it +to the parameters 1in a
system description

RANPA SNAM1 < SNAMZ2][(NAME)]

A: 2172

RESID
Comoutes regiduals, autocorrelations of residuals, and
cross correlations between residuals and input
signal (s)

RESID RES[(Cl)] < SYST[(WNAME)] DATA[(C11l Cl1l2 ..)]
[NOL [NFREE]] [EXT]

Subcommands:

KILL
PAGE
TABLE

SAVFIL
Saves a file on back=-up storage

SAVFIL PROGFILE FILESPEC [FILESPEC..]

SCLOP
Each element in a specified column in a data file is
added, subtracted, multiplied or divided by a constant

SCLOP [FNAM1[(Cl)] < FNAM2[(C2)] OPER CONST

SLIDE
Sshifts the columns in a data file along each other

SLIDE [FHAM1] < FNAMZ2 K1 K2 K3 ..

SPTREF
Computes the power spectrum or the amplitude and phase
of a transfer function TPN (Qué~1)/TPD(Q#-1)

SPTRF [(SW)] FRF[(Fl)] < SYST[(NAME)]
TPN[(NRN)] / TPD[(NRD)] [FREQ[(F2)]]

SOR
Computes sguare-root matrix for LS identification

SQR RFIL < FWAME [(C1l C2 ..)] SFIL

STAT
Computes the statistical properties sum, mean value,
variance, standard deviation, minimum and maximum value
for a specified column in a data file

STAT FNAME [(C)] [EXT]

STRUC
Creates and upndates struc files

STRUC SNAM?2
STRUC [SNAM2] < sNaMl
Subcommands:

REVERT
NA [SW] NVAl

NU [3W] NVAl

NB [3W] WVl ... NVNU

K3 [SWl] NV1 ... NVNU

FIX A(N) [VN] (M) [VM] ...

B NUl (N1) [V1] (N2) ... B NU2 ...

UNFIX A(ee N oo M ..) B HUl (N1 ... NN) ..
SW : '"MAX' / 'ACT'

SWl: SW / '"MIN'

KILL

X

TREND
Removes polynomial trends from data vectors using
least-sguares technique

TREND [FNAM1[(Cl)]] < FNAM2[(C2)] NO [IF IL]

TURN
Manipulates program switches

TURN SWITCH STATE
VECOP
Adds, subtracts, multiplies or divides two data vectors

element by element

VECOP [DNAM1[(C1l)] < DNAM2[(C2)] OPER DNAM3[(C3)]

ALTER

BODE

CONT

Modpac Command List

Creates and updates an aggregate file
AGR AGROUT

AGR [AGROUT] < AGRIN

Sub-commands:

LOOK [NAME]
KILL

X

LOC NAME
INS NAME
REP [NAME]
DEL

I50

TOP

BOT

REM

ADV [NR]

Enables the operator to alter matrix elements

ALTER [AGGREG:] MATRIX [(IR IC) VALUE]

Subcommands

KILL

X

Plots amplitude and phase versus angular frequency in a
logarithmic diagram on display

BODE [(5W)] FRF1[(F1l] F12 ..)] [FRF2[(F21 ..)] ..
Subcommands:

PAGE

RILL

Computes the system matrices for a continuous version
of a discrete linear dynamic system

CONT [SYSOUT] [(NAMOUT)] < SYSIN[(NAMIN)] [EPS]

ENTER

EXPAN

KALD

Creates a matrix file
ENTER [AG:]MAT NR [NC] [TSAMP]
Subcommands:

KILL
X

Creates a new matrix from any number of old matrices.
It may be specified where in the new matrix the upper
left corner of the old matrices shall be placed.

EXPAN [[AGLl:]M1] < [AG2:1M2[(IX2 IY2)]
[[AG3:]M3[(se)]asl

Decomposes a given system into subsystems according to
controllability and observability. The result of the
decomposition may be viewed schematically, and the user
may save parts of interest by means of subcommands.

