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1. Introduction

Design and synthesis of multi-input-multi-output systems using algebraic me-
thods are presented in Pernebo (1978) and Vidyasagar (1985). The algebra
is hard to work with. This report describes some MACSYMA functions that
performs the calculations.

Pernebo uses Smith form to factorize matrices of stable rational transfer
functions. This is a very powerful tool, in many cases unnecessarily compli-
cated. In some cases it is sufficient to use Hermite forms instead. The Hermite
form is much simpler to calculate than the Smith form. Here Hermite forms
are used to determine coprime factorizations, to determine structure matrices
and to solve Diophantine-Aryabhatta-Bezout identities for feedback design.

2. The Algebra

This section defines the algebra. A more thorough treatment is found in
Pernebo (1978) and in Vidyasagar (1985).

DEeriNiTION 1

Let IR4[s] be the set of rational transfer functions G(s) = b(s)/a(s) where
b(s) and a(s) are polynomials with real coefficients. Further a(s) has all roots
outside the set A € C. O

For continuous systems the complement to the set A is a subset of the complex
numbers with negative real part. If A is extended with the infinity point the
set IR [s] is restricted to proper rational functions.

DEFINITION 2
Here the set A is defined as

A:{zGC:RezZO}U{oo}

Now IR [s] consists of stable proper rational functions. O

Vidyasagar shows that IRj[s] is an Euclidean domain with a degree function
6(G) that is the number of zeros in A of G(s). For the definition of A above, §
equals the number of finite zeros of b(s) in A plus the relative degree of G(s).
A unit is an element U € Ry[s] with §(U) = 0. Moreover U~! is also a unit
in IR, [s].

Division

It is possible to use Euclid’s algorithm for division since IR Als] is an Euclidean
domain. Let A(s) and B(s) belong to IRy[s]. Division is defined through the
identity

A(s) = B(s)Q(s) + R(s) (1)

where §(R) < 6(B) and Q(s) and R(s) belong to IRa[s]. This division is
however not unique and several Q and R may fulfill the degree conditions.
Feasible quotient @ and remaider R are calculated as follows. If § (B) =0
then B is a unit. It yields @ = A/B and R = 0. If §(4) < 6(B) no division
is possible. Therefore @ = 0 and R = A. In all other cases first define the



polynomials @num, @den, brnum and bge, as the numerators and denominators
of A and B respectively. Factorize by, = bTb~ so that bt is monic and has
all zeros outside A and all zeros of b~ belong to A. Define a monic polynomial
ao(s) of degree §(B) — 1 with all zeros outside A, e.g. (s + a)¥B)-1 o> 0.
Solve the Diophantine-Aryabhatta-Bezout identity

Gden(8)2(8) + 57(8)y(8) = anum(s)ao(s) (2)

with degy < deg agen. The quotient and remainder in the division (1) are now
given by

_ 2(8)bgen(s)
Q(s) = Gden(8)ao(3)07 (3 )
R(s) = X2

a.(s)

It must be remembered that this division algorithm is not guaranteed to yield
a reminder R(s) of minimal degree §(R).

Matrices

DEFINITION 3
Let IRR*™[s] define the set of matrices with entries in R,[s]. O

A matrix M(s) € RY*"[s] is A-unimodular if det(M) is a unit. Ele-
mentary row operations may be obtained by multiplication from the left by
a A-unimodular matrix. Using elementary row operations a A-Hermite form
may be obtained.

LEMMA 1
Any matrix in IR}*™]s] of rank » can be reduced by elementary row operations
to a quasi triangular form in which

1. If p> r, the last p — r rows are zero;

2. In columnm j, 1 < j < r, the diagonal element is a product of primes and
is of higher degree than any nonzero element above it;

3. If m > 7, no particular statements can be made about the elements in
the last m — r columns and first » rows.

Proof: By row interchange bring the element of lowest degree in the first
column to the 1,1-position. Call this m;;. Now use the division algorithm
above to write the other elements in this column as a multiple m;; plus a
reminder of lower degree than m;;. By elementary row operations subtract the
appropriate multiple of my; from every other element so that only remainders
of lower degree than m;; are left. Repeat the whole procedure until all but
the first element in the first column is zero.

