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Preface

This report deals with the steady-state heat loss from insulated pipes. The objective has
been to present explicit formulae for the heat loss from the pipes.

The report is divided into four parts: Summary of new formulae, Part A,B and C.
The first part is a summary of the results from A,B and C. Part A,B and C are separate
reports that previously have been published.

Part A deals with the heat loss from one or two pipes in the ground, Part B deals
with the heat loss from two pipes imbedded in a circular insulation and Part C deals with
the heat loss from two pipes in the ground imbedded in a circular insulation. Part AB,
and C are in the summary referred to as [A],[B] and [C].

This work has been initiated by Dr. Johan Claesson at the Department of building
Physics in Lund. He invented the method that makes the new formulae possible. I want
to express my deep gratitude for his support and constructive criticism.

Lund, May 1991
Petter Wallentén
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(3.4,4.2,5.3)
(2.3)
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Outer radius of the pipe, (m)

Inner radius of the pipe, (m)

Thermal conductivity of the ground, (W/mK)
Thermal conductivity of the insulation, (W /mK)
Surface resistance from ground to air, (m?K/W)
Temperature at the large circumscribing pipe, (°C)
Temperature in the symmetrical problem, (°C)
Temperature in the anti-symmetrical problem, (°C)
Temperature at the ground surface, (°C)
Temperature in pipe 1, (°C)
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Heat loss in the symmetrical problem, (W/m)
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Parameter describing the insulation of the pipe, (-)
Parameter describing a relation between A; and A, (-)
Parameter used in formula, (-)



10



1 Introduction

This is summary of the results from Part [A], [B] and [C]. They all deal with the problem
of finding explicit formulae for the steady-state heat loss from insulated pipes. Four
different problems are dealt with: one pipe in the ground, two pipes in the ground, two
pipes imbedded in a circular insulation and two pipes imbedded in a circular insulation
in the ground. Part [A] deals with the problem of one pipe in the ground and two pipes
in the ground, Part [B] deals with two pipes imbedded in a circular insulation and Part
[C] deals with two pipes imbedded in a circular insulation in the ground. In Part [A] also
the effect of a surface resistance is investigated.

The formulae are mainly derived for district heating pipes. They can be used on any
problem with the same boundary conditions, but the listed errors of the formulae are valid
for dimensions usual for district heating pipes in the ground. For the typical case in this
report is the thermal conductivity in the ground 2 W/mK and the thermal conductivity
in the insulation 0.04 W/mK.

The presented formulae are all derived with the use of the multipole method by Claes-
son et al [1],[2]. The multipole method can solve two-dimensional steady-state heat flow
problems with circular boundaries and has been used to calculate the error of the new
formulae. Hellstrém [3] has derived similar formulae, also based on the multipole method,
to be used in ground heat storage problems.

To distinguish between the new formulae derived in [A],[B] and [C] and already ex-
isting formulae are the existing formulae simply called old formulae. Some old formulae
have been investigated.
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2 One pipe in the ground

The results in this chapter are presented in [A]. There is one pipe in the ground, see
Figure 2.1. The distance between the center of the pipe and the ground surface is H.
There is an insulation between the radii r; and r,. The temperature in the pipe is T} and
the temperature at the ground surface is T;. The thermal conductivity in the insulation
is A;. The thermal conductivity in the ground is A,. The problem is to determine the
steady-state heat loss ¢; per unit length from the pipe. The temperature T(z,y) in a
vertical cross-section of the ground satisfies the steady-state heat conduction equation in
two dimensions:

o*r 9T
922 Tz =V (2.1)
T
. T
Ly
H
T
)‘9

Figure 2.1. One pipe in the ground.

The dimensionless parameter 8 will be used in the following:

Ag r

= I (%) 2.2

IB )\,‘ . r; ( )

The heat loss ¢; is proportional to the temperature difference Ty — Ty and the thermal
conductivity in the ground A,. We may write:

q1 = 27Ag(T7 — To) - ke(H/ 7,0, B) (2.3)

13



Here hy(H/r,, 8) is a dimensionless heat loss factor. Note that &, only depends on H /7o
and f.

2.1 Approximate formulae

The zero-order multipole formula for the heat loss is:

hi'=1In (QTH) + (2.4)
The first-order multipole formula for the heat loss factor is:
2H 1
-1 —
b _ln(r0)+ﬁ+—--————-—1_(ﬁ2ﬁg (2.5)
ro / 1-8
The second-order multipole formula for the heat loss factor is:
2H
At =In(——) + B+ (2.6)
’1 + 1a+h@ "Qﬂ)( To 2 3’(_1;2_@(&_)4 :
| 2(1-p8)(1+28)2H 2(1+2p6)"2H
_1 = ((?‘H)L) _ 3(1 - 2/8)( "o )2) (1 + /6) _ (1 - 25)(__719_)4} -
T, (1+28)2H" J(1-8) (1+28)2H
An old formula based on line sources investigated in [A] is:
2
hi' =1In ({-]— + (—?) -11+5 (2.7)

2.2 Errors of the formulae

The relative error in the heat loss, when the old formula is used, is for district heating
pipes typically less than 1 %. The error, when the zero-order formula is used, is typically
less than 0.5 %. The error, when the first-order formula is used, is typically less than 0.05
%. The error, when the second-order formula is used, is typically less than 0.01 %.

2.3 Approximation of the insulation

It is standard practise to replace the thermal insulation between r, and r; by a surface
resistance described by the dimensionless thermal resistance parameter 8. The error of
this approximation is typically less than 0.02 % for the ratio A;/\, < 0.1.

2.4 Approximation of the surface resistance

A surface resistance 1/a, is introduced between the ground surface and the air. The
boundary condition at the ground surface then becomes:

14



Ay 0T(2,y)

—_ =T = .
T(ma y) a, 83/ 0 Y 0 (2 8)
This resistance may be approximated with an equivalent layer of soil:
Ay
= o (2.9)
Hejf =H+d (2.10)

The depth H.y; is used instead of H in the formulae. The error in the temperature field,
when this approximation is used, is typically less than 0.01%.
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3 Two pipes in the ground

The results in this chapter are presented in [A]. There are two pipes in the ground at
the depth H, see Figure 3.1. The distance between the center of the pipes is 2 - D. The
radius and insulation are identical for the two pipes. The temperatures in the pipes are
Ty and T,. The temperature at the ground surface is Ty. The problem is to determine
the steady-state heat losses ¢; and ¢, per unit length from the pipes.

To
9 92
| | i
o s
@ ©®
D D

Figure 3.1. Two pipes in the ground.

3.1 Superposition

The original problem can be separated into a symmetrical and anti-symmetrical problem,
see igure 3.2.

17



To 0 To
qs qs da —q, )1 q2
(&) @) |+ @ - @’b @
Symmetrical problem Anti-symmetrical problem Original problem

Figure 3.2. Superposition of symmetrical and anti-
symmetrical problem.

The temperature in the pipes in the symmetrical problem is T,. The temperatures in the
pipes in the anti-symmetrical problem are T, and —T,. These temperatures are defined
as follows:

T, = w (3.1)
2
T, = 5.:2‘_?3 (3.2)

The subscript s denotes the symmetrical problem of two pipes. The subscript a denotes
the anti-symmetrical problem of two pipes. The heat loss ¢, (W/m) from one pipe in
the symmetrical problem is proportional to the temperature difference T, — T and to the
thermal conductivity in the ground A,. We may write:

qs = (Ts - TO) . 277)‘9 : hs(H/Tm D/Toyﬁ) (33)

Here h; is the dimensionless heat loss factor for the symmetrical problem. The heat loss
¢ (W/m) from one of the pipes in the anti-symmetrical problem is proportional to the
temperature T, and to the thermal conductivity in the ground A,. We may write:

o =To-2wAy - ho(H /10, D[r,, 3) (3.4)

Here h, is the dimensionless heat loss factor for the anti-symmetrical problem. It should
be noted that the temperature 7, connected with ¢, in (3.4) is half the temperature
difference between the pipes. By superposition the heat losses ¢; and ¢, become:

1= qs + qo (3.5)
42 = s — qa (36)
The total heat loss (¢; + ¢2) depends on the symmetrical part only:

nt+q@=2q (3.7)

18



Formulae for h; and h, are listed below. The heat losses ¢; and ¢, are obtained from

(3.5,3.6).

3.2 Approximate formulae

Multipole formulae of zero and first order have been derived for the heat loss factors. One

pair of old formulae have been investigated.

3.2.1 Zero-order multipole formulae

1= () 3o ()

o

h;lzin(QriI)+ﬁ—1n( 1+(%)2

Here f is the dimensionless thermal resistance parameter from (2.2).

3.2.2 First-order multipole formulae

7o V2 1_2_2 12
h“1=ln(2ﬂ>+ﬂ+ln( 1+(H)2 _GB) + Gi)” + iy

H M
D M2+ (38)

o

2

h;l = ln(

To

2H)+ﬂ—1n( 1+(H)2 _ G+ G’ — amrtm

H T
D 2 — (%)

3.2.3 Old formulae

Two old formulae described in [A], based on line sources, are:

o (2| (2) - e (e (B

\"°
+ﬂ_m(1+(gf

H H\?
R;'=In|—+ (——-) -1
Formulae (3.12,13) originates from line sources.

o Vel

3.3 Errors of the formulae

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

The relative errors in the heat loss, when the old formulae are used, are for district heat-
ing pipes typically less than 5 %. The errors, when the zero-order formulae are used, are
typically less than 3 %. The errors, when the first-order formulae are used, are typically

less than 0.5 %.
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4 Two pipes imbedded in a
circular insulation

The results in this chapter are presented in [B]. There are two pipes imbedded in a circular
insulation. The radius of the pipes is r; and the radius of the circular insulation is r,. The
distance between the center of the pipes is 2- D. The temperatures in the imbedded pipes
are Ty and T3. The temperature on the circumscribing larger pipe is 7,. The thermal
conductivity in the insulation is A;. The problem is to determine the steady-state heat
losses (g1, ¢2) per unit length from the two pipes inside the large pipe.

Figure 4.1. Two pipes inside a large pipe.

4.1 Superposition

The original problem is separated into a symmetrical and anti-symmetrical problem, see
section 3.1. The temperatures T, and T, are defined in (3.1,2). The heat losses ¢, and ¢,
become:

ds = (Ts - Tc) . 27r)‘i : hs(ri/rca D/rc) (41)

Ga = Ta : 27(’/\5 : ha(Ti/rm D/Tc) (42)

21



Note that h,; and h, only depends on r;/r. and D/r. and that the thermal conductivity
used here is A;. As before, the heat losses ¢; and ¢, become:

G1=¢qs+ qa (43)

g2 = Gs — {4, (44)

4.2 Approximate formulae

Multipole formulae of zero and first order have been derived for the heat loss factors. Two
old formulae have been investigated.

4.2.1 Zero-order multipole formulae

- re re

() - (250 »
_ 2D rZ 4+ D?

halzln(m)—m (rg_pz) (4.6)

4.2.2 First-order multipole formulae

2 4 T __s_.._?T‘Di 2
h;‘l _ ln( r ) _ ln( re ) _ (2D ri-D ) (4.7)
1+

5D ri— D ()" - (3=2)
_ 2D r2 4 D? (35 - 552)
hal-’:l( )_l(c )___ 2 H .8

4.2.3 Area approximation formula

One of the old formulae investigated in [B] is called the area approximation. The formula
calculates the heat loss factor in the symmetrical problem.

272 D 2.D
e = = — ] - \Jr: — D? 4.
r \/ - arccos ( Tc) - r2 (4.9)
Vri—D? 41,
de = i (410)

2
Te '
Ry=2In (;—) (4.11)
de
Ry = WD (4.12)
1
he = 5o = U/ R+ 1/Ry (4.13)
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4.2.4 Two-model approximation formula

Another old formula investigated in [B] is called the two-model approximation. The
formula calculates the heat loss factor in the symmetrical problem.

T,'/TC + rc/ri - (TC/ri)(D/rC)z)
2

R, = arccosh ( (4.14)

R, = 4 - arccosh (2 (2)2 - 1) (4.15)

LS

1
hy= 5 =1/Ra = 1/Bs (4.16)

4.3 Errors of the formulae

The relative errors in the heat loss, when the zero-order formulae are used, are for district
heating pipes typically less than 20% for ¢, and less than 10% for ¢,. The relative errors
in the heat loss, when the first-order formulae are used, are typically less than 0.1% for ¢,
and less than 5% for ¢,. The relative error in the heat loss, when the area approximation
formula is used, is typically less than 10% for ¢,. The relative error in the heat loss, when
the two-model approximation formula is used, is typically less than 5% for ¢.
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5 Two pipes in the ground
imbedded in a circular insulation

The results in this chapter are presented in [C]. There are two pipes in the ground imbed-
ded in a circular insulation. The radius of the pipes is r; and the radius of the circular
insulation is r.. The center of the circular insulation lies at the depth H. The distance
between the center of the pipes is 2 - D. The temperatures in the imbedded pipes are
Ty and T5. The temperature at the ground surface is T;. The problem is to determine
the steady-state heat losses (¢4, ¢2) per unit length from the two pipes inside the large pipe.

Figure 5.1. Two pipes in the ground imbedded in a circular insulation.

The dimensionless parameter o will be used in the following:
A=y

=5 (5.1)

o

5.1 Superposition

The original problem is separated into a symmetrical and anti-symmetrical problem, see
section 3.1. The temperatures T, and T, are defined in (3.1,2). The heat losses ¢, and ¢,
become:

qs = (Ts — To) - 27X - hy(rifre, Dfre, Hlrey Mif ) (5.2)

25



Qo =Ty - 27X; - ho(rifre, Dfre, Hrey Aif Ay) (5.3)
As before, the heat losses ¢; and ¢, become:
G =9+ 4o (5.4)

92 = (s — 4q (55)

5.2 Approximate formulae

Multipole formulae of zero and first order have been derived for the heat loss factors. Two
old formulae have been investigated.

5.2.1 Zero-order multipole formulae

2X 2H r? rd
-1 __ t c . c
ho = Ay ln< Te ) i (QDT,-) +on (r;‘ -——D‘*) (56)
_ 2D rZ 4+ D?
halzln(n)-yaln (r3~02) (5.7)

Here o is defined in (5.1).

5.2.2 First-order multipole formulae

1 2)\, [2H r? rd
hslzxln(rc)+ln(2Dri>+o"ln<rg-—D4) (5.8)

(

1+ (

_ a2r; D3 2
ré-D4

2 2 2
2ri72D
l 1 <
) 0(7‘3—134)

2 2
! =In (2D> +oln (’"C + D ) (5.9)

@ T; r: — D?

Sk

Sk

. . 2 2
(% — 725 + e?) ( D >2
N2 e 4 4 -7
L (35) — v + 200202 20 2H

_2(1-0?)

B 1— o*(é%)?

(5.10)

5.2.3 Area approximation formula

One of the old formulae investigated in [C] is called the area approximation. The formula
calculates the heat loss factor in the symmetrical problem.

2.r2 D 2-D
= el PR, 2.2
Te \/ arccos ( ) ~ \Jr:i—D (5.11)

m Te
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\JT2 = D%+ r,
d, = —r (5.12)

¢ 2
Te
Ry=2In (7) (5.13)
wd,
R, = 5 (5.14)
2X; H H?
Rs = y In (;;'-l- - -—1) (5.15)
-1 1
Rs (5.16)

© TR ¥R T

5.2.4 Two-model approximation formula

Another old formula investigated in [C] is called the two-model approximation. The
formula calculates the heat loss factor in the symmetrical problem.

rifre+re/ri — (re/ rar)(D/TcV) (5.17)

R, = arccosh (

2
D 2
Ry =4 - arccosh (2 (m) - 1) (5.18)
r;
2 H H?
. 1
hy' = R3 (5.20)

R —1/R; T

5.3 Errors of the formulae

The relative errors in the heat loss, when the zero-order formulae are used, are for district
heating pipes typically less than 10% for ¢, and less than 20% for ¢,. The relative error in
the heat loss, when the first-order formulae are used, are typically less than 1% for ¢, and
less than 5% for ¢,. The relative error in the heat loss, when the two-model approximation
or the area approximation formula is used, is typically less than 5% for g,.

5.4 Position of the pipes

There is a general opinion that, for heating district pipes it is better to put the warmer
pipe underneath the cooler pipe. This is supposed to reduce the total heat loss from the
pipes. It is true that the heat loss is reduced when the pipes are positioned vertically, but
this reduction is so small that it is negligible. Calculations show that for district heating
pipes the total heat loss is reduced with < 0.2%.
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1 Introduction

This report deals with the calculation of the heat loss from one (¢1) or two (g1, g2) insu-
lated pipes in the ground, see Figures 1.1-2.

Figure 1.1. Two pipes in the ground.

The pipes with their thermal insulation are indicated by two concentric circles. The tem-
perature inside the pipes are Ty and T,. The temperature is T at the ground surface.
The thermal conductivity of the ground is A,.

Figure 1.2. One pipe in the ground.
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The temperature in the ground T'(z,y) and the heat losses ¢, (W/m) from the pipes
are unknown. The problem is to solve the steady-state heat conduction equation for the
temperature and, in particular, to determine the heat flows ¢; and ¢, for given boundary
temperatures Ty, Ty and T;. The problem is two-dimensional. The steady-state heat
conduction equation for the temperature T'(z,y) is to be satisfied:

o*T T
) + -5375 =0 (1.1)

1.1 Traditional methods

Most methods to calculate the heat loss from one or two pipes to a surface with constant
temperature are based on the use of line sources and the assumption that the pipe depth
and the distance between the pipes are much larger than the diameter of the pipe. If this
is true, these methods are accurate enough.

The temperature field from one line source at (zn,y,) with the strength ¢, (W/m) is
well known:

i
218\ (@ = 20) + (v — yn)’

The temperature is zero at the distance r, from the line source. If another line source is
placed at (z,, —y,) with the strength —g,, the temperature will be zero at the line y = 0:

ey = B[ | E=z) + ()
(=) 27\, ! (\} (z—2,)"+ (y— yn)z) (1-2)

A line source with the strength —g, is called a line sink. The line y = 0 is chosen as the
ground surface. Each pipe will thus be represented as the sum of one line source and a
mirror line sink.

There are several slightly different methods to calculate the heat loss but they are all
based on a the line source model: [10], [20] and [26].

In particular it is possible to displace the line source from the center of the pipe to
satisfy the boundary condition at the pipe to a better approximation. This we will call the
line source displacement method. The displacement method is possible to use for one or
two pipes in the ground. The only way to test the error of the various proposed formulae
has been to use a finite element or finite difference method, or to make an electrical analogy
experiment. These methods have a small but noticeable error. With the multipole method
described in the next section the formulae can be tested with arbitrary accuracy.

T(:C, y) =

1.2 The multipole method

A new method, the multipole method, to calculate the heat flow to and between pipes is
presented in [1]. The method is implemented as programs for computers of PC-type in
[2] and [3]. The program of [2] deals with the heat flow problem when one or more pipes
are positioned inside a large pipe with a known constant temperature. The program of
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[3] deals with the problem of one or more pipes inside a larger pipe, which in its turn lies
in the ground with a another thermal conductivity. A brief summary of the multipole
method is given here.

The thermal problem is solved with the use of line sources and what is called multi-
poles. The problem is solved in the complex plane (z = = + iy). The temperature from a
line source with the strength ¢, at position z, = x, + iy, may be written as the real part
of the complex-valued logarithm:

T(a:,y):Re[ In 1n( Te )] (1.3)

27, Z— Zy

The radius r. is introduced for dimensional reasons. The complex-valued derivative of
order j of (1.3) with respect to z gives (2 — 2,)™7, which represents the multipole of order
7

The method uses multipoles at the pipe centers z,. The temperature from the mul-
tipole of order j at pipe n is :

n = 1,2.N
1,2..

JE (1.4)

T(a,9) = Re [P (2]

Z = Zy

Here N is the number of pipes. The pipe radius r, of pipe n is introduced for dimensional
reasons. The complex numbers P,; give the strength of the multipoles:

Pnj = Cnj + x Snj (15)

The temperature (1.4) satisfies Laplace equation (1.1), since it is the real part of a regular
(analytic) function. The temperature (1.4) becomes in polar coordinates p,, 1, from z,:

z:zn_"'pn'eid)n

fole [P N )J] = (%)j “{enj - cO8(j%n) + 8n; - sin(jebn)} (1.6)

P

The multipole of order j can represent any variation cos(ji,) and sin(ji,) around the
pipe at p, = r,,.

The final temperature is a sum of the temperature fields from all the pipes with
multipoles up to order J. The strength of the multipoles P,; and the strength of the
line sources ¢, are unknown. The boundary conditions of each pipe will give rise to an
equation system, from which P, ; and ¢, are solved. In the limit when J — oo the exact
solution is found. The error of the calculation can thus be chosen arbitrarily small.

With the multipole method it is possible to derive systematic approximations of in-
creasing accuracy. The traditional method described in section 1.1 is similar to the zero
order approximation. This report deals with approximations of the first and, in one case,
the second order.

1.3 Survey of literature

Analytical expressions for the thermal or electrical resistance between a cylinder and
a parallel plane was given by Foster and Lodge [4] (1875) and Forchheimer [5] (1888).
Krischer [6] [7] (1936) was one of the first who used these analytical expressions to calculate
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the heat loss from a district heating pipe in the ground. Carslaw and Jaeger [8] (1946) gave
analytical expressions for the solution of two pipes without insulation in an infinite region.
They also studied the time-dependent behaviour of the temperature in the ground. The
most used formulae today are the ones they calculated, except for an additive insulation
resistance. Jakob [9] (1949) used the same formulae. For one pipe in the ground Louden
[10] (1957) used the formulae of [8] with the resistance of the insulation as an additive
term. For two pipes he suggested experimentally determined correction factors.

Vidal [11] (1961) analyzed the general problem of heat conduction between any num-
ber of surfaces with different constant temperatures. He gave a proof that the relation-
ship between the heat flow from the surfaces and the surface temperatures was given by
a symmetric equation system. He also calculated the resistance between a pipe and a
surrounding square with constant temperature.

Brauer [12] (1963) used the expressions of Vidal for one pipe with quadratic insulation
and determined experimentally expressions for more pipes in a surrounding quadratic
insulation. Kutateladze [13] (1963) used the formulae of [10] and compiled a collection of
approximate expressions for the heat loss from one up to three pipes in the ground.

Elgeti [14] (1967) proposed a semi-analytic method to calculate the error made when
a surface resistance from ground to air was replaced by a equivalent layer of soil. The
analysis concerned one non-insulated pipe in the ground. Schwaigerer [15] (1967) used the
expressions of [13]. Bosselman [16] (1968) measured the temperature around an insulated
pipe in the ground. Franz and Grigull [17] (1969) did experiments to find the minimum of
the heat loss from the large pipe, when one small and one large pipe were in the ground.
Claesson [18] (1970) calculated the temperature field around an insulated pipe with the
use of line source displacement.

Homonnay and Hoffman [19] (1971) studied the dynamic behaviour of the temperature
in the pipe, in the direction of the pipe. Jenowski [20] (1973) proposed the use of a small
non-insulated pipe with the same thermal resistance to the ground as an insulated pipe,
see section 3.6. Merker [21] (1977) calculated analytic expressions for the error when a
surface resistance from ground to air was replaced by a equivalent layer of soil, the same
problem as Elgeti [14] tried to solve. Merker could however give the exact expressions.
The calculations concerned one or more pipes in the ground. Claesson and Dunard [27]
proved the same formula but with a shorter argument. Brakelmann [22] (1980) calculated
the dependence of the heat loss on the saturation of the ground. Kvisgaard and Hadvig
[23] (1980) compiled a collection of formulae for different types of insulated pipes. The
formulae were basically those of [13]. They also made finite element calculations to test
the approximations.

