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Abslracr-This paper suggests sufficient conditions for 
asymptotically stable dynamical output feedback controller 
design based on the circle criferion. It is shown that a dynamic 
nutput feedback stabilization problem with impending problems 
of finite escape time, preriously attacked by observer-based 
design, can be successfully solred using circle criterion design. 
Stability of the closed-loop system is global and robust to 
parameter uncertainty. 

I. INTRODUCTION 

Stabilizing a nonlinear system by output feedback is often 
a difficult problem. Equipped with a range of available 
asymptotic (robust) stability criteria, one could try to design a 
dynamical output feedback controller so that the closed loop 
system satisfies one of these stability criteria. This simple 
idea sometimes leads to a problem that could be solved, 
hut quite often it results in a problem that is intractable. 
This paper is devoted to the discussion of dynamic output 
feedback and the circle criterion, as a stability test for the 
closed loop system 161, 191. One of standard initial ideas for 
controlling dynamical system by output feedback is based 
on the separarion principle, that is, one needs to find a 
stabilizingfill-srure feedback controller and to determine an 
observer with asymptotically stable error dynamics; an output 
controller is then chosen to coincide with the derived frill- 
stare feedback controller where instead of the unmeasured 
true states of the dynamical system, the system states are 
substituted by observer states. This approach includes three 
steps4esign of afull-srate controller, observer design, anal- 
ysis of the closed loop system-where well-known stability 
criteria, like the circle criterion, could be applied to conclude 
stability. Indeed, one could use this test for checking stability 
of the system with afull-state feedback controller; or use it 
for checking that a panicular structure of an observer results 
in stable error dynamics; or use this test at the final point 
to verify that the closed-loop system derived via certainty 
equii:u/ence principle is stable. These arguments have been 
used for checking stability via the circle criterion of error 
dynamics for an observer [l], [21. 

The main contribution of this paper comes from the 
observation that for the large class of systems treated in 111, 
[Z], there is no need to introduce an explicit observer and 
assumptions and arguments relevant for the certainty equiv- 

a/ence principle can be relaxed. Instead, a fixed structure of 
an output feedback controller can be imposed, search for its 
parameters and asymptotic stability can be approached by 
means of the circle criterion for the closed-loop system. It 
happens that for the large class of the systems considered 
in [I], [2], this argument works. Thus, time-varying systems 
and systems with structural uncertainties can be approached 
whereas both extensions seem infeasible using the certainty 
equivalence principle [l], [Z]. 

The paper is organized as follows: Section 11 suggests 
an illustrative example considered in details. The problem 
statement, assumptions and main result are given in Sec. 111, 
a brief discussion of results being added in Sec. IV. 

11. MOTIVATING EXAMPLE 
Consider the following dynamical system [l] 

Y = 5 1  ( 2 )  

The relation between the relevant results of [l] and the 
current development is discussed later. The problem is to 
design a controller that renders the origin of the system (1) 
asymptotically stable. Let us consider a dynamical controller 
of the form 

d ;it" = A351 + A q Z  

U = xlzl + + (clzl + c3zj5 (3) 
where A,, cj are real constants to be defined. With such a 
controller, the dynamics of the closed loop system are 

w = (c1x1 + c3z)5 -x; (4) 

One can easily check that the nonlinearity w of !?q. (4) and 
the linear virtual output of the closed loop system (4) 

21 C l Z l  - X2 + C3Z 

satisfies a passivity relationship for any q, x2, z 

U .  w = (c121 - x* + c3z)[(c1z1 + c3zy - $1 2 0 ( 5 )  
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Introducing the matrices and the state space vectoi 

A o = [ O  0 1 0  1 O ] , A ] = [ l  0 0 0  0 0 1 ,  

0 0 0  0 0 0  

0 0 0  0 0 0  
A * = [ O  0 0 0  0 1 ] , & = [ 0  1 0 0  0 0 1 ,  

A . z = [ O  0 0 0  0 O ] , B = [ ~ ] , X - [ ~ ] ,  

0 0 1  

one can rewrite the closed loop system (4) as follows 

. .  
U = c x = c l x l  - x z + c 3 z  

Whereas the explicit form of the nonlinearity w-in this 
case given as (4)-is not important, it is important that the 
passivity relation ( 5 )  be valid. By the circle criterion, the 
system (6) is asymptotically stable provided that 

1) the frequency condition 
4 

Re{C(jwb - (A0 + E X j A i ) ) - l B )  < 0 (7) 

holds for any w E IR+, the negative real notation 
convention being used in the inequality (7); 

i=l 

4 

i=l 
2 )  the matrix ( A ,  + &Ai)  is strictly Hurwirz. 