Repeat this procedure on the second column while ignoring the first row
until all elements below the diagonal element is zero. Then use an elementary
row operation determined by the division algorithm to make the element above
the diagonal in the second column of lower degree than the diagonal element.
Continue the whole procedure for the remaining columns. m|

Remark 1. The lemma describes the column A-Hermite form R = UM of
the matrix M. The row A-Hermite form L = MV is achieved by transposing,
since L = (VT MT)T, O



Remark 2. The prime factors in IR4[s] are rational functions of three types

_ —a)? L p?
s+ec¢ s+¢ (8+¢)?

with @ > 0, b,¢ > 0. They correspond to a zero at infinity, a real zero in A
and a pair of complex conjugate zeros in A. O

Remark 3. The Hermite form is not unique since the elements above the
diagonal are not unique, due to the nonunique remainder of the division in

]R,A[s]. O

Remark 4. Compare with the Hermite form for polynomial matrices in Kai-
lath (1980), theorem 6.3-2. O

3. Coprime Factorization

Let a multivariable system be described by
A(s)y(s) = B(s)u(s) ()

where A(s) € R}*®[s] and B(s) € RE*™[s]. In some cases it is necessary to
have a minimal realization of the system (5). For such a realization A and B
are relatively left A-prime. They will then not have any common left divisors
with zeros in A.

Assume that A and B have a common left A-divisor. A greatest common
left A-divisor L is found for instance using the A-Hermite form.

T(, T(s
[A(s) B(s)]U(s)=[L(s) 0] or [Lo( )]zUT(s) [gTEs;] i

This gives

A(s) = L(s)Ao(s)
B(s) = L(s)Bo(s) (7)

Assuming L(s) being invertible, a minimal realization of (5) is
Ao(8)y(s) = Bo(s)u(s) (8)

If A and B are relatively left A-prime then L = I.

4. Structure Matrices

Pernebo defines structure matrices that in some sense represent the part of the
system that is difficult to handle. The structure matrices contain the zeros in
A of the system. These zeros will limit the servo and the regulator performance
of the closed loop system. They are calculated from certain matrices in the
system description, see Pernebo.



Any matrix M(s) € RY*™s] with rank » can be factorized as M =
MM where M € IR}**(s] has rank » and M € IR}™[s] is right A-invertible.
The matrix M(s) is a left structure matrix of M (s). The row A-Hermite
factorization provides a way to calculate a left structure matrix.

M(s)V(s) =[L(s) 0] <=  M(s)=[L(s) 0]V'(s) (9)

Now V~1(s) is A-unimodular, i.e. its rows are linearly independent. The
matrix M(s) is the first » rows in V~1(s). These are linearly independent.
The last p — r rows have no influence since they correspond to columns with
zeros in the matrix [L(s) 0]. The matrix L(s) is lower triangular with r
rows. It follows that

M) = (1) 01V = [iats) o] [ M| st o)

The A-Hermite form of the matrix M (s) is in fact a structure matrix M (3).
Right structure matrices are found from the column A-Hermite form.

5. Feedback Design

In this section it is shown how the A-Hermite form can be used for feedback
design. Let the open system be described by a minimal stable factorization as
in Pernebo.

s o] R e EUR ] CORMC

It describes the relation between the output to be controlled z, the measured
output y, the control input u and the disturbance input e. To stabilize the
system it is required that Az(s) and By(s) are relatively left A-prime and that
Ai(s) is A-invertible. Further the transfer function Gpu(s) = AF'(s)Ba(s)
must be strictly proper to guarantee the existence of a proper controller. As-
sume therefore that A;(c0) = I and By(c0) = 0 to make G,,(s) strictly
proper.
Determine a feedback controller