Zeitler [24] (1980) used the formulae of [13] and tried to make the formulae more exact
with correction factors determined experimentally. The corrections concerned different
types of insulations of two pipes in the ground. Lunardini [25] (1981) studied the ice
formation around a pipe with the use of [10]. Werner [26] (1982) calculated the heat loss
from one or two pipes with the use of line source displacement. The proposed formula for
the heat loss from two pipes was rather complicated. The displacement was not affected
by the insulation thickness, as the formulae in section 3.5 are. Claesson and Dunard
[27] (1983) used the formulae of [13] for insulated and non-insulated pipes in the ground.
They also calculated the heat loss from a pipe in a ground with two different layers of
soil, i.e. different heat conductivity. The dynamic behaviour of the temperature in the
ground was studied. They calculated analytical solutions for the effect of ground surface
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resistance. Formulae for the effect of a ground water stream under a pipe were also
calculated. Homonnay et al [28] (1985) proposed a numerical method to calculate the
heat loss from two insulated pipes in a rectangular air culvert to the earth with surface
resistance from pipe to air and from ground surface to air. The solution was obtained with
the use of Schwarz-Christoffel’s transform and a not well described complex temperature
field. Schneider [29] (1985) proposed formulae and corrections for the heat loss from one
pipe with insulation and a ground surface with thermal resistance, based on computer
calculations with a finite difference method. Weinspach [30] (1987) used the formulae of
[13]. Bghm [31] (1988) used the formulae of [13] and studied the dynamics of a system
of more than one pipe. Hansen [32] (1988) used the finite element method to test the
method of Schneider [29)].
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2 Heat loss from two pipes in the
ground

There are two pipes of the same type and at the same depth in the ground. For each pipe
there is an insulation with the thermal conductivity A; between the radius r; and Ty, S€E
Figure 2.1. The steady-state heat conduction heat equation (1.1) is to be solved.

Figure 2.1. Two pipes in the ground.

H = Depth from the ground surface to the center of the pipes (m)
D = Half the distance between the center of the pipes (m)
r, = Outer radius of the pipe (m)

r; = Inner radius of the pipe (m)

Ay = Thermal conductivity of the ground (W/mK)

A; = Thermal conductivity of the insulation (W/mK)

Ty = Temperature on the ground surface (°C)

T} = Temperature in pipe 1 (°C)

T, = Temperature in pipe 2 (°C)

q; = Heat loss from pipe 1 per meter (W/m)

g2 = Heat loss from pipe 2 per meter (W/m)
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2.1 The solved problem

The thermal insulation of the pipes has the finite width r, —r;. It is customary to replace
the insulation annulus by its thermal resistance as a surface resistance at the outer radius
ro. We will use this approximation. Its validity is studied in section 3.2 for the case of a
single pipe in the ground. The thermal resistance over the thermal insulation of the pipes
is
1 Ty

Risol = m In (;:) (mK/W) (21)
The corresponding resistance per unit area is R;so - 277, (m*K/W). The boundary condi-
tion for pipe 1 at its radius p; = r, is according to [1]:

T
L=T-rfg.  p=r 0Sh < (2.2)
1
A To
B =2 R = 521n (7)

Here, 1; denotes the angle around the pipe periphery in accordance with (1.6). The
dimensionless thermal resistance parameter # will be used in the following. The new
problem is described in Figure 2.2.

Figure 2.2. Two pipes in the ground with the thermal insulation as
a surface resistance .

2.2 Superposition

For two pipes in the ground one can construct two basic problems, a symmetrical problem
and an anti-symmetrical problem, see Figure 2.3. With the use of the superposition
principle, every problem concerning different temperatures can be constructed from the
solutions of these two problems.
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T-‘-"—To T=0 T=T0

qs qs Qa —qa U1 q2

® @ ® ®

Figure 2.3. Superposition of symmetrical and anti-symmetrical
problem.

The original problem is the sum of one symmetrical and one anti-symmetrical problem.
The temperatures of the pipes in the symmetrical problem are T,. The temperatures
of the pipes in the anti-symmetrical problem are T, and —T,. These temperatures are
defined as follows:

-t (2.3)
2
EZE;R (2.4)

The subscript s denotes the symmetrical problem of two pipes. The subscript a denotes
the anti-symmetrical problem of two pipes. The temperatures of the original problem are
from (2.3-4):

Tl = Ts + Ta (25)
Ty=T,—T, (2.6)

The heat loss ¢, (W/m) from one pipe in the symmetrical problem is proportional to the
temperature difference T; — To. We may write:
Ts — To
qs = R,
Here R, (mK/W) is the thermal resistance between one of the pipes and the ground. The

heat loss g, (W/m) from one of the pipes in the anti-symmetrical problem is proportional
the temperature T,. We may write:

Ga = 75~ (28)

(2.7)

Here R, (mK/W) is the thermal resistance associated with the anti-symmetrical problem.
By superposition the heat losses ¢; and ¢ become:

q1 = 45 + 9a (29)
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92 = 4s — qa (210)
The total heat loss (g1 + ¢2) depends on the symmetrical part only:

nte=2-gq (2.11)

The symmetrical and anti-symmetrical problem are solved separately in this section. For-
mulae for R, and R, are obtained. The heat losses ¢; and ¢, are then obtained from
(2.3-11).

2.3 Zero-order approximation

The zero-order multipole approximation uses the line sources and sinks without any mul-
tipoles. The zero-order approximations gives the following expressions for the thermal
- resistances for the symmetrical and anti-symmetrical problem :

29w\ R, = In (Qf) +8+1n ( 1+ (%)2 (2.12)
27\, R, = In <2H) + 8-l ( 14 (%)2 (2.13)

These formulae are not derived in this report, but the derivation is identical to the deriva-
tion of the first-order multipole formulae (2.16,17) with the multipoles omitted. Here
is the thermal resistance parameter of the insulation introduced in (2.2). The first and
second term on the right side in (2.12,13) is identical to the zero-order multipole approxi-
mation (3.5) for one pipe in the ground. The third term represents the thermal influence
between the pipes.

2.4 Traditional method

The traditional way of calculating the two resistances are [9], [13] and [23] :

2rAgRs = In (f—o + \ (%)2 - 1) +fB+In ( 1+ (%)2 (2.14)

27\, R, = In (f- +y (TE)Q - 1) +h-In ( 1+ (%)2 (2.15)

Here, the third term on the right side in (2.14,15) represents the influence between the
pipes.

The first term is an exact expression for the thermal resistance between one pipe in the
ground without insulation and the ground surface. It is certainly not an exact expression
for the thermal resistance between two pipes without insulation and the ground surface.
The first term of (2.14,15) originates from a displacement of the line source in the vertical
direction, while the first term of (2.12,13) originates from the problem with the line sources
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at the center of the pipes. Formulae (2.14,15) will become identical to (2.12,13) with the
approximation :

H2 2 H2

o v — (2.16)

~
2 2
TS T

The displacement of the line source in (2.14,15) originates from the different problem
of one pipe in the ground. Therefore, as the comparisons below will confirm, formulae
(2.12,13) are better than formulae (2.14,15), when the pipes are insulated.

Werner [26] derived, based on a displacement of the line sources, a formula for the
heat loss from two identical non-insulated pipes in the ground. The displacement was
done in both the z- and y-directions. The magnitudes of the displacements were found by
considering the temperatures at four points on the pipe circle. Werner had to approximate
the complicated equations to be able to calculate the displacements. For insulated pipes
he just added the insulation to the total thermal resistance. The formula is, in spite of
these simplifications, long and complicated. Werner’s formula is therefore not studied in

this report.

2.5 First-order approximation

With the use of multipoles of the first order, the new formulae (2.17,18) for the thermal
resistances from two pipes in the ground are calculated. The derivation of (2.18) is made
in detail in section B.6. The derivation of (2.17) is very similar so it is not included in
this report.

2
27\, R, = In ( h
’ D B+ (5)

(]

2 )2 4 (1e)? 4 1o’
H)+ﬁ+1n( 1+(£) _Gp) ) e g

To V2 ro \2 3ro?
2H H 2 LoV L (12} e sle
27\, R, = In +8-In{y/1+ (=) | - @) + a) ~ iy (2.18)
r D 1+6 (19. 2
o 1-3 2D
The first three terms to the right are the zero-order multipole formula (2.12,13). The
fourth term is the first-order multipole compensation. These formulae are derived with
the use of a slight approximation for the mirror multipole above the ground surface. The
error of this approximation decreases, when the depth or H/D increases. The fourth term

in both (2.17) and (2.18) will approach zero when 3 approaches the value 1.

2.6 Errors of different methods

The multipole program of [2] can calculate the solution to the problem in Figure 2.2 with
arbitrary accuracy. In Tables 2.1-7 the order of the highest multipole is 10. Then, the
relative errors in the calculations of the heat losses are less than 0.001%), i.e. a relative error
of 107°. Tables 2.1-7 show the error made, when the heat losses g, and ¢, are calculated
with formulae (2.12,14,17) and (2.13,15,18), respectively. The error is expressed in per
cent. If it is less than 0.001 % the error is set to 0.0 % Tables 2.1-2 show the error made
when the heat loss ¢, of the symmetrical problem is calculated with the different formulae.
In Table 2.1 the ratio r,/r; is 1.5 and in Table 2.2 this ratio is 2.0.
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[ r/H=10]07 [05 03 Jo1 | [

(2.14) 128 [6.60 [49 [3.6 |23 |[r./D=1.0
(2.12) || 6.86 | 5.43 |4.41 |[3.48 |2.72
(217) || 168 |1.80 |1.64 |1.40 |1.13
886 |3.40 |2.16 |1.31 |[0.78 0.7
308 [223 |1.65 |1.15 |0.78
0.210 | 0.087 | 0.13 | 0.11 | 0.076
799 |2.66 |153 |0.80 |0.37 0.5
222 [148 |1.03 |0.64 |037
0.27 |0.032 | 0.019 |0.026 |0.016
749 | 220 |1.14 |050 |0.15 0.3
1.72 [ 1.02 |0.63 |0.34 |0.15
0.24 | 0.050 | 0.0093 | 0.0023 | 0.0021

Table 2.1. The relative error in per cent for the formulae
(2.12,14,17) to calculate g,. (r,/r; = 1.5, \;/A, = 1/30; 8 = 12.16)

[r/H=10]07 05 J03 Jo0I | |
(2.14) [ 7.99 [ 442 [338 [259 [2.04 | r,/D =10
(2.12) | 4.56 | 3.70 |3.07 |249 |2.03
(217) | 116 | 1.28 |1.20 |1.04 |0.87
531|217 141 |0.88 |0.57 0.7
1.97 | 146 | 110 [0.78 | 0.56
0.17 | 0.045 | 0.083 | 0.075 | 0.054
477167 099 |054 |[0.28 0.5
141 [0.96 |0.68 |0.44 |0.27
0.20 | 0.030 | 0.0097 | 0.017 | 0.011
445|137 [073 |033 |0.10 0.3
1.09 | 0.66 | 041 [0.23 |0.10
0.17 | 0.038 | 0.0079 | 0.0012 | 0.0014

Table 2.2.  The relative error in per cent for the formulae
(2.12,14,17) to calculate g;. (r,/r; = 2.0, X\;/A, = 1/30; B = 20.79)

The error decreases when the insulation increases. Note that in Tables 2.1-2 the error
decreases faster for increasing D than for increasing H. The reason for this is that the
symmetrical problem of two pipes in an infinite surrounding is a more difficult problem
than the anti-symmetrical one, see section 3.6 and 4.3. The error when calculating q,,
which is an anti-symmetrical problem for four pipes, is thus in general less than the error

The error of the zero-order multipole formula (2.12) is about half the error of the
traditional formula (2.14). The error of the first-order multipole formula (2.17) is about
one tenth of the error of the traditional formula. A typical problem for district heating
mains may be: r,/H = 0.5, r,/D = 0.7 and r,/r; = 1.5. From Table 2.1 we see that
the error of the traditional formula (2.14) is 2.2 % ,the error of the zero-order multipole
formula (2.12) is 1.6 % and the error of the first-order multipole formula (2.17) is 0.13 %.
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Tables 2.3-4 show the error made when the heat loss ¢, of the anti-symmetrical prob-
lem is calculated with the different formulae. In Table 2.3 the ratio r, /riis 1.5 and in
Table 2.4 this ratio is 2.0. '

The error made when calculating ¢, is in general less than the error of g¢,.

| r/H=10]07 TJo0o5 TJ03 TJol | |
(2.15) 1 6.73 [1.99 [149 [139 [144 [r,/D=1.0
(2.13) | 0.82 [0.75 093 |1.21 |1.42
(2.18) 1 0.12 | 0.054 |0.042 | 0.060 | 0.081
6.59 [1.60 [091 [0.71 |0.74 0.7
0.75 [0.38 |037 |0.53 |72

0.014 | 0.017 |0.013 |0.020 |0.033
6.74 [1.58 [0.72 [0.39 [0.37 0.5
093 (037 |019 [0.22 |0.35

0.092 | 0.0046 | 0.0016 | 0.0039 | 0.0097
700 |1.73 [0.74 [024 [0.13 0.3
121 [0.54 |0.22 |0.068 |0.11

0.16 |0.022 |0.0032 | 0.0 0.0011

Table 2.3. The relative error in per cent for the formulae
(2.13,15,18) to calculate ¢,. (ro/r; = 1.5, X\;/A, = 1/30; 8 = 12.16)

| ro/H=10]07 TJ05 J03 J01 | |
(2.15) 1391 [1.20 |091 [087 [090 [r,/D=10
(2.13) || 0.51 | 047 |0.58 |0.76 |0.89
(2.18) || 0.068 | 0.030 | 0.021 | 0.032 |0.047
3.85 [0.97 |0.56 [0.45 [047 0.7
047 1024 [024 |0.34 |046
0.015 | 0.0098 | 0.0070 | 0.011 | 0.020
3.95 [096 |[044 [025 [0.24 0.5
0.58 [024 [012 |0.14 |0.23

0.069 | 0.0048 | 0.0 0.0022 | 0.0060
413 [1.06 [0.46 |0.15 [0.084 0.3
0.76 |0.46 |0.14 |0.045 |0.072
0.11 |0.018 |0.0028 | 0.0 0.0

Table 2.4. The relative error in per cent for the formulae
(2.13,15,18) to calculate g,. (ro/r; = 2.0, \;/A, = 1/30; B = 20.79)

From Table 2.3 we see that for the typical problem above (r,/H = 0.5, 7,/D = 0.7 and
ro/ri = 1.5) the error of the traditional formula (2.15) is 0.91 % , the error of the zero-
order multipole formula (2.13) is 0.37 %. and the error of the first-order multipole formula
(2.18) is 0.013 %. Table 2.5 shows the error of (2.12-15,17,18) in the most critical case
when the two pipes are in contact with the surface and each other, H = r, and D = r,.
The thermal resistance parameter 3 is varying.

47



ds Ga

(2.14) (2.12) I (2.17) || (2.15) [ (2.13) I (2.18)

B =256 1 661 |3.84 0.99 3.17 0.42 0.055
12.8 || 12.24 | 6.62 1.63 6.39 0.78 0.11
6.4 || 21.35 | 10.04 | 2.36 12.97 | 1.36 0.22
3.2 || 34.03 | 12.12 | 2.97 26.83 | 2.04 0.41
1.6 || 48.01 | 9.14 3.16 58.55 | 2.09 0.68
0.8 || 57.74 | 1.69 2.06 151 0.43 0.82
0.4 || 56.20 | 19.00 | 2.64 1183 | 8.13 0.097
0.2 || 40.40 | 38.10 | 13.05 | 392 21.60 | 4.05
0.1 | 14.99 | 54.94 | 28.20 || 212 38.08 | 13.04

Table 2.5. The relative error in per cent for the formulae
(2.12-15,17,18) to calculate ¢, and ¢,. (H =r,, D =1,)

The errors of (2.17) and (2.18) in Table 2.5 become zero and change signs somewhere
between § = 0.8 and § = 0.4. The errors of (2.12,13) become zero and change signs
somewhere between 8 = 1.6 and § = 0.8. Table 2.6 shows the error of (2.12-15,17,18)
when the two pipes are in contact with each other and the depth is twice the radius,
H =2-r, and D =r,. The thermal resistance parameter 3 is varying.

qs Ga
(2.14) (2.12) ! (2.17) || (2.15) [ (2.13) l (2.18)
B =256 | 287 | 2.62 1.03 0.75 0.48 0.016
12.8 || 4.76 | 4.28 1.61 1.42 0.89 0.039
64 | 6.79 |592 2.08 2.55 1.54 0.098
3.2 1759 |6.20 2.07 4.15 2.24 0.24
1.6 | 5.78 | 3.85 1.47 5.50 2.14 0.51
0.8} 1.64 |0.71 0.61 4.52 0.72 0.63
04 | 3.05 |5.65 0.25 1.59 8.54 0.65
0.2 | 6.85 | 9.55 0.97 13.77 | 21.42 | 5.74
011934 |12.08 |1.49 29.63 | 36.79 | 16.25
0.05 || 10.77 | 13.55 | 1.83 45.64 | 51.61 | 30.78

Table 2.6. The relative error in per cent for the formulae

(2.12-15,17,18) to calculate ¢, and ¢,. (H =2-7,, D =

Ts)
The errors of (2.14,17) and (2.15,18) in Table 2.6 become zero and change signs somewhere
between 8 = 0.8 and § = 0.4. The errors of (2.12,13) become zero and change signs

somewhere between 8 = 1.6 and # = 0.8. Table 2.7 shows the error of (2.12-15,17,18)
when H =2 -7, and D = 2-r,. The thermal resistance parameter # is varying.
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qs Ga
(2.14) (2.12) i (2.17) (2.15) l (213) (218)
B =256 0.82 | 0.57 |0.0074 | 0.36 0.10 0.0
12.8 || 1.47 | 0.99 0.018 0.69 0.18 0.0015
64 | 2.38 | 1.51 0.042 1.24 0.30 0.0039
3.2 | 3.25 1.80 0.085 2.05 0.38 0.0091
1.6 || 3.37 | 1.22 0.12 2.99 0.28 0.015
0.8 2.19 | 0.605 | 0.076 3.73 0.18 0.011
0.4 || 0.096 | 3.16 0.10 4.04 097 |0.015
0.2 | 2.00 | 5.51 0.36 4.01 1.81 0.058
0.1 3.54 | 7.19 0.59 3.85 2.46 0.10
0.05 || 4.48 |8.20 |0.75 3.72 2.88 0.13

Table 2.7. The relative error in per cent for the formulae
(2.12-15,17,18) to calculate ¢; and ¢,. (H=2-7,, D =
2-7,)

The error of (2.14) in Table 2.7 becomes zero and changes sign somewhere between 4 = 0.4
and B = 0.2. The errors of (2.17,18) become zero and change signs somewhere between
B = 0.8 and B = 0.4. The errors of (2.12,13) become zero and change signs somewhere
between f = 1.6 and = 0.8.

The relative error of the traditional formulae (2.14,15) for the heat loss (¢;) in the
symmetrical problem is typically less that 5%. The error of the zero-order multipole
formulae (2.12,13) for the heat loss is typically less than 3%. The error of the first-order
multipole formulae for the heat loss is typically less than 0.1%. The error of the formulae
for the heat loss (g,) in the anti-symmetrical problem is typically half of the error in the
symmetrical problem.

2.7 Asymptotic behaviour

For a large depth H, the first-order multipole formula (2.17) for the symmetrical problem,
will have the following behaviour :

. (@H) (35)°
27A,R, ~ In ( ) P o (5 (2.19)

H— o

This formula is the same as formula (4.3) for the thermal resistance associated with the
problem of two pipes with the same temperature inside a large pipe with the large radius
r. = 2- H. This problem is studied in section 4. Calculations made with the multipole
program of [2] show that the heat loss from two pipes in the ground with the same tem-
perature, approaches the heat loss from two pipes inside a large pipe with the radius 2- H
, when the depth increases. For a large depth H, the first-order multipole formula (2.18),
for the anti-symmetrical problem, will have the following behaviour :
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(25)°

)
Y] .2_.D(.2'_o_)2 (2.20)
1-8 2D

2D
To

QWAgRamln< >+ﬂ-

H — oo

This formula is the same as formula (3.8) for the thermal resistance for a pipe in the
ground at the depth D. This problem is studied in section 3.

Calculations made with the multipole program of [2] show that the heat loss from one
pipe in the anti-symmetrical problem of two pipes in the ground, approaches the heat loss
from one pipe in the ground with the depth D , when the depth H increases.

2.8 Examples

Five examples are chosen from different manufactures of Swedish district heating pipes
(Ecopipe, Ecoflex, [26]). Table 2.9 shows the errors of the traditional formulae and the
multipole formulae for these five particular cases. The figures in Table 2.9 are calculated
for two pipes in the ground with the following data :

Ty = 90 °C

T = 55°C

T() = 8 OC

X = 0.04 W/mK
), = 1.5 W/mK

The exact values of g, are calculated with the multipole model program of [2]. The thermal
insulation is replaced by a surface resistance, see Figure 2.2. The order of the multipoles
has been 10. This means that the error for ¢, is less than 0.001%.

(o) [r(m) [ H(m) | D) [ g (W/m) [ ervor @I0)(%) [ 212) (%) [ @IN(%) ]

0.394 | 0.3048 | 0.994 | 0.50 49.48 2.37 2.00 0.27
0.344 | 0.2540 | 0.944 | 0.46 43.06 1.80 1.55 0.18
0.100 | 0.0450 | 0.600 | 0.20 18.06 0.25 0.23 0.01
0.080 | 0.0200 | 0.580 | 0.18 10.87 0.12 0.05 0.00
0.400 | 0.2500 | 0.900 | 0.50 30.17 1.77 1.50 0.20

Table 2.9. The error in per cent for g,.

When the pipes are insulated is the error of the zero-order multipole formula always less
than the error of the traditional formula. The error of the traditional method (2.14) is
not so large but, since the multipole formula is only slightly more complicated, one can
just as well use (2.17) to be on the safe side.
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3 Heat loss from one pipe
in the ground

There is one insulated pipe in the ground. There is an insulation between the radius r;
and r,. The temperatures in the pipe and on the surface are known and constant. The
steady state heat conduction equation (1.1) is to be solved. The problem is described in
Figure 3.1. We have here, contrary to the previous case, included a heat transfer coeffi-
cient o, (W/m?K) between the air and the ground surface.

Figure 3.1. One pipe in the ground.

H = Depth between the ground surface and the center of the pipe (m)
To = Outer radius of the pipe (m)

; = Inner radius of the pipe (m)

Ag = Thermal conductivity of the ground (W/mK)

A; = Thermal conductivity of the insulation (W/mK)

1/, = Surface resistance from ground to air (m?*K/W)

To = Temperature of the surface (°C)

T = Temperature in pipe 1 (°C)

¢ = Heat loss from pipe 1 per meter (W/m)

The heat loss ¢; is proportional to the temperature difference T; — Ty. We may write:
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- Tl - TO
ql - Ra

Here is R, (mk/W) the thermal resistance from the pipe to the ground surface. The
subscript a denotes that the problem is anti-symmetrical with respect to the ground
surface.

There are two often used approximations concerning a pipe in the ground. The first
one is the replacement of a surface resistance from the ground to the air with an equivalent
layer of soil. The second one is the replacement of the thermal insulation of the pipe with
an equivalent surface resistance. The multipole program of [2] can solve the simpler
problem of a surface resistance replacing the thermal insulation. The multipole program
of [3] can however solve the real problem of a thermal insulation with a finite width. The
program of [3] is used to calculate the error in this section 3.

(3.1)

3.1 Approximation of the surface resistance

The surface resistance from ground to air (1/a,) is approximated with an equivalent thin
layer of soil (d) with the same thermal resistance to the air. We have:

Q=2 (3.2)

Q,
Heff =H+d

This effective depth (Hcsy) is then used instead of H in all the formulae if the surface
resistance should be accounted for.

In Appendix A it is proved that the error due to this approximation is small if the
surface resistance is not too large. The error is typically 0.01 % or less.

3.2 Approximation of the insulation

The thermal insulation of the pipe is often replaced by a surface resistance. The problem
is described in the complex plane in Figure 3.2.
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Figure 3.2. One pipe in the ground without
insulation thickness.

The thermal surface resistance is described by the dimensionless thermal resistance pa-
rameter 3 from (2.2):

Ag To
p=5tm ()

The boundary condition of the pipe becomes with the same polar coordinates as in (1.6):

z=z+1y (3.3)

2z —iH = pe'?