As known, these conditions are equivalent to the fact that 
there exists the 3 x 3 matrix P = P r  > 0, so that 

Thus, development of a dynamical stabilizing controller (3) 
based on the circle criterion and the choice of quadratic 
constraints (5)  require determination of parameters 

x 1 ,  x z ,  x3i x 4 ,  c1, c3 (9) 

so that all points 1)-2) are valid, or equivalently, the Bilinear 
Matrix Inequality (BMI) of ( 8 )  is solvahle. The routine 
computations made for this example result in equivalent 
statements written in terms of parameters X i ,  c j :  

1) Introduce the quantities 

cy = 1-c1  

P = 
y = ( X 1 X 4  - X Z X 3 ) ( C Z X 3  - c1X4) 

02x3 - X2X3 + c2x3x4 - c lx i  - C l A I  + X i  

The validity of thefrequency condition leads to the two 
cases 

a) if the parameters (9) are so that 

P < 0, (10) 

o a  00  1 1 -  IP I ,  1 .  
I 

c. 

Fig. I .  
(1OH13) while the olher pammeters (9) haw the nominal value (14). 

The red area corresponds lo XI and c3 that satisfy the constraints 

then (7) is equivalent to the inequalities 

y i o ,  o < o  (11) 

b) Otherwise, (7 )  is equivalent to the inequalities 

4 a y - P 2 > 0 ,  a < O  (12) 
4 

2) The condition for the matrix (A0 + C ALA,) to be 

strictly Hunvitz is equivalent to the i&$alities 

X4 < -1, X i  < Xg, X i &  > XzX3 (13) 

The set of parameters (9) satisfying the constraints ( I O t ( 1 3 )  
is not empty. It can be checked that the vector 

( x l ,  x 2 ,  x3, x4, cl, c3) = (-5, -2, -7, - 3 . 2 , i )  (14) 

belongs to this set. This means that for this choice of 
the controller parameters (9), the corresponding BMI ( 8 )  
becomes a Linear Matrix Inequality (LMI), and it has a 
solution. In fact, these values (14) have been found in [ I ]  
via an appropriate observer design and checking the validity 
of certainr). equivalence principle. Below it will be shown, 
what, in addition, to the asymptotic stability of the closed 
loop system found in [I], could be gained from the fact that 
the Bh4I (6)  is solvable. 

Firstly, the inequalities (10)-(13) have quite a rich set of 
solutions. To show that the inequalities (lOh(13) suggest 
the controllers that cannot be obtained by the certainty 
equivalence principle elaborated in 111, let ns check possible 
values for the parameter c3 that is postulated in [I] to 
be equal to 1. Figure 1 shows approximation for a set of 
parameters X 1  and cs that correspond to stabilizing controller 
provided that the rest of (9) have the nominal value (14). To 
illustrate an advantage of the solution based on solvability of 
BMI (6)  vs. the design via certainty equivalence principle, 
let us include parametric uncertainty in the system. Consider 
the system (1) with uncertainty factor E in front of the 
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Fig. 2. 
for the initial conditions XI = 1, 2 2  = -3. z = 10. 

The solution of the closed loop system (15). (3) with E = 0.243 

nonlinearity in (I) ,  i.e. 

Y = 21 (16) 

Suppose that the nominal value E O  for E is chosen as 
EO = 1 and the dynamical stabilizing controller (3) with the 
parameters (14) has been designed as discussed above. Then, 
the closed-loop system is 

0 1 0  

-7 0 -3 dt 

w = (kl + z ) ~  - E . I ;  (17) 

The key passivity relation between the nonlinearity w in (17) 
and the linear output U = 221 - 22 + z does not hold unless 
E has its nominal value. But for this case one can introduce 
a new linear output of the system (17) such as 

U,,, = 2x1 - fi. 5 2  i z .  

UILFIU 2 0, V Z l ,  22, z 

Checliing the circle criterion for this quadratic constraint 
reveals some allowed bounds for E .  

Sfatenlent I :  Consider the nonlinear system (15) with the 
dynamical controller (3) with the parameters X i ,  c j  as in (14), 
that designed to stabilize the system (15) with nominal value 
E = 1. If the constant parameter E is within the interval 

E E [0.243,7.26], (18) 

then the closed loop system ( 1 3 ,  (3) remains globally 
asymptotically stable. In other words, the controller (3) with 
the parameters Xi ,  c3 as in (14) robustly stabilizes (15). 