R(s)é(s) = ~y(s)
u(s) = 5(s)e(s) (12)

by solving the Diophantine-Aryabhatta-Bezout identity
Az(s)R(s) + Ba(s)S(s) =1 (13)
using the A-Hermite factorization

40 Ba][ g Doz o) (19

A controller yielding a A-stable closed loop system is achieved if and only if
L =1,ie. if A3 and B, have no common zeros in \.
A2Un1 + BaUy =1 (15)
AxUr2 4+ BaUza = 0



The second equation in (15) provides a right A-prime factorization of Az_le
Ay By = —UypUs;;t = ND™° (16)
Multiply the second equation in (15) from the right with @ that is an arbitrary
matrix of appropriate dimension with entries in IRy[s]. Add this to the first
equation in (15).
A2(U11 + U12Q) + Ba(U1 + UnaQ) =1 (17
Define all stabilizing controllers by

R=U11+U12Q =Ro+NQ

(18)
§=Un+Un@ =S -DQ
The requirements on Gy, now implies that
A3(00)(U11(00) + U12(00)Q(0))
+ By(00) (U (00) + Ura(0)Q(00)) = (19)

A3(00)(U11(00) + U1a(00)Q(00)) =TI

Then R(s) = U11(s) + U12(s)Q(s) is invertible for s = oo. This means that
the controller

S(s)R™1(s) (20)

is proper.
The all stable input-output relations between e and z and e and u are
given by

A1z = (C1 - (AaR + B1S)Cz)e (21)
u=-5Cse

The right structure matrix C of the system is given by the factorization Cy =
CC. It is calculated from the column A-Hermite form. In (21) it is seen that
the part C always will be present since only € can be canceled by a matrix
with entries in IR 4[s].

The properties of the closed loop system are affected by the choice of
denominator polynomials in (11) and of the choice of Q.

6. MACSYMA Programs

The calculations in this algebra are carried out using MACSYMA, see Mac-
syma (1983). The procedure for calculation of A-Hermite form is based on
Holmberg (1986), where a MACSYMA function that calculates the Hermite
form for polynomial matrices is given. The function here for matrices in
TR}*™[s] has been provided with another degree function and another divi-
sion algorithm as defined in section 2. The main routines are

INLAMBDA(c) A function that defines the set A € €. It returns true
if the complex number ¢ belongs to A.



LAMBDAHERMITE (m) A function that calculates the A-Hermite form of the
matrix m. It returns a unimodular matrix u and the
matrix r (= um) that is on A-Hermite form.

Other important functions are DAB that solves the Diophantine-Aryabhatta-
Bezout identity AX+ BY = C for polynomials, RATDEG that returns the degree
6(-) of an element in IR4[s] and RATDIV which performs Euclidean division in
IR[s]. All functions are listed in appendix 1.

Since computations are performed numerically, it is necessary to define
a limit stating that if the difference between two numbers are less that this
limit the numbers are considered as equal. This limit is set using the variable
ZERO _LIMIT.

7. Examples
Two examples will demonstrate how the A-Hermite form is calculated and
what it is used for.

ExampLE 1—Calculation of A-Hermite Form
Consider Rosenbrock’s system

G(s) — [ 3-1-1 542-3] (22)

A 1
841 s+1

This matrix has two zeros in A. They are revealed in the A-Hermite form

R(s) = l'gl i3 ] (23)
G

Appendix 2 shows a MACSYMA session where R(s) is determined. All inter-
mediate steps are are given. An identity matrix is initially placed beside G(s)
to record the different elementary row operations that together determine the
unimodular matrix U(s).