T—ﬂro%z:Tl p=T, 0<y < 2r (3.4)
P

The error for the heat loss ¢;, when the thermal insulation is replaced by a surface
resistance, is shown in Table 3.1-2. This error is calculated with the multipole program
of [3]. The order of the highest multipole has been 20, in which case the relative error in
the heat loss is less than 1077.

| ro/ri=15]2.0 [ 4.0 | 8.0 |

X/, =1.07]0.49 0.99 1.80 2.04
0.5 0.34 0.56 0.81 0.85
0.1 ]0.050 ]0.059 [0.061 |0.056
0.05]0.014 [0.017 [0.017 ]0.013
0.03 || 0.0063 | 0.0066 | 0.0062 | 0.0056
0.01 || 0.00086 | 0.00077 | 0.00073 | 0.00067

Table 3.1. The relative error in per cent when the insu-
lation approximation (3.4) is used. (r,/H = 0.8).
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The error of the insulation approximation arises from the fact that the flow in the tan-
gential direction in the insulation is neglected. The approximation will therefore give a
smaller heat loss than the real problem. If the ratio A;/), is greater than ~ 0.1 the error

- will-increase for increasing thickness of the insulation in Table 3.1. If the ratio is less than.

~ 0.1 the error will decrease for increasing thickness of the insulation. The magnitude of
the error is obviously influenced by counteracting effects.

ro/H | error (% )
0.99 | 0.022
0.90 | 0.020
0.80 |0.017
0.60 | 0.010
0.40 | 0.0053
0.20 | 0.0016
0.10 | 0.00068

Table 3.2. The relative error in per cent when the insulation ap-
proximation (3.4) is used. (r,/r; =4, A\;/\i = 20; B = 27.72).

The error of the insulation approximation is for most applications small. For a pipe in
the ground with A;/A, = 0.04/1.5 = 0.03 and r,/ H < 0.8, the error is about 0.006 %.

3.3 Zero-order approximation

With the use of a line source and a mirror sink without multipoles, the thermal resistance
becomes:

2H

To

2w\, Ry = ln( ) + 8. (3.5)
This formula is not derived in this report, but the derivation is identical to the derivation
of the first-order multipole formulae (3.8) with the multipoles omitted.

Instead of the thermal resistance 8 one can use a small pipe (r,*) with an equivalent
thermal resistance to earth :

2g
To =T, (ﬁ) C=ref (3.6)
To
27 By = In (2H )
TO

This is just another way of writing (3.5). The advantage of this is that it is now possible
to use formulae for non-insulated pipes. This is done in [20] for more than one pipe in
the ground.

3.4 Traditional method

The traditional method to calculate the thermal resistance is [9],[10] and [13]:
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H 2
27A,Ro = In (5+ (5) -1] +8 (3.7)

To

This is the exact solution if § = 0. It is a displacement of the line source from the center
of the pipe. This displacement is independent of 8, but when S increases the displacement
should decrease as in (3.9). Therefore (3.5) is better when the pipe is insulated and (3.7)
is better when the pipe is non-insulated.

3.5 First-order approximation

The new formula (3.8), for the thermal resistance between a pipe and the ground, is
calculated with the use of the first-order multipoles :

2H 1
27\, R, = In ( ) Ot s (3.8)
o 1 - ()L

The derivation of (3.8) is made in Appendix B.3. The first two terms on the right side
give the zero-order approximation (3.5). The third term is the first-order compensation.

With a displacement of the line source it is possible to calculate the temperature
field for an insulated pipe up to the variation of the first order. With the use of this
displacement 6 of the line source the thermal resistance becomes :

97\, R, = In (QH + 5) iy (3.9)

To

1—=8/7r,\?
5"H(\/1" 1+ﬂ<H) _1)
This formula is derived in Appendix B.4. Note that the displacement § depends on the
insulation. Formula (3.9) will become identical to the traditional formula (3.7) when £ is
set to zero. Formula (3.8) and (3.9) are both obtained by making the first-order variation
become zero on the pipe. In formula (3.8) this is done by adjusting the strength of the
first-order multipole, see (1.6). In formula (3.9) this is done with a displacement of the
line source from the center of the pipe. Therefore, as the comparison below will confirm,

formula (3.8) and (3.9) will have the same behaviour.
It is also possible to express formula (3.8) as a displacement of the line source:

2H + &
+ >+ﬁ

(3.10)

To

27d¢R, = 1n (

5 = 2H (6(1_%(%)2)—1 _ 1)

In Table 3.3 the ratio between é and é* is listed for different values of 3.
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[ H/r,=10 |20

[3.0

4

=0 | 1.764

1.039

1.015

0.5 || 1.056

1.011

1.005

2 0.967

0.990

0.996

4 1 0.951

0.983

0.992

8 || 0.943

0.979

0.990

16 || 0.939

0.977

0.989

32 | 0.937

0.975

0.988

64 {| 0.936

0.975

0.988

128 || 0.936

0.974

0.987

10° ][ 0.935

0.974

0.987

Table 3.3. §/6* for different values of 8 and H/r,.

The ratio between R™ of the multipole method and R¥*? of the displacement method

18 !

Ry () 4§+ 1n (1 +45)

Rs» 1n(-2;§1-) +B8+1n (1 + -2—%)

In Table 3.4 the expression 100 - (R /Rdisp — 1) is listed for different 8 and H/r,. From
Table 3.4 it is clear that the multipole method of the first order and the displacement of
the line source are very similar. When the insulation is zero the displacement method

will however give the exact solution.

| H/r,=10 [20 | 3.0
B=0| o0 0.203 0.0250
0.5 || 0.486 0.0129 | 0.00197
2 | 0.0873 | 0.00579 | 0.00108
4 11 0.126 0.0110 | 0.0.00222
8 || 0.0977 | 0.0101 | 0.0.00215
16 || 0.0601 | 0.00683 | 0.00151
32 || 0.0333 | 0.00397 | 0.0
64 || 0.0175 | 0.00214 | 0.0
128 || 0.00897 | 0.00111 { 0.0

Table 3.4. 100
B and H/r,.

- (Rmult | Rdisp — 1) for different values of
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3.6 Second-order approximation

With the use of multipoles up to the second order the thermal resistance becomes:

27A, Ry = (3.12)

[ 1A+B8)(1-28) 16y
”5(1—&)(14-2@(55) 2(1 +28)

(2 (1-28) 1 3\ (1+f) (1—=28), r ]
1“((7?) 3(1+2ﬂ)(2ﬂ))(l—ﬂ)—(1+2ﬂ)(5ﬁ)}

This formula is derived in Appendix B.5. The calculations are longer than for the deriva-
tion of the first-order approximation (3.8), but not essentially more complex.

3(1— 25)(27},{) }

3.7 Errors of different methods

We have introduced four different formulae to calculate the heat loss from one pipe in the
ground:

(3.7) = traditional method

(3.5) = zero-order multipole method
(3.8) = first-order multipole method
(3.12) = second-order multipole method

The errors of the formulae above, compared to the exact solution calculated with the
multipole program of [3], are listed in Table 3.5. The problem is described in Figure 3.1,
the surface resistance from ground to air is zero. If the error is less than 0.001% the error
is set to zero.
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{ ro/H = 0.9 | 0.7 0.5 | 0.3 | 0.1 |
(8.7) || 7.80 3.77 1.65 0.538 0.0500 | r,/r; =1.2
(3.5) | 2.10 1.26 0.622 0.210 0.0203 | (8 = 5.47)
(3.8) || 0.140 0.0644 | 0.0179 | 0.00184 | 0.0
(3.12) || 0.00151 | 0.0 0.00178 | 0.0 0.0
3.85 1.93 0.895 0.300 0.0304 1.5
1.19 0.741 0.379 0.134 0.0139 (12.16)
0.0603 | 0.0287 | 0.00768 | 0.0 0.0
0.00498 | 0.00423 | 0.00291 | 0.00116 | 0.0
2.32 1.19 0.560 0.191 0.0199 2.0
0.751 0.473 0.245 0.0880 | 0.00938 (20.79)
0.0310 | 0.0147 | 0.00329 | 0.0 0.0
0.00760 | 0.00538 | 0.00331 | 0.00129 | 0.0
1.18 0.614 0.293 0.101 0.0108 4.0
0.393 0.250 0.131 0.0475 | 0.00518 (41.59)
0.0113 | 0.00460 | 0.0 0.0 0.0
0.00809 | 0.00570 | 0.00334 | 0.00131 | 0.0
0.794 0.413 0.198 0.0686 | 0.00737 8.0
0.265 0.169 0.0888 | 0.0324 | 0.00353 (83.18)
0.00552 | 0.00170 | 0.0 0.0 0.0
0.00747 | 0.00523 | 0.00308 | 0.00115 | 0.0
Table 3.5. The relative error in per cent for formulae

The errors will increase if the thermal conductivity of the insulation increases, as in

Table 3.1.

The error of formula (3.8) will always be lower than 0.140 % if the ratio between the
radius and the depth (r,/H) is less than 0.9, if the ratio between the outer and inner
radius is greater then 1.2 and if the ratio between the thermal conductivity of the ground
and the insulation (A;/X;) is greater then 30. The error is for this case at least 50 times

(3.7,5,8,12).(A,/X; = 30)

less than for the traditional formula (3.7).

The error of the traditional method to calculate the heat loss from one pipe in the
ground is for district heating mains typically less than 1%. The error of the first-order
multipole formula is typically less than 0.05% and the error of the second-order multipole

method is typically less than 0.01%
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4 Heat loss from two pipes to
a large pipe

In section 2 it was stated that the heat loss from two pipes in the ground with the same
temperature approaches the heat loss from two pipes inside a large pipe with the radius
r. = 2+ H, when the depth increases. In this section 4 the heat loss from two pipes inside
a large pipe to the large pipe is studied. The outer boundary condition is in this case
that the temperature is constant on the large pipe instead of on the ground surface. The
problem is thus that there are two insulated pipes, with the insulation parameter 3, inside
a large pipe, see section 2.1. The temperature is T, in both pipes. It is T, on the large
outer pipe.

Figure 4.1. Two pipes in a large pipe.

The heat loss ¢, is proportional to the temperature difference T, — T,. We may write:

_ Ts - Tc
qs = R,

Here is Ry (mK/W) the thermal resistance from one of the pipes to the large pipe.

(4.1)
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4.1 Zero-order approximation

The zero-order approximation uses only the line source and a mirror sink. The zero-order
approximation of the thermal resistance becomes :

2
27 Ay Ry = In (2D ) +4 (4.2)

4.2 First-order approximation

The thermal resistance becomes with use of multipoles of the first order:

1

)

(4.3)

2rAgRs = In (

The derivation of (4.3) is not included in this report. But the derivation is very similar
to the derivation of (3.8), which is made in Appendix B.3. The temperatures and the
multipoles are here symmetrical and not anti-symmetrical as in the problem of one pipe
in the ground, (3.8). With a displacement of the line source it is possible to calculate the
temperature on the insulated pipe up to the variation of the first order. With the use of
this displacement é of the line source the thermal resistance becomes :

2

97\, R, = In ((2-5’3_—1_—5)—--) +5 (4.4)

§=D (\/H%(-ﬁ)z—-l)

The derivation of (4.4) is not included in this report. But the derivation is very similar
to the derivation of (3.9), which is made in Appendix B.4 Formula (4.3) and (4.4) are
both obtained by making the first-order variation become zero on the pipe. In formula
(4.3) this is done by adjusting the strength of the first-order multipole, see (1.6). In
formula (4.4) this is done with a displacement of the line source from the center of the
pipe. Therefore, as the comparison below will confirm, formula (4.3) and (4.4) will have
the same behaviour.
It is possible to express formula (4.4) as a displacement of the line source :

2
9\ R = (M) + (4.5)

6*:2D((1+ JCI 1)

In Table 4.1 the ration between é and 6* is listed for different values of 3.
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[Dfr,=10 [20 [30 [40 |
B =1010.935]0.974 [ 0.987 [ 0.993
0.5 || 0.967 [ 0.990 [ 0.996 | 0.997
2 || 1.056 | 1.011 [ 1.005 | 1.003
4 [[1.136 [ 1.021 | 1.009 | 1.005
8 | 1.232 [ 1.029 [ 1.012 | 1.006
16 || 1.333 | 1.033 | 1.013 | 1.007
32 |[1.426 | 1.036 | 1.014
64 || 1.506 | 1.037 | 1.015
128 | 1.572 [ 1.038 | 1.015
10% [ 1.739 [ 1.039 | 1.015
10° || 1.761 [ 1.039 [ 1.015

Table 4.1. §/6* for different values of 8 and D/r,.

The ratio between R7™% of the multipole method and R%*? of the displacement method

182
2

() 5+ )
disp ~ T
R In(3)+8-n(1+5)
In Table 4.2 the expression 100 - (1 — R™/R%) is listed for r./r, = 100.

| D/ro=1.0]20 [30 |
B=1]0.14 ]0.019 [0.0046
0.5 || 0.027 | 0.0024 | 0.0052
2 ]10.050 [ 0.0024 | 0.0047
41021 [0.0071 | 0.0013
810.39 |0.0095 | 0.0017
16 [ 0.46 [0.0084 | 0.0014
32 ] 0.41 |0.0058 | 0.0
64 029 [0.0035 0.0
128 [/ 0.18 | 0.0019 | 0.0

(4.6)

Table 4.2. 100 - (1 — R™!t/ R%sP) for different values of
B and D/r,. (r./r, = 100)

It is clear that the multipole method of the first order and the displacement of the line
source give similar thermal resistance except when the pipes are in contact with each
other.

4.3 Errors of different methods

The errors of formulae (4.2) and (4.3) are listed in Table 4.3. The radius of the large pipe
is 7. = 1000 - r,. The exact solution is calculated with the multipole program of [2], with
the use of multipoles up to order 10.
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[7./D=10 [09 [07 [05 [01 |

(4.2) [ 1.60 [1.36 |0.891 |0.486 |0.0231 | r./r; =10

(4.3) | 0.0775 | 0.0660 | 0.0367 | 0.0126 | 0.0 (8 =0)
0.122 [ 0.0669 | 0.0211 | 0.00520 | 0.0 1.0339
0.122 |0.0669 | 0.0211 | 0.00517 | 0.0 (1.0)
1.83 | 1.06 |0515 |0.237 |0.00024 15
0.762 |0.239 | 0.0495 | 0.00936 | 0.0 (12.16)
1.533 | 0.864 | 0413 |0.189 |0.00723 2.0
0.661 |0.197 |0.0394 | 0.00742 | 0.0 (20.79)
1.0341 | 0.570 | 0.260 | 0.122 | 0.00480 4.0
0.460 |0.131 | 0.0254 | 0.00475 | 0.0 (41.59)

Table 4.3. The relative error in per cent for formula

(4.2,3).(A, /X = 30)
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5 Summary

With the use of the multipole method, approximate formulae with successively increasing
accuracy can be calculated for the heat flow to and between pipes. In this report new
and better formulae have been derived for the heat loss from two identical pipes in the
ground and the heat loss from one pipe in the ground.

The new and the traditional formulae for these heat losses have been studied with
the multipole programs [2] and [3]. The errors of the formulae have been calculated for
different values of the used parameters.

5.1 Heat loss from two pipes in the ground

There are two insulated pipes in the ground. The radius and insulation are identical for
the two pipes. The insulation lies between the radii r; and r,. The temperatures in the
pipes and at the ground surface are given and constant. The steady-state heat losses from
the pipes are to be calculated. The problem is described in Figure 5.1.

Figure 5.1. Two pipes in the ground.

H = Depth from the ground surface to the center of the pipes (m)
D = Half the distance between the center of the pipes (m)

To = Outer radius of the pipe (m)

T; = Inner radius of the pipe (m)

Ag = Thermal conductivity of the ground (W/mK)
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i = Thermal conductivity of the insulation (W/mK)

To = Temperature on the ground surface (°C)
Ty = Temperature in pipe 1 (°C)
Ty = Temperature in pipe 2 (°C)
q = Heat loss from pipe 1 per meter (W /m)
g2 = Heat loss from pipe 2 per meter (W/m)

The problem is separated in a symmetrical and an anti-symmetrical part, see Figure 2.3.

The symmetrical problem has the temperature T in both pipes and Ty at the ground

surface:

T+ T,
2

The heat loss ¢, from one of the pipes in the symmetrical problem is proportional to the
temperature difference Ty — Tp. We may write :

Ts B TO
q prosed
s Rs
Here R, (mK/W) is the thermal resistance associated with the symmetrical problem.

The anti-symmetrical problem has the temperature T, and —T, in the two pipes and
zero at the ground surface:

T, = (5.1)

(5.2)

- T
7 -n-D (5.3)
2
The heat loss ¢, from the pipe with T' = T, is proportional to T,. We may write :
Ty
= — 5.4
G =5 (5.4)

Here R, (mK/W) is the thermal resistance associated with the anti-symmetrical problem.
The original problem is the sum of the symmetrical and anti-symmetrical problems. We
have in accordance with Figure 2.3 :

G =¢qs+ 4o (55)
42 = qs — qq (56)

The zero-order multipole formulae for the thermal resistances for the symmetrical and
anti-symmetrical problems are:

p
27\, R, = In (2H) +8+In ( 1+ (%) (5.7)
2H H\?
220, R =1 - )+8-1n ( 1+ (5) (5.8)
Here f3 is the dimensionless thermal resistance parameter from (2.2) :
Ag o
p=52mm (%) (5.9)
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The first-order multipole formulae for the thermal resistances for the symmetrical and
anti-symmetrical problem are :

9H H\? o2 4 (1) 4 1o
21A,Rs =1n ( - ) +B8+In ( 1+ (E) _ (s5) ;_J,E;H) &4§D2+H2) (5.10)
2 1-8 +(2D

(5.11)

T l‘_g’ 7 2
2H) +8—1In ( 1+ (H)2 - (35)" + )" — sy

27d¢R, =1In ( - T2
D - Gp

To

The relative errors in the heat loss, when the traditional formulae are used, are typi-
cally less than 5 %. The errors, when the zero-order formulae are used, are typically less
than 3 %. The errors, when the first-order formulae are used, are typically less than 0.5

%.

5.2 Heat loss from one pipe in the ground

There is one insulated pipe in the ground. There is an insulation between the radii r;
and r,. The temperatures in the pipe and on the surface are given and constant. The
steady-state heat loss from the pipe is to be calculated. The problem is described in
Figure 5.2.

Figure 5.2. One pipe in the ground.

H = Depth between the ground surface and the center of the pipe (m)
o = Quter radius of the pipe (m)

r; = Inner radius of the pipe (m)

Ay = Thermal conductivity of the ground (W/mK)

A; = Thermal conductivity of the insulation (W/mK)

1/a, = Surface resistance from ground to air (m*K/W)
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To = Temperature of the surface (°C)
T, = Temperature in pipe 1 (°C)
Q1 = Heat loss from pipe 1 per meter (W/m)

The heat loss ¢y is proportional to the temperature difference 77 — Tp. We may write :
Ty~ Ty
q oot
1 R

Here is R, (mK/W) the thermal resistance from the pipe to the ground surface. The
zero-order multipole formula for the thermal resistance is :

(5.12)

2H
97\, Ra = ln( ) +8 (5.13)
The first-order multipole formula for the thermal resistance is :
2H 1

The second-order multipole formula for the thermal resistance is :

27 R, = (5.15)

(L+8)(1=28) 0\, 3(1L—26) 1o )4}_

w
g aee e aen) o

[ ((2H)_(1=28) o 2\ (148)  (1-26) 7 4]
1_((%) (1+25)(23))(1-—ﬁ)—(1+2[3)(§§)}

The relative error in the heat loss, when the traditional formula is used, is typically
less than 1 %. The error, when the zero-order formula is used, is typically less than 0.5
%. The error, when the first-order formula is used, is typically less than 0.05 %. The
error, when the second-order formula is used, is typically less than 0.01 %.

5.3 Approximation of the insulation

The thermal insulation in Figure 5.2 is often replaced by a surface resistance described
by the dimensionless thermal resistance parameter 3, see (5.9). The error of this approx-
imation is typically 0.006 % for the ratio A;/A, = 0.03.

5.4 Approximation of the surface resistance

A surface resistance 1/a, is introduced between the ground surface and the air. This
resistance may be approximated with an equivalent layer of soil :

d=29 (5.16)

Qg
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Hy;=H+d (5.17)

The depth H,s; is used instead of H in the formulae. The error in the temperature field,
when this approximation is used, is typically less than 0.01%.
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Appendix A
Approximation of the surface

resistance

We will here calculate the error made when a thin layer of soil is used instead of a surface
resistance 1/a, (m*K/W) between the ground and the air.

A.1 Surface resistance

Consider a non-insulated pipe in the ground. The thermal conductivity between the
ground and the air is a,. The heat loss from the pipe is ¢;, see Figure A.1. With this
known heat loss we will calculate the temperature on the pipe T;.

Figure A.1. Pipe in ground with surface resistance.

H = Depth between the ground surface and the center of the pipe (m)
T = Radius of the pipe (m)

Ag = Thermal conductivity of the ground (W/mK)

1/a, = Surface resistance from ground to air (m?*K/W)

Ty = Temperature on the pipe (°C)
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@ = Heat loss from the pipe per meter (W/m)

The steady-state heat conduction equation for the temperature T'(z,y) is to be solved :
0T + o*T _
0z ' Oy

The boundary condition at the pipe is:

Tlp=r)=T1 p=\/22+(y—H)? (A.2)

The boundary condition at the surface is :

A, OT
T—ZE—?JJ y=0 (A.3)

0 (A1)

The temperature at a non-insulated pipe with the radius r; with a surface resistance
(1/cy) at the ground is according to [27] :

0 2H 2Hag 2Ha,
fprd — g . E .

i = 5o [ 2 2o (A)
With the assumption :

r < H
Where E,(z) is the exponent integral :

Ei(z) = /OO le‘ﬂ'”da: (A.5)

z X

A.2 Thin layer of soil

Consider the same problem as in Figure A.1, but instead of the surface resistance there
is a thin layer of soil, see Figure A.2.

T=0

ge

Figure A.2. Pipe in ground with total depth = H + d.
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The thickness (d) of the layer is chosen so that the thermal resistance is equivalent with
the surface resistance (1/a,) :

A,
d= o (A.6)

The temperature at the pipe becomes :
Tl* — q1 11'1(2(H+ d)

- 21, 1

_ 4 ?_{1__ /\9
)= g [0 +In(1 4 72) (A7)

With the assumption :
™ << H

A.3 Error estimation

The ratio between the temperature with a thin layer of soil and the temperature with a
surface resistance is 77" /7.

2

™1

K = In(=2) (A.8)

The dimensionless length parameter d will be used :

s Hoo H
d= W (A.9)

* -1 ~1
T] _ [ AI(I _ ln(lﬂ+ d A)] [ .I{l ) + 1] (AIO)
T 2e¥Ey(2d)  2e*E (2d) ] |2e* E1(2d)

With a dimensionless parameter 7 the ratio becomes :
_In(14d™Y)
262JE1(262)

T m m -

LI [-——L— - n} [——IL—-— - 1] (A.11)
T 2e?1F;(2d) 2¢? F,(2d)

For large d the following approximations are true [33]:

1

In(1+d7") ~ —— A.12
(4~ — (A12)
R R R e~2c§ 2
2¢*E,(2d) m 2e% . —— = — (A.13)
2d+1 2d+1
With (A.14) the parameter n becomes :
1 d-! 1 .
_+d7)  2o4 1 when d— o0 (A.14)

n= . SLANEN —
2€2dE1 (Qd) 20+ 2

75



This means that:

];1 — 1 when I{\C:a — 00 (A.15)

Table A.1 and A.2 shows 100 - (T} — T4*)/Ty and 100 - (1 — 5) for different values of d.

] d 150 J100 [150 [200 [250 |
100 - (1 —7) 0.4396 [ 0.1333 [ 0.0635 | 0.0370 | 0.0242 ri/H =0.9
100 - (Ty — Ty*)/Ty || 0.0820 | 0.0142 | 0.0047 | 0.0021 | 0.0011

Table A.1. 100 - (Ty — T1*)/Ty and 100 - (1 — 5)

] d 150 J100 [150 200 [250 |

100 - (1 — ) 0.4396 | 0.1333 | 0.0635 | 0.0370 | 0.0242 ri/H = 0.5
100 - (Ty — Ty*)/T3 || 0.0513 | 0.0086 | 0.0028 | 0.0013 | 0.0

Table A.2. 100 - (T} — 11")/T} and 100 - (1 — n)

According to [23] a usual value of «, is 14.6(W/m?K). A typical value of the thermal
conductivity of the ground (},) is 1.5(W/mK). This means that d is about H - 9.73, the
error in the temperature on the pipe is then approximately 0.01 %. Tables A.1-2 show
that the error decreases fast if the depth (H) increases.
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Appendix B
Derivation of the multipole formulae

The derivations of the different multipole formulae are very similar, and therefore only
the derivation of (3.8),(3.9),(3.12) and (2.18) will be described here.

