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Abstract – The use of multi-amplitude signaling
schemes in wireless OFDM systems requires the track-
ing of the fading radio channel. This paper addresses
channel estimation based on time-domain channel
statistics. Using a general model for a slowly fad-
ing channel, we present the MMSE and LS estimators
and a method for modifications compromising between
complexity and performance. The symbol error rate
for a 16-QAM system is presented by means of simu-
lation results. Depending upon estimator complexity,
up to 4 dB in SNR can be gained over the LS estima-

tor.

I . Introduction

Currently, orthogonal frequency-division multiplexing
(OFDM) systems [1] are subject to significant investiga-
tion. Since this technique has been adopted in the Euro-
pean digital audio broadcasting (DAB) system [2], OFDM
signaling in fading channel environments has gained a
broad interest. For instance, its applicability to digital
TV broadcasting is currently being investigated [3].

The use of differential phase-shift keying (DPSK) in
OFDM systems avoids the tracking of a time varying chan-
nel. However, this will limit the number of bits per symbol
and results in a 3 dB loss in signal-to-noise ratio (SNR)
[4]. If the receiver contains a channel estimator, multi-
amplitude signaling schemes can be used.

In [5] and [6], 16-QAM modulation in an OFDM sys-
tem has been investigated. A decision-directed channel-
tracking method, which allows the use of multi-amplitude
schemes in a slow Rayleigh-fading environment is analysed
in [5].

In the design of wireless OFDM systems, the channel is
usually assumed to have a finite-length impulse response.
A cyclic extension, longer than this impulse response, is
put between consecutive blocks in order to avoid inter-
block interference and preserve orthogonality of the tones
[7]. Generally, the OFDM system is designed so that the
cyclic extension is a small percentage of the total sym-
bol length. This paper discusses channel estimation tech-
niques in wireless OFDM systems, that use this property
of the channel impulse response. Hoeher [6] and Cioffi [8]

have also addressed this property.
In Section II, we describe the system model. Section III

discusses the minimum mean-square error (MMSE) and
least-squares (LS) channel estimators. The MMSE esti-
mator has good performance but high complexity. The
LS estimator has low complexity, but its performance is
not as good as that of the MMSE estimator. We present
modifications to both MMSE and LS estimators that use
the assumption of a finite length impulse response. In
Section IV we evaluate the estimators by simulating a
16-QAM signaling scheme. The performance is presented
both in terms of mean-square error (MSE) and symbol
error rate (SER).

II . System Description

We will consider the system shown in Fig. 1, where xk
are the transmitted symbols, g(t) is the channel impulse
response, ñ(t) is the white complex Gaussian channel noise
and yk are the received symbols. The transmitted symbols
xk are taken from a multi-amplitude signal constellation.
The D/A and A/D converters contain ideal low-pass filters
with bandwidth 1/Ts, where Ts is the sampling interval.
A cyclic extension of time length TG (not shown in Fig. 1
for reasons of simplicity) is used to eliminate inter-block
interference and preserve the orthogonality of the tones.

We treat the channel impulse response g(t) as a time-
limited pulse train of the form

g(t) =
∑
m

αmδ(t− τmTs), (1)

where the amplitudes αm are complex valued and 0 ≤
τmTs ≤ TG, i.e., the entire impulse response lies inside

Fig. 1: Base-band OFDM system.
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Fig. 2: Leakage between taps for the continuous channel
g(t) = δ(t− 0.5Ts) + δ(t− 3.5Ts).

the guard space. The system is then modelled using the
N -point discrete-time Fourier transform (DFTN) as

y = DFTN

(
IDFTN(x) ∗̄ g√

N
+ ñ

)
(2)

where ∗̄ denotes cyclic convolution, x=[x0 x1 . . . xN−1]
T ,

y=[y0 y1 . . . yN−1]
T , ñ=[ñ0 ñ1 . . . ñN−1]

T is a vector of
i.i.d. complex Gaussian variables, and g=[g0 g1 . . . gN−1]

T

is determined by the cyclic equivalent of sinc-functions.
The vector g/

√
N is the observed channel impulse re-

sponse after sampling the frequency response of g(t), and

gk =
1√
N

∑
m

αme
−jπN (k+(N−1)τm) sin (πτm)

sin
(
π
N (τm−k)

) . (3)

The validity of the cyclic model described by (2) and (3)
depends on how well the objective of the guardspace is
met, i.e., how well it eliminates inter-block interference.