U(s)[G(s) I]=[U(s)G(s) U(s)]=[R(s) U(s)] (24)
The output from LAMBDAHERMITE is expression (d39) which is a list with R(s)
and U(s). m)
ExaMPLE 2
The other example deals with the feedback design of the system

2(3) 0 = & uy(8)
vi(s) | = a-}-1 511 :-_Ti uy(s) (25)
y2(8) 12 1 e(s)

a-—1 a-}-_2 m
or shorter z(s) = G(s)w(s). The numbers (cij) here refer to the equation
numbers in appendix 3 where the MACSYMA session is found.

c13-c14  Make a fractional representation. A(s)z(s) = B(s)w(s).

cl6-c21 Make the fractional representation left A prime Ag(s)z(s) =
Bo(s)w(s).



€23-c36 Make the fractional representation on the standard form (11).
Extract the matrices 4,(s), By(s) and Cy(s).

c37-c40 Calculate the right structure matrix of the system.

c45-c52 Calculation of a stabilizing controller So(s)Ro(s)~?, and a para-
metrization for all stabilizing controllers.

8. Conclusions

Some MACSYMA functions have been used for analysis and design of MIMO
systems. A Hermite form for matrices with entries in IR4[s] is calculated.
Some examples show how it may be used.
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Appendix 1 - MACSYMA Programs

[ e e e e —
LAMBDASTARTUP.MAC

Startup file for using functions for algebriac mpproach.

Michael Lundh
LastEditDate : Thu Oct 65 09:17:34 1989
S —_— w/

batchload("lambdahermite.mac");
floatformat(£,0,3);

/* ===== ggitches ===== %/
keepfloat : true$
pPrint_true : false$
zero_limit : 0,0001%

/% ===== Definition of the set Lambda ===== */
lambdalim : 0.0$

/* Function that returns true if the complex c belongs to Lambde */
/% [11= =/
inlambda(c):= (realpart(c)>=(lambdalim-zero_limit)) or abs(c)>1.0e30$

/*

LAMBDAHERMITE.MAC
Functions for calculation of the lambda-hermite form.
Skeletton taken from Holmberg (1986) TFRT-7333.

Hichael Lundh
LastEditDate : Wed Oct 18 14:52:00 1989

*/

/* Column-Lambda-Hermite form of x and Lambda-unimodular matrix
performing the row opsrations. %/
/* [Hermite,UL]= »/
lembdahermite(x, [alpha]):=
Block([p,n,m,i,np,UL],
if length(alpha)=0 then alpha:-1 else alpha:part(alpha,1),

n:length(transpose(x)),
m:length(x),

np: rank(x),
x:addcol(x,ident(m)),

p:1,

for i:1 thru np do
(p:findeol(x,i,p),
x:reducebelow(x,i,p,alpha),
if i#1 then x:reduceabove(x,i,p,alpha)),

UL:x,

for i:1 thru n do UL:submatrix(UL,1),

for i:n+m step -1 thru n+i do x:submatrix(x,i),
return: [x,UL])$

/% Returns column where reduction should be applied */
findcol(x,i,p):=
Block([n],
n:length(transpose(x)),
if p>n then n,
if not zerobelow(x,i,p) then p else
(if x[i,p]#0 then p else findcol(x,i,p+1)))$



/* Reduces x from x[i,p] and below */
reducebelow(x,i,p, [alphal):=
Block([down],
if length(alphe)=0 then alpha:-1 else alpha:part(alpha,i),

x:rowperm(x,i,p),

print("rowvperm below row",i), if print_true then print(x),
x:monic(x,i,p,alpha),

print("monic leadcoef row",i), if print_true then print(x),
x:Euclid(x,i,p,down,alpha),

print("Euclid div below row",i), if print_true then print(x),
if not zerobelow(x,i,p) then reducebelow(x,i,p,alpha) else x)$