B.1 The multipole problem

Consider the problem in Figure B.1. There are N pipes with different radii r,, and surface
resistance 3, inside a large pipe with the radius r, and surface resistance §,.. The surface
resistances are described by the dimensionless thermal resistance parameters 3, and 3.,
see (2.1-2). The temperature at the large pipe is T,. The temperatures in the pipes inside
the large pipe are T,,.

ﬂc Zy

B

B
B

Figure B.1. N pipes in a large pipe in the complex plane.

™

The stationary heat conduction equation for the temperature T'(z,y) is to be solved.
orr n o'r
oz Oy?

The problem is solved in the complex plane (2 = z + t1y). Here the imaginary unit is
denoted ¢ = v/—1. Polar coordinates will be used:

0 (B.1)
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z=g+iy=r-e?

The center of the pipe n is z,.

We will also use the local polar coordinates p,,t, from the center of any pipe n.
2 = 2, = ppetvn (B.2)
The boundary condition at each pipe n is:
or
T~ ﬁnrn'a_’g— =T, Pn = Tn, 0< zpn <2r (B3)

Inside each pipe n there is a line source with the strength ¢,,, and multipoles of strength
P, ;. The temperature field consists of these two parts and a constant temperature level
To.

T(z,y) =To+ Ty(z,y) + T(,y) (B.4)
. )
- qn Te
Tie,y) =R nz___:l 27 In (z — zn)_

[N oo r. il 00 2\J
T =R |23 R () | +R DR ()
[ n=1j=1 no ] J=1 ¢

The last terms are multipoles at infinity with the strengths P.;. For a more detailed
discussion of the multipoles see [1].

The temperature field satisfies the heat conduction equation because it is the real part
of a sum of analytical functions. The quantities Ty,q,,P, ; and P, ; are determined by the
boundary conditions. The expression (B.4) is inserted in the boundary condition of each
pipe.

The line source ¢, and the multipoles P, ; of pipe n can represent any solution of the
heat conduction equation in the region outside pipe n.

To solve the boundary condition problem of pipe m we must express the line sources
of the pipes and the multipoles in the local polar coordinates of pipe m. From [1] we
get these expressions. The number of the pipe with line source or multipole is n and the
number of the pipe whose boundary condition is to be satisfied is m.

R :ln (z __’jZm)] —In (ﬁ";) (B.5)
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e R e 8 o e el I

o[r(22)]- ®9
Rz B4 (G2 ]

Rro(2)] v [rag (1) et 39)

[+
These expressions are put in the boundary condition (B.3). For the boundary condition
of pipe m we get:

_ Gm o
T =T+ 55 (m (rm) + ﬂm) (B.10)

T S

+ ot

n;ém m " Zn Zn T Zm

£ YR [(1+ ) Prge™i3%m]

J=1

X SR | P ;’fz){”z““’m’”(“]l )(——Jw

n#Em j=1 Zm n

o0

+> R

i=1

Zm ] rmkzmj‘k i
P, (;—) + P, Z 1 —ﬁmk)( ) i wm}

C [

0<%y <27

The constant part of (B.10), independent of v, is:

_ m T G re
T — Ty = 522 (m (rm> +6m) + TR [%Ag In (Zm & zn) (B.11)

m=12...N

In the part of (B.10) depending on ,,, the summations are made over exponents with
both positive and negative signs. But only the real part of these expressions are used.
Therefore it is possible to complex conjugate the terms in order to get the same summa-
tion factors:
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R [ P eikwm} =R [me_iwm]

Equation (B.10), omitting the constant part (B.11), has now the following form:
0=% {Z Z. e_wm} = Y {R[Z] cos(kpn) + S [Zelsin(kpm)}  (B.12)
k=1 k=1

Here Z;. is a complex number. This equation should be valid for every t,,. This means
that all the complex numbers Z; must be zero. We have for any k:

0=(1+Buk)Pns+(1—Bnk)- { 27“5’; 715( Tm )k (B.13)

n#m Zn = Zm

Sp [ kHi=1\(_ra N[ _rm
+ZZP”’]( ]'._1 )(zm-——zn) (zn—zm)

n#m j=1

o0 . k., j—k
J T'm"™ Zm
+ Z Pc,lc ( k ) rck }

k=k

m=1,2....N k=12,...

There is also a set of equations for the outer pipe (r.). The result from the 1,, independent
part is:

Ty = (B.14)

— 27 )\
The part depending on t,, is listed in (B.17).

B.2 Final equation system

The equation systems (B.11,13,14) and the equation system for the outer pipe must all
be truncated. We consider multipoles at the pipes and at infinity up to order J. Here
is J a positive integer or in the lowest approximation zero, in which case only the line
sources are used.

The sine- and cosine-variation around the pipes and the outer circle can be made zero
up to order J only.

We get the following equation system:

=T =3 o R +§R[ZZP,J( >+ZPCJ(”:”>J} (B.15)

n#¢m j=1
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> 1- ﬂmk qn 1 T )k
0= Pt 7557 {m oy 75(2” = (B.16)
S (B ) (Y () o () et
n#m j=1 ™ =1 Zm ™ Zn Zn = Zm =k o rd
k=1,...J ]
— Bk [N 1(z)k
0=P, + 1T Bk {n=1 ESWAS (B.17)
>R ( ) ) Il
+ N Twin
n=1j=1 4 J-1 ro*
The thermal resistances RS, (K/(W/m)) in (B.15) are given by:
. 1
Rm = 5~ 5rh, <ln( m) + B +ﬂc) (B.18)
R = (I [T + B (B.19)
mn T 2?‘_/\!) n IZ an c .

These are the equations that completely determine the coefficients of the multipoles and
the line sources.

B.3 Derivation of (3.8)

We will here derive the multipole formula of the first-order for the heat loss from one
pipe in the ground. The problem of one pipe in the ground is equivalent to the anti-
symmetrical problem of two pipes in a large pipe. This problem is described in Figure
B.2. Consider two pipes in a large pipe. The temperatures in the pipes have the same
magnitude but opposite signs. The heat losses from the pipes are to be determined.
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N

Figure B.2. Two pipes in a large circle.

D

The positions of the pipes are

zy=-D zg=D (m) (B.20)
The pipes have the same radii and are equally insulated.

rL=T7, e =17, (m) (B.21)

The insulation is described with the dimensionless thermal resistance parameter B, see
(2.1-2). The temperatures are:

T =T, (K) (B.22)
T2 = "‘Ta
T.=0

This means that the heat losses from the pipes are:

1=¢% G=-¢ (W/m) (B.23)

The temperature field consists of two parts, the line source part (7,) and the multipole
part (71,).

T(z,y) = Ty(z,y) + Tp(z,y) (B.24)
— qo rc - Qa rc
Tof@,y) =R [27r)\g In (z + D) 2w, n (z - D)} (B-25)
_ % z—D
=% {%Ag In (z n D)]

Ty(a,y) = R [ P—s + P (B.26)

z+ D z—D
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Here is Py the strength of the first multipole of pipe 1 and P, is the strength of the first
multipole of pipe 2. There is also a multipole at infinity with the strength P, ;. But from

“(B.17) it is clear that the strength-of this multipole approaches zero when the radius r,..... .

increases. A temperature field consisting of these two parts satisfies Laplace equation
because it is the real part of a sum of analytical functions.
Due to the symmetry the temperature field must satisfy:

T(z) =-T(-%) (B.27)
2=z + 1y
Z=z—1y

This means that the strength of the multipoles must satisfy:

P=P (B.28)
The real and imaginary part of P, is called N, and M;:

Py = Ny + M, (B.29)

P, =N, —iM, (B.30)

The multipole part (B.26) becomes:

Tp(z,y) = [ T D] (B.31)

At pipe m the boundary condition described in polar coordinates is:

2= 2z + pmem (B.32)
T(Z) - rmﬂaan(Z) = Tm Pm = Tm (B33)

Here T, is the temperature at pipe m. The part of (B.33) not depending on 1,, is, from

(B.15):
=g gt (n(2) 1)+ 3 (0 (555) +rsles )

n#m
This is true for each pipe m. For m =1 and (B.23,30) we get:

_ qa Te
To=% [2%)\9 (l <ro) + ﬂ) 27r)\ ln ( 2D) +h QD} (B.35)
The large radius r. disappears and (B.35) becomes:
_ Qa 2D> ) N T
o (- (2) ) -7 -

Expressed in real parts equation (B.36) becomes:

qa 2D> B ) T,
27, (ln ( 7, B)+ M 2D
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The part of (B.33) depending on %y, is, from (B.16):
0=P,(1+p) (B.38)

+(1 - p) Z( b P ’""(2 )

. 2wy 2n — Zm

For m =1 and (B.23,30) we get:

2
_ B B € To 5 To
0=Til1+0)+ (- 5) (5 - B ) (B.39)
This produces two real equations:
0= Ny(1+8)+(1=p) (T To _nTe (B.40
- 21X, 2D " '4D? 40)
2
0=~MﬂLHﬂ+U~ﬂMLZ¥ (BAL)
- Equation (B.41) means that the imaginary part of the strength of the multipoles are zero.
N, is solved from (B.40).
e 7o 145 7'02 -
N“”mmgzD (1—5 4DJ (B.43)
When (B.43) is used in (B.37) one gets:
-1
4 w> 1H%wy
T = 555 (m(ro o (1 e (B.44)

The derivation of (4.3) for the symmetrical problem of two pipes in a large pipe is
very similar to the derivation of (3.8) made above. The temperatures for this symmetrical
problem are listed below:

T, =T, (B.45)
T?. = Tm
Tc = Tg

If the pipes are positioned as in Figure B.2, the temperature field must satisfy the following
equation:

T(z) =T(-%) (B.46)
This means that the strength of the multipoles must satisfy:
P =-P (B.47)
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The strengths of the multipoles at infinity will approach zero when the large radius r,
increases. The radius will however be included in the formula and not disappear as in the

equations above.

B.4 Derivation of (3.9)

The problem is the same as in the previous section B.3. There are two identical insulated
pipes in a large pipe, see Figure B.2. The temperatures in the pipes have the same
magnitude but opposite signs. The heat loss from the pipes are to be determined, see
(B.20-23).

The temperature field consists of two line sources. The positions of these line sources
are not in the center of the pipes.

9a Te 9a Te
- - 1 '
Twy) =R [270\9 . (z - 11> 21, ! (2 - 12)} o

b z—1
B 27&')\9% [ln (z - ll)J

Here [, and [, are the positions of the line sources.

11:—“-'—.0-(5

lo=D+6

With the formulae from [1] one can express (B.48) in polar coordinates with respect to

the center of pipe m.
zZ =2z, + pmeid’m

Here z,, is the center of pipe m and [, is the position of the line source.

Pm < lln - Zmla

ln( e ) =In ( T ) + i %(——ﬁ—m—Yeiwm (B.49)

(2] =i (o) 1) oo

i1 k Pm

The temperature field expressed in polar coordinates with respect to the center of pipe 1
is:

T(z + pre'?) = 57%—% [m (g-;) —~In () (B.51)
g

Loa) (L) - S (Y
e sk It ik
(Pl ‘ nzl—l2 ,?::k “216
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This expression for the temperature field is used in the boundary condition of pipe 1:

T(plawl) - ﬂrow =T,

6p1 P1 =T, (B52)
27w A r . 7T
T, - g::%{ln(—ﬁ)—-ln e —-ln( < ) B.53
Ga P1 ( ) 21— ( )
— 1 ll*zl)k —ik 1( P )k ik
+ —| ] T —| ———] "1
:L::lk( 4} kZ_::lk ly — 2
1 had ll——Zl)k( 1) —ikep oo( P1 )kl vk
—pPro§ —— + —— ] T Lo ) etk
4 { ~1 kz__:l( M ~1 ,; lo—2z1/ p
P1 =T,
L~z =6
lhb—21=2D+6

R[In(e)] = 0

It is possible to divide (B.53) in two parts, one part that depends on 1, and one part that
is independent of #;. The independent part is:

Ta-27r)‘g =In (2D+5) + 8

- - (B.54)
The part that depends on 1), is:

0="%R [Z {(.]15(._5)’< + ,8(—-5)") ro ke~ (B.55)

k=1
1 1 1 k ik }]
— . A 1 0<9, <2
(ﬂ @D+éF k 2D+ 5)’°) ¥m < 21

With the use of:

e*¥1 = cos(kypy ) + isin(key),
(B.55) becomes:

0= 3" {(1+Bk)(—8)"r, ™ + (Bk — 1)(2D + 6)*r,*} cos(kepy) (B.56)

k=1

This equation is not possible to solve for every k. One can only satisfy this equation for
one value of k. If one chooses k = 1 one gets the following displacement of the line source:

1 /6
= - 2 _ 2
) D+\/D 1 ﬂ’l‘o

(B.57)
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From (B.54) we get an expression for the heat loss ¢, from pipe 1:

T,
=5 (B.58)
2t R, = In (20 + 6) + B

When the pipe is non-insulated this is the exact solution.

The derivation of (4.4) for the displacement of the line source for the symmetrical
problem of two pipes in a large pipe is very similar to the derivation of (3.9) made above.
The solution will however not be exact for the non-insulated pipe.

B.5 Derivation of 3.12

We will here derive the multipole formula of the second order for the heat loss from one
pipe in the ground. The problem of one pipe in the ground is equivalent to the anti-
symmetrical problem of two pipes in a large pipe. This problem is described in Figure
B.3.

T.=0

Figure B.3. Two pipes in a large pipe.

T, =T, 41 = 4y 2y = —1H =T,
In=-T. =~qa z2=4tH ry=r, (B.59)

The temperature at the large pipe is zero.
T.=0 (B.60)

The temperature field consists of two parts: the line source part and the multipole part.
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T(z,y) = Ty(=,y) + Tp(z, y); (B.61)

— qa TC . rC
Tq("’”y)”zm\gmpn <z+z‘H> In (z-—z’H)] (B.62)
T ~%|p,—T° +P< To )2 B.63
p(Z,y) = nz—}-iH 12 Tl (B.63)

+p, o +P( To )2
n e GH TR\ TH

There is a multipole at infinity also but from (B.17) we see that the strength P,; of this
multipole is reduced to zero when the radius r, increases. The radius r, disappears from
the equations if the sum of the strength of line sources is zero.

The temperature field is anti-symmetrical with respect to the z-axis.

T(z)=-T(z) (B.64)
z=x+ 1y
Z=x—y

This means that the strength of the multipoles must satisfy the following equations:
éR[Pu] = '—'§R[P21] S[Pu] - S"[Pgl] (B65)
R[Pi2] = —R[Pp]  S[Pys] = [Py (B.66)

Here R[P11] means the real part of P;; and $[Pi;] means the imaginary part. From (B.15)
and (B.56,60,65,66) we get for m = 1:

—_ qa: C(i - rC
Te= 5o, (m (r) +h-ln (21—1)) + (B67)
R |—Pp—o 1 P ( "o )2
—agrg Pl oy

For (m = 2) we get:

B (ln (%) +8—1In ( i )) + (B.68)

27, 2H
T T \?
® [P”fﬁ * P12(2i;1> J
We will use the following notations:
Py = Ny +iM, (B.69)
Py = =Ny + 1M, (B.70)
Py = No + 1M, (B.71)
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P22 - "“Ng + 2M2 (B72)
With (B.67-72) we get:

-, (0 (50) +9) - (53)
Ta~27r/\g (1 (7'0 + 4 M - 2H+N2 5H (B.73)
From (B.16) with m = 1 and k = 1 we get:
S 1- /6 qa 7o ( [ ) ( )3
0—P11+1+ﬁ ( 27r)\92z'H+P21 ¥ + Pyy - 2 ¥ (B.74)
This equation is separated in a real and an imaginary part:
.y 3
0=Ni+ T—TE ( M (23) 2M2(2H) ) (B-75)
—=t s (o () + o) -2
0= M+ 1 114 \amy, \am) TMigg) — M35 (B.76)

No new equations will be produced if m = 2 is used instead of m = 1 in equation (B.16).
With m =1 and k£ = 2 in (B.16) one gets:

> —-Zﬂ 9a 1 (ro>2 (7’0) ( )4
0“P12+1+2ﬂ(2mg o \am) ~Pnilag) t3Pe\3g) ) (BTY)

The real part of (B.77) becomes:

0="N +1+§§ (2m '%'(%>2+M‘(2H>3"3N2<2rf})4) (B.78)

The imaginary part of (B.77) becomes:

1-28 4
0= M+ o (N1(2H) +3M, () ) (B.79)
Equations (B.75) and (B.79) give:
0=M =N, (B.80)
We will use two coefficients K; and K,:
_(2HN\1+p To
o= ( o ) 1-5 (2H> (B.81)
; 2H\*1+28 ro \2
Ka= ( ro ) 1-28 3(2H> (B82)
Equations (B.76) and (B.78) become with these notations:
2
0=M,- K, - 27“\ (2}1) (B.83)
0=N, K, + -2 1+M( ) (B.84)
TR omy, 2 el '
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From (B.83) and (B.84) the real part of the strength of the second order multipole N, is
calculated:

To) 4 K1
Ny = . ("’”2 :_ b g, (B.85)
2w A 2(_2% - 1(11(2 27 A

Here we have introduced the coefficient K3. The imaginary part of the strength of the
first order multipole M; becomes:

_(2H % 1 _ 9 (2H> (1 )
Ml——< o)( IS N, 1{2)_ 2 \r 2+K2K3 (B.86)

Equation (B.73) becomes:

= 5o [ (5) +8+3 (53)
T = 5o [ln(ro FP+ 5+ Kot (5%) Ky (B.87)

After some éimpliﬁcations equation (B.87) becomes:

. 1-3(5)" (52) + 1(z) wau-m (B.88)

T () () + (o(an) (i) - (27 (e

B.6 Derivation of (2.18)

We will here derive the first-order multipole formula for the heat loss from two pipes in
the ground. The temperatures in the pipes have the same magnitude but opposite signs.
This problem is equivalent to the anti-symmetrical problem of four pipes in a large pipe.
This new problem is anti-symmetrical with respect to both the z—axis and the y-axis.
Every pipe has the radius r; and a surface resistance 8 to the ground. The temperature
on the z-axis is zero ("= 0 on y = 0). The problem is described in Fig B.4.

Because the sum of the strength of the line sources is zero, the large pipe will not
affect the formulae if the radius is large enough (r. > r,).
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Figure B.4. Four pipes in an infinite surrounding.

721 =—-D —iH zo=D —1H

z3=—D+1H ze=D+1H
The temperatures in the pipes are given:

=T, T, =-T,

T3 =-T, T, =T,

T.=0

(B.89)

(B.90)

The temperature field consists of two parts: the line source part and the multipole part.

T(z) = Ty(2) + Tp(2)

Ty(z) =R i ¢n In ( & )]

Ln=1 " Zn

zwpyég(”ﬂ

Z— 2z

(B.91)

(B.92)

(B.93)

There is a line source (g, . .. ¢4) and a multipole (P, ... Py) of the first order in the center of
each pipe. There is a multipole at infinity also but from (B.17) we see that the strength P,
of this multipole is reduced to zero when the radius r, increases. The radius 7, disappears

from the equations if the sum of the strength of line sources is zero.

Due to the symmetry the line sources must satisfy the following equations:
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1 = qa (B94)

92 = —(a (B.95)
93 = —{a (B.96)
94 = ¢a (B.97)
The problem is anti-symmetrical with respect to both the z-axis and the y-axis:
T(z) =-T(%) (B.98)
T(z) = -T(-%) (B.99)
To satisfy (B.98,99) the strength of the multipoles must satisfy the following equations:
P=P (B.100)
Py= P (B.101)
Py=-P (B.102)

With the use of (B.5-9) the line sources and multipoles are expressed in polar coordinates
with respect to the center of pipe m. These expressions are put in the boundary condition
for pipe m.

= 2 pryeitn
OT (pm, Ym
T(pmshm) — ﬂrl——(g—/-;-'f—l =Tn  Ppm=Tm=r1 (B.103)
From (B.15) we get the part of (B.103) independent of %,,,:
Tp = R | o (1 (r“)+ﬁ)+ (B.104)
" 27{'Ag t ™1 '
n Te !
né;n {270‘9 N (zm - Zn) ¥ Pnzm  Zn }]

From (B.16) we get the part of (B.103) dependent on t,,:

0='P';(1+ﬂ)+(1—ﬂ)Z{zgg(znfzm)”lj" - } (B.105)

n¥Em (Zm - Zn)z
For m =1 and (B.100-102) equation (B.104) becomes:
qa Te Te T'c
I N N
* [27r/\g <n (rl) +A-ln —2D In 2:H (B.106)

Te — ™ ™ Ty
-t _r L
+in (—Q(D +iH))) + A ( 5D T ZiH) +P12(D+z'H)}
Equation (B.105) becomes for m = 1:
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075 (12 (5"~ (2)) waon

2 |
1 qa 1 71 71
+h (Z(D n iH)) * oy ( 5D " %H 3D+ z'H))

To reduce (B.107) the two terms with H? in the denominator are excluded. This means
that the mirror multipoles are neglected in the calculation of the angular dependent
equation. The mirror multipoles are not neglected for the angular independent equation
(B.106). This approximation makes the strength of the first order multipole P;, easy to
solve.

P=_l (L, __ N Hﬂ—(f—l—)z B (B.108)
YT om0, \2D T %H T 2(D+:iH))\1-8 \2D '
The expression for P; is put in (B.106).
27 A, 2DH
T, - —-—;]a— =R [ln (m) + 5 (B.109)

n (_’”z__.ll_) o, N
%H 2D)\2D " 2iH ~ 2(D +iH)

(G-} (12 @)

After some simplifications the expression for the heat loss ¢, becomes:

(B.110)

2DH
27 Ag Ry = In | — e
e n(m/Dqu)J”ﬁ

(T1)2+(T1)2 3 ry? 1+/6__(7'1)2
2D 2H 4 D*+H?||1-p3 \2D
The derivation of (2.17) is similar to the derivation of (2.18) made above. The tem-

peratures are different and the strength of the multipoles must satisfy a different set of
equations.

Ty=T, Ty=Ty, (B.111)

-1

Ty=-T, Ti=-Th (B.112)

If the pipes are positioned as in Figure B.4, the temperature field must satisfy the following
equation:

T(z)=-T(z) (B.113)
The strength of the multipoles must satisfy the following equations:
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Pz—_P;
P3-—“_P—1—
P4=P1

94

(B.114)
(B.115)
(B.116)
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1 Introduction

This report deals with the problem of determining the steady-state heat losses from two
pipes imbedded in a circular insulation. A summary of the results is presented in chapter
8.

In Claesson [1] a new method, the multipole method, is presented which can solve this
problem with arbitrary accuracy. With the use of the multipole method, new formulae
with improved accuracy have been derived for the heat losses. The errors of the new
formulae and two old formulae have been determined with the multipole method.

The formulae are mainly derived for district heating pipes. They can be used on any
problem with the same boundary conditions, but the listed errors of the formulae are
valid for dimensions usual for district heating pipes in the ground.

1.1 Two pipes imbedded in a circular insulation

There are two pipes with the radius r; imbedded in a circular insulation, see Figure 1.1.
The temperatures in the imbedded pipes are T} and T,. The temperature on the circum-
scribing larger pipe is Tp. The thermal conductivity in the insulation is A;. The problem
is to determine the steady-state heat losses (¢1,q) per unit length from the two pipes
inside the large pipe. The pipes are assumed to be long. It is therefore sufficient to study
a vertical cross-section of the pipes. The temperature T'(z,y) satisfies the steady-state
heat conduction equation in two dimensions:

T T
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Figure 1.1. Two pipes imbedded in a circular insu-
lation.

