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GACK REALLZATIONS 1R LINEAR MULTIVARTABLY SYSTENS

by
Gunnar Bengtsson "

A feedback system consists of two objects a fixed parent

Lem and a controller connected to it. The relationship between ex-
escriptions of such systems is described. It is

em can be expresscd as a. partial

nal and internal d

sﬂown_that redundancy in a feedback syst

lﬁctiou with respect to controllability and observability. Applying

reduction yields a controller of lowest possible order. It is also

liown that the requirement of internal stability can be expressed as a

quirement on the external deseription of the feedback system only.

his leads to a nice formalism for internally stable control synthesis

sing rational matrices. This is demonstrated in two important control

yroblems, the model matching problem and the algebraic regulator problem,

1

ind by examples.
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1., INTRODUCTION.

A4 linear dynamic system can be degcribed either as an
external object (a transfer matrix) or an internal object {(a state equation).
The relationship between them is explained in realization theory, which
is bdsically an outgrowth of the work on controllability and observability
Kalman [3], Kalmen et al [4], Gilbert [1]. These concepts describe the
redundancy i.e. show how a given transfer matrix can be realized by a dynamic
minimal order state gquation. By now there exists a well established
body of literature on this topic, see e.g. [2, 3 12, 14}

Réalization theory in its conventional form deals
esgentially with uncontrolled systems (6pen loop). In a feedback system,
schematically descriped in fig.1, there are two systems, a plant X

and a controliler Zf.

W

Fig.l, & feedback s&stem

In the feedback system, the dynamics I deseribing the plant is fixed.
Only the controller part Xf can be chosen, As the external description
of such a system we take the input(wl,wz)/output(U,y) map. As the internal

descriotion we take as usual a state equation. The realization problem




is then to find a controller system.if which produces a given input/
output map., The realization problem is unconventional since in the state
equation there appear matrices which must be fixed, describing the
fized plaunt k.

The first one who seéems to have made a more extensive
use of the external descriptien &% a2 fpedback system is Wolowiceh [15].
He showse how to convert a feedforward . compensator into a feedback
compensator where certain dynamical blocks are minimized iﬁ order
and stability is produced, The results are presented in the farm of
an algorithgh[iilch.7. This paper makes a considerable generalization
and is different in method and approach. Concerning the feedback
realization question, the results of [15} are here contained as a special
case of the sufficiency part of Theorem 4.

As in conventional realization theory, we investigate

~ the questions of redundancy and minimality. The redundancy in 2
feedback system can be expressed in terms of partial reduction with
respect to uncontrollability and unobservability.(Theorem 1 and 2}.
Phis means that the notion of minimality will be different form
the conventional open loop case (Theorem 3). Of special interest
is the question of internal stability. Unlike open loop realizations,
different minimal feedback realization may have different stablility
properties, Necessary and sufficient conditions for existence of an
internally ‘stable feedback reaiization are given (Theorem 4 and 6).
It is also demonstrated that the requirement of internal stability
can be posed as a property of the external(éransfer matrix) description
only (Theorem 5).

One consequence of our results is a simple algebra for

1

internal stable control synthesis in a tramnsfer matrix setting.




This will then be an alternative to vector space algebra, Wonham [16],
and polynomial algebra, Volowich [15] and Rosenbrock [13]. The basic
idea is in the same spirit as [13] , i.e. to separate between the
control synthesis questionAand the implementation (realization), but
is considerably more general., For instance, intetrnal stability is
identified in terms of transfer matrices, vegulator problems are
included and minimality of the feedback realization is guaranteed
provided state feedback is allowed, The application to contfol
synthesis is demonstrated by formalizing two well known problems,
the model matching problem and the algebraic regulator problem

~as defined in [16, 17], and by some simple examples.

The formalization of the feedback realization problem
is done in Section 3. Redundancy and minimality ie discussed in
Section 3. Stable feedback realizations are the topic of Section 4.
"Some computational aspects are discﬁssed in Section 5. Finally,
internally stable control synthesis using transfer matrices is

discussed in Section 6.

Notations an Preliminaries,

€, R and R(s) denote the fields of complex numbers, real numbers

and rational functions in ‘s with coefficients in R, Script letters X, %;...




denote lincar vectorspaces over IR of finite dimension , and capital Romon
letters A, B, ... denote linear maps between real vector spaces. For addi-
tion of subspaces we use the symbol ( + ) and for the direct sum the symbol
(G&)& The symbol (#) denotes isomorphism between veclor spaces. Im A and
Ker A denote the image and the kerncl of A respectively. The image of A is
sometimes also written A. The subspace AV is the image of V, and AV denoteé
the restriction of A to V. Alﬁ A2 means that Al ;S similar to Az.

Lot A:X + X be a linear map with minimal polynomial a(s)
and let € = ¢ u & be a fixed disjoint partition of the complex plane,
where € is symmetric w.r.t. the real axis., Then o(s) factors uniquely as
a(s) = a+(s)a“(s), where all the roots of o (s) (a (s)) are within gy,
We define

XE(A) = Ker o™ (A)

Let A:X + X, B:U » X and C:X> ¥ be a triple of linear maps

and let n = dim{X). The controllable subspace R for the pair (A,B) is the

subspace R= B + AB + .., + AN . The unobservable subspace N for the pair
n .
L9, Ker cA*™ . The pair (A,B) is controllable if

R = X, and the pair (A,C) is observable if N = 0,

1

{A,C) is the subspace N

A rational function t(s)= %%%%3 where q(s) and p(s) are

relatively prime, is proper if deg(p(s))rz deg(q(s)). It is strictly proper

if the inequality is strict. It is stable w.».t. @ if all the roots of p(s)

are within €. A matrix T{s) of rational functions is proper, strictly proper,
stable if all its elements are proper, strictly proper , stable Xxespectively
The coordinate free representation of linear systems used in

this paper is mainly due to Morse and Wonham[10,11]; sec also Wonham {16].