If the delay τm is an integer, then all the energy from αm
is mapped to tap gτm . However, for a non-T -spaced pulse,
i.e., if τm is not an integer, its energy will leak to all taps
gk. Fig. 2 illustrates this leakage for a special case. Notice
that most of the energy is kept in the neighbourhood of
the original pulse locations.

The system described by (2) can be written as a set of
N independent Gaussian channels, see Fig. 3,

yk = hkxk + nk, k = 0 . . . N−1, (4)

where hk is the complex channel attenuation given by h=
[h0 h1 . . . hN−1]

T =DFTN(g) and n=[n0 n1 . . . nN−1]
T =

DFTN(ñ) is an i.i.d. complex zero-mean Gaussian noise
vector.

As a matter of convenience, we write (4) in matrix no-
tation

y = XFg + n, (5)

where X is a matrix with the elements of x on its diagonal
and

F =

 W 00
N · · · W

0(N−1)
N

...
. . .

...
W

(N−1)0
N · · · W

(N−1)(N−1)
N

 (6)

is the DFT-matrix with

Wnk
N =

1√
N
e−j2π

nk
N . (7)

Fig. 3: Parallel Gaussian channels.

Fig. 4: General estimator structure.

III . Channel Estimation

We will derive several estimators based on the system
model in the previous section. These estimation tech-
niques all have the general structure presented in Fig. 4.
The transmitted symbols xk, appearing in the estimator
expressions, are either training symbols or quantized de-
cision variables in a decision-directed estimator. Error
propagation in the decision-directed case is not treated in
this paper.

A. MMSE and LS Estimators

If the channel vector g is Gaussian and uncorrelated
with the channel noise n, the MMSE estimate of g be-
comes [9]

ĝMMSE = RgyR−1
yyy (8)

where

Rgy = E {gyH} = RggFHXH

Ryy = E {yyH} = XFRggFHXH + σ2
nIN

are the cross covariance matrix between g and y and the
auto-covariance matrix of y. Further, Rgg is the auto-
covariance matrix of g and σ2

n denotes the noise variance
E{|nk|2}. These two quantities are assumed to be known.
Since the columns in F are orthonormal, ĝMMSE generates
the frequency-domain MMSE estimate ĥMMSE by

ĥMMSE = FĝMMSE = FQ
MMSE

FHXHy, (9)
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where QMMSE can be shown to be

QMMSE =Rgg

[
(FHXHXF)−1

σ2
n+Rgg

]−1
(FHXHXF)−1

.
(10)

This MMSE channel estimator (9) has the form shown in
Fig. 4. If g is not Gaussian, ĥMMSE is not necessarily a
minimum mean-square error estimator. It is however the
best linear estimator in the mean-square error sense. In
either case (g, Gaussian or not) we will denote the channel
estimate as ĥMMSE .

The LS estimator for the cyclic impulse response g min-
imizes (y−XFg)H(y−XFg) and generates

ĥLS = FQ
LS

FHXHy, (11)

where

QLS = (FHXHXF)−1 (12)

Note that ĥLS also corresponds to the estimator structure
in Fig. 4. Since (11) reduces to

ĥLS = X
−1
y, (13)

the LS estimator is equivalent to what is also referred to
as the zero-forcing estimator.

Both estimators (9) and (13) have their drawbacks. The
MMSE estimator suffers from a high complexity, whereas
the LS estimate has a high mean-square error. In the next
section, we will address these drawbacks and modify both
estimators.