D = Half the distance between the center of the pipes (m)
7o = Radius of the circumscribing large pipe (m)

r; = Radius of the imbedded pipes (m)

q1 = Heat flow from pipe 1 per meter (W/m)

g = Heat flow from pipe 2 per meter (W/m)

T, = Temperature on the larger pipe (°C)

Ty = Temperature in pipe 1 (°C)

T, = Temperature in pipe 2 (°C)

A; = Thermal conductivity of the insulation (W/mK)

1.2 Solution method

A new method, the multipole method, to calculate the heat flow to and between pipes inside
a larger pipe with constant temperature is presented in [1]. The method is implemented
as programs for computers of PC-type.

A brief summary of the multipole method is given here. A more detailed description
is made in chapter 5.

There are N pipes inside a larger pipe. The temperature on the larger pipe is Tp.
The temperature in pipe number n inside the larger pipe is T),. The steady-state heat
conduction equation is to be solved. The problem is solved in the complex plane (z =
z + 1y). Here is ¢ used to describe the imaginary unit (i2 = —1). The temperature field
in the large pipe consists of a line source part, a multipole part and the temperature on
the large pipe To.

T(z,y) = To + Tq(xay) + Tp(m’ y) (1.2)
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There is a line source with the strength ¢, in the center of each pipe. In order to
satisfy the boundary condition at the large pipe there is, for each pipe, a mirror line source
with the strength —g¢, at r3/z,. The function T,(z) will always be zero at 22 + y? = r2.

Tq(:v,y)zRe[N I an(z)] (1.3)

n=1 27(')\1 '

Wao(2) = ln( ro ) ~In (;3——’"-5—) (1.4)

Z— 2z — ZZn,

The complex-valued derivative of order j of W;,o with respect to z, is called a multipole
of order j. We will use the function W,;. The complex strength of each multipole is P,;.

N J ]
Tp(x7 y) = Re Z Z Pnj : rrjz, : Wn](z)jl (1’5)
n=1 j=1
1 1 z Y\
Wasle) = G 5 W) = ooy - (rg - Ezn) (1.7)

The real part of (1.4) and (1.7) satisfy the heat conduction equation (1.1). The multipole
of order j can represent any variation cos(ji,) and sin(jv,) around pipe n. The final
temperature is a sum of the temperature fields from all the pipes with multipoles up to
order J. The strength of the multipoles P,; and the strength of the line sources ¢, are
unknown. The boundary conditions from all the pipes will produce an equation system,
from which P,; and ¢, are solved. In the limit when J — oo the exact solution is found.
Thus the error of the calculation can be chosen arbitrarily small.

With the multipole method it is possible to derive systematic approximations of in-
creasing accuracy. This report deals with approximations of the zero, first and second
order.

1.3 Previous reports

There exist several reports describing different types of multipole methods. The method
used in this report is based on Claesson [1], in which the problem is to determine the heat
flows between pipes in a composite cylinder, i.e. two concentric cylinders with different
thermal conductivities. The report of Wallentén [6] is also based on Claesson [1] and
presents explicit formulae of the zero and first order for the heat loss from two pipes in
the ground imbedded in a circular insulation.

Claesson [2] presents a multipole method without any mirror line sinks. That method
is not suitable for the problem in this report because the boundary condition at the
larger pipe will not be sufficiently satisfied for small J. The method described in [2] is
implemented in [3] and [4]. The program of [3] deals with the heat flow problem when
one or more pipes are positioned inside a large pipe. The program of [4] deals with the
problem of one or more pipes inside a larger pipe, which in its turn lies in the ground
with another thermal conductivity. The report of Wallentén [5] is based on Claesson [2]
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and presents explicit formulae of the zero and first order for the heat loss from one or two
pipes in the ground.
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2 Mathematical formulation

The problem described in Figure 1.1 can, with the use of the superposition principle
described in section 2.1, be separated into two problems. These two problems are easier
to solve than the original problem. The solution is expressed in the new temperatures 7T,
T,, Ty and the dimensionless heat loss factors A, and h,.

2.1 Swuperposition principle

For the problem described in Figure 1.1 one can construct two basic problems, a sym-
metrical problem and an anti-symmetrical problem, see Figure 2.1. With the use of
the superposition principle, every problem concerning different temperatures can be con-
structed from the solutions of these two problems.

4s gs de —q, 91 Q2

D @ -

Symmetrical problem Anti-symmetrical problem Original problem

Figure 2.1. The superposition principle.

The temperature in the pipes in the symmetrical problem is T,. The temperatures in the
pipes in the anti-symmetrical problem are T, and —T,. These temperatures are defined
as follows:

- h+h (2.1)
2
T, = h '2" L (2.2)

The subscript s denotes the symmetrical problem of two pipes. The subscript a denotes
the anti-symmetrical problem of two pipes. The temperatures in the original problem are
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from (2.1-2):
T'=T,+T, (2.3)
T2 - TS - Ta (24)

The heat loss ¢; (W/m) from one pipe in the symmetrical problem is proportional to the
temperature difference T — Ty;. We may write:

_T,-Ty

QS - Rs
Here R, (mK/W) is the thermal resistance between one of the pipes and the larger
pipe. The heat loss ¢, (W/m) from one of the pipes in the anti-symmetrical problem
is proportional to the temperature T,. We may write:
4o = R

a

(2.5)

(2.6)

Here R, (mK/W) is the thermal resistance associated with the anti-symmetrical prob-
lem. It should be noted that the temperature T, connected with R, in (2.6) is half the
temperature difference between the pipes. By superposition the heat losses ¢, and ¢,
become:

1= qs + o (2.7

92 =95~ qa (2.8)
The total heat loss (¢1 + ¢2) depends on the symmetrical part only:

ntg=2 g (2.9)

The symmetrical and anti-symmetrical problems are solved separately. Formulae for R,
and R, are obtained. The heat losses ¢; and ¢, are then obtained from (2.7-8).

2.2 Dimensional analysis

The thermal resistances R, and R, are both inversely proportional to the thermal con-
ductivity A;. The heat losses ¢, and ¢, are therefore proportional to A;. The heat losses
¢s and ¢, are also proportional to (T — Tp) and T, respectively.

It is convenient to introduce the dimensionless heat loss factors h, and h,. This is
done to separate the dependence on the temperatures and thermal conductivity from the
dependence on the geometry:

qs = (Ts - Tc) . 27!'/\5 ) hs (210)
qa = Ta : 27r)\i : ha (211)

The factor 27 ]; is introduced to make the expressions for h, and h, simpler.

The geometry is described by three lengths: r;, rg and D. The number of parameters
necessary to describe the geometry is reduced from three to two by scaling with the radius
of the outer pipe ro. The heat loss factors h, and h, only depend on the parameters r;/ry

and D /rg:
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qs = (Ts —_ TC) . 27!')\,‘ . hs(r,:/'ro, D/')”O) (212)
Go =Ty - 27X - ho(rifr0, D /10) (2.13)

The geometry of the problem gives the following inequalities:

0<r;/ro<Dfrg (2.14)
rifro+ D/rg < 1 (2.15)
The thermal resistances R, and R, can be expressed in h, and h,.
R, = Zf—%—-;;— (2.16)
Ro=—1 (2.17)
27 A; - hy
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3 Symmetrical problem

For the symmetrical problem the temperature in the pipes is Ty = (11 + 73)/2 and the
temperature on the large pipe is Tp. The problem is described in Figures 1.1 and 2.1. The

heat loss from the pipes is ¢, for both pipes.

3.1 Exact solution

The exact solution to the problem was obtained with the use of the program described
in [1]. The order of the highest used multipole has been at least 8. This means that the
error in the heat losses is approximately less than 0.001 %. Figure 3.1 and Table 3.1 show
the computed heat loss factor hs(r;/ro, D/ro). From equation (2.12) we get the heat loss

qs:

qs = (Ts — To) - 2n i - hy(rifro, D[ro) (3.1)
The heat loss ¢, will decrease for decreasing D/ry, while the anti-symmetrical heat loss
g, discussed in chapter 4 has a minimum for D/ry = 0.5, see Figure 4.1. The heat loss

gs is strongly dependent on the ratio r;/ro. For small pipes the heat loss is only weakly
dependent on the positions of the pipes (D/rp).

hs
6_ :
5t
4_

- : S - r1/r0=0. 4
21 S i - risr0=0.3
S T T Nl s e 0 1/ O e risr0=0.25

- s e T risr0=0.2
] — e e I risr0=00

0 0.10.20.30.40.50.60.70.80.9 1

D/To

Figure 3.1. Heat loss factor h, for different values of D/rq and r;/ro.

107



hs
rifro=005| 010] 015] 020] 025] 030] 035] 040[ 0.45

D/ro = 0.10 || 0.2200 | 0.2701
0.15 || 0.2397 | 0.2940 | 0.3461
0.20 || 0.2568 | 0.3168 | 0.3730 | 0.4326
0.25 || 0.2721 | 0.3388 | 0.4003 | 0.4652 | 0.5380
0.30 || 0.2864 | 0.3602 | 0.4282 | 0.4998 | 0.5804 | 0.6749
0.35 || 0.3002 | 0.3815 | 0.4570 | 0.5368 | 0.6273 | 0.7351 | 0.8685
0.40 || 0.3137 | 0.4031 | 0.4873 | 0.5773 | 0.6806 | 0.8060 | 0.9663 | 1.1829
0.45 || 0.3273 | 0.4257 | 0.5201 | 0.6227 | 0.7430 | 0.8934 | 1.0942 | 1.3857 | 1.8699
0.50 || 0.3416 | 0.4501 | 0.5567 | 0.6755 | 0.8193 | 1.0073 | 1.2765 | 1.7199 | 2.6986
0.55 || 0.3571 | 0.4773 | 0.5993 | 0.7400 | 0.9186 | 1.1692 | 1.5766 | 2.4681
0.60 || 0.3745 | 0.5093 | 0.6515 | 0.8240 | 1.0598 | 1.4358 | 2.2485
0.65 || 0.3950 | 0.5487 | 0.7199 | 0.9441 | 1.2928 | 2.0336
0.70 | 0.4205 | 0.6008 | 0.8183 | 1.1434 | 1.8174
0.75 || 0.4544 | 0.6764 | 0.9829 | 1.5946
0.80 || 0.5039 | 0.8038 | 1.3582
0.85 || 0.5879 | 1.0970
0.90 || 0.7833

Table 3.1. Heat loss factor h, for different D/ry and r;/ro.

3.2 Approximate formulae

With the use of the multipole method described in [1] approximate formulae have been
derived for the heat losses from the pipes in the symmetrical problem. Formulae of order
J employs the solution of a equation system of order J. The formula will therefore be
very complicated for J > 2. The general solution is described in chapter 7.

3.2.1 Zero-order approximation

The zero-order multipole approximation uses the line sources and sinks without any mul-
tipoles. The zero-order approximation gives the following expressions for the heat loss
factor hs (or thermal resistance R,) for the symmetrical problem:

7' =27)\R, = In i —1In ———7:3-———— (3.2)
¥ e 2Dr; re — D* '

3.2.2 First-order approximation

With the use of multipoles of the first order, the following new formula is obtained:

Kol = 27 (0 o (3 —2(;:&%)2
=2 = () - “(rs-D4)"1+(;_5>2_(§;z;—ag;)2 ey

Formula (3.3) is derived in section 6.2.
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3.2.3 Second-order approximation

For higher order multipole formulae a general method is described in section 7.1. The
second-order formula is shown here. The coefficients ¢;1, ¢g1, €2, dy, dy and A are intro-
duced to make the formula more comprehensible.

_H(_’z_)"’ D V' (D N ot
= 2D 2 + D2 2-Dz) Tyipt - D2
( T )3 rD \° N rD \° 4 r3D 4 r?D
en=|—=] —
27 \2D ré + D? ré — D? (r + D??  (r — D?)?
Tr; 4 'I‘,‘D 4 T;D 4
C22—1+3(2D> _3(r§+D2) —3(Wrg--l)2)
rD? riD? r? ? r? ?
+4 l 5 —4 - 5=\ 37 =z
@40y -y \R+D?) T \G-D?

r; + T','D 'I‘z‘D
2D " ri4+D? 2 D2

d _l m('f‘,‘)z‘{_ r;: D 2+ r;.D 2
272\ \2p r2 4+ D? r2 — D?

B e\ s
A=1In (QDT;) In (ré-—D‘*)

4d1d2021 —_ d%c;‘)g — 2d§cll

2

dl:

h'=2r\R, = A+ (3.4)

3.2.4 Area approximation

One old formula described in [7] we will here the area approximation. This formula is
based on the assumption that the resistance of the insulation can be separated into two
resistances coupled in parallel. The resistance R; originates from the resistance of a
circular insulation with radius r.. The resistance R, originates from the resistance of a
rectangular insulation with height d. and width D.

2.1k D 2-D
Te :\/ 9 arccos (—~> - \Jré — D2

v To
[r2 _ D2
de= o +T0 —T;
2
Ri=2-In (f-)
r;
wd,.
R, = D
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by =1/Ri +1/Rs (3.5)

~ 97 MR,

3.2.5 Two-model approximation

Another old formula described in [8] we will here call the two-model approximation. This
formula is based on the assumption that the problem can be separated into two problems
which each has an analytical solution. The resistance R; originates from the resistance
between a pipe with the radius r; inside a pipe with the radius ro. The resistance R,
originates from the resistance between two pipes with the radius r; which centers are 2D
apart.

Ay = s, (Ll DI

2
2
R, = 4 - arccosh (2(2) ——1)
T
h ——-L—*-I/R —-1/R 3.6
*T 2rMR, T /R (3.6)

3.3 Errors of the formulae

The errors of the different formulae have been studied with the use of the multipole
program [1]. Figures 3.2-7 and Table 3.2 show the error made when the heat loss g, is
calculated with formulae (3.2-6). The error is expressed in per cent. A positive relative
error means that the formula gives too large a heat loss.

0
10 ?FFOF

ok A T T

-5 E_ """""""""" . |
O R (3.6
“1SF ) (3.5)
2080 A e (3.4)
5B e (3.3
-30 E ey (B2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

.D/T‘g

Figure 3.2. The relative error (%) of the different formulae to
calculate ¢; for different values of D/rg (r;/ro = 0.2).
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Figure 3.3. The relative error (%) of the different formulae to
calculate ¢, for different values of D/rq (r;/ro = 0.3).

error (%)
O
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0.4 0.5 : J.6
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Figure 3.4. The relative error (%) of the different formulae to
calculate ¢, for different values of D/ry (r;/ro = 0.4).

From Figures 3.2-4 one can see that all the formulae except the two-model approxi-
mation (3.6) "collapse” when the pipes lie close to the large pipe (D + r;)/ro = 1. The
zero-order (3.2) and area approximation formula (3.5) have a similar behavior for large
D/ro. The errors of the first (3.3) and second-order (3.4) formulae are very small except
when the radius r; is large.
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calculate g, for different values of r;/ro (D/ro = 0.3).
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Figure 3.6. The relative error (%) of the different formulae to

calculate ¢, for different values of r;/ro (D/ro = 0.5).
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Figure 3.7. The relative error (%) of the different formulae to
calculate ¢, for different values of r;/ro (D/ro = 0.7).

In Figure 3.5 the error of formula (3.4) is so small that the line disappears. It is
notable that the formulae mostly underestimate the heat loss. From Figures 3.5-7 one
can see that the errors of formulae (3.2-4) all approach zero when r;/ry decreases. Table
3.2 shows the error of the formulae for some typical values of D/rq and r;/ro.

Relative error (%)
ri/ro = 0.25 | 0.35 || formula
D/ro= 0.4 -7.2 -17 (3.2)
-0.084 | -0.13 (3.3)
0.012 | -0.048 | (3.4)
3.2 -5.2 (3.5)
53| -14 (3.6)
05 77| 2L (32
-0.0090 | -0.25 (3.3)
0.0090 | -0.11 | (3.4)
50| -11| (35)
28| 29| (3.6)

Table 3.2. The relative error (%) of the different formulae to
calculate g, for different values of r;/r¢y and D/r,.

The first-order formula (3.3) seems to be the best choice for practical use. It is a simple
formula with only a small error.
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4 Anti-symmetrical problem

For the anti-symmetrical problem the temperatures in the pipes are T, = (11 — T3)/2 and
—T,, see Figures 1.1 and 2.1. The temperature for the large pipe is Top = 0. The heat
losses from the pipes are ¢, and —g¢,.

4.1 Exact solution

The exact solution to the problem was obtained with the use of the program described in
[1]. The order of the highest used multipole has been at least 8. This means that error
in the heat losses is approximately less than 0.001 %. Figure 4.1 and Table 4.1 show the
computed heat loss factor h,(r;/ro, D/ro). From equation (2.13) we get the heat loss g,:

Go =Ty - 2w - ho(ri[re, D/1o) (4.1)

The heat loss ¢, has a minimum for D/re = 0.5. The heat loss is strongly dependent on
r;/ro. The minimum gets thinner when r;/rq increases.

ha
7 =
6L
St
4t
3: : ; ".\‘ : , ; ‘;' R risr0=0.4
- b S == risr0=0.3
2 \ Yo S / ‘
- \ / ------------ ri/r0=0.25
1 5 | \N\;"* e - R risr0=0.2
2] PR I I D e i risr0=0.1
0 010203040506070809 1
D/To
Figure 4.1. Heat loss factor p, for different values of D/ry and

r,/ro
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hq
ri/ro=005] 010] 015] 020] 0.25] 030] 035] 040 0.45

D/rg = 0.10 || 0.7681
0.15 || 0.5805 | 1.0674
0.20 §| 0.5030 | 0.7964 | 1.3186
0.25 || 0.4605 | 0.6852 | 0.9858 | 1.5545
0.30 || 0.4345 | 0.6254 | 0.8512 | 1.1733 | 1.7946
0.35 || 0.4181 | 0.5903 | 0.7812 | 1.0232 | 1.3770 | 2.0608
0.40 || 0.4083 | 0.5699 | 0.7430 | 0.9503 | 1.2217 | 1.6232 | 2.3931
0.45 || 0.4033 | 0.5599 | 0.7247 | 0.9171 | 1.1580 | 1.4827 | 1.9720 | 2.9052
0.50 || 0.4024 | 0.5582 | 0.7216 | 0.9115 | 1.1471 | 1.4591 | 1.9090 | 2.6531 | 4.3040
0.55 || 0.4055 | 0.5642 | 0.7325 | 0.9305 | 1.1815 | 1.5262 | 2.0614 | 3.1398
0.60 || 0.4126 | 0.5787 | 0.7588 | 0.9782 | 1.2723 | 1.7224 | 2.6315
0.65 || 0.4246 | 0.6037 | 0.8059 | 1.0686 | 1.4650 | 2.2654
0.70 || 0.4431 | 0.6438 | 0.8867 | 1.2434 | 1.9567
0.75 || 0.4712 | 0.7094 | 1.0365 | 1.6742
0.80 || 0.5159 | 0.8285 | 1.3996
0.85 || 0.5961 | 1.1149
0.90 || 0.7884

Table 4.1. Heat loss factor h, for different D/rq and r;/rg.

4.2 Approximate formulae

With the use of the multipole method described in [1] approximate formulae have been
derived for the heat loss from the pipes in the anti-symmetrical problem. The derived
formulae are of zero and first order. The general solution is described in 7.2.

4.2.1 Zero-order approximation

The zero-order multipole approximation uses the line sources and sinks without any mul-
tipoles. The zero-order approximation gives the following expression for the heat loss
factor h, (or thermal resistance R,) for the anti-symmetrical problem:

2D r2 4 D?
-1 _ . — _ 0
hil = 27\R, = In (-—~> In (Wrg = 02)

T

(4.2)

4.2.2 First-order approximation

With the use of multipoles of the first order, the following new formula is obtained:

2 2
h;1=27r/\iRa:ln (2D) —In (rO+D ) - (
1 —

r; ré — D?

Formula (4.3) is derived in section 6.3.
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4.2.3 Second-order approximation

For higher order multipole formulae, a general method is described in section 7.2. The
second-order formula is shown here. The coefficients c;1, ¢o1, ¢2, dq, dy and A are intro-
duced to make the formula more comprehensible.

_1 ( T )2 + riD \? riD \? r? r?
o= 2D 2t D? 2—D¥) Iy D? gl- D2

( T )3 n r; D 8 n r;D 3 T?D n T?D
Cop = —| —— B —
a 2D r3 4+ D? rg — D? (r3 4+ D?)? * (r2 — D2)?

. T; + TiD + TiD
2D " r2+D? - D?

1 r; 2 T‘,'D 2 'rz'D 2
dy=35 —(”‘“) T2 “\r2_p

2 2
Azln(—Q—l—)—>—ln(T0+D )

r; 7‘3 - 02

dlz

+ 4d1d2621 - d%ng — ngcn

h'=21\R, = A (4.4)

2
C11C22 — 2(321

4.3 Errors of the formulae

The errors of the different formulae have been studied with the use of the multipole
program [1]. Figures 4.2-7 and Table 4.3 show the error made when the heat loss g, is
calculated with formulae (4.2-4). The error is expressed in per cent. A positive relative
error means that the formula gives too large a heat loss.
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Figure 4.2. The relative error (%) of the different formulae to
calculate ¢, for different values of D /ry (r;/ro = 0.2).
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Figure 4.3. The relative error (%) of the different formulae to
calculate g, for different values of D/rg (r;/ro = 0.3).
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Figure 4.4. The relative (%) error of the different formulae to
calculate g, for different values of D/rq (r;/ro = 0.4).

The absolute error of all the formulae has a minimum when D/ry & 0.5. Close to this
minimum is the zero order formula (4.2) equal to the first-order formula (4.3).

()
g &rror

sk
'10 :" “\\
-15 :—-— ,‘ ............ (4.4)
: 2 2 (4.3)
ool N 4l
g 0.05 0.1 0.15 0.2 0.29 0.3

ri/To
Figure 4.5. The relative error (%) of the different formulae to
calculate ¢, for different values of r;/roq (D/rq = 0.3).
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Figure 4.6. The relative error (%) of the different formulae to
calculate ¢, for different values of r;/ro (D/re = 0.5).
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Figure 4.7. The relative error (%) of the different formulae to
calculate ¢, for different values of r;/ro (D/ro = 0.7).

The error of all the formulae increases when r;/r¢ increases. All the formulae underesti-
mate the heat loss. Table 4.2 shows the error of the formulae for some typical values of

D/ry and r; /7.
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Relative error (%)
rifro = 025 | 0.35 || formula
Djrg= 04| 26| -17] (42
083 | 96| (4.3
0055 | 23| (4.4
05 042 28] (42)
038] 26| (4.3)
-0.0041 | -0.060 (4.4)

Table 4.2. The relative error (%) of the different formulae to
calculate ¢, for different values of r;/rg and D/ry.

The first-order formula (4.3) seems to be the best choice for practical use.
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5 Multipole method

The general multipole method can, with some adjustments, be used to solve many different
problems. The only restriction is that the boundaries are circular. In the following the
multipole method used in this report is described. This method is based on [1] that deals
with the problem of pipes in a composite cylinder. The method used here is acquired
from [1] by letting the thermal conductivity in the outer circle approach infinity.

5.1 Thermal problem

Consider the problem in Figure 5.1. There are N pipes with different radii r, inside a
large pipe with the radius 9. The temperature at the large pipe is Tp. The temperatures
in the pipes inside the large pipe are T,,. The thermal conductivity in the large pipe is A;.

wy
To

")
Ai

rl@ | z
‘)

Figure 5.1. N pipes in a pipe in the complex plane.

The stationary heat conduction equation for T'(z,y) is to be solved:
0*T 4 FT
0z Oy?

Equation (5.1) is also called the Laplace equation.

0 (5.1)
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The problem is solved in the complex plane (z = z +¢ - y). Here ¢ is used to describe
the imaginary unit (2 = —1). The complex conjugate of z is denoted Z.
The center of the pipe n is z,.

Zn = Tp+ 1 Yn
Local polar coordinates p,,, from the center of pipe n is used:

2 — 2, = pnei‘b" (5.2)
The boundary condition at each pipe n is:

T=T, Pr = Ty, 0<9¢, <2r (5.3)
The boundary condition at the outer pipe is:

T =T, p =Ty, 0<y, <27 (5.4)

5.2 The multipole method

According to the multipole method the temperature field in the large pipe consists of a
line source part, a multipole part and the temperature on the large pipe Tp:

T(z,y) =To+ Ty(z,y) + Tp(z,y) (5.5)

There is a line source with the strength ¢, in the center of each pipe. In order to satisfy
the boundary condition at the large pipe there is, for each pipe, a mirror line source with

the strength —g¢, at r3/%,. The function T,(z) will always be zero at 2 + y? = r2.