=

), FORMALIZATION OF THE FEEDBACK REALIZATION PROBLEM.

Consider a linear time invariant system I3

x = Ax + Bu 4+ Ew (2.1)

¥y = Cx ; 2z = Hx

where x € X ( &fRn) is the vector of states, u € U ( ﬂer) is the wvector
of control inputs, w € ¢ ¢( ~ R™) the vector of exogenous inputs, y € V
( mRY) is the vector of accessible outputs and z 6.2 ( ~RP) the vector
of controlled outputs. Here, A, B, C, E and H are linear maps (matrices)
between the appropriate vector spaces. It is assumed that (A, B, C) is
controllable and observable and that B is of full column rank. The system

{2,1) represents the plant and is called the parent system,

A controljer for I is a second dynamic system Zf driven by
y and w and with u as output:

xf = Afxf + Kfy + wa
u = Fy + fof + Gw (2.2)
Xg € Xf

The system {2.2) should be thought of as connected to (2.1). The vector w
in (2.1) and (2.2) represents all external 5timuli on the systems such as
disturbances, reference inputs etc.. If w is simply a reference input, it

is connected to the fegdback system only through {(2.2), i.e. E = 0 in (2.1).

If w represents both disturbances and reference inputs, the columns of k
corresponding to the reference inputs are taken to be zero, The systens

{2.1) and (2,2) taken togethericomprise the fecedback system.

Now, let

A A
Xo = (s %) 3 ¥ B0 %) 5oy %, ug)




N -
ve o = A Bl o et d e b R - = : e v
+ P L e N LTI e

where X ¢ Xes Ug € U, and X, € Ug. The feedback . system can then also

be written as

¥ = AX * BRu + EwW
2] c e e e e
Yo © che | | (2.3a)
u, * Feye * Gew
with
(A 0 B O (I
A A A
Ae = ; Be = H Ce a
0 0 0 B 0 Ig (2.3b)
A & A [ F 'Fé A rGf
Ee = 3 Fe = -1 -1 H Ge = -1
N0 Bf Kf Bf A \Bf‘Gf

where Bf:ufzﬁ Xf is an isomorphism and e is the identity on Xf. Note that
F,, G, and n, contain all the system data for the controller L.

We may thus also regard a controller as the triple

(F,» G, 1) | @)

R

‘where n, = dim X is the order of the controller ... Here we have applied the

£ £
standasd dynamicextension technique used in the geometric state space

theory [16]. This represemtation of the controller will be

used from now on.

Like a system of the usual type, & controller -

*

has also an external description. By aAformalvcomputation in (2.3), we

obtain the input (w)/output(u) map as

. ' 'u(g) = Tf(s)w(s) | (2.5)

-1 S )
= fg asp = ? ;
(Qpepe“s A% Beré:g (BeGe ¥ Ee) ¥ QGe}w(S}




there Q: u(DEQ?é-U is the projectlon such that u + uf+¢ u for all

, ¢ U and all ug € U, Here, T ¢(5) is a mapping IR (s) = IR (s) and

s called the input/output map for the ¢ontroller Zf.,The signal flows

or an external and an internal description of a feedback system is shown in

Having identified an external description of a controller

we immediately recognizé the converse .problem, i.e. given (I , Tf(s)),

L B s ot RS T o A

‘DEFINITION 1.
The triple (Fq’Ge’nf)

3£ it satisfies (2.5).

is an_(output) feedback realization of (& , Tf(s))

We may thus characterize the class of feedback realizations as
; the class of implementations in the form of a dynamic feedback control

" which give the same control signal u and the same output signal y for

‘all exogenous signals w,

Unlike open ioop realizations, different minimal feedback

© realizations may have different stability properties. Let

C=C vt (2.6)

be a disjoint partition of the complex plane, wheTe L~ represents the

 Mggod' part and ¢* the'bad" part. To avoid compatibility problems ( a

- polynomial with real coefficients must have complex conjugate roots},

we assume that C is-symmetric'w.r.t. the veal axis and contains at least

and not'qut

one real point. Note specifically that ¢~ is quite arbitrary

the open left ‘halfplane, S&Y... . ’ IR




(@) w B
T.(8)
£ -1
b8 = A) ¥ C ooy
V
{b)
B
B s - a7t C y
3 5
F
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£ X £ .
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Fig.l. The structures of an external (2) and an internal (b) representatio

of a feedback system.




The stability of the controlled system is determined by the spectrum of
. map

A* = A + BFC
e e e e &

DEFINITION 2.

A feedback rca}ization (Fe,Ge,nf) is internally stable w.r.t.

* -—
£ if the spectrum of,Ae is within € .

The main problem considered in this paper is the following

REALIZATION PROBLEM.

Given (¢ , T.(s)) and the region €, find, if possible,a feed-

pack reslization (¥ .G ,n.) of lowest possible order n,. which is stable
e E R ma e e i S ——ayd FE u ‘L - . X

e

w.r.t. & .

Note the presence of the fixed matrices A, B, C and E in the expression
for Tf(s). In conventionsl realization theory, the matrices describing

the state equation are completely free to choose. The case with a

partially known state equation has not been solved, but is here sgolved

for the special (but important) feedback structure .case. Note that

the problem can not be solved by a straightforward apﬁlication of con—
ventional realization theory e.g. by taking a minimal realization

of the controller part in fig. 1. The realization thus obtained is

not minimal in general.