B. Modified MMSE and LS Estimators

The MMSE estimator requires the calculation of an
N × N matrix QMMSE , which implies a high complexity
when N is large. A straightforward way of decreasing the
complexity is to reduce the size of QMMSE . As indicated in
Fig. 2, most of the energy in g is contained in, or near, the
first L = dTGTs e taps. Therefore we study a modification of
the MMSE estimator, where only the taps with significant
energy are considered. The elements in Rgg corresponding
to low energy taps in g are approximated by zero.

If we take into account the first L taps of g, and set
Rgg(r, s) = 0 for r, s /∈ [0, L−1], then QMMSE is effectively
reduced to an L× L matrix. If the matrix T denotes the
first L columns of the DFT-matrix F and R′gg denotes
the upper left L × L corner of Rgg, the modified MMSE
estimator becomes

ĥMMSE = TQ′
MMSE

THXHy (14)

where

Q′
MMSE

=R′gg
[
(THXHXT)−1

σ2
n+R′gg

]−1
(THXHXT)−1

.
(15)

This modification is illustrated in Fig. 5. As mentioned
in Section I, an OFDM system is usually designed so that

Fig. 5: Modified estimator structure.

L is a small fraction of N . Thus, the complexity of the
MMSE estimator will decrease considerably.

Although the complexity of the LS estimator does not
prompt for modifications, its performance in terms of
mean-square error can be improved for a range of SNRs
by following the same general concept as above. The LS
estimator does not use the statistics of the channel. Intu-
itively, excluding low energy taps of g will to some extent
compensate for this shortcoming since the energy of g de-
creases rapidly outside the first L taps, whilst the noise
energy is assumed to be constant over the entire range
[6, 8].

Taking only the first L taps of g into account, thus im-
plicitly using channel statistics, the modified LS estimator
becomes

ĥLS = TQ′
LS

THXHy (16)

where
Q′

LS
= (THXHXT)−1

. (17)

The modified LS estimator also has the structure as shown
in Fig. 5.

C. Estimator Complexity

The complexity of the modified LS estimator (16) will
be larger than that of the full LS estimator, since a simpli-
fication as in (13) cannot be performed. Notice that while
the full LS estimator (13) has much lower complexity than
the full MMSE estimator (9), the respective modified ver-
sions (16) and (14) are equally complex.

It should be noted that the MMSE estimators have been
derived under the assumption of known channel correla-
tion and noise variance. In practice these quantities, Rgg

and σ2
n, are either taken fixed or estimated, possibly in an

adaptive way. This will increase the estimator complexity
and reduce the performance slightly.

In the special case where the channel (1) is T -spaced,
i.e., where τm are integers, no leakage of energy to taps
outside the interval [0, L] will occur and the two modi-
fied estimators (14) and (16) will not lose any information
about the channel. Thus, the modified MMSE estimator
(14) is equivalent to the MMSE estimator (9). The mod-
ified LS estimator (16) in this case will outperform the
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LS estimator (13) for all SNRs, since the excluded taps
contain only noise.

More generally, for non-T -spaced channels, any subset
of the taps in g may be taken into account when modi-
fying the MMSE and the LS estimator. The size of this
subset determines the complexity for both types of modi-
fied estimators.

In Section IV we consider the case where this subset
consists of the taps g0 . . . gL+K−1 and gN−K . . . gN−1, i.e.,
the first L taps as well as K extra taps on each side.