(1) = [ e W) (56)

Wio(2) = 1 ( ro )-1 _ (5.7)
nol%) =1 z -z t ré — 7z, '

Both the real and imaginary parts of W,,o each satisfy the Laplace equation (5.1) and the
boundary condition (5.4).

The complex-valued derivative of order j of W, with respect to z, is called a multipole
of order j. We will use notation W,;. The complex strength of each multipole is P,;.

p(T,y) = l:;}:lpm r Wa; Z)J (5.8)

W,i(z) = ._.__1__,_ . %(Wno) = ! - — ( - E~ )j (5.9)

(G-t (z — z,) ré —%z,

Both the real and imaginary parts of W,,; each satisfy the Laplace equation (5.1) and the
boundary condition (5.4). The quantities ¢, and P,; are determined by the boundary
conditions. The expression (5.5) is inserted in the boundary condition (5.3) of each pipe.
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The line source ¢, and the multipoles P,; of pipe n can represent any solution of the
heat conduction equation in the region outside pipe n. The boundary condition at the
large pipe is satisfied for every choice of ¢, and P,;.

5.3 Boundary condition at pipe m

To solve the boundary condition problem of pipe m we need expressions for the line
sources of the pipes and the multipoles in the local polar coordinates of pipe m. From [1]
we get these expressions. In the following, n is the number of the pipe with line source or
multipole and m is the number of the pipe which boundary condition is to be satisfied.
We will use polar coordinates from pipe m:

2= 2y + pme (5.10)
n=m |
In (20 ) ~In (r—”) — it (5.11)
Z— 2y m

rm N (e ie
(z-——z ) ol o K (5.12)

(2] =t (=) + 5 %(%ﬁ—-)keik% (5.13)

Z— 2y Zm — Zn = — Zm
7 7> ;— ko
- @R E(TT) e e

! every n and m !

- J
Y4
" ] = .15
(7‘8 _Ezn) (5 )

min(j,k . . I A o
i i1 (r2 2y T P

k=0 j'=0

In (F—’ﬁf)] - (5.16)
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With (5.5-5.16) the boundary condition (5.3) of pipe m becomes:

lm=12...N og¢m<27r]

To
T, =Ty + I 27rA,~ LI (rm) (5.17)
4n To 1 T'm k
(2 (i)
+§RL%12W,\,{H Zm — Zn +k§;1k Zn — Zm

REEEE) () ) e

n#Em j=1 k=0

oo min(j,k) D g q? k!
.7+k .7'—1 T%'Z‘an Zn] —ikim
-SSR A () (AT ) AL e

n=1j=1k=0 ;=0 0 = ZnZm

The summation index on the fourth line (concerning P,,;) is changed into k. The depen-
dence on t,, lies in the exponents e"*¥™ and e™**¥m. The latter terms may be changed
into the positive exponent e"*¥= by taking the complex conjugate.

Equation (5.17) can now be separated into a part independent of 4,,, and a part
depending on %,,. The part independent of ¥, is:

m=12...N |
N
T —To=>_ g Ry, (5.18)
n=1
N& rZm
|2 S () - R ()

The thermal resistances Rj,, (K/(W/m)) in (5.18) are given by:

o _ 1 o rg
Ron = 5o (m (rm) In (rg - lzm12)> (5.19)
R =i o\ (10 (5.20)
™ 9w\ o |2m — 2n] . [r2 — Z, 2| )
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The part depending on t,, (e'¥™) is:

m=12..N k=12... |

k
o g 1( Tm )k_N g 1 rmZ
O-Pmk+n¢m 2 X k\z, — 2, £2WAik TE — ZnZm (5.21)
e (1) ) )
P, .
+n§7:n.7=zl J( ]_1 ) Zm — Zn Zp T Zm

N oo min(jk) T S P et W
k+j—5' =1\ rh-rm-2n? 2
Sy P (L) (P ) e

n=1j=1 j'= (r§ = Zn2m)’

5.4 Final equation system

The equation system (5.18,5.21) must be truncated. We consider multipoles at the pipes
up to order J. Here J is a positive integer or in the lowest approximation zero, in which
case only the line sources and mirror line sinks are used. The sine- and cosine-variation
around the pipes can be made zero up to order J only. We get the following equation
system:

m=12...N |
N
Tn=To=2 tu Ry, (5.22)
n=1
RID D P ’ % ~p ()
+ 3 ( ) _ ) ( " )
n;&mfg ’ Zn n:}.; ! 7‘3 — Zpim

N 1 TmZ k
=P+ Z 27\ k< ) 2___: E(r —-Tz'nzm> (5:23)

n#Em — Zm

+ ZPM ( k+.].1 ) (zmT z)j(zn?znzm)k

nFm j=1

iz]:mznz(j,k) ( )(k"*‘]“‘] _1) Ti-?’;‘zg;;jl-.gﬁ”jf
J—1 (7’3 - Enzm)j-l’k-j’

n=1j=1 j'=0

The thermal resistances Ry, (K/(W/m)) in (5.22) are given by (5.19,5.20). These are the
equations that completely determine the strength of the multipoles and the line sources.
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6 Derivation of the first-order
formulae

We will here derive the first-order formulae from equation system (5.22,23). Due to the
symmetry of the problem the multipole strengths have a simple relationship that can
be calculated. This is done in section 6.1. In section 6.2 formula for the symmetrical
problem (3.3) is derived and in section 6.3 formula for the anti-symmetrical problem (4.3)
is derived.

6.1 Symmetry analysis

Figure 6.1 describes the problem. The parameters are defined in section 1.1.

Figure 6.1. Two pipes inside a large pipe.

The position of the pipes are:

7z =-D z9=D (6.1)
The temperature field is in accordance with (5.5) divided into three parts:

T(z,y) = To+ Ty(2) + Tp(2) (6.2)

Here T,(z) is the temperature field from the line sources, and T)(z) is the temperature
field from the multipoles. The temperature on the large pipe is Tp.
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T,(z) = R [é ani : an(z)} (6.3)

=1 27
W()—l( o )-.1 it (6.4
nol#) =11 Z— 2Zp o rE — Zz, 4)

We consider multipoles up to order J.
2 J .

T(z) =R [Z > Paimh an(z)] (6.5)

n=1 j=1

1 z )

Whaj(z) = P (rg — Ezn) (6.6)

From (6.1) and (6.6) we get:
Wai(z) = (=1 Whj(—=2) (6.7)
Wai(2) = Wai(2) (6.8)

6.1.1 Symmetrical problem

For the symmetrical problem we have:

T =T,=T; (6.9)
71 =92=4s (6.10)
The temperature field must be symmetric with respect to the real and imaginary axis:
T(z) =T(-%) (6.11)
T(z)=T(3) (6.12)

The multipole part T,,(z) of equation (6.11) becomes with (6.7):

R ;{Pljwlj(z)+P2j(—1)fwlj(_z)}rg' = (6.13)

R Z {PWh;(=2) + Poy(—1Y Wy;(3) } o

This must be true for every J and hence for every j. When the right side of equation
(6.13) is complex conjugated and equation (6.8) is used, one gets:

R [Wij(2) (P = Py - (=1Y) + Waj(—2) (= Py + Py - (=1))] =0 (6.14)
If equation (6.14) is to be satisfied for every j and z the following must be true:
Py = (~1)'Py, (6.15)
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The multipole part of equation (6.12) becomes with (6.7):

J . .
R ;{Pljwlj(z)+P2j(~1)fwl,-(~z)}rg - (6.16)

o -

J . .
R | X2 {PiWis(2) + Pay(—1) Waj(~2) } rd

7=1

This must be true for every J and hence for all j. When the right side of equation (6.16)
is complex conjugated and equation (6.8) is used, one gets:

R [Whj(2) (P = Prj) + Waj(—=2) - (=1) (Py; = Pyj)] =0 (6.17)
From (6.17) we see that the following is true for the symmetrical problem:

S[Pyy] =S[P;] =0 (6.18)
From (6.15) and (6.18) we get:

R[Py] = (—1)R [Py] (6.19)

6.1.2 Anti-symmetrical problem
For the anti-symmetrical problem equations we have:

T1 = —T2 = —'Ta (6.20)

G =—q=—q (6.21)

The temperature field must be symmetric with respect to the real axis thus equation
(6.18) must be true:

T(z)=T(Z) = S[P,]=S[Py] =0 (6.22)
The temperature field must be anti-symmetric with respect to the imaginary axis:

T(z)=-T(-%2) (6.23)
The multipole part of equation (6.23) becomes with (6.7):

R [_J {PyW;(2) +P2j(~1)jW1j(—Z)}7’f] = (6.24)

J

J . .
—R ; {PiWhi(=2) + Py(—1) Wyj(~2)} ’"f}

This must be true for every J and hence for all j. When the right side of equation (6.24)
is complex conjugated and equation (6.8) is used, one gets:

R [Wai(2) (Pyj + Poj - (—1)) + Wij(—2) (P - (~1) + Py)] =0 (6.25)

From (6.22) and (6.25) we see that the following is true for the anti-symmetrical problem:
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R[Py] = (-1)"'R[Py) (6.26)

S [Py] = S[Py] =0 (6.27)

6.2 Derivation of formula (3.3)

We will here derive the first-order multipole formula for the symmetrical problem. The
problem is described in Figure 6.1 with equations (6.9-10). For the multipoles equations
(6.18-19) with J = j =1 are true. We will use the following notations:

P11 = M1 (6.28)
P21 = '_Ml (6.29)

Here M; is a non-complex constant. When equations (6.28-29) are used in (5.19,5.20,5.22)
with m =1 one gets:

=2 (1 () a2 (22) - o
T, - Ty = 5% (m(m) ln(rg_D2))+ln o 1n(r§+02 (6.30)

T TZ'D T','D
2D r2-D? 24 D2

a1, {
Equation (6.30) reduces to the following equation:

71 = 9 (170 1 o 6.31
° O_—Qﬂ')\i o QDT, . Tg—D4 ( )

_T_'i_+ 27‘,’D3
2D r§—-D*

+M; (

When equations (6.28-29) are used in (5.19,5.20,5.23) with m = 1,k = 1 one gets:

s ; D ;D
0=M + -2 {’" T - } (6.32)

o2n\; |2D ' r2—D? i+ D?
i \? r:D? r? r2D? rl
+Ml (_f_) _ 5 7 — — 1 — 5 2 + 5 1
2D (r§—D?? ri—D? (r¢+D?)? 12+ D?

After some simplifications equation (6.32) reduces to

-1
qs T; 2r; D3 ( T; )2 2riroD \”
M, = — _t . — .
1T T (21) T 04) (1 30 i _ D (6.33)
This expression for M, is used in equation (6.31).

2m (T, — To) ra e
B In <2Dr,- —1In (6.34)
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-1
T ;D3 \* ri \? orireD \?
“\spta—ps) |1t ( ) “\Fpe
5D " ri-D 2D M _D
Equation (6.34) is the same as (3.3).

6.3 Derivation of formula (4.3)

For the anti-symmetrical problem equations (6.20-21) are true. For the multipoles equa-
tions (6.26-27) with J = j = 1 are true. The temperature on the larger pipe is zero:

To=0 (6.35)
We will use the following notations:

Py = M, (6.36)

Py = M, (6.37)

Here M, is a non-complex constant. When equations (6.36-37) are used in (5.19,5.20,5.22)
with m = 1 one gets:

2 2
qa TO TO 'r() ro
= —In(=2)+1 — - :
Lo zwxi( “(2D>+“<r3+m)““<m> h‘(r%-—m)) (6:3%)

M r; r;D r;D
12D r2—D? 72+ D2
Equation (6.38) reduces to the following equation:

%a zD) ré + D?

T, = — ) - .

27TA1' (ln ( r; ln (7‘3 -— D2 (6 39)

r; 2r,~Drg

+M (21) T 04)

When equations (6.36-37) are used in (5.19,5.20,5.23) with m = 1,k = 1 one gets:

a ; D i
0=M + 2 {r b __rD } (6.40)

or\i | 2D r2—D? i+ D?
r; \? r?D? r? r?D? r?
+Ml __(____) — 5 13 _ 5 ] + 3 1 — 3 2

After some simplifications equation (6.40) reduces to

-1

¢ ; 2r;Dr} ( r; )2 9 2 To+ D*
- — 1= il - — Al
M=% (20 ra— D1 aD) ~ T Z pay (6:41)

The expression for M, is used in equation (6.39).
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G T rg — D?

2 -1
(oY o () a2
2D r3—-D 2D (ré — DY)

Equation (6.42) is the same as (4.3).

R 2 2
20Ty, (?P-) —In (TO +D ) (6.42)
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7 Derivation of the general formulae

In this chapter general expressions for the J order multipole formulae for the heat loss
factors h, and h, are shown. In section 7.1 the formula for the heat loss factor in the
symmetrical problem h, is shown and in section 7.2 the formula for the heat loss factor
for the anti-symmetrical problem h, is shown. The formulae are expressed with the use
of matrices.

7.1 The symmetrical problem

The problem is described in Figure 6.1. For the symmetrical problem equations we have:
Ty =T, =T, (7.1)
@ =q2=4s (7.2)

From section 6.1 we see that the strength of the multipoles satisfies the following equations:

Re[Py;] = (=1)'Re[B;] (7.3)

Im[Py;] = Im[Py] =0 (7.4)
We will use the following notations:

Py = M; (7.5)

Py = (=1)'M; (7.6)

Here M; is a non-complex constant. When equations (7.1-6) are used in (5.19,5.20,5.22)
with m = 1 one gets:

T—Ty= 2 (o) o (7.7
$ 7 or ), t 2Dr; - rd — D4 7

{7 5) - () |

When equations (7.1-6) are used in (5.19,5.20,5.23) with m = 1 one gets:
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k=1,...,J |

k k
_ g 1 (11)5~~.k _nb \°_(_nD
0=Met 5% k{ op) ~ U\ = 3+ D
J . Nkt min(ik)
7+k—1 (7'1) J itk myitk—25
. - . . 1+k nyJ 7
+§1Mj{( j=1 ) 2D 2

§'=0

(S (P NG (k=g
(r§ = DR (4 DB ) \ i-1

7.1.1  General solution to equation system

If the equation system (7.7-8) is expressed in matrix notation one gets:

T, —Ty=-2 . A+B-M

271’/\i
4
C-M= WQ’}T,\z‘D
r2 rd
— 1 0 . 0
A=ln (,‘ZDri) In (rg — D‘*)
M,
M,
M = N B= (bl bg bJ)
M;
€11 Ci2 C1g dy
Ca1 €22 Ca2J dz
C= . D=
cj1 Cyj2 v €y dy

The solution can then be expressed in these matrices:
gs = (Ts — Tp) - 27X - hy(rifro, D[ro)

R'=A+B-C1.D

7.1.2 The elements in the matrices

The elements in the matrices are:

b = ( r; )k ( l)k r; D k r;D k
"~ \2p ro — D? rg + D?
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(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)



2k — 1 i\ 2
ckk:1+( T )(5%) (7.17)

k 2k—2j" 2k—j' .
_ 2k yak—2it [ (—1) (1) k 2k—j"—~1
Z T D ((rg — D2)2k~j’ + (Tg + D2)2k—j’ ]” k—1

J'=0
. L ]+k"-1 r; g mingk) j+ij+k—2j' 7.18
wlizd= (1) (55) - (r.18)
(o ()R P\ (i+k—5—1
(r@ — D2)s+k=i" 7 (y2 4 D?)i+k-7' 7’ j—1
1 T k k ’r','D b TiD k
dk’“’é{(?ﬁ) - (=1 (“——rg_pz) “(““”‘rng) (7.19)

7.2 The anti-symmetrical problem

The anti-symmetrical problem is described in Figure 6.1 together with the following equa-
tions

Ty=-1T,=-T, (7.20)

@ =—¢@= ¢ (7.21)
The temperature on the larger pipe is zero:

Ty =0 (7.22)
From section 6.1 we see that the strength of the multipoles satisfies the following equations:

Re[Py;] = (—1)"*'Re [Py] (7.23)

Im[Py;] =Im[P;] =0 (7.24)

We will use the following notations:
Py = (—1y41 4, (7.26)

Here M; is a non-complex constant. When equations (7.20-7.26) are used in (5.19,5.20,5.22)
with m = 1 one gets:

_ Q 2D> B r2 + D?

T, = 555 (ln () -m (”"“’—(rg — (7.27)
J i\’ ( D Y rD )’

_ (N i Y i
ZM{ (55) - (52%) +(r8+D2)}
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When equations (7.20-7.26) are used in (5.19,5.20,5.23) with m = 1 one gets:

k=1,...,J |

k k
_ Qa 1 (1,__)’“ ok r;D 3 r;D

J . N kts min(j,k)
J+k—-1 ; J , o
+§;MJ~{—( i1 )(21}) — 3 pftkpitk-z

i=1 i'=0

NG A G ) i\ (i+k—j—-1
(r§ — D2)i+k=i" — (rg + D2)i+k=3" | \ j' i—1

7.2.1 General solution to equation system

If the equation system (7.27,7.28) is expressed in matrix notation one gets:

Ta=27qr‘3\.-A+B'M (7.29)

C-M= 2;13/\.D (7.30)
2D rZ + D?

A=In ( - ) —ln (r;; s 02) (7.31)

Here M,B and C are defined in (7.12,7.13). The solution can then be expressed in these
matrices:

qo =Ty - 27X - ho(ri/r0, D/10) (7.32)

R'=A4+B-C1.D (7.33)

7.2.2 The elements in the matrices

The elements in the matrices are:

% k k
_ _TL 1)k ’I‘,'D _ T‘iD
b= (20) (=D (rg - D2) (rg +D2) (7:34)
2k — 1 i\
oo =1— ( - ) () (7.35)
_ Sk_: P2k D2h-24" (=12 (=B k 2k —j5' =1
E=3 RPN CEY DI AT AN =
. i min(j,k)
e [ ITR=L (IL)HJ _ jk pyi+k-2’
i1 # K] = ( j—1 ) 5D ;::0 r; D (7.36)
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(rd — D2)i+k=i" 2(—1)2J—j, ! .
7—1

dy = _.1.{ (2 D
— e r——p— . ] k
. 20) (_l)k(TZT_:DDz) + rD \F
0 re + D? (7.3
37)
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8 Summary

For a reader who is only interested in formulae for practical use it is enough to read this
chapter.

8.1 Two pipes imbedded in a circular insulation

There are two pipes imbedded in a circular insulation. The temperatures in the imbedded
pipes are Ty and T,. The temperature on the circumscribing larger pipe is Ty. The thermal
conductivity in the insulation is A;. The problem is to determine the steady-state heat
losses (¢, g2) per unit length from the two pipes inside the large pipe. The temperature
T(z,y) in a vertical cross-section of the pipes satisfies the steady-state heat conduction

equation in two dimensions:

o*T 0T
'5:;5 -+ '5:;2“ =0 (8.1)

Figure 8.1. Two pipes inside a large pipe.

D = Half the distance between the center of the pipes (m)
ro = Radius of the circumscribing large pipe (m)
r; = Radius of the imbedded pipes (m)
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¢; = Heat flow from pipe 1 per meter (W/m)

qg; = Heat flow from pipe 2 per meter (W/m)

To = Temperature on the larger pipe (°C)

T, = Temperature in pipe 1 (°C)

T, = Temperature in pipe 2 (°C)

A; = Thermal conductivity of the insulation (W/mK)

8.2 Mathematical formulation

The original problem can be separated into a symmetrical and anti-symmetrical problem.
The temperature in the pipes in the symmetrical problem is T,. The temperatures in the
pipes in the anti-symmetrical problem are T, and —T,. These temperatures are defined
as follows:

7= hth (8.2)
2
7, =0 ;T2 (8.3)

The subscript s denotes the symmetrical problem of two pipes. The subscript a denotes
the anti-symmetrical problem of two pipes. The temperatures of the original problem are
from (8.2-3):

Ty =T, +T, (8.4)
Ty =T, —T, (8.5)

The heat loss ¢, (W/m) from one pipe in the symmetrical problem is proportional to
the temperature difference T — Ty and the thermal conductivity A;. We may write:

qs = (Ts — To) - 27 \; - hs(ri/ro, D/ro) (8.6)

Here h, is the dimensionless heat loss factor for the symmetrical problem. The heat loss
go (W/m) from one of the pipes in the anti-symmetrical problem is proportional to the
temperature T, and the thermal conductivity A;. We may write:

Go =To - 27X; - ho(ri[ro, D/ro) (8.7)

Here h, is the dimensionless heat loss factor for the anti-symmetrical problem. It should
be noted that the temperature T, connected with ¢, in (8.7) is half the temperature
difference between the pipes. By superposition the heat losses ¢; and ¢, become:

G =4qs+ o (8.8)

92 =95~ qa (8.9)
The total heat loss (¢; + g2) depends on the symmetrical part only:

Nnt+q=2q (8.10)
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The symmetrical and anti-symmetrical problems are solved separately. Formulae for A,
and h, are obtained. The heat losses ¢; and ¢, are then obtained from (8.8-9).

8.3 Approximate formulae

Approximate formulae of the zero, first and second order have been derived. The zero
and first order formulae are shown below together with two old formulae.

8.3.1 Zero-order approximation

The zero-order multipole approximation uses the line sources and sinks without any mul-
tipoles. The zero-order approximation gives the following expressions for the thermal
resistances:

h—l T‘g 7‘8
=lnlgp-] - T (8.11)
2D 4 D?
h;l — ]n( - ) —1In (:‘é t D2> (812)

The relative errors in the heat loss, when the zero-order formulae are used, are typically
less than 20% for ¢, and less than 10% for gq,.

8.3.2 First-order approximation

With the use of multipoles of the first order, the following new formulae are obtained:

iy 2rD3\?
izt (5pa: )~ (25 - i TT)D 2 (813)
’ 1+ (3) - (5%)
7 2ririD)?
Rl =In (-2—9) —In (ré + DZ) - (”j k=) — (8.14)
r; rg—D 1 (5%_) — 2r2rt. (%Q%)DT)?

The relative errors in the heat loss, when first zero-order formulae are used, are typically
less than 0.1% for ¢, and less than 5% for q,.

8.3.3 Area approximation

An old formulae from [7] described in this report is here called the area approximation.
The formula calculates the symmetrical heat loss ¢;.

-rd D 2.-D
rez\/Q roarccos(ﬁ)————— ré — D?

T To T

Ve —=D?+rg B

de = 5 T
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wd,
R, = D
1

hy = SV E =1/R, +1/R, (8.15)

The relative error in the heat loss, when the area approximation formula is used, is
typically less than 10% for g,.

8.3.4 Two-model approximation

Another old formula described in [8] is here called the two-model approximation. The
formula calculates the symmetrical heat loss ¢s.

rifro 4+ ro/ri — (TO/Ti)(D/TO)z)

R; = arccosh (

2
2
Ry = 4 - arccosh (2(?—) —1)
hy=—— =1/R —1/R (8.16)
* 27(’/\,'R3 - ! ? '

The relative error in the heat loss, when the two-model approximation formula is used, is
typically less than 5% for g;.
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1 Introduction

This report deals with the problem of determining the steady-state heat losses from two
pipes in the ground imbedded in a circular insulation. A summary of the results is
presented in chapter 8.

In Claesson [2] a new method, the multipole method, is presented that can solve steady-
state heat transfer problems with circular boundaries. With the use of the multipole
method, new formulae with improved accuracy have been derived for the heat losses from
two pipes in the ground imbedded in a circular insulation.

The errors of the new formulae and two already existing formulae have been deter-
mined with the multipole method implemented on a computer of PC-type. The already
existing formulae are in this report called old formulae.

The formulae are mainly derived for district heating pipes. They can be used on any
problem with the same boundary conditions, but the listed errors of the formulae are
valid for dimensions usual for district heating pipes in the ground.

1.1 Two pipes in the ground imbedded in a circular
insulation

There are two pipes with the radius r; in the ground imbedded in a circular insulation,
see Figure 1.1. The temperatures in the imbedded pipes are T} and T5. The temperature
at the ground surface is T.. The thermal conductivity in the insulation is A;. The thermal
conductivity in the ground is A,.