/* Reduces x above x[i,p] */
reduceabove(x,i,p, [alpha]):=
Block([powi,pow,k,up],
if length(alpha)=0 then alpha:-1 else alpha:part(alpha,1),

x:Euclid(x,i,p,up,alpha),
print("Euclid div above row",i), if print_true then print(x),
powi:ratdeg(part(x,i,p)),
for k:i~1 step -1 thru 1 do
(pow:ratdeg(part(x,k,p)),
if not pow<powi then x:reduceabove(x,i,p,alpha)),

x)$

/* Returns true if column below x[i,p] is zero */
/* What is zero? Possible modification of last statement. */
zerobelow(x,i,p):=
Block([k, j],
k:col(x,p),
for j:1 thru i do k:if length(k)=1 then O else submatrix(1,k),
if k.k=0 then true else false)$

/* Makes the element x[i,p] prime using row-operation */
monic(x,i,p, [elphal):=
Block([xip,bp,nii,k,zii],
if length(alpha)=0 then mlpha:-1 else alpha:part(alpha,l),

xip:ratsimp(part(x,i,p)),

bp: part(lambdafact (num(xip)),1),

uii:i/bp,

if inlambda(inf) then
(k:hipow(expand(denom(xip)),s)-hipow(expand(bp),s),
uii:uiikdenom(xip)/(s-alpha)-k),

zii:simpfact(uiisxip),

if (denom(zii)=1) and (hipow(num(zii),s)=0) and
(abs(zii)>zero_limit) then nii:uii/zii,

x:sotelmr(nii,i,i,ident(length(x))).x,

return:simplify(x,i,row))$

/* Permutes rows giving lowest degree of column p first. */
rowperm(x,i,p):=
Block([m,k,ei,e,powi,povw,L],
m:length(x),
ei:part(x,i,p),
powi:if ei¥#0 then ratdeg(ei) else 10°86,
for k:i+1l thru m do
(e:part(x,k,p),
pow:if e#0 then ratdeg(e) else 10°86,
if pow<powi then
(L:setelmx(0,i,i,ident(m)),
L:getelmx(1,i,k,L),
L:setelmx(0,k,k,L),
L:setelmx(1,k,i,L),
x:L.x)),
x)$



/* Polynomial division for of elements in column p*/
Euclid(x,i,p,upordown, [alphal):=
Block([m,k,qr,L,begin,end],
if length(alpha)=0 then alpha:-1 else alpha:part(alpha,1),

m:length(x),
if upordown=down then (begin:i+i,end:m)
else (begin:1,end:i-1),

for k:begin thru end do
(qr:ratdiv(part(xz,k,p),part(x,i,p) ,alpha),
L:setelmx(-part(qr,1),k,i,ident(m)),
x:simplify(L.x,k,row)),

x)$

Auxiliary routines

/% Returns true if the polynomial p=0 */

/% [1]1= =/

zexopoly(p):=

Block([1,Xk],
p:expand(p),
1:true,
for k:0 thru hipow(p,s) do
if abs(coeff(p,s,k))>zero_limit then
(1:false,return(false)),

return:1)$

/* Solution to diophantine equation am*xx+bb*yy=cc with deg(yy)<deg(aa) */
/* [xx,yyl= %/
dab(aa,bb,cc) :=
Block([dogn,degb,x,y,u.v.g,h,i,hold.uold,vold,tmp,a,b,c],
dega:hipow(expand(an),s),
degb:hipow(expand(bb),s),
x:1, y:0, u:0, v:i,
if degb>dega then (a:bb, b:am, tmp:x, x:y, y:tmp, tmp:u, u:v, v:tmp)
else (a:aa, b:bb),
g:a, h:b,
for i:1 vhile not zeropoly(h) do
(hold:h, uold:u, vold:w,
tmp:divide(g,h,s),
g:part(tmp,1), h:part(tmp,2),
u:x-gru,
ViyTg*V,
g:hold, x:uold, y:vold),
if degb>dega then (tmp:x, x:y, y:tmp, tmp:u, u:v, v:tmp),
tmp:divide(1.0%cc,g,s),
g:part(tmp,1), c:part(tmp,2),
if not zeropoly(c) then
error("Common factor of 4 and B is not in C"),
bigry,
tmp:divide(b,v,s),
a:part(tmp,1),
return: [ratsimp(g*x-a*u) , ratsimp(part(tmp,2))])$