The feedback structure with input dynamics used in[15) i

less general than feedback structure (2,2), Moreover, E = 0 in[15].
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The case KB 4 0 is important since it means that importaﬁt digturbance
problems such as e.g. the algebraic regulator problem is iﬁcluded in

?our formalization, cf. Section 6.

The following example gives an intuitive illustration of the

fecdback realization problem
gxample "1 ..

Assume that the feedback. system 1s represented by the

following signal flow graph

W e R{s) u T(s)

.
Ea

-1

where R(s) and T(s) are the transfer matrices of the regulatdr and

the . plant respsctively. Let

N CEE .
R{s) = (s%l}z ¢ Tgs) = Tl

Note that there is a right halfplane cancellation in this case. An obvious
foedback realization is obtained by taking a minimal realization of R(s)
and connecting it in the way the signal fiow graph indicates. It is easily

verfied that
spec(A_ ¥ BeFe)Am £ +1 ; -1z3 }

i.e. the controlled system is unstable. Consider instead the following

signal-flow graph, describing the same control

. ‘ 1
‘g e [(s*1) u T(s) ¥

T

easily verified that the input(w)/output(e,u,y) maps are the sawe as




_iﬁ ihe signal-flow graph above. lowever, .

in this case, if we tuke a minimal realization of el and connect as

the sipgnal flow graph indicates, we have
= -1 % 9
spec (Ae + BeFe) {-1 %3}

j.e. a lower ordexr and stable controlled system, It will be shown later
that if the "'regulator’ and the " plant! in this example are intexchanged

there exists no stable feedback realization.

2. REDUNDANCY AND MINIMALITY IN FEEDBACK SYSTEMS.

The redundancy in an open loop system with respect to
~its input/output map is expressed in terms of the basic notions of con-
trollability and observability. The purpose of this section is to

~ develop rules for order veduction in a feedback system and to show

that these reductions in fact leads to a minimal order feedback system.
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In this section it is assumed that state feedback is allowed, i.c,

= X (Ce = Ie).
Consider the controlled system (2.3}, and introduce the input{w)/

tput (x} map P(s) defined by

=g

x(s) = P(s)w(s) .

(s - 3)“1(Brf(s) * E)w(s) - (3.1)

i

It

-1 . .
- - + I

P (s - A BeFece) (8.G, EQJW(S)

here PX:X Xa + X is the projection such that P(x + xa) = x for all

¢ X and all X, € Xas The first expression is obtained using (2.1) and (2.5) and

econd (2.3).

To proceed, we need twe lemmas

LEMMA 1.

¥

o’ "

Consider two controllers (Fe’Ge’nf} and (Fes eanf) They have

he same input/output map Tf(s) iff they give rise to the same P(s), i.e,

ff the following equality holds:

) -1 - ~ S D A
(s - A ~BF + = ~ A - )T me v E) (3.2
p}{ (5 Ae BeFeCe) (BBGE Ee) pX(S AB BeFe Ce} ( e € e) ( ) '

-

here (.) denotesthe cerresponding obiects Ffor (Fe’Gé’nf)'

By (3.1}, .P(s} islthe.samé far all feedback realizations of (T , Tf(s)).
onversely, if P(s) = E(s), there follows (s - A}"l(BTE(s) + E) = (5 - A)"l
B%f(s) + E} by (3.1}, Multiplying with ﬁ(s - A} from the left, where QB = Ir’
ives the result, ¥




;LEMMA Z.
e A
i 1] M } {
Lot (}\e,!}c,ﬁc,lx,xf,uf,nf) and (Ac’Be’Le’lx"yf’qf’nf} denote two

A
dynamic extensions of © according to above. Assume that ne z Ne and let

Pf:xf»'}: ;(f be a projection. If

s 1. 0
P=1@Pe= | X (3.3)
o P
- then )
= . > = B » = . > =
PA_ = AP 3 PE E 3 P =PP PB_ = B S (3.4)

for some. projection S:U® U~ U @ &f'

PROOE.

This is just a coordinate free interpretation of the block structure

in (2.3). fi

The reduction of order in a feedback system can now be expresscd
as a partial reduction w.r.t. controllability and observability in the

the system (2.,3). Regard
x =PXx (3.5}

as output. The input/output map of this system is defined by {3.1)

THEOREM 1.

Let (F ,G ,n,) be a . controller . with input/output map

T (s) and let R be the controllable subspace for the palr (!\ +B F P BeGe Le)

Then there exists another controller . (F G ,n ) with the same m}gut/output

map and of ordex

" dim(Re n Xf} Sng | : (5«6)_

Ne




wheye equniity halds only if

R, = Xg (3.7}

i,e. only if all vectors of the form (0 , xfl are reachable by w in the

‘controlled system (2.3).