The problem is to determine the steady-state heat losses (g1, ¢2) per unit length from
the two pipes. The pipes are assumed to be long. It is therefore enough to study a ver-
tical cross-section of the ground. The temperature T'(z,y) satisfies the steady-state heat
conduction equation in two dimensions:

o*T  O*T
e T 1.1
Oz? + Oy? 0 (1.1)
The dimensionless parameter o will be used in the following:
Ai — Ag
- 1.
TTNTA, (12)
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Figure 1.1. T'wo pipes in the ground imbedded in a circular insulation.

D = Half the distance between the center of the pipes (m)
H = Distance from the center of the large pipe to the ground surface (m)
ro = Radius of the circumscribing large pipe (m)

r; = Radius of the imbedded pipes (m)

¢1 = Heat flow from pipe 1 per meter (W/m)

g2 = Heat flow from pipe 2 per meter (W/m)

T. = Temperature at the ground surface (°C)

Ty = Temperature in pipe 1 (°C)

T = Temperature in pipe 2 (°C)

A; = Thermal conductivity of the insulation (W/mK)

Ay = Thermal conductivity of the ground (W/mK)

g

1.2 Solution method

In Claesson [2] a new method, the multipole method, is presented that can solve steady-
state heat transfer problems with circular boundaries. The multipole method is a semi-
analytical method. Myrehed [4] has written a PC program, based on [2], which solves the
heat flow problem of pipes in a cylinder in the ground with arbitrary accuracy. In this
report the heat losses from the pipes are calculated with [4].

In Claesson [1] a method is described that solves the problem of finding the heat flow
to and between pipes in a composite cylinder. The formulae in this report are derived
with the use of [1] and not [4]. The reason for this is that the zero and first order formulae
derived from [1] are simpler and have a smaller error than the formulae derived from [4].

The multipole method can solve two-dimensional steady-state heat transfer problems
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with circular boundaries. The solution is found with the use of the complex plane. Com-
plex line sources in the center of each pipe are used. Only the real part of these line
sources contributes to the temperature field. The complex-valued derivative of order j of
the line source with respect to the position of the pipe is called a multipole of order j. The
temperature field is a sum of the line sources and multipoles up to order J at each pipe.
In the limit when J — oo the exact solution is found. Thus the error of the calculation
can be chosen arbitrarily small.

With the multipole method it is possible to derive systematic approximations of in-
creasing accuracy. This report deals with approximations of the zero and first order.

A detailed description of the multipole method is made in chapter 6.

1.3 Previous reports

There exist several reports describing different types of multipole methods. The method
used in this report is given in Claesson [1], in which the problem is to determine the heat
flows between pipes in a composite cylinder, i.e. two concentric cylinders with different
thermal conductivity. The report of Wallentén [6] is based on Claesson [1] and presents
explicit formulae of the zero and first order for the heat flow from two pipes to a larger
surrounding pipe. Hellstrém [9] presents similar formulae based on [1] to be used in
ground heat storage problems.

Claesson [2] presents a multipole method without any mirror line sinks. The method
described in [2] is implemented in [3] and [4]. The program of [3] deals with the heat flow
problem when one or more pipes are positioned inside a large pipe. The program of [4]
deals with the problem of one or more pipes inside a larger pipe, which in its turn lies
in the ground with another thermal conductivity. The report of Wallentén [5] is based
on Claesson [2] and presents explicit formulae of the zero and first order for the heat loss
from one or two pipes in the ground.
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2 Mathematical formulation

The problem described in Figure 1.1 can, with the use of the superposition principle
described in section 2.1, be separated into two problems. These two problems are easier
to solve than the original problem. The solution is expressed in the new temperatures T,
T., T. and the dimensionless heat loss factors hy and h,.

2.1 Superposition

For the problem described in Figure 1.1 one can construct two basic problems, a sym-
metrical problem and an anti-symmetrical problem, see Figure 2.1. With the use of
the superposition principle, every problem concerning different temperatures can be con-
structed from the solutions of these two problems.

T. 0 T,
qs 4s 1 92
() * -
Symmetrical problem Anti-symmetrical problem Original problem

Figure 2.1. Superposition of symmetrical and anti-symmetrical
problem.

The temperature in the pipes in the symmetrical problem is T,. The temperatures in the
pipes in the anti-symmetrical problem are 7, and —T,. These temperatures are defined

as follows:

7 -0th (2.1)
2
T, = I ;T2 (2.2)
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The subscript s denotes the symmetrical problem. The subscript a denotes the anti-
symmetrical problem. The temperatures in the original problem are from (2.1-2):

Ty =T, +T, (2.3)
Ty=T,—T, (2.4)

The heat loss ¢; (W/m) from one pipe in the symmetrical problem is proportional to the
temperature difference T, — T,. We may write:

T, T,
qs - Rs
Here R, (mK/W) is the thermal resistance between one of the pipes and the ground
surface. The heat loss ¢, (W/m) from one of the pipes in the anti-symmetrical problem
is proportional to the temperature T,. We may write:
Qo = R

a

(2.5)

(2.6)

Here R, (mK/W) is the thermal resistance associated with the anti-symmetrical prob-
lem. It should be noted that the temperature 7, connected with R, in (2.6) is half the
temperature difference between the pipes. By superposition the heat losses ¢; and ¢,
become:

G =45+ ¢ (27)
92 = 4s — qa (28)
The total heat loss (g1 + ¢2) depends on the symmetrical part only:

nte=2-q (2.9)

The symmetrical and anti-symmetrical problems are solved separately. Formulae for R,
and R, are obtained. The heat losses ¢; and ¢, are then obtained from (2.7-8).

2.2 Dimensional analysis

The heat losses ¢, and ¢, are proportional to (T, —T,) and T, respectively. It is convenient
to introduce the dimensionless heat loss factors h, and h,. This is done to separate
the dependence on the temperatures from the dependence on the geometry and thermal
conductivity of the problem.

gs = (Ts = T,) - 27A; - by (2.10)
o =T, 27X - hy (2.11)

The factor 27); is introduced to make the expressions for h, and h, simpler.

The geometry is described by four lengths: r;, ro, D and H. The number of parameters
necessary to describe the geometry is reduced from four to three by scaling with the radius
of the outer pipe ro. The heat loss factors hy and h, only depend on the parameters r;/rq,
D/ro, H/[ro plus the ratio A;/A,: ‘
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gs = (Ts — T¢) - 2 A - ho(rifro, D[ro, H[ro, AifAg) (2.12)

qo =T - 2w - ha(rifro, D/ro, Hro, Aif Ag) (2.13)
The geometry of the problem gives the following inequalities:

0<rifro < Dfrg (2.14)

rifro+ Dfre < 1 (2.15)

The thermal resistances R, and R, can be expressed in h, and h,.

1

Ry= 5 (2.16)
R, = ! 2.17
‘T 271')\.5 . ha ( : )
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3 Symmetrical problem

The problem is described in Figures 1.1 and 2.1. For the symmetrical problem the tem-
perature in the pipes is Ty, = (T} + 1,)/2 and the temperature at the ground surface is
T.. The heat loss from the pipes is ¢, for both pipes.

3.1 Exact solution

The exact solution to the problem was obtained with the use of the program described
in [4]. The order of the highest used multipole has been at least 10. This means that the
error in the heat losses is approximately less than 0.01 %. From equation (2.12) we get
the heat loss g,:

g, = (T, = T.) - 2w ); - hy(rifro, Dfro, Hro, Aif Ag) (3.1)

Figure 3.1 shows the computed heat loss factor h,(r;/ro, D/ro, H/ro, Aif/Ag) for H/re = 2.
The thermal conductivity of the ground is 2 W/mK and of the thermal conductivity of
the insulation is 0.04 W/mK. The ratio A;/)A, is therefore 0.02 and o is —0.96078, see
equation (1.2).

h
3.5
3f
2.5E
2F
1.5E
- / SRS risr0=0.4
1F V4 A=
- - risr0=0.3
- i I S | .
0.5 F—t—f=— . ri/r0=0.2
OE“' ot risr0=0. 1
0 0.10.20.320.40.50.60.70.80.9 1

D/T‘Q

Figure 3.1. Heat loss factor h, for different values of D /ro and r;/ro
(H/ro = 2, M/ A, = 0.02).
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The heat loss g, will increase for increasing D/ry. The heat loss ¢, is strongly depen-
dent on the ratios r;/ro and D/ro. For small pipes the heat loss is only weakly dependent
on the positions of the pipes (D/ro). The heat loss is only weakly dependent on the ratio
H/’I"Q.

The heat loss factor A, is shown in Figures 3.2-5 for different values of the parameters.

3.2 Approximate formulae

With the use of the multipole method described in [1] approximate formulae of the zero
and first order have been derived for the heat losses from the pipes. A formula of order J
employs the solution of a J order equation system. The formulae will therefore be very
complicated for J > 1. Formulae (3.2) and (3.3) are derived in chapter 7.

3.2.1 Zero-order approximation

The zero-order multipole approximation uses the line sources and sinks without any mul-
tipoles. The zero-order approximation gives the following expression for the heat loss
factor h, (or thermal resistance R;) for the symmetrical problem:

2); 2H r2 ra
_1 poumad - Prwionel 4 ————— O - 0
- hI =27 AR, % ln(ro ) +In (2Dri) +o0-In (rﬁ—D“) (3.2)

Here is o = (A; — A,)/(Ai + Ay).

3.2.2 First-order approximation

With the use of multipoles of the first order, the following new formula is obtained:

2X\; . (2H r3 rd
-1 P o 20 a4 0 . Y
B =2, = S ( = ) +1n (21%,;) +o-lIn (rg i D4> (3.3)
T a2r; D3 2
(.2—15 - 7‘0;—-04)

rirsD

L+ (3) +o (50

F

o

The last term is the correction to the zero-order formula. Note that the depth H is not
used in this term.

3.2.3 Area approximation

There exists an old formula that we here will call the area approximation formula [7]. The
formula is based on the assumption that the resistance of the insulation can be separated
into two resistances coupled in parallel. The resistance of the ground is added in series
to the other two resistances.

2 D
Te = 2 arccos (2) _2D ré — D? (3.4)

T To



2 D2 +
PR AL o, (3.5)

Ry =2h (T—) (3.6)

T
wd,
Ry = — (3.7)
20, | H H*?
R3 = y In (;54— - -1 (3.8)
ho'= 9mARy = ——— 4 R (3.9)
o T TR +1/R, ‘

The resistance R; originates from the resistance of a circular insulation with inner radius
r; and outer radius r.. The resistance R, originates from the resistance of a rectangular
insulation with height d. and width D. The circular and rectangular insulations are
defined so that the total insulated area is the same as in the real problem. The resistance
Rs is the resistance between one pipe in the ground, with the radius ry, and the ground
surface.

3.2.4 Two-model approximation

Another old formula investigated here we will call the two-model approximation. It is a
formula from [8] but with a additional resistance for the ground R3. This formula is based
on the assumption that the problem can be separated into two problems which each has
an analytical solution.

The resistance R, originates from the resistance between a pipe with the radius r;
and a circumscribing pipe with radius rog. The resistance R, originates from the resistance
between two pipes with the radius r; whose centers are 2D apart. The resistance Rj is
the same as in (3.8).

Ry = axccosh (7ot ol (o)D) (3.10)

D 2
Ry = 4 - arccosh (2(——) - 1) (3.11)

. [H H?
NN O I ) 1)
Ag To To
Rl =27 MR, = ! +R (3.13)
s T 1/R —1/R, T 7° ‘
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3.3 Errors of the formulae

The errors of the different formulae have been studied with the use of the multipole
program [4]. Figures 3.2-5 show the error made when the heat loss ¢ is calculated with
formulae (3.2,3,9,13). The error is expressed in per cent. A positive relative error means
that the formula gives a too large heat loss. In the figures the heat loss factor &, is also

shown. The right ordinate shows the heat loss factor and the left one the error.

10 error () : h% 3
; T e S /-_ 5.5
- q>
I d1.5
- ] (3.13
- 41 - (3.9
-_ E ............ (3-3)
i L 100
-40 3 e e, “\‘\ ] 0 — hg
0.3 0.4 0.5 0.6 0.7

D/TQ

Figure 3.2. The relative error (%) of the formulae to calculate g,
and the heat loss factor h, for different values of D/rg

(H/ro =2, ri[rg = 0.3, A\;/ A, = 0.02).

10 ?rror 9 he -
s
: 0.77
o] S
o N (3.13)
- 0.76 -~ (3.9
S 1o] S N R (3.3
: ] (3.2)
S L s s
1 2 3 4
H/To

Figure 3.3. The relative error (%) of the formulae to calculate g,
and the heat loss factor i, for different values of H/rg

(D/ro =04, ri/ro = 0.3, X;/), = 0.02).
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Figure 3.4. The relative error (%) of the formulae to calculate g,
and the heat loss factor h, for different values of r;/rg
(H/TO = 2, D/TO = 04, )\,;/z\g = 002)
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Figure 3.5. The relative error (%) of the formulae to calculate g,
and the heat loss factor h, for different values of A;/A,
(H/TQ = 2, T,‘/T() = 03, D/To = 04)

Figure 3.3 shows that the errors and the heat loss factor are obviously only weakly
dependent on H/re. From Figures 3.2-5 one can see that all the formulae ”collapse” when
the pipes lie close to the large pipe (D + r;)/ro = 1. Formula (3.13) also collapses when
the pipes are too close to each other (r;/D & 1). The error of the first-order formula (3.3)
is very small compared to the other formulae. The first-order formula (3.3) seems to be
the best choice for practical use. It is a simple formula with only a small error.
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4 Anti-symmetrical problem

The problem is described in Figures 1.1 and 2.1. For the anti-symmetrical problem the
temperatures in the pipes are T, = (T} —T3)/2 and —T,. The temperature at the ground
surface is T, = 0. The heat losses from the pipes are ¢, and —g,.

4.1 Exact solution

The exact solution to the problem was obtained with the use of the program described
in [4]. The order of the highest used multipole has been at least 10. This means that the
error in the heat losses is approximately less than 0.01 %. From equation (2.13) we get
the heat loss ¢,:

qo =Ty - 27 N; - ho(ri/ro, D/ro, HlTo, Ai/Ag) (4.1)

Figure 4.1 shows the computed heat loss factor h,(r;/ro, D/ro, H/ro, Ai/\,) for H/ro = 2.
In Figure 4.1 the thermal conductivity of the ground is 2 W/mK and of the thermal
conductivity of the insulation is 0.04 W/mK. The ratio A;/A; is therefore 0.02 and o is
—0.96078, see equation (1.2) The heat loss ¢, has a minimum for D/ry & 0.5. The heat
loss is only weakly dependent on the ratio H/ro.

c ha

s

4

3f | V

b g e risr0=0.4
\ AN [ S L 0 B I ri/r0=0.3

1 : = e arorr e S ] / ------- ri/r0=0.2

N |— risro=0.1

0 0.10.20.30.40.50.60.70.80.9 1
D/To

Figure 4.1. Heat loss factor h, for different values of D/rq and r;/ro
(H[ro =2,/ Ay = 0.02).

The heat loss factor h, is shown in Figures 4.2-5 for different values of the parameters.
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4.2 Approximate formulae

With the use of the multipole method described in [1] approximate formulae of the zero
and first order have been derived for the heat loss from the pipes. Formula (4.2) and (4.3)
are derived in chapter 7.

4.2.1 Zero-order approximation

The zero-order multipole approximation uses line sources without any multipoles. The
zero-order approximation gives the following expression for the heat loss factor h, (or
thermal resistance R,) for the anti-symmetrical problem:

2D ra + D?
- ) +oln (Wrg — D2) (4.2)

4.2.2 First-order approximation

R7'=27\R, =1In (

With the use of multipoles of the first order, the following new formula is obtained:

2D rZ + D?
-1 _ - 0
ha = ZW/\iRa = In (T) + oln (W) (43)
Ty Dr; 207;12D 2 9
(2D ~ Ve + D ) 7( D )
- N2 - Aips 517
1- (2%-) — 755 + 20135 - (;?_ir—g;); 2H
2(1 — o?
y = _(..._.....).2, (4.4)
1-— 0(5-}’1—)

4.3 Errors of the formulae

The errors of the different formulae have been studied with the use of the multipole
program [4]. Figures 4.2-5 show the error made when the heat loss ¢; is calculated with
formulae (3.2,3). The error is expressed in per cent. A positive relative error means that
the formula gives a too large heat loss. In the figures the heat loss factor h, is also shown.
The right ordinate shows the heat loss factor and the left one the error.
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Figure 4.3. The relative error (%) of the formulae to calculate ¢,
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Figure 4.5. The relative error (%) of the formulae to calculate ¢,
and the heat loss factor k, for different values of A;/A,
(H/'I‘() = 2, ’f'{/‘l‘o = 03, D/'l‘o = 04)

From Figures 4.2-5 one can see that the formulae ”collapse” when the pipes lie close to
the large pipe (D + r;)/ro & 1 and when the pipes lie too close to each other (D/r; ~ 1).
The formulae always underestimate the heat loss. The first-order formula (4.3) seems to
be the best choice for practical use. It is a relatively simple formula with only a small

error.
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5 Position of the pipes

There is a general opinion that, for district heating pipes it is better to position the pipes
vertically than horizontally, with the warmer pipe underneath the colder pipe. This is
supposed to reduce the total heat loss from the pipes. Figure 5.1 shows the two cases
(Ty > T3).

With the use of Myrehed [4] this problem has been investigated. The result is that
the total heat loss is reduced when the pipes are positioned vertically, but for district
heating pipes this reduction is so small that it is negligible. The total heat loss in the
calculated examples is reduced with < 0.2%.

(=)
() (2 @

Figure 5.1. Vertical and horizontal positioning of the two pipes in-
side the larger pipe.

5.1 Calculations

The difference between the heat losses in the two cases has been studied. In Figures 5.2-5
the importance of the ratios H/rg, D/rg, r;/ro and
lambda;/ A, are shown. The non-free parameters in each figure are listed below.
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T, =70 °C D =04m

T, =40 °C H =2m
TC =38 °C To =1m
)\,’ = (.04 VV/II}K T =0.2m
A, =2 W/mK

= o = —0.96078

The following definitions are used:

gt = heat loss from pipe 1 in the horizontal problem (W/m)
g} = heat loss from pipe 2 in the horizontal problem (W /m)
¢’ = heat loss from pipe 1 in the vertical problem (W/m)
¢? = heat loss from pipe 2 in the vertical problem (W/m)

Gi=a+9%  Gu=h+B (5.1)

Note that pipe 1 is always the warmer pipe. Figure 5.2 shows how the ratios ¢7,/qk,,
q?/q" and ¢¥/q} are dependent on H/ro. The heat loss from the warmer pipe is reduced
with < 1% when the pipes are positioned vertically and the heat loss from the colder pipe
is increased < 2.5%. The total heat loss is therefore reduced with only < 0.2% when the

pipes are positioned vertically.

1.03
1.025
1.02
1.013
S
Lossp T ——
............ Qe Tt
------ a/4;

T P TS ISP ET AT IR UTATNE ITENUPETE WA ST q'l’/q%
1. 2 2.3 3 3.3 4 4.5 5

H/To.

[om—y

0.995
0.99

— _llllllll;lllllIl[llll\lllllllll!llllii!l

Figure 5.2. The ratios ¢°,/q",, ¢'/q¢"* and ¢¢/q} as dependent on
H / To.

Figure 5.3-4 show how the ratio ¢,/ql,, is dependent on D/rg and r;/ro. The dif-
ference between the heat loss from vertically positioned pipes and horizontally positioned
pipes is < 0.2% except when the pipes are very close to the outer pipe.
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Figure 5.3. The ratio ¢¥,,/q?, as dependent on r;/ro.
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Figure 5.4. The ratio ¢7,/q", as dependent on D/rq.

Figure 5.5 shows how the ratio ¢?,,/q%,, is dependent on A;/,. Even when \;/\, =~ 0.5
the difference between the heat loss from vertically positioned pipes and horizontally
positioned pipes is < 2%.
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6 Multipole method

The general multipole method can, with some adjustments, be used to solve many different
problems. The only restriction is that the boundaries are circular. There exists a number
of different multipole methods applicable to different problems. The multipole method
used to derive the formulae in this report is described in this chapter.

6.1 Outer circle instead of ground surface

For the problem of two pipes imbedded in a circular insulation in the ground there exists
a specific multipole method described in [4]. In this report the heat losses from the pipes
are calculated with [4].

Claesson [1] presents a variation of the multipole method that solves the problem of
pipes in a composite cylinder, i.e. two concentric cylinders with different thermal conduc-
tivity. The border of the large cylinder is the outer boundary.

The formulae in this report are derived from [1]. The formulae are thus derived to
satisfy a different problem than the one we are interested in. The reason for this is that
the zero and first order formulae derived from [1] are simpler and have a smaller error than
the formulae derived from [4]. For higher orders, the formulae derived from [4] will have a
smaller error than those derived from [1], but these formulae are much more complicated.
The method described in this chapter therefore solves the problem of pipes in a composite
cylinder.

Formulae for the problem of pipes in the ground are derived from the problem of pipes
in a composite cylinder by simply substituting the radius of the large cylinder r. with
twice the depth 2 - H.

6.2 Thermal problem

There are N pipes, which lie in a circular region with radius r9. The circle is surrounded
by an annular region of another material. The outer circle has the radius r.. The problem
is described in the complex plane in Figure 6.1.
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Figure 6.1. N pipes in a composite cylinder in the complex plane.

The temperature at the outer circle is T,. The temperatures in the pipes inside the
inner circle are T,,. The annular region ry < r < r, is homogeneous with the thermal
conductivity A,. The inner circular region has the thermal conductivity A;. The steady
state temperature T'(z,y) satisfies the heat conduction equation (Laplace equation) in the
annular region and in the inner circle.

T T _
dz? = Oy

r=/2? 4+ y? (6.2)

The problem is solved in the complex plane (z = x4 -y). The imaginary unit is denoted

0 (6.1)

2, (1* = —1). The complex conjugate of z is denoted Z. The center of the pipe n is z,.

Zn =Tp 1Yy (6.3)
Local polar coordinates p, %, from the center of pipe n will be used:

2z — 2y = ppen (6.4)
The boundary condition at each pipe n is:

T="T, Pn = Tn, 0< v, <2m (6.5)
The temperature and radial heat flux are continuous at the inner boundary r = rg:

T =T (6.6)

ro—0 r0+0
/\"%g; o = /\g%—:;j o (6.7)
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The boundary condition at the outer circle is :

T="T. r=r, 0<¢, <2r (6.8)

6.3 The multipole method

The temperature field consists of a line source part T,(z,y), a multipole part at the pipes
T,(z,y), a multipole part at the outer circle T,(z,y) and a constant temperature level Tg.

T(z,y) = To+ Ty(z,y) + Tp(z,y) + Te(e,y) (6.9)

From [1] we get the expressions for the line source term Ty(z,y):

(z,y) = L”l T W z)] (6.10)

T r2
r<rg Wno(z) =In (Z “Ozn> +oln (g:()—z—;;) (611)

r 2o Wio(z) = (14 0)In ( o ) + :\):ialn (T—O> (6.12)

Z - Zn g z

Where the dimensionless parameter o is used o = (A; — Ay)/(A; + Ay). The complex
function W, is introduced to make the equations more homogeneous. The first part of
equation (6.11) represents a line source with the strength ¢, at (z,,y,) in a material
with the thermal conductivity A;. The second term is due to the fact that the thermal
conductivity is A, for r > ro. This term represents a line source with the strength o - ¢,
situated at the mirror point (2,r2/2,%n, yn7a/2n%n). The mirror point lies on the same
radius as (2n,yn). The temperature field (6.12) in the outer region r > 7o consists of a
line source with the strength (1 —o)q, at (z,,y,) and another one with the strength o- ¢,
at (0,0).

Both the real and imaginary parts of W, each satisfy the Laplace equation (6.1) and
the boundary condition (6.7). The real part of W, also satisfies the boundary condition
(6.6). The function Ty(z,y) defined in (6.10) therefore always satisfies the boundary
conditions (6.6-6.8) and the Laplace equation (6.1).

The complex-valued derivative of order j of W, with respect to z, is called a multipole
of order j. We will use the function W, ;. The complex strength of each multipole is P,;.