/% Factorization of B=(B+)(B-). (B+) monmic with zeros outside Lambda.
(B-) with all zeros in Lambda #/
/* [bp,bm]= =/
lambdafact(b):=
Block([be,degb,rb,i,rbi,bp,bm],
be:expand(b),
degb:hipow(be,s),
bp:i,
bm:coeff(be,s,degh),

10



rb:allroots(b),
for i:1 thru length(zb) do
(rbi:part(rb,i,2),
if inlambda(rbi) then bm:bm#(s-rbi)
else bp:bp*(s-rbi)),
return: [realpart(expand(bp)),realpart(expand(bm))])$

/* Lembda-degree of the generalized polynomial gp */
/% [degl= »/
ratdeg(gp) :=
Block([rgp,bpbm,deg,k],
rgp:ratsimp(gp),
bpbm: lambdafact (num(rgp)),
deg:hipow(expand(part(bpbm,2)),s),
k:hipow(expand(denom(xgp)),s)~hipow(expand(num(rgp)),s),
if (k>0) and inlambda(inf) then
deg:degtk,
if num(rgp)=0 then
deg:-1,
Teturn:deg)$

/* Quotient and Remainder from division of Lambde-generalized polynomials */
/* [q,7]= »/
ratdiv(a,b,[alphal):=
Block([ar,br,anum,aden,bnum,bden,tmp,bp.bm,k.ao,x,y,q,r],
if length(alpha)=0 then alpha:-1 else alphm:part(alpha,1),

ar:ratsimp(a), enum:num(ar), aden:denom(ar),
br:ratsimp(b), bnum:num(br), bden:denom(br),

tmp: lambdafact (bnum) ,
bp:part(tmp,1),

bm: part(tmp,2),
k:ratdeg(br),

if k=0 then
(q:ar/br, r:0)

else if ratdeg(ar)<k then
(q:0, r:ar)

else
(ao:(s-alpha)~(k~1),
tmp: dab(aden, bm,anum*eo),
y:part(tmp,1),
x:part(tmp,2),
q:x*bden/(aden*uno*dbp),
r:y/ec),

return: [cutpoly(q), outpoly(xr)1)$

/* Eliminates coefficients with magnitude less than zero_limit in
Lambda-generalized polynomials. */
/* [gpl= »/
cutpoly(gp):=
Block([b,a,bo,n0,i,ci],
gp:ratsimp(gp),
b:expand(num(gp)),
a:expand(denom(gp)),
bo:0,
for i:0 thru hipow(b,s) do
(ci:ooeff(b,s,i), if abs(ci)>zero_limit then bo:bo+ci*s~i),
a0:0,
for i:0 thru hipow(a,s) do
(ciicoeff(a,s,i), if abs(ci)>zero_limit then mo:ao+cixs~i),
return: (bo/aoc))$

11



/* Eliminates real common factors #*/
/* [gpl= */
simpfact(gp):=
Block([b,a,i,rb,tmp],
gp: cutpoly(gp),
b:num(gp) ,
a:denom(gp) ,

rb:allroots(b),
for i:1 thru length(zb) do
(tmp:divide(a,s-part(rb,i,2),s),
if zeropoly(part(tmp,2)) then
(a:part(tmp,1),
b:part(divide(b,s-part(rb,i,2),s),1))),
return:realpart(expand(b))/realpart(expand(a)))$

/* Matrix version %/
simplify(gpm, [p2]):=
Block([im,ml,mu, in,nl,nu],
ml:1, mu:length(gpm),
nl:i, nu:length(transpose(gpm)),
if length(p2)=1 then
(ml:part(p2,1), nl:part(p2,1)),
if length(p2)=2 then
if part(p2,2)=row then
(ml:part(p2,1), mu:part(p2,1))
else
(al:part(p2,1), nu:part(p2,1)),

for im:ml thru mu do
for in:nl thru nu do
gpmlim,in]:simpfact(gpm[im,inl),
return:gpm) $