PROOF,

Lot X = Xc(} Re -a X _ for some complement . XC and lot Xf =

£ £

B n Xf be the new extension space. Moreover, let I’f:}’éf > Xf be any projec-

tion such that Ker P_. = X . By Lemma 2, (3.4} holds, with P defined as in
£ <
(3.5). Let us construct a pailr Fe and Ge which satisfies (3.2}, i.c. is
a feedback realization. Since Ker P = Xc and Ren Xé = 0, there follows that -

dim(PRe) = dim(Re}, and therefore there is an E; such that

EGP[KE = I‘eiKe . (3.9}
Let S be as in (3.4) and take (ﬁe’&c’ﬁf} whore
A A ~ A A - A
T o= BI H = T = i x . R
Fo 5ic : Ge Sﬁe ;ong dlm(Réﬂ e) ‘ (3.9 )

de must show that this is a feedback realization of Tf(s). Using (3.4 }

and (3.9 ), it follows directly that

P(BG +E)=R8BG +E&E
ce e e ¢ e
and by induction ‘

. k .
P(A3+Bebe}(Ae+BeFe) (BcGe+Le)

2 ‘k“;.}‘ :
PEA3§Be‘e) (BeGe+Ee)

b

. .
+3 F P ;
P{Aeﬁge e )(Ae+BeFe) (Bece+£e)

3]

N LM k
(A *B,F IP(A+B T ) (B,G,*E,)

i)

-~ ~ ~ k+1 ~ ~ fal
(A*BT ) (BG*E) (5.10)




» - ‘ff
..15..

;gere the second equality follows by (3.8), the third by (3.4 } and (3.9 )

ES &

id the fourth by jnduction. By Lemma 1, (Fe,(ie,nf) realizes (I . Tf(s))
£f (3.2) holds i.e. iff
. k . ,.“ ~ ~ ~ J‘: ~ o~ al
P (A+BE) (BeGe-!-Ee)‘ = P_(A+BF.) (B@G;Ee)
ér all integers k 2 0. This follows, howevexr, immediately from (3.10)

ad the fact that P_ = P _P. L
: X X

A corresponding reduction can also be done w.r.t, to unobserv-

bility in the controlled system (2.3) with (3.5) as output:

THEROEM 2.

Let (Fe,Ge,nf) be a .controlier . . with input/output masp ’I‘f(s)

BF P Y. Then
e e’ X

nd led Eé‘e be the uncbservable subspace for the paiy (Ae%

~ -~

Ge,_n {) with the same input/output

-~
here exists another .comtrollcr . (F,

ap and of order

ES

llf

-~

- di <
g dlmwe) £ ng {3.11)

here equality holds only if

e, only if no vector of the form xe=[ 0, xf) is unobservable : in the con-

trolled system (2.3} with (3.5) as output.

PROOF .

First,Ne « Ker an X g and therefore we can find a comp-
lement X_ such = ake X %: i i e

¢ that X. xc@) M, - Take Xf XC as the new extension space
and let Pf:Xf s Xf be a projection such that Ker Pf- = fqe. By Lemma 3,

(3.4) is satisfied with P as in (3.3).




‘,.z

16~

)
vy

we H N.= 0, there also follows AN = 0, Since N is (A + BF })-
_ e ¢ e e e e

[

nvariant, wg now have

! AR F = B
he ” {Le%bere)we Be eNE

A
aking images -wider P. . and using (3.4 ), we have 0 = BeSFeMe, and

ince B, is monic, SFeMe = 0. Since Ker P = N, there is an Fe such that
* e

1 n 13
SFe FGP (3.13)

iso take

A ..
o SGe P dlm(KC}

e

G a . - di 3,14
G g dlm(Né) ( )

et us show that (Fe,Ge,nf) is a feedback realization of (¥ ., Tf(s)).
sing (5.4 ) and (3.13), we have
P(Ae+BePe) = (AB+B F )P

and therefore

Hi

p P8 ¥BF 4k {B G6$Ee)
) + o

P (A 4%
xe
SITE. s - . 0 i : )
by Lemma 2 we conclude that (Fe,Ge,nf) and (Fe,Ge,nf) have the same Tf(s)

t }:‘ N3]
P A BT ) (BB TE)

":‘J:O
c'no

1

it now veimains to verify that ﬁhe reductions in -order expressed
by Theorem 1 and Theorem 2 in fact represents all the the feductions
ihat arve possible within a feedback system. Let us call a :contryoller
éystem (FegGe,nf) minimal if there 1s now other gontroller system

wwith the same input/output map but of lower order,




We then have

THEOREM 3,

Assume that state feedback is allowed. A controller (F *Geinf> is

miﬁimalfﬁf“&nﬂ'ﬁnlyfif'2(347)4;aaﬁ‘_(3‘12) hold i.e. iff in the controlled

system (2.3)

(i) all vectors of the form (0 xf) are reachable by w

(ii) no vector of the form {0, xfj is unobservable through x

Any .conptrolier can be reduced to minimol form using the reductions

in Thm. 1 and Thm. 2.

PROQF,

(1£) Consider a feedback realization (Fe,Ge,nf).satisfying (3.7 )} and
(3.12) and .assumec there is another feedback realization (ﬁc,ﬁp,ﬁf) such
that Re < Rg. We may then assume that the second realization also satisfies

(3. 7) and (3.12), since otherwise g can be reduced still further using

Theorem 1 and 2, Since Ker Px s X%, there now follows

t

dim(P.R) = dimR_~ dimR_0X
X ¢ e o f (3.15)

i1

dim Re - dim Xf

where the second equality follows from (3.7 ). I the same way, we have

-~ " ~ A

Mow, (A +B F , B G +E ,P ) and (A +B F , B G +E , P } are both realizations
e ee e¢e ¢ X e ee o e’ 'x

(of conventional type) of P(s), ¢f. Lemma 1. Since they are both observable




the dimensions of their controllable subspaces must be the same, l.e.

M

dim R = dim B . Therc also follows that dim P R = dim P_R_ since
¢ & X e

k ~ ~ s k.« -~ ~
? +B I G +L = P +8 F H i - b4 patd i ey
}x(Ae e &) {Be o Le} x(Ae ePe) (Be€e+le) for all nopnegative integers
k. From (3.15) and (3.16) we have dircctly that di.m.ﬁ(f = dim‘Xf, which
contradicts our initial assumption ne > nf, llence, the feedback realization

is minimal

{only if) Follows directly from Theorem 1 and Theorem 2.