(#,y) = ZZP"U r nj(z)} (6.13)

Waj(z) = (—]—_-_1—1—)7 ' %(WnO) (6.14)
r<re  Wiy(z) = ("z—..”l";")"f to (rg _fzzn)J (6.15)
r 2> Woi(z) = (1+ a)(—_1—7 (6.16)



Both the real and imaginary parts of W,; each satisfy the Laplace equation (6.1) and the
boundary conditions at the inner boundary, (6.6-6.7).

The line source and multipoles at 2, can be used to represent an arbitrary solution
outside pipe n. We need a corresponding representation for the outer boundary circle
r = r,. The expression is, from [1}:

Te(z,y) =R Zch ’ r;j ) Wcj(z)} (6.17)
7=1

r<rg W,=(0~0) 2 (6.18)

r>r, W=z —0a- (rg/?i)j (6.19)

We call these multipoles at infinity. They are needed to satisfy the boundary condition at
the outer circle (6.8). Both the real and imaginary parts of W;; each satisfy the Laplace
equation (6.1) and the boundary conditions at the inner boundary, (6.6-6.7).

6.3.1 General expression for the temperature

The general expression for the temperature is described below. Instead of ¢,, the following
notation will be used:

I
™= (6.20)
r<rg
T=To+R g:P 1 ( o )+ ] 3
o = ! 2= 2y om r§ — 2z,
o Y TnZ 3
+7;,§=:1P”j{(z-zn) +”'(rg_.-gzn) (6.21)

r > T
T:-'To—{—?}ﬁ[é])n{(l—%—a).}n (Z iﬂzn) +_§j’am (%‘1)} (6.22)
+ é;ipnj (1 +0)<Z inz,)] + éPCj {(%)J - a(gc—i—_)j}}

The temperature field (6.21,6.22) satisfies the heat conduction equation (6.1). The quanti-
ties Ty, P,, Pn; and P,; are determined by the boundary conditions. The expressions (6.21)
and (6.22) are inserted in the boundary conditions (6.5) and (6.8 respectively.
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6.3.2 Boundary condition at the outer circle

In this section the boundary condition (6.8) at the outer circle is examined. The temper-
ature must be expressed in polar coordinates: T = T'(r, ).

z=r-eY (6.23)

From [1] we get the following expressions:

m( "o ) =In (Tf) +§ %(?z—)k 2] < |2] (6.24)

Z— Zn

(z inz)’ N (%)J > (H;’i;l ) (Ef)k |2a] < I2] (6.25)

k'=0

The multipoles (6.25) are summed over j in (6.21,6.22). We need to rearrange the double
sum in the following way:

Sr(o) -EERE ()@ e

Jj=1 Z T Zn ij=1k'=0

o) k-1 ,,.jzk—_y
— 7 __ . nen
Ak ]—ggf’w(j-l ) o+

With the use of (6.24), (6.25), (6.26) and z = re'¥ equation (6.22) becomes:

r2Tg
N To N ® g 1 /z,\% _.
T = Z.ln(— ~ (1 — (2] etk
(r,¥) T0+n§1pn)\g n(r)_'_%[;::”;??r/\i( +0)k(r)e

The summation index is in the last line changed from j to k. The temperature depends
on e*¥ and ™", The former term may be changed into the negative exponent e~**¥
by taking the complex conjugate.

R [Po - %] = R [Poy - 7] (6.28)

The boundary condition (6.8) can now, with the use of (6.27) and (6.28), be separated
into a part independent of 1, and a part depending on . The part independent of 1 is:

N /\,ﬁ To
T,=Ty+ 3 Pt In (_..) (6.29)

st g Te
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The part depending on ¥ is:

0="Pg- {1 - 0(%)%} (6.30)

6.3.3 Boundary condition at pipe m

To solve the boundary condition problem of pipe m we need expressions for the line
sources of the pipes and the multipoles in local polar coordinates of pipe m. From [1] we
get these expressions. In the following, n is the number of the pipe with the line source
or multipole and m is the number of the pipe whose boundary condition is to be satisfied.
We will use polar coordinates from pipe m:

z =z + pme VT (6.31)
n=m |
In (—° ) ~ In (1‘-’—) i, (6.32)
Z = Zm Pm
i i
( Tm ) = (T_’i) e idm (6.33)
Z— Zm Pm
E ]
ln( 0 ) = m( L ) + fj l(—————”’“ )keik”’m (6.34)
Z— 2z, Zm ~ Zn o b\ — 2
J i %® AT k-
- EDE() e o
Z — Zy Zm — Zn k=0 .7—1 2 ™ Zm

] every n and m l

= J
'n2 _
(rg - -z-z,,,) = (6.36)

i mii(f,k) ] k +J _ jl -1 T.Zz, . E‘Zr:], . Z:‘;—'j’ 4 e..ik,ﬁm
, 5! j—1 ( i+k—3 Pm

T8 — 2,%m)
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2 k
T Z i
() o5 (2 ) e
TO_ZmZ,n znzm

With (6.31) the multipoles at the outer circle becomes:

Srii-)(Z2) = (6:39)

k

0 o0 Pi(l—o 7 ﬂ.eik¢m
J k 7

k=0 j=maz(1,k) Te

With (6.32-6.38) the boundary condition (6.5) of pipe m become:

[ m=12,...N I
_ Gm | (To
Rl
To it 1 T'm
B () v () e
R né;n {n Zm — Zn +kz=:1k Zn = Zm
N ra > 1 2T k -
+3 P fln (—_r§~2mzn)+ > E(Mrg__z_mzn) -kt (6.39)
+ZP e"‘.ﬂ/’m
J=1
ifi4+k-1 r ko
+ Pn( ) (1 , )(.__.__za__) ik
né;njz:llg) ! m " Zn J—1 Zp T Zm ¢

N oo oo min{jk) .y e i
JHk—=g' =1\ -2 2 ikt
+ZZZ Z PnJa(j )( ]“]1 ) - )j+k—j"pme o

n=13=1k=0 3'=0 (7‘3 — ZnZm
. j—k k )
+Z Z Pca(l“‘g)(‘]z;)zmjp 'ezkdjm}
k=0 j=maz(1,k) Te
0< Y, <2

The summation index on the fourth line (concerning P,,;) is changed into k. The depen-
dence on %, lies in the exponents e"*¥=m and e~**¥m_ The latter term may be changed into
the positive exponent e*"*¥m by taking the complex conjugate. This is possible because
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only the real part of the expression is used in (6.39). Equation (6.39) can now be sepa-
rated into a part independent of 1,,, and a part depending on ,,. The part independent

of 1, is:
l m=12,...N l

N
Tm_TO:‘ZgnR

n=1

7 N o rnEm 7
ZZPW( — ) ~ 2> Prjo| (6.40)
ny’:m] 1 Zn n=1j=1 7"0 ZnZm

+3 rs-o)(22) }

The thermal resistances R, (K/(W/m)) in (6.40) are given by:
1 o ) rg 1 (rc)
o . ST, S .1 .
R .. oYy {ln ( o +oln (rg P + 2h, n o (6.41)

1 To ré 1 (rc>
o 1 In | — .
B 27 A { n (Izm — zn{) toln (]rg z zml>} + 27 A, " o (6.42)

The part depending on %, is:

m=12,...N k=12

1 T k gn 1 TmZn b
0=Ppi+ Z o )\ k(Zn_Zm) +ZG 2T\ k(ro_znzm)

n=1
e () () )

P, . 6.4
S (3)(a ) e
n=1j=1 j'= Fni J' 7-1 (rgwfnzm)‘ﬁkﬁl

oo N\ ik
+Zch<1~a)(§c) o
=k e

6.4 Final equation system

The equation system (6.29,6.30,6.39,6.43) must be truncated. We consider multipoles at
the pipes up to order J. Here J is a positive integer or in the lowest approximation zero,
in which case only the line sources are used. The sine- and cosine-variation around the
pipes can be made zero up to order J only. We get the following equation system:
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n=1
N J Tnzm J
R |5 S () 2 P (6.44)
n#Em j=1 Zn n=1j=1 nem
+Er-a(2)
i=1 Te

m=1,...,N k=1,..,J|

e T N 1 Tz, k
0= mk+22)\k( ) +Za E(r —~'§nzm)

n#m Zn — Zm n=1

+ 2 EJ:PM- ( kjf_fl ) (Zmr_" Zﬂ)j(znrm )k (6.45)

n#m j=1 — Zm

J min(5.k) Eai— 4 L L e i
+5-7 -1 Tn ' Tm ' Zm~ "%y
23S (5 ) ()

n=1j=1 j'=0

J P\ 2ik Lk
+3 Pyl - o) ( . ) Tmm

=1 Te

0 =Rk-{1 —0(%)%} (6.46)

e £ (1))

n-l n=1 j=

The thermal resistances RS, (K/(W/m)) in (6.45) are given by (6.41,6.42). These are the
equations that completely determine the strength of the multipoles and the line sources.
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7 Derivation of the first-order
formulae

We will here derive the first-order formulae from equation system (6.44-46). Due to the
symmetry of the problem it is possible to reduce one unknown multipole strength. This
is done in section 7.1. In section 7.2 the formula for the symmetrical problem (3.3) is
derived and in section 7.3 the formula for the anti-symmetrical problem (4.3) is derived.

7.1 Symmetry analysis

Figure 7.1 describes the problem. The parameters are defined in section 1.1.

T,

Figure 7.1. Two pipes inside a composite pipe.

The center of pipe 1 are at z; and the center of pipe 2 are 2. The center of the two
circumscribing circles are at z = 0.

Z1 = '—D Z9 = D (71)
The temperature field is in accordance with (6.9) divided into four parts:

T(e,y) = To + Ty(2) + Tp(2) + (=) (7.2)
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Here T,(z) is the temperature field from the line sources, T,(2) is the temperature field
from the multipoles at the pipes and T.(z) is the temperature field from the multipoles
at infinity. The field is superimposed on a constant temperature level Tp.

The line source part is from (6.10):

[}: P, - Woo(2) ] (7.3)

2
_ o 7'0
Woo(2) e In (z — Zn) +oln (r% — Ezn) (7.4)
_ o A (re)
W) | =(1+o)n (Z n Zn) toitin (% (7.5)

The multipole part is from (6.13), with multipoles up to order J:

% [z ZPnj-rz;-wm(z)} (16)

W,i(2) = (—;—_12)—] + a(rg _izn)J (7.7)

Wasls) | =0 te) _1%)] (1.8)
From (7.7,7.8) we get:

Wai(2) = (=1) Whj(—=2) (7.9)

W,i(z) = Wy;i(Z) (7.10)

The temperature field from the multipoles at infinity is T,(z):

T(z Z;PCJ Te cj(z)} (711)
We;(z) e =(1-0)2 (7.12)
W, (z) . = 2f — a(?) (7.13)

From (7.12,7.13) we get:
Wei(z) = (=1 Wej(—2) (7.14)
W.i(z) = W;(Z) (7.15)

The constant temperature level Tj is, from (6.31)

(f?-> (7.16)

Te

T =

27r/\ '

n=1

184



7.1.1 Symmetrical problem

For the symmetrical problem we have:

Ty =T,=T; (7.17)
Q1 =q2=(s (7.18)
The temperature field must be symmetric with respect to the real and imaginary axis:
T(z) =T(-%) (7.19)
T(z)=T(z) (7.20)

The multipole part T,(z) of equation (7.19) becomes with (7.9):

R };{Puwu(w+P2j(—1>jwu(—z)}r:? = (7.21)

. | |
® Z:l {PiWhi(=2) + Pyy(—1Y Wr;(2) } 7!

This must be true for every J and hence for every j. When the right side of equation
(7.21) is complex conjugated and equation (7.10) is used, one gets:

R [Whj(z) (P =Py (<1)) + Wij(=2) (=P + P - (-1))| =0 (7.22)
If equation (7.22) is to be satisfied for every j and z the following must be true:
Py = (=1 Py (7.23)

The multipole part of equation (7.20) gives, with a procedure similar to the above de-
scribed:

R [W1(2) (P = Piy) + Whj(=2) - (=1) (Pys = Po)] = 0 (7.24)
If equation (7.24) is to be satisfied for every j and z the following must be true:

S[Pi] = S[Py] =0 (7.25)
From (7.23) and (7.25) we get:

Pyy=M; Py=(-1)M; (7.26)

Here M; is a non-complex constant.
For the multipoles at infinity, equation (7.19) gives with (7.14, 7.15):

P.; = (-1)P, (7.27)
Equation (7.20) gives with (7.14, 7.15):
P, =P (7.28)

The strength of the multipoles at infinity will always be non-complex. It will only be
nonzero when the order j is even.
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Py = 51+ (~1))M,, (7.29)

Here M,; is a non-complex constant.

7.1.2 Anti-symmetrical problem

For the anti-symmetrical problem we have:
Ty=-T,=-T, (7.30)
Q1= —q2= —¢a (7.31)

The temperature field must be symmetric with respect to the real axis and anti-symmetric
with respect to the imaginary axis:

T(z) = T(3) (7.32)
T(z) = —T(~7) (7.33)

Equations (7.32) and (7.20) are identical. This means that the imaginary part of the
strength of the multipole is zero.

The multipole part of equation (7.33) gives with (7.9,7.10):
R [Wi;(2) (P + Poj - (=1)7) + Waj(—2) (Py; - (-1) + Py;)] = 0 (7.35)

If equation (7.35) is to be satisfied for every j and z the following must be true:

Py = (1Y P (7.36)
From (7.34) and (7.36) we see that the following is true for the anti-symmetrical problem:
Py=M;  Py=(-1)"M; - (737)

Here M; is a non-complex constant.
For the multipoles at infinity, equation (7.32) gives with (7.14, 7.15):

Py = (-1)"'P (7.38)
Equation (7.33) gives with (7.14, 7.15):
P;=P,; (7.39)

The strength of the multipoles at infinity will always be non-complex. It will only be

nonzero when the order j is odd.
1 .
Py = 51+ (1M, (7.40)

Here M.; is a non-complex constant.
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7.2 Derivation of formula (3.3)

We will here derive the first-order multipole formula for the symmetrical problem. The
problem is described in Figure 7.1 with equations (7.17-7.20). For the multipoles equation
(7.26) and (7.29) are true. We will use the following definitions:

Pn = M1 (741)
P21 - “Ml (742)
Pi=0 (7.43)

Here M, is a non-complex constant. When equations (7.41-7.43) are used in (6.44) one
gets, for m = 1:

qs ra e A (rc)
— = 1 2 - 4
T,—T, X, (ln (2Dr,~) +o n( D") + /\gl e (7.44)
i o2r; D3
+My 2D T rE - D“)

When equations (7.41-7.43) are put in (6.45) one gets:

T TiD TiD
{ZD Grg — D2 + Ur% + D2} (7.45)

2)\

r; 2 2D2 r:D? r? r
+My {<2_l—)—> to (7‘ — D?)? + 0(7‘3 + D?)? + arg —D? Grg + Dz}

After some simplifications equation (7.45) is reduced to:

-1
_ qs T; o2r; D3 ( ) 2 2r;roD 2
M=% (ZD A 04) (H 5p) T\ - Dt (7.46)

This expression for M; is used in equation (7.44).

20 (T, = Tp) rd o A (rc)
T_IH<QDTi +oln D +2X—g—ln - (7.47)

-1
r; o2r; D3 2 ( ; )2 2riroD \?
—\ls= - A1+ lzx) +o
2D  r} - D* 2D rg — D*
Formula (7.44) is valid for two pipes in a composite cylinder. The formula for two pipes
in a cylinder in the ground is acquired by replacing r, with 2H:

20 0(T, = Tp) ra TS A (2H>
....-m_qs—__...ln(QDr2 +oln D +2/\gln - (7.48)

r; 0’27‘2D3 1+< )2+ 2T,'T‘0D 2\
9D~ ri_Dt oD) To\ri_ Dt
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The zero order formula is acquired by setting M; to zero in (7.44).

7.3 Derivation of formula (4.3)

The anti-symmetrical problem is described in Figure 7.1 with equations (7.30-7.31). For
the multipoles equations (7.37) and 7.40) are true. The temperature on the outer pipe is
zero:

T.=0 (7.49)
We will use the following definitions:

Py =M, (7.50)

Py =M, (7.51)

Py =M. (7.52)

Here My and M, are non-complex constants. When equations (7.49-7.52) are used in
(6.44) one gets after some simplifications, for m = 1:

G QD) rd+ D?
T, = T (ln ( - +oln (rg s (7.53)
i 2rér;D D
+M,; {—2D +Jr8 — D4} + M(1 -—a)rc

When equations (7.49-7.52) are used in (6.45) one gets after some simplifications, for
m=1and k= 1:

_ Ga r; QTSTiD
0=35m, {21) o 04} (7:54)
i \2 5 o To+ D*
+M1 {1 <2D> + 0’2?07',' (rg _ D4)2

+M.(1 - cr)gi

Equation (6.46) becomes with (7.49-7.52), for k = 1:

. 2D on
4 M T) (7.55)

1

0 = Mo(1 = o(ro/re)?) + (14 0) (525 + s =

With the use of the dimensionless parameter v equation (7.55) becomes as follows:

2(1+0)

1= o(ro/rc)? (7.56)
(2D __>
M. =~ ( o M (7.57)

Equation (7.54) becomes with (7.57):
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ga_ (__ D ] 2rgriD
(-2 +g+o

2w i ri-pD4
M, = — - 3 » ‘; L Df (7.58)
1- ’Y;Z - (Tb) + 0-27‘1' 7o (,,.O_D4)2
When (7.58) is used in (7.53) one gets, after some calculations:

27201, 2D r3 + D?

o e ln (—T-’:—) + 0‘111 (W (759)

; 7 rir2D 2
G i =), Dy

B ri \? i rd+D* B 7(——)

1- (E‘b‘) — 5+ azr,?rgw Te

Formula (7.59) is valid for two pipes in a composite cylinder. The formula for two pipes
in a cylinder in the ground is acquired by replacing r, with 2H.

27\ T, 2D r2 4+ D?
an =In ( - ) +oln (rg — D2) (7.60)
r: i 2r;7v2D 2
(E’D“‘Y(fyy +°'rg—°D4) 7(0)2
TV s~ \ar
1-— (Eﬁ) — V55 + o*2rfr§~—°————g(ré_p4)

The zero order formula is acquired by setting M; and M, to zero in (7.53).
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8 Summary

For a reader who is only interested in formulae for practical use it is enough to read this
chapter.

8.1 Two pipes in the ground imbedded in a circular
insulation

There are two pipes in the ground imbedded in a circular insulation. The temperatures
in the imbedded pipes are T; and T,. The temperature at the ground surface is T,. The
thermal conductivity in the insulation is A;. The thermal conductivity in the ground is
Ag. The problem is to determine the steady-state heat losses (g1, ¢2) per unit length from
the two pipes inside the large pipe. The temperature T'(z,y) in a vertical cross-section of
the ground satisfies the steady-state heat conduction equation in two dimensions:

o*’T  0*T
W + _c‘?y_? =90 (8.1)

Figure 8.1. T'wo pipes in the ground imbedded in a circular insulation.
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D = Half the distance between the center of the pipes (m)
H = Distance from the center of the large pipe to the ground surface (m)
ro = Radius of the circumscribing large pipe (m)

r; = Radius of the imbedded pipes (m)

q1 = Heat loss from pipe 1 per meter (W/m)

go = Heat loss from pipe 2 per meter (W/m)

T. = Temperature at the ground surface (°C)

T; = Temperature in pipe 1 (°C)

T, = Temperature in pipe 2 (°C)

A; = Thermal conductivity of the insulation (W/mK)

Ay = Thermal conductivity of the ground (W/mK)

The dimensionless parameter o will be used in the following:

A=A,

8.2 Mathematical formulation

The original problem can be separated into a symmetrical and anti-symmetrical problem.
The temperature in the pipes in the symmetrical problem is Ts. The temperatures in the
pipes in the anti-symmetrical problem are T, and —7,. These temperatures are defined
as follows:

_Nh+T,
2

T
T2

The subscript s denotes the symmetrical problem of two pipes. The subscript a denotes
the anti-symmetrical problem of two pipes. The temperatures of the original problem are
from (8.3-4):

Ty =T, +T, (8.5)

T (8.3)

T, (8.4)

Ty =T, T, (8.6)

The heat loss ¢, (W/m) from one pipe in the symmetrical problem is proportional to
the temperature difference Ts — T,. We may write:

¢ =T,-T,)- 271‘4)\2- “hs(rifro, Dfro, Hlro, Aif Ag) (8.7)

Here h; is the dimensionless heat loss factor for the symmetrical problem. The heat loss
¢, (W/m) from one of the pipes in the anti-symmetrical problem is proportional to the
temperature T,. We may write:

qa =T, - 27 - ha(ri/TOa D/TO’ H/TOv ’\i/)\g) (8'8)
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Here h, is the dimensionless heat loss factor for the anti-symmetrical problem. It should
be noted that the temperature T, connected with ¢, in (8.8) is half the temperature
difference between the pipes. By superposition the heat losses ¢; and ¢ become:

1= qst qa (8.9)

92 =95~ qa (8.10)
The total heat loss (g1 + ¢2) depends on the symmetrical part only:

ntg@=2-q (8.11)

The symmetrical and anti-symmetrical problems are solved separately. Formulae for A,
and h, are obtained. The heat losses ¢; and ¢, are then obtained from (8.9-10).

8.3 Approximate formulae

Approximate formulae of the zero and first order have been derived with the multipole
method. Two old formulae have been investigated. The typical relative errors mentioned
below are valid for district heating pipes in the ground.

'8.3.1 Zero-order approximation

The zero-order multipole approximation uses the line sources without any multipoles.
The zero-order approximation gives the following expressions for the heat loss factors:

‘ 2 4
h;I:Q)\)\‘ln(g—I—I—J—}-ln( "o )—{-a-ln( ] ) (8.12)

g To 2D7r; ra — D4
2D r? + D?
-1 _ 0
h'=1In (—Ti ) +oln (rg — DZ) (8.13)

The relative errors in the heat loss, when the zero-order formulae are used, are typically
less than 10% for ¢, and less than 20% for ¢,.

8.3.2 First-order approximation

With the use of multipoles of the first order, the following new formulae are obtained for
the heat loss factors:

2)\; . (2H re ra
-1 _ 2N 0 ) 0
hy" = ;) 1n(ro)+ln(2Dr,-)+a ln(rngJ (8.14)

g

2 2
b=l =1In (—Q—Q) +oln ;ﬂD—) (8.15)



(% - ’74Hz+%’5.’.11%?) ~ (9_)2
ré-+ D4 v

2 4
1= (o) v e iy

L= 2= (8.16)

1“”(2}1)2

The relative error in the heat loss, when the first zero-order formulae are used, are typically
less than 1% for ¢, and less than 5% for q,.

8.3.3 Area approximation

One old formula described in this report is here called the area approximation [7]. The
formula calculates the heat loss in the symmetrical problem g¢;.

.2 .
Te = \/2 "0 arccos (2) _2 D\/r?, - D? (8.17)

T L T
2 D2 +
d, = Y0 L (8.18)
2
Te
Ry =2In (;-) (8.19)
wd,
Ry = % (8.20)
_ 2\ H H?
Bt iR, (8.22)
1/R1 + 1/R2 ‘

The relative error in the heat loss, when the area approximation formula is used, is
typically less than 5% for g;.

8.3.4 Two-model approximation

Another old formula described in this report is here called the two-model approximation
[8]. The formula calculates the heat loss in the symmetrical problem gs.

rifro + ro/ri = (ro/r:)(D/r0)?
> ) (8.23)

R, = arccosh (

R, = 4 - arccosh (2 (9)2 - 1) (8.24)

L
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2\, (H H?
Rs="n (-—+ S —1) (8.25)

)\g To To

1
Al 4 R .
5 1/R1—1/R2+ 3 (826)
The relative error in the heat loss, when the two-model approximation formula is used, is
typically less than 5% for g,.

8.4 Position of the pipes

There is a general opinion that, for heating district pipes it is better to put the the warmer
pipe underneath the colder pipe. This is supposed to reduce the total heat loss from the
pipes. It is true that the heat loss is reduced when the pipes are positioned vertically, but
this reduction is so small that it is negligible. Calculations show that the total heat loss
is reduced with < 0.2%.
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