KALD SHAME[(NAME)] [AEP5 REPS]
Subcommands:
SAVE RNAME [(NAME)] < RESLT [ATTR1 [ATTRZ]]

LOOK
X

LUEN1 / LUENZ2

The Luenberger observer commands are structured in
three steps, LUEN1l, a pole assignment command and
LUENZ2.

In LUEN]l a system transformation is performed in order to:
1. Check if all measurements are independent , i.e. test the
Rank (C)
2. Rearrange the rows of C to get the form C=(8 I)
the transformation matrix T is calculated

In the next stage a matrix K is calculated in order to
achieve desired poles of the system All1-K*A21

In LUENZ T and K are given and the observer matrices
are calculated

LUEN1 T SYST1 < SYST2[(NAME2)] [EPS3]

LUEN2 SYST1 < SYST2[(NAME2)] T K [EPS]

MATOP

NIC

NYO

PLEV

POCON

POLY

Evaluates matrix expressions

YATOP [(EXT)] [[AGGREG:]MATRIX] < matrix expression

Plots Nichols curves on disvlay

NIC [WMIN WMAX] FRF1[F11 ..)] [FRF2...]

Plots Nyquist curves on display

NYQ [WMIN WMAX] FRF1[(Fll ..)] [FRF2 ...]

Plots eigenvalues on display and enables the operator
to alter them. The numerical values of the eigenvalues
are also displayed if there is room £for them on the
screen.

PLEV FNAMZ2 [FNAM3 FNAM4 ...]
PLEV FNAM1 < FNAM2
Subcommands:

ALT N VR [VI]
ALT N1 VR VI N2
SCALE N V -
DAMP N Z

EXAM N

LOOK

X

KILL

v
Converts i#liso Transfer Function models from polynomial
image form to polynomial file form and vice versa

POCONV [SYS0U0T] [(NAMOUT)] < SYSIN[(NAMIN)]

POCONV POFILE < SYSIN[(NAMIW)] POTYPE [NR]

Creates and updates a scalar or matrix poynomial file

POLY [[AGOUT:]POLOUT] (<] [[AGIN:]POLIN] [NR NC]
[TSAMP]

A: 217

Subcommands:

LOOK [DEG]

KILL

X

INS [DEG]

INS [DEG] < VALUE

ALT VALUE [DEG] [NR NC]
ADDZ VRE [VIM]

MULC V

DIVC V

DEL [DEG]

POLZ
Computes the zeroes of a polynomial with real, scalar
coefficients
POLZ [[AGOUT:]ZERFIL <] SYSIN[(NAMIN)] POTYPE [NR]
POLZ [[AGOUT:]ZERFIL <] [AGIN:POLY

PPLAC
Pole placement using state feedback in a dynamical
single input system.

PPLAC L [[SYST1][(NAMEL)]] < SYST2[(NAME2)] EVAL

RECON
Reconstruction of the state of a dynamical single
output system using a Kalman filter.

RECON K [SYST1] < SYST2[(NAME2)] EVAL

REDUC
Generates a new matrix from a part of an o0ld one

REDUC [[AGl:]M1l] < [AG2:]M2 (IX1 IY1l IX2 IY2)

SAMP
Computes the system matrices for a sampled version of a
continuous linear dynamic system

SAMP [3Y50UT] [(NAMOUT)] < SYSIN[(NAMIN)]

Computes the power spectrum or the amplitude and phase
for the transfer function of a specified input-output
pair of a discrete or continuous state-space model

SPS3 [('POW'/'AMP')] FRF[(F)] < SYST[(NAME)] NY NU
[FREQ]

A: 218

SSTRF1 |
Transforms a #Miso State Space model into a Transfer !
Function model

SSTRF1 [SYSOUT] [(NAMOUT)] < SYSIN[(NAMIN)]