Appendix 2 — Example 1

(e37) g : matrix([1/(s+1),2/(s+3)]1,[1/(s+1),1/(s+1)1);

[ 1 2 ]
[=mmm= cmee ]
[s+1 8+3]
(4aar) [ 1
[ 1 1 ]
[ ===m= =en=- ]

[s+1 s+1]

(c39) ans : lambdehermite(g);

[ 1 2 1
[ ==-=- ————1 01
[s+1 s8+3 ]
rowperm below row 1 [ 1
[ 1 1 1
[ ===== === 0 1]
[s+1 s+1 ]
[ 1 2 1
[ ==m==m —mees 1 01
[s+1 s+3 ]
monic leadcoef row 1 [ ]
[ 1 1 ]
[ =meme s o 1]
[s+1 s+1 ]
[ 1 2 ]
[ === e 1 o]
[s +1 s +3 1
Euclid div below row 1 [ ]
L 1-s ]
[ 0  —mmmmmmmmeee -1 1]
L 2 1
L 8 +45 +3 ]
[ 1 2 ]
[ - - 1 0]
[s+1 s +3 ]
rovperm below row 2 [ ]
L 1-s ]
[ 0 =—mcmmmmmeee -1 1]
L 2 ]
[ B +48 + 3 ]
[ 1 2 ]
[ === === 1 o 1
[s+1 s +3 ]
monic leadcoef row 2 [ ]
L 1i-s -858-3 s+3]
[ o ]
L 2 s +1 s +11]
L 8 +285+1 ]
[ 1 2
[--—-- - 1 ]
[s+1 s +3
Euclid div below row 2 [
[ 1-58 -5-3 s8+3
[ o ———
L 2 s+1 s +1
L e +28 +1

et et e e e e D b
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(d39) I

b 1 2 1
[ oo lieme 1 o 1
[s+1 s +3 ]
]
L 1 -5 -8~-3 s+3)]
[ o ]
L 2 E+1 s +1]
[ s +25 +1 ]
1 2 ]
----- = 10 1 o 1
s +1 s +3 1 C ]
1, [-s-3 s+31]]
1-5s i e ]
0  mem—emmmemea 1 [ s+1 s+1]
2 ]
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Appendix 3 — Example 2

(c12) g:matrix([0,(8~2)/(s-1),2/(s+1)],
[1/(s+1),1/(s-1),(5-1)/(s+1)],
[1/(s-1),2/(s+2),1/(s+2)1);

L s -2 2 ]
[ 0 meeem oo ]
L s -1 s58+1]
L ]
[ 1 1 s - 1]
(d12) L ]
[s+1 s-1 5 +1]
L 1
[ 1 2 1 1
[ === =meem mmeee ]
[s~-1 e+2 8+2]
(c13) /* Fractional representation */
azident(3)*(s-1)/(s+1);
[s-1 ]
L---- o o 1]
[s+1 ]
L ]
C s -1 ]
(d13) [ 0 - o 1
L s+ 1 ]
L ]
L s -1]
[ o 0 - ]
C s +1]
(c14) b:a.g;
L s -2 2 (8 - 1) i |
L L e ]
L s +1 2 1
L (s +1) 1
L 1
L 2 1
(d14) [ s-1 1 (s - 1) ]
R 1
[ 2 s +1 2 ]
[ (s +1) (s +1) ]
C 1
C 1 2(s-1) s -1 1
L = ]
[ s+1 (8 +1) (8 +2) (s+1) (s +2)]

(c16) /* Make left lambda prime factorization */
m:addrov(transpose(a),transpose(b))$

(c17) ans:lambdehermite(m)$

(c18) 1l:transpose(part(ans,1))$

(c19) 1:submatrix(1,4,5,6);