IV . Simulations

A. Simulated Channels

In the simulations we consider a system operating with
a bandwidth of 500 kHz, divided into 64 tones with a total
symbol period of 138 µs, of which 10 µs is a cyclic prefix.
Sampling is performed with a 500 kHz rate. A symbol
thus consists of 69 samples, five of which are contained in
the cyclic prefix (i.e. L = 5). 50,000 channels are ran-
domized per average SNR, each consisting of five pulses,
of which four have uniformly distributed delays over the
interval 0–10 µs, while one tap is always assumed to have
a zero delay, corresponding to a perfect time synchroni-
sation of the sampling instants. The multipath intensity
profile is assumed to be φ(τ)∼e−τ/τrms , where τrms is 1/4
of the cyclic extension. We have used Monte-Carlo simu-
lations to generate the Rgg for this channel model. This
covariance matrix together with the true noise variance σ2

n

is used in the MMSE estimations to follow. The average
SNR per symbol in Fig. 3 is defined as E{|hk|2}/E{|nk|2},
since E{|xk|2} is normalised to unity.

The following estimators are used:

Estimator Notation Taps used Size Q′

MMSE MMSE 0...63 64× 64
LS LS 0...63 N.A.
Modified MMSE-0 0...4 5× 5
MMSE MMSE-5 0...9, 59...63 15× 15

MMSE-10 0...14, 54..63 25× 25
Modified LS-0 0...4 5× 5
LS LS-5 0...9, 59...63 15× 15

LS-10 0...14, 54..63 25× 25

B. Mean-square Error

Fig. 6 shows the mean-square error versus SNR for
the MMSE, LS, MMSE-0, MMSE-5 and MMSE-10 esti-
mators. The difference between the modified MMSE esti-
mators and the MMSE estimator is due to the fact that
parts of the channel statistics are not taken into account
in the former. For low SNRs, this approximation effect
is small compared to the channel noise, while it becomes
dominant for large SNRs. The curves level out to a value
determined by the energy in the excluded taps. Larger

Fig. 6: Mean-square error for three modified MMSE estimators.

Fig. 7: Mean-square error for three LS estimators.

dimensions of Q′
M

will give lower mean-square error for
all SNRs.

Fig. 7 shows the mean-square error versus average SNR
for the MMSE, LS, LS-0, LS-5 and LS-10 estimators. Con-
trary to the modification of the MMSE estimator, the
modification of the LS estimator reduces the mean-square
error for a range of SNRs. However, the same approxima-
tion effect as in the modified MMSE estimators shows up
at high SNRs. An interesting observation is, that for every
SNR there exists an optimal size of Q′

LS
, which gives the

smallest mean-square error compared to the other modi-
fied LS estimators.

C. Symbol-error Rate

The symbol-error rate (SER) curves presented in this
section are based on the mean-square errors of the channel
estimations presented in the previous section. For the
calculation of SER, we have used the formulae presented
in [10]. These formulae find the symbol error rate of a
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Fig. 8: Symbol error rate for three modified MMSE estimators.

16-QAM system given a noisy estimate of the channel.
We consider decision-directed estimation, without error
propagation.

As seen in Fig. 8, a gain in SNR up to 4 dB can be
obtained for certain SNRs when using a modified MMSE
estimator instead of the LS estimator, depending on ad-
missible complexity. The same behaviour can be observed
for modified LS estimators in Fig. 9. However, the gain
in SNR is not as large as for the modified MMSE estima-
tors with the same size of the matrix Q. This is explicitly
shown for MMSE-10 and LS-10 in Fig. 10. The difference
in SNR between these two estimators is about 2 dB.

V . Conclusions

The estimators in this study can be used to efficiently
estimate the channel in an OFDM system given a certain
knowledge about the channel statistics. The MMSE esti-
mator assumes a priori knowledge of noise variance and
channel covariance. Moreover, its complexity is large com-
pared to the LS estimator. For high SNRs the LS estima-
tor is both simple and adequate. However, for low SNRs,
the presented modifications of the MMSE and LS estima-
tors will allow a compromise between estimator complex-
ity and performance. For a 16-QAM signaling constella-
tion, up to 4 dB gain in SNR over the LS estimator was
obtained, depending on estimator complexity. Even rela-
tively low-complex modified estimators, however, perform
significantly better than the LS estimator for a range of
SNRs.
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