Remark.
it

Since complete reduction with vespect to controilability and
observability can not be made in general, it may happen that the order
of a feedback system with a minimal feedback realization is greater than
the order of s minimal (open loop) realization of the inpﬂt{w)/outpwt@;£§
map
His ~ A)”l(BTf(s) + E)
Tp(8)

L
éven if the parent system is controléble and observable. The reason for

this is the presence of the fixed matrices A, B, C and E.

Remark.

These vesults are completely new. The rules for order reduction

are not identified in [15].
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4. INTERNALLY STABLE FEEDBACK REALIZATIONS.

Let us now turn to internally stable output feedback real-

izations, i.e . we require in addition
+ : -
spec(Ae BEFECG) c ¢ {4.1)

where € is a quite arbitrary region of the complex plane, cf.(2.6).
In the realization of uncontrolled systenms, stability is not an issue
since all minimal realizations are isomorphic and therefore have the same
characteristic polynomial, see e.g. [ 5]. For feedback realizations
this is no lenger true. In fact, there may exist two minimal fecdback
realizations of the same input/output map, one being stable and the other
unstable.
Our construction of an internally stable foutput) fepdback

realization will not necessarily result in a minimal one. However, if
in addition state feedback is allowed, the feedback realization is in
fact both minimal and stable. We will treat two cases separately:

{a) (Fe,Ge,nf)

{h) (Fe’ O,nf)

(4.2}

In the first case, all the external sipgnals. W are assumed to be accessible

for measurement, while in the second casc this assupption is dropped.

External Signal Available.

The admissible feedback-realizations are of the form (4.2a)

.




First, we must guarantee that feedback rcalizations exist

PROPOSITION 1.

Assume _that (%, Tf(s}) are given where Tf(s) is proper.There

always exists a feedback realization (Fe,Ge,nf} for any choice of C

in (2.1)

PROOF,

This is almost immediate from conventional realization theory.

Just take a minimal realization (Af,Gf,Ff,G} of Tf(s) and let F =0

and Kf

by a system ;f in cascade with £ L

= 0 in (2.2). We have then just represented u(s) = Tf(sjﬁ(s)

The feedback realization constructed in Propesidlieon § is geaeratly
unsatisfactory since the corvesponding signal flow is open loop. lowever,
existence 1z assured and the signal flow will become closed loop if

we insist on stability w.r.t. the region ¢ , i.e. that (4.1} is satisfied.

The existence of stable (output) feedback realizations

v

can now be stated as

THEOREM 4.

There exists an internally stable (output) feedback realization'(Fe,Ge,nf)

of (I, T.(s)) iff

(i} Tf(s) is proper

(ii). P(s) is stable w.r.t. &




P

were P(s) is defined by (3.1). Moreover, if there cxists any {state)
i S e P T = -

eedback realization of order T and (i)-{ii) hold , then there exists

i intermally stable {output) feedback realizution of order e :énf +n - g

o prove this we necd some preliminary results

EMMA 5.

Let T(s) = C(s—A}MlB and let R be the controellable subspace

for the pair (A,B). Then, T(s) is stable w.r.t. ¢ iff

. R < Ker C
where
] A Xty R .
PRG0N,
Follows from Kalman's structure theorcem { 61. 4

LEMMA 4.

Let (F,,G_,n.) be an arbitrary feedback realization of (}, Tp(s})

and let R be the controllable subspace for the pair (A +BF C ,B G +E ).
CRE T Te & e eer ee e

+
Re “ xf -
vhere
= RPER axteaeBF LY
o e [34 e e e

Follows from Lemma 3 and (3.1) since Ker PK = Xf il
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WOOL_OF THICREM 4,

(If} According to Proposition 1 there always exists a fecd-
Back realization. Using Theorens. 1 and 7 we can then find a {state)}
fecdback realization (F_,C _,n.) so that Ra X,=0and N =0, wiere

; e’ e I & £ e

Ke and Né are as in the theorems. Since P(s) is stable w.r.t. T, there

+ LY
ollows from Lemma 4 that Re < ﬁf = Ker P . In addition, R; is

. . + .
Aé+ﬂeFe}w1uvar1ant, and therefore Re = Ne = 0. We have thus shown that

ke map

(A + B F)IR
¢ ¢ G e

U= F R o+ Gew + Aue {4.3)

where fu is for the moment undetermined. Describe the controlled system

3,
o

(2.3} with (4.3) as contrel in & basis adapted to X =X _®R_, where X 15
any complement of R 1 B is +B F -~ dnvari d R » Im(B G +E },
_ | o Since R (& +B F ) - invamant, anc B, (B6e Bl

the controlled system becomes in this basis

. A-l 0 o Bel
X, = ¢ xe-+ W o+ Aue (4.4}
Aez Aeﬁr De . Bez
= ¥ F .
u,, L Fel ez]x8 + Geu + éug

N

First, A, % (A +B F )R and therefore A& , has its spectrum within @ .
: e3 e e e ¢ ad
-Since {AC,BQ) is a contrgllablepair, there follows %hat(ﬂel,Bel) is alsoc

23

controllable pair. Take Aue = LEN 0] so that A61+Belﬁbe is stable.
CTaking
o = LT Fopl (4.5)

there follows that (FQ,GG,nf} is an internally stable{stote) foedback

vealization. Since {A,C) is an obscrvable pair, this realization can be

smplemented by use of an obscrver, yiclding an output focdback realization




s

(ﬁe,ﬁ g = ngtm - q, provided a standard reduced order

observer is used, Luenberger [7 .