[ 1.000 0 o 1
L ]
L s -1 ]
(a19) [-1.000 ---— o 1
C s +1 ]
C ]
[ o 0  1.000 ]
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(620) w0:invert(l).e;

[s-1 ]
[ ——-- 0 o 1]
[s+1 ]
L ]
(d20) L 1 1 o 1
C ]
C s -11]
[ o o0 - ]
L s +1]
(c21) bO:ratsimp(invert(l).b);
[ s -2 2s-2 1
N 1
L s +1 2 ]
[ 8 +2s+1]
L 1
L 1 ]
(421) [msiman 1 1 ]
[Ls+1 ]
[ ]
L 1 2s -2 s -1 ]
L ]
[s+1 2 2 ]
¥ 8 +3s+2 s +3s5+2]
(c23) /* Represent system on Pernebos standard form %/

(c24)

(d24)

ans : lambdahermite (a0)$
a00:part(ans,1);

-
-
(=]

APAAEA A A e
(=)
-]
(=] +
-
1
]
!
)
)
et

(c25) b0O:ratsimp(part(ans,2).b0);

(d2s)

plalalelele el el el el e Nyl
]
!
1
1
1
1
1
!
]
1
[}
i
!
1)
!
)
i
)
)
)
]
[}
1]
!
i
1
!
I
)
I

(c31) /+ Extract submatrices */

(d31)

an2:submatrix(1,a00,1);

16



(c34)

(daa)

(c36)

(d3e)

(e37)

(639)

(d39)

(c40)

(d40)

(c4b)

(c46)
(c4a7)

(dar)

(c48)

bb2:submatrix(1,b00,3);

ton Mo Ban Nan B o Nan B B o B a i

©602:submatrix(1,500,1,2);

s +3s+2 ]

/* Calculate right structure matrix =/
ans : lambdahermite (co2)$
ctilde:simplify(invert(part(ans,2)));

[ 3.000 -~ 3.000 s

[ e 1.000
[ 1.000 s + 1.000

L

L 3.000 0.333 s + 0.333 ]
C ]
[ 1.000 s + 2.000 1.000 & + 2.000 ]

et e bl

chat:part(ans,1);

[ 0.333 s - 0.333 ]

mEee
L]
+
[

(S N W

/% Solve DAB identity for feedback design %/
mm2:addrow(transpose (aa2) ,transpose (bb2))$
ans : lambdahermite (mm2) $

part(ans,1);

[ 1.000 o ]
C ]
[ o 1.000 ]
L ]
L o o 1]
L ]
L o o 1

u:transpose(part(ans,2))$

17



(c49) uil:submatrix(3,4,u,3,4);

L 3 2 ]
[-8 -4.0008 - 13.000 s + 6.000 2.000 ]
L - |
[ 3 2 s +11]
(d49) [L s +4,000s + 5.000 s + 2.000 ]
[ ]
L 4.000 s - 4.000 ]
[ = 1.000 ]
L 2 ]
L 5 +3s +2 ]
(c50) ul2:submatrix(3,4,u,1,2);
[ 2.000 s - 2.000 2.000 1
[ —————mmmmeceeee emeee ]
[ 2 s +1 ]
[ s +28+1 1
(ds0) C ]
[ 2.000 4.000 s - 4.000 1
| ]
L s +1 2 ]
L s + 3.000 8 + 2,000 ]

(c61) u21:submatrix(1,2,u,3,4);

[ 8.000 s - 8.000 1
[ 2.000 ]
(db1) [ 2 i |
[ 58 +3s +2 ]
[ ) |
[ - 2,000 o] ]
(c62) u22:submatrix(1,2,u,1,2);
[ 2.000 ~ 2.000 s ]
o 1
L s +1 ]
(d62) L 1
L 2.000 - 2.000 s ]
L 0 eemmemeeeemeaeo 1
L s +1 ]
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