

Besök på Case Western Reserve University den 1-3 maj 1972

Åström, Karl Johan

1972

Document Version: Förlagets slutgiltiga version

Link to publication

Citation for published version (APA):

Åström, K. J. (1972). Besök på Case Western Reserve University den 1-3 maj 1972. (Travel Reports TFRT-8002). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

BESÖK PÅ CASE WESTERN RESERVE UNIVERSITY DEN 1-3 MAJ 1972

K.J. ÅSTRÖM

REPORT (C) AUGUST 1972 LUND INSTITUTE OF TECHNOLOGY DIVISION OF AUTOMATIC CONTROL

BESÖK PÅ CASE WESTERN RESERVE UNIVERSITY DEN 1 - 3 MAJ 1972

K.J. Åström

- 1. INLEDNING
- 2. INDUSTRIAL SPONSORS MEETING

Organisation

3. INSTITUTE FOR COMPLEX SYSTEMS

Romklubbsprojektet etapp 2

4. DISKRETA TILLVERKNINGSPROCESSER

Maskinövervakning (produktionskontroll)
Produktionsplanering
Industrirobotar

- 5. WATER RESOURCE MANAGEMENT
- 6. DISKUSSIONER MED PROFESSOR LEFKOWITZ
- 7. DISKUSSIONER MED GILL BLANKENSHIP
- 8. DISKUSSIONER MED PROFESSOR SCHOEFFLER
 - J. Wieslanders projekt
 Kurs i Systems Engineering
- 9. NYA KURSER

1. INLEDNING

För en översiktlig beskrivning av verksamheten vid Case Western Reserve University (CWRU) hänvisas till en rapport från mitt studiebesök där 1970-05-20-21. Vi har också ett informellt samarbete med professor Schoeffler vid CWRU beträffande programvara och hårdvara för minidatorer. Professor Schoeffler har således besökt Lund vid två tillfällen och där givit kurser. Vi har också fått en s k Macro-Template-Assembler som är lämplig för att implementera högnivåspråk i utbyte mot delar av vårt programbibliotek. Vi skall eventuellt fortsätta samarbetet med gemensam utveckling av programvara för processreglering.

Mitt besök avsåg framförallt att diskutera dessa frågor, men jag passade också på att skaffa mig en förnyad överblick av verksamheten vid CWRU. Mitt besök sammanföll också med det 32:a sammanträdet med "Industrial Sponsors", vilket jag delvis deltog i. Vidare gav jag en föreläsning om identifiering och reglering.

2. INDUSTRIAL SPONSORS MEETING

Man har sedan 16 år tillbaka vid Case haft ett system med stöd från industrin för forskning inom processreglering. Denna verksamhet initierades av professor Donald Eckman. Verksamheten organiserades så att man skaffar sig stöd från industrin. Varje industrimedlem deltar med ett bidrag på cirka 10.