CJHJ,WMWQH

(Only if} let (Fe,Ge,nf) be an internally stable feedback realization.
+

Then Xe(Ae+BeFeGe} = 0, so clearly P(s) is stable according to Lemma 4,

Moreover, Tf(s} is proper by (2.5). i

The feedback realization constructed in the theorem is

not necessarily minimal. However, if state feedback is allowed, we have

COROLLARY 1.

Assume that state feedback is allowed. Then the feedback real-

jzation constructed in the sufficiency part of the proof of the thcorem

de hath minimd zod tnroraaily stahla

PROOF

Follows immediately from Theorem 3, since the conditions

(i) and (ii) are satisfied in this case. L

The existence of an internally stable feedback realization depends
crucially on the stsbility of the rational matrix P(s) describing the
input {w}/output (x) map in (2.3). The stability of P(s) depends in turn

only on properties of the external description of the control,Tf(s), i.e.

is independent of any specific feedback realizationm.

The stability of P(s) can also bhe related to the
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closed loop transfor matrix

¥

T (s) = C(s - ) TBTL) + B) “4.6)

in the following way.

THEOREM 5.

Assume_that (A,C) is an observable pair and let P(s) be as in
. + .
Theorem 4. Then P(s]) is stoble w.r.t. ¢ iff T {s) §§§_Tf(s) are both

gtable w.7.L. .

PROOF.
(1f)Since (A,C) is an chservable pair, there follows that the matrices
Cand 5 - A are relatively left prime, cf, [15],i.e. theve are polynomial

matrices X(s) and Y(s) such that

%(s)C + Y(s)(s - A) = 1

X(5)C(s - A L= (5 - A - Y(8)

i

Using this, we obtain from (4.6 )

X(s)T (s) = (s - 8B (s) + B) - Y(SI(BT(s) + B)

P(s) = X(s)T (5) + Y(5) (BT (s} + E)

& -
S8ince T (s) anc Tf{s} are both stable w.r.t. € , there thus follows that

P(s) is stable w.r.t. L, .

i1

& . *
(Only if) Since T (s} CP(s), there follows that T (s} is stable. Multiply

A) where BB = I. We obtain

]

P(s) from left by B(s
() = B(s - A)P(s) - BE

and T .(s) is also stable w.r.t. € . ]
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External Sigaal not Available,

In the model (2.1) w represents all oxtcrnal stimuli on the
svstem. If w represents a disturbance, it is not always realistic to
assume that w is available. In this case we must look for feedback
realizations of the form

(F,s 0, nf)

Assume that state feedback is permitted, i.e. He =1 . We also
assume that E in (2.1) is of full column rank, since otherwise there
exists a disturbance which is not connected to the system.

Birst, we have

PROPOSITION 2.

There is a feedback realization (Fe,ﬁ,nf} of (&, Tf(s}} iff

Tf(s) is strictly proper.

PROOF .

(If)we will show that u(s) = Tf{s)w(s} can be vewritten as u(s) =

F(s)x(s),where F(s) is proper and

x(s) = (s - &) (Bu(s) + Bw(s)) (4.8 )
Consider ‘
F(s) ; (i + Tf(s)gﬁ)'ETf(s)g(s - ) (4.9 )
where E is éﬁch that EE = [, Since Tf(s) is strictly proper, there follows
directly that F(s) is proper. Furthermore, applying u(s) = F{s)x(s)
to (4.8 ) yields |
() = (v TG()ED) T () E(Bu(s) + Ew(s))

Solving this equation for u(s) gives u(s) = Tftsjw(s}. We thus have two




~FH-

extornally cquivalent ways of representing the controllied system as

is indicated in the signal-flow graphs below.

W B
¥ B o '*
-
5} ‘ -1
-1 u B M
IM—L__ A S‘A _H_____-:?é .Y R s

° ‘ N J

Since F(s) is proper, w¢ ¢an implement the second signal-flow graph

by taking a minimal realization of F{s) and connect as the signal-
flow graph indicates. This gives a feedback Tcalization of the desired
iype.

(Only if) Is obvious from {2.3). L
We can then state the following yealizaotion theorem

THECREM 6

Under the assumptions above, there exists an internally

To(s)) iff

stable feedback roalizution {Fegognf) of (%,

(i) Tf(s) is strictly proper

(ii) P(s) is stablc w.r.t. tO ¢

where P(s) is defined as in (3.1). Furthermore, the construction in the

-

sufficiency part of the proof of Theorem 4 yields a minimul internally

stable fecdback realization in this case.

PROOE .

(If) According to Yroposition 2 there is a feedback realization of
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of the form (Fe, 0, wf). applying the reductions in Theorem 1 and Theorem 2
vields (ge’ 0, ﬁf), with ﬁf minimal. Finally, if the stabilization in the
sufficiency part of the proof of Theorem 2 is applied, we obtain a stable
feedback realization ('1?;,0,; -

(only if) Follows from Proposition 2 and Theorem 3. G

A conventional observer for the system (2.1) requires .
knowledge of all inputs u and w [7 ] . Since w is not available in this
case, it means that a feedback realization of the form (Fe,O,nf) cannot
be implemented as output feedback by use of a conventional observer if
Tf{s} is to be prescrved. However, assuming a stochastic description
of w(s) (white noise through some linear filter), it is reasonable to
implement the solution via the "best possible! state egstimator, i.e. a

Kalman filter,

Remark.
The results of [15] are contained in the sufficiency of Theorem 4

for the special case E = 0.