5Y5T
System description editor handling the following model
types:
State Space Representation
Miso Transfer Function (polynomial file form only)
Polynomial Matrix Representation
SYST [(SUBSW)] SYSNAM[(SECNAM)] [< [(SYSTYP)] [SYSMNEM]
[DT] [AGRNAM] [(TIMTYP)/OP/LAMVAL] [ATRNAM]]
Subcommands:
BEGIN [SECNAM]
T5AMP DT
LOOK
AG [(AGTYP)] [AGRNAM] LAMBDA LAMVAL
INS MNEM [< NAME]
DEL MNEM
KILL
X
SYSTR
Transforms a dynamical system on a state space
representation when the coordinates are transformed as
Z=T%*X
SYSTR [SYST1] [(NAMEl)] < SYST2[(NAME2)] T [EPS]
TBALAN
Transformation of a dynamical system in state space
representation to get a balanced A-matrix.
TBALAN T [[SYST1][(NAMELl)]] < SYS5T2[(NAME2)] [EPS]
TCON
Transformation to reachable canonical form of a
dynamical single input system in state space
representation.
TCON T | [SYST1] [(NAMEL)]] < SYST2[(NAME2)] [EPS]
TDIAG

Transformation to diagonal form of a dynamical system
in state space representation.

TDIAG EIGVEC [[SYST1][(WNAMELl)]] < SYST2 [(NAME2)]

THESS
Transformation to Hessenberg form of a dynamical system
in state space representation.

THESS T [[SYST1][(NAMELl)]] < SYST2[(WAME2)] [EPS]
TOBS
Transformation to observable canonical form of a

dynamical single output system in state space
representation.

TOBS T [[SYST1][(WAMELl)]] < SYST2[(NAME2)] [EPS3]
TRFSS51

Transforms a Miso Transfer Function model into a

observable canonical State Space model

TRFSS1 [SYSOUT] [(NAMOUT)] < SYSIN[(NAMIN)]

UNITM / ZEROM
Generates a zero or unit matrix

UNITM [* FACTOR] [AG:]MAT NR [TSAMP]

ZEROM [+ TERM] [AG:]MAT NR [NC] [TSAMP]

220

Heg

Synpac Command List

MATOP
Evaluates simple matrix expressions

MATOP [NAME1]<-UNIOP NAME2

MATOP [NAME1l]<-NAMEZ2 BINOP NAME3

Defines a system description
SYST SNAME<-NAMEl ... NAME4 [NAMES]

SAMP
Computes the discrete time representation of a system

SAMP [SNAM1<-SNAM2 [T3AMP]]

TRANS
Transforms a LQ problem to discrete time form

TRANS [LNAM1<-SNAME LNAMZ2 [TSAMP]]

STRIC
Solves the stationary Riccati equation

STRIC NAME<-SNAME LNAME

OPTFB
Computes the LQ optimal feedback

OPTFB NAME + SNAMI<-SHNAM?Z2 LNAME

REDFB
Computes the reduced feedback

REDFB [LRNAM<-SNAME LNAM FBS W]

KALFI
Computes the Kalman filter gain

KALFI KNAME<-SNAME RNAME

SYSOP
Computes the total system from its subsystems

SYSOP SNAMT<-SNAMI [SNAM2 [.. J.. 1]
Subcommands are used to describe the connections to be

made. Their exact syntax is quite complicated. Some
simple examples are found in Chapter 8.

CORNO
Computes correlated noise

CORNO DATA<K-R NP

SIM0
Simulates a discrete time state space systen

SIMU [DNAM1[(C11l .. CIN)]<~-SNAME DNAMZ2[(C21 .. C2M)]

BEIGEN
Computes eigenvalues and eigenvectors of a matrix

EIGEN [[EVAL EVEC<-]NAME]

POLES
Computes poles and modes of a system

POLES [[EVAL EVEC<-]SNAME]

PRINT / TYPE
Prints or types a file on the line printer or the
console device resp.

PRINT FNAME[(Cl C2 ..)] [IF NUM]

TYPE NAME