Figures 2 and 3 show the response of the system (15), (3) 
for E = 0.243 and E = 1 with the same initial conditions. It 

Then, the passivity relution between w and U,,, holds 

is important to realize that this uncertainty cannot be treated 
in the certainty equivalence design arguments elaborated in 
[I]: for each new value of parameter E ,  one need to change 
the observer! Therefore, the value of E should be known 
precisely. Furthermore, the interval of an allowed uncertainty 
for the constant parameter E derived in Statement 1, could 
he approximated for any stabilizing controllers determined 
by relations (l0)-(13), where one could be interested in 
enlarging the allowed uncertainty range (Fig. 4). Another 
advantage of solution based on solvability of BMI (8) vs. 
the design via certainty equivalence principle comes from the 
observation that the analysis based on separation principle 
does not allow to tackle system with time-dependent right- 
hand side. Indeed, it is pmly based on the analysis of w-limit 
sets and the Barhashin-Krasovski (LaSalle) stability theorem. 
At the same time, the design based on solvability of the BMI 
(8) allows time dependence. To clarify this point, consider 
the modified system (I), ( 2 )  

where the nonlinearity now contains the time-varying factor 
sinz(t). The arguments used for (l), (2) with the controller 
(3). (9) could he directly applied for this modified system 
and the modified dynamical controller 

u = X l x l +  Xzz + sinz(t). (c lx i  + c ~ z ) ~  

Indeed, this property is due to the fact that the key passivity 
relation (5 )  between the input 

w = sin2(t) . [ (c lx l  + ~ 2 ) ~  - z;] 

and the linear output U = c l x l  - z2 + c3z remains valid. 
Recently, Arc& et al. showed that controller design for 

the system (I), ( 2 )  including full-state observer feedback 
might lead to finite-time escape [I]. To guarantee stability, 
the parameters X I  and c1 of the controller of Eq. (3) should 
be non-zero. To get an additional insight into this observation, 
let us consider a dynamical output controller of the form 

U = Xix i  + AZZ + (c izi+ C ~ Z ) ~  (19) 

where z E IR'" is a vector of internal states of the controller; 
X i  and cl are constants; and Az-A4, C3 are matrices of 
appropriate dimensions. The controller (19) differs from (3) 
by number of internal states, and they coincide when m = 1. 
Again, the closed-loop system (I), (2), (19) could be analyzed 
via the circle criterion with the quadratic constraint ( 5 )  where 

w = (c lx i  + C ~ Z ) ~  - x:, ZI = c i x l  + C3z - z2 
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For asymptotic stabilization of the origin of the system (20) 
by output feedback, try a dynamical controller of the form 

(23) 
d 
- z = A,z + Ayy + A,u + AaA(Cyy + C,Z: t )  (24) d t  

. .  
where z E lRk is the internal state of the controller, A,, 
Ay, A,, AA. R,, Ry. R+, RA are constant matrices of 
appropriate dimensions. The closed-loop system is then 

. .  . . . .  . .  

(Ay  + AuRg)Nl  (A= +A"&) 

Fig. 3. The Solutian of the closed Imp system (IS), (3) with the nominal BI RA 
+ [ L R a  + A A  

value e = 1 for lhhe initial conditions q = 1, 2 2  = -3, z = 10. ] A ( G y  + c z z , t )  + [ A(d,t) 

Necessary conditions for BMI solvability (8) suggest intro- 
duction of a reduced order u b s e n w  [l]. 

Sturenienr 2: Consider the nonlinear system (1). (2), (19). 
The frequency cuitdirion (7) takes the form 

where 6 = G(jw)G, X = w2,  

q(X)  = (1 - c,)X(m+') + qmXm + . . . + q1X + qo 

p ( X )  X(m+2) + p,+,X(m+l) + ' ' ' + p*h +PO = 

and G(s) is the transfer function of h e a r  part of the closed 
loop system (I), (2), (19). Then, the frequency condition 
holds at w + +CO only if the inequality 1 - c1 < 0 holds. 

111. MAIN RESULTS 
A. Problem Formuhiion and Preliminary Comments 

Consider a nonlinear contml system of the form 

(20) 

y = NIX, d = N Z X  (21) 

d '  
-X = AX + Biu + B z A ( d , t )  
d t  

where x E lRn is the state vector; y E Wm is the measurable 
output; d E lRk is the vector of variables that serves as 
input to the scalar nonlinear block A; A, B1, B2, N I ,  N2 
are matrices of appropriate dimensions. As in [Z], 111, the 
nonlinear block A could be seen as a nonlinear operator 
satisfying particular properties. 

Assumption I :  The s c a b  nonlinearity A ( d ,  t )  is such that 
there exists a k x 1 matrix na so that for any functions 

Assuiiiption 2: There exists a linear transformation 

with det T # 0, and there exist matrices RA, A,, AA of 
such that T,BIRA + T,, (A,Rn + AA)  = -T&. 

Assumpriun 3: The scalar nonlinearity A ( d ,  t )  is such that 
there exist a 2 x 2 matrix 

n =  [ n;2] 

and there exists Af E IR"' so that for any function d ( t )  E 
Lge: 3{tn};2. t,L -+ t o o  as R i +CO, such that V n  

Assumptions 1, 2 and 3 enable us to rewrite the closed loop 
system (20), (23), (24) in the input-output form 

while w1, w2 are the scalar nonlinearities written in the 
original coordinates x, z 

U!I = A(C,y + C,z,t), U J ~  = A ( d , t )  - A(C yY+CZ.%t )  
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and v i ,  v2 are scalar passive outputs (in integral sense) of 
the closed loop system (29), i.e., 3 Itn,} with tn, -t +m 
as n, -+ +W. i = 1, 2, so that 

Denote 

C1 = AtN2T;' [In, -T,,T;'] 

c2 = nr, [ { c , N ~  - N ~ ) T ; ~ ,  

IIZC,?";' - {C&" - N2}T;1TzIT;1]  

By the circle criterion, the system (29) is asymptotically 
stable provided that 
1) there exist 71 2 0, 7 2  2 0, 71 + 7 2  > 0 such that V&, 
VE2 EC' the frequency condition 

(34) TzRe (GC2A;: (BIG + B2<2)} + 

holds V w  E IR+'. Here A;: = (juln+l - A)-' ; 
2) the matrix A is ~trictly Hunvitz. 

As known, these conditions are equivalent to the fact that 
there exists the (n + 1 )  x (n + I )  matrix P = Pr > 0 so that 

A T P  + P A  + 'riCTIIiiC1 < 0, 
PBz = - %C; (35) PB1 = -'rin12c;, 

Thus, a circle-criterion development of a dynamical stabiliz- 
ing controller requires determination of matrices 

h z ,  A,, A,, AA, Rz, .RuI Ra, cz, cy (36) 
so that all points 1)-3) are valid, or equivalently, that the 
BMI (35) have a solution. 

B. SuJJicient Conditions for BMI Solvability (3s) 
To formulate the main result, we need to postulate some 

additional properties of the system (20). 
Assumption 4: A feedback controller 

U = K i y  + Kid  + I<a A(d, t )  (37) 
with some matrices K1, K2, and I<a renders the closed- 
loop system (ZO), (37) asymptotically stable. Furthermore 
this asymptotic stability can be verified from the circle 
criterion applied to the quadratic constraint in Assumption 3 
for matrices I<], K2, K n  such that 
1) The frequency condition holds V w  E R+, i.e., 

I < ,  [Afh'2A;d ( B I K A  + Bz)],[1\N2.4;> (BiKa + B2) 
1 1 

A;: = ( j w l ,  - { A  + Bi(KiN1 + K2N2)})-' 

'When the inequality degenerates at w = +CO, the strict inequality should 
hold in a limit if the matrix is multiplied by a factor 3. 

Fig. 4. The red area corresponds to values of E as a function of the 
parameter Xz for which the asymptotic stability of the closed system 
preserved. The other parameten (9 )  have the nominal value (14). The 
largest uncertainty interval for E is anained for .h = -1.71, and looks 
as E E (0.132, 31-97]. 

2)thematrix ( A + B i ( K , N l + K 2 N , ) )  isstrict1yHunvitz.m 

For the further development it will be convenient to make 
linear transformation of the system (20). choosing a matrix 
No such that the n x n matrix 

N = [  21 
has full rank, i.e., det N # 0, where the matrices N1 and N2 
are from (21) and (21). In new coordinates 

the system (20) takes an equivalent form 

?: = Ai17 + AizY + A13d + B i i ~  + BizA(d, t )  (39) 
Y = A217 + A 2 2 ~  + A23d + B ~ I U  + B22A(d, t )  (40) 
d =  A31?'+A32Y+A33d+ B3121+B32A(dlt) (41) 

Assumption 5: B12, B22 are zero matrices. m 

Assumption 6: There exists a matrix Q such that A31 = 
@A21 and such that the system 

d 
-e= (A33 - QAz3)e + B32(a(d, t )  - A(d - e ,  t)) (42) dt 
is asymptotically stable for any function d E Lz., its stability 
being verified by the circle criterion applied to the constraint 
in Assumption 1. Namely 
1) The next frequency condition holds V w E IR+ 

Re {na(jwh - (A33 - @A23))-IB32} < 0 (43) 

2 )  The matrix (A33 - QA23) is strictly Hunvitz. 
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77ieorern 1: Consider the system (39H41). Suppose As- 

(44) 

where matrices Kt ,  h’z, K a  satisfy Assumption 4; the 
variable ;is defined as d^= z + a y  with the matrix from 
Assumption 6 and z defined as a solution to 

sumptions 1 4  hold. Take an output feedback controller as 

U = Kly + Kid^+ K n  A(d^,t), 

dz 
dt 
- -  - [(A32 - @Azz) + (A33 - @&3)@]Y 

+ (A33 - @A23)Z 

+ (831 - @BZI)U t B32A(3 + W , t )  (45) 

Then, the closed-loop system (20)-(21), (44)-(45) is globally 
asymptotically stable. 

Theorem 2: Consider the system (29H31). Suppose As- 
sumptions 1-6 hold, then the BMIs (35) are solvable, one 
solution being 

A, = A33 -@A23, C, = I k ,  

A u  = 831 - @ & I ,  A A  = B32r 

Rz = Kz, R, = Ki +Kz@, (46) 
RA = Kn, c, = @, 

= ( A ~ z - @ A z ~ ) + ( A ~ ~ - ~ A z ~ ) ~  

IV. DISCUSSION 
1. In Sec. III is shown that stabilization of nonlinear systems 
by dynamical output feedback via the Circle Criterion could 
be reformulated as a problem of solvability of Bilinear Ma- 
trix Inequalities (BMD of particular type. In general, finding 
even one solution for BMI could be a difficult problem, while 
for low dimensional system, all solutions could be found, 
and the result is written in the form of finite number of 
inequalities for the parameters of the controller. 
2. This approach allows not only to find a set of all solutions 
(dynamical stabilizing controllers of particular structure for 
low dimensional systems), hut also to analyze and quantify 
a robustness of the closed-loop system in case of uncenainty 
and parameter variation. 
3. To compare the results with related ones in [l], one 
should realize that methods in [ l ]  are devoted to stabilization 
of more general time-invariant dynamical systems, than the 
equations (201421) represent. This generality reduces the 
ability to find a variety of stabilizing controllers, and only a 
few controllers was found in [l]. 
4. If Assumption 5 is omitted, then Theorem .I is still 
true, that is, the closed Imp system (2Ot(21), (44>-(45) 
is globally asymptotically stable. In fact, this is the result 
of [l, Theorem 1, p.6771 whereas the main result-i.e., 
solvability of the particular BMI stated in Theorem 2- 
is not. The reason is that convergence of any closed loop 
system solution to the origin can be proven in this case by 
a panicular choice of a Lyapunov-type function, designed 

only for this particular solution, while for different solutions 
these Lyapunov functions are different. In turn, the solvability 
of the BMI implies existence of only one positive definite 
quadratic form that provides exponential convergence of any 
closed-loop solution to the origin. 
5. The 2 x 2 quadratic form II in Assumption 3 has a par- 
ticularly simple structure for use in the example. In general, 
one might consider any integral quadratic constraint, [71, 
[XI, that leads to a design.of stabilizing controller when all 
state variables are available. In tum, the nonlinearity A ( d ,  t )  
should not be scalar, hut it seems that such generality would 
obscure the main contribution of the paper. 
6. The computational algorithms for solving nonconvex prob- 
lems (35) are still at a developing stage [5]. 

V. CONCLUSIONS 
In this paper, it was shown that a dynamic output feedback 

stabilization problem with impending problems of finite es- 
cape time, previously attacked by observer-based design, can 
be successfully solved using circle criterion design. Stability 
of the closed-Imp system is global and robust to parameter 
uncertainty. 
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