Remark,

-

The theprems above still hold if the requirement that (4,B) is con-

trollable is replaced by the requirement that {A,B) is stabilizable.
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-gxample 2,

Consider the signal-{low graph in Examplel . In this case

y(s) = T*(s)w(s)
= 1 w(s)
s + 25 +2
u(s) = Tf(s)w(s}
s ~ 1

B w(s)

s7 4+ 25 +2

. *
Since T (s) and Tf(s) are both Stable,there exists @ stable feedback
realization according to Theorem 4 and 5. If the ropulator R(s)} and
the plant T (s) are interchanged in this example, we have
#* ' i
T:.-{S) T 2
- s+ 2s + 2

. . (s + 1:2
gls) = )
' (s - 1}(s" + Zs ¢+ 2)

Zince Tf{s) jic unstable in this case, there exists no stable feedback

realization.
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5 COMPUTATIONAL ASPECTS.

The constructions in the theorems above are of the same type
: crder reduction with respect to uncontrollability and unobservability
of a nonminimal realization in conventional realization theory.cRelow,
the geometric constructions are converted to a computational algorithm
'éading to a minimal and internally stable (state) feedback realization.

We assume that B, = If in (2.3) (no restriction), By a basis matrix

V for a subspace V we mean a matrix whose columns are linearly independent

. Find any feedback realization (Fe,Ge,nf), e.g. the open loop
realization used in Proposition 1, If w is not accessible for measurement,
find any realization of the form (Fe, 0, nf), e.g. using the construction

in Theorem 6,

STEP 2. Perform the order reduction of Theorem 2. More precisely,

partition the observability matrix Q as

¢ Px B
Q= x =1y 5 Tl
P A s o
% -
p_a(mngl)
L Tx e J

. A
Find & nf % nf

reduction can be made and proceed to STEP 3. Otherwise, take

basis matrix X for the row space of TZ.JIf n, = ﬁf, no order

T 0 I 0

0 XT 0 XT

P o=

Fal ) M
and solve the linear matrix equation SFe = F P for Fe. Also take Ge = SGe.
e
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~ ” A

the reduced feedback realization is (Fe,Ge,pf)

STEP 3. Perform the order reduction of Theorem 1. Compute a basis matrix
IS

R for the column space of the controllability matrix

L * MK ~
; B =BG +E
e ee @

o

% * % £ e L L3
g7 AB .... A (a1l p™y ; A =
e e e [ e e a

-~

+ B
e e
Compute a n. ¥ ;} basis matrix T for Im(R) n.Xf,;e.gn using Im(R) N XfA=

(Im(R)i+ Xg )l . If gé = n. no order reduction can be made and proceed to

STEP 4, Since a basis matrix for Xf is given by [0 I s , T must be of

f
the form
o
T = j
X
. .o " n To.—1,T
Pind a matrix X such that XX = I, esg. X = (X'X) "%¥°, and take
In 0 I 0
P = . s=1% A
0 X 0 +X
1f ;; = 0, take instead
p=[1 nl s = [1 ol
n T

-
~4

Solve the linear matrix equationm ?ePR = FER,for ﬁe and take Fe = é?e and
E; = SGe. The reduced feedback realization is given by (?;,E;,gé); This

realization is also minimal.

A

STEP 4. It remains to make the feedback realization internslly stable. This

step involves performing a state transformation of the feedback system to

obtain the structure (4.4). and thereafter select AF such that eigenvalues of
e

Ae1+ BeléFe are all within the desired regionm, i.e. a standard pole assignement

problem,

This algorithm should be compared with the algorithm in [151, ch.7,
which solves a less general problem. Apparently, the present algorithm achieves

more with considerably less computational effort.
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APPLICATIONS TO CONTROL SYNTHESES.

One consequence of the results of this paper is a simple algebra

for internally stable control synthesis using transfer matrices, This

fact is demonstrated by formalizing two important control problems,

' the model matching problem and the algebraic vegulator problem as
defined in [16,17] , and by an example. The basic aﬁﬁroach is pure

}:feedforward compensation. Feedback, internal stability and minimalicty are

_ then properties of a feedback realization as guaranteed by the theorems above.

The following motation is used below. Consider the partition (2.6)

of the complex plane., An srbitrary rational matrix T(s) can be uniquely

decompoged as

T(s) = T(s), + T(s)_ *+ T(s), (6.1)

where T(s)p is & polynomial matrix and T(s), and T(s)_ are strictely

: . R . . + - .
proper rational matrices with all their poles within € and € respectively.

A rational matrix being stable can then be expressed as T(s), = Ou

The Regulator Problem.

The system is described by (2.1) where (A,B) is controllable

(stabilizable). and (A,C) observabie. Moreover, the matrix E has full columm

rank. The disturbance w is described by a model

%y = Adxd : Ww = de (6.2)

. n
Also let € and € be the right and open left halfplane respectively. The

contrdl is allowed to be of the form

v




bad
h
#

Ax + K.x
£°F f (6.3)

Fx + fof

e
it

i.e. w is not accessible for feedback. The probliem is to find a control
of the form (6.3) such that (a) v(t) = 0 as t - « for all xd(O) and (b)
the feedback system disregarding disturbances is stable (w.r.t. C-).

This is the vegulator problem with internal stability as formulated in
[16,17,18]. N |

The closed loop svstem can be rvewritten in terms of external

{(transfer matrix) representations as

g
]

Tl(s)u + Tz(s)w

]
i

Tf(s)w (6.4a)

]

W D(s)xd(ﬂ)

whetre

]

T,(s) = (s - n s T,(s) = C(e - e

(6.4b)
D(s) =.H(s ~ &)

and Tf(s) iz the external description of the controller, cf.(2.5).

The existence of a state feedback realization with w not being accessible

is équivalent to Tf(s) being strictly proper and the existence of an

internally stable feedback realization is eéuivalent to that Tf(s) and

Tl(s)Tf(s) + Tz(s) both are stable rational matrices w.r.t. € - (Theorem 5

and 6}, Furthermore,

y = (T1(S)Tf(s) + Tz(s))D(s)xd(O) . {6.5)

and therefore output regulation (a) is equivalent to that the transfer

matrix in (6.5) is stable.

Let us sumrarize this into
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PROPOSITION 3

There exists a solution to the regulator problem as defined above

iff there exists a strictly proper rational matrix Tf(s) such that
(i) Tf(s)+ =0
(ii) (Tl(s)Tf(S) + TZCS))+ = 0

(111) (T, (s)T(s) + T,(s))D(e)), = 0

Ln internally stable feedback control solving the ﬁroblem ig given

as any internally stable feedback realization of &, Tf(s))

Remark,
The disturbance model D(¢) can be taken as an arbitrary proper

rational matrix, i.e. more general than (6.4b).

The Model Matching Problem.

The system is given by (2.1) with E = 0. The same observability

and controllability assumptions as above is made, The control is allowed

to be of the form (2.2). The closed loop system shall behave as & specified

model

y =T (s)w

and shall be internally stable. Representing the control as

u #‘Tf(s}w
the closed loop system becomes
y = T(s)T ()W ;. T(s) = C(s - A B

The existence of a stable feedback realization is equivalent to Tf(s)

and T(s)Tf(s) both being stable ratiomal matrices. Therefore,




PROPOSITION -4,

There exists an internally stable solution to the model matching

problem iff there exists a proper rational matriz Tf(s) such that

(1) Tm(s)+ = 0 and Tf(s)+ =

(ii) T(s)T (s) = = T (s)

Remark.
This result canybe compared with {i5], Thm.8.5.2 , where no
stability restrictions (i) are imposed. The difference iz of course
our requirement of internal stability. A state space approach to model
matching is treated in [8,91%
The conproi synthesis is simple to perform using the results above,
especially if the number of imputs and outputs are few. An illustration is

given in the following example.

Example. 3,

The plant is

y = T{sju + H{s)v

g+l e+3 ) . ( s+1 }

T(s) = 5(52-!-1) (s H.); B(s) = s{s +1) i
1 s-1 | . 1 ‘

L 5(32+1) s(sz+1)J g s(s rl))

wheére y is the output, u the control input and w 2 disturbance which

-

is not accessible for measurement. The underlying system is assumed

£o .be a minimal realization of (T(s) H H(si}. This realization 1s stabil-
izable from u., Furthermore, we sssume that dynamic feedback control from

the state is allowed. The latter assumption can later bé dropped using

arguments from observer theory.




-85~

The requirements on the closed loop system are: {a) ¥4 is to follow a

step ¥, .. without steady state error, (b) Yy is to respond to Yy, @8 8

model system t (s) = g {(e) Yip is not allowed to interact with

(g+3)
Yo (d) there is no.steady state error in y for ramp inputs v and
(e) the closed loop system is internally stable.

The control is taken as

u = Rl(S}ylr + Rz(s}yzr + RB(S)V

With notations as above we then have
P (s) = [R () R (8) R(s)] ; w =Ly, ¥, W
f 1 3 3 5 : ir “2r
The closed loop system becomes

y = T(e)R, (s)y;, *+ T(IR,(8)y, + (T(s)Ry(s) + H(s))V
where Rl(si and RZ(S) are proper and R3(s) strictly proper (v is sot
accessible). To ensure existence of an internally stable feedback real-
ization, we must restrict the choice of compensators such that
R {s), i=1,2,3, and T(S}R (s8), i=1,2, and T(s)R (g)+H(8) are all stable
rational matxices.(Theorems 4,5 and 6). To satisfy {¢)} we must take
Rl{s) such that

:‘ L ‘._Sas.w—ﬂ;}aa- B (S) =
( s(s2¢1)  s(s>+l) ] 1

Rl(s} = [-~(s-1)} als=)

for some g(s), Then

T(&)R, () = ol } q(s)
|
!




In order to satisfy the atability requirement, ¢(s) must cancel the

factor s(sz+l) and itself be stable and produce a proper Rl(s), Take

e.g.
q(s) = ks(szzl)
(a+3)
Since ¥4 js to respond to a step input Y1y without steady state error,
the transfer function relating Yip and y, must have value 1 for s =0,

1.8,

 (rsmsh)  (s=L)ks(s7H1)
a(s°+1) (5+3)" 5=0

which gives k = 81/4. The compensator Rl(s} thus becomes

 (s=1)s(s 41

LR ey

s(sz+1)
(s+3)"

Tn addition to the stability requirement, the compensator Rz(s) mugt

be chosen so that (b) is satisfied, i.e,

i g~1 : 9
R.(8) & e
[ s(82+1) s(sz+1)] 2 (8+3)2

An admissible compensator is
365 (s541) I
Rz(s) = (s+3)3

95 (52+1) ‘
(s+3)°

Finally, to satisfy ( d) each element in T(S)RB(S)'# H({s) must have a double
zero at s=0. Some straightforward computations shows that an aduissible

combefishator is given by

/ 53(52+1) \

R,(8) = -1
3 (s+3)5

63 (a%+1)

ambanagiie

{ (5+3)6
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Using the results above it is then possible to find an internally
stable and minimal feedback realization of the synthezised feedforward

compensator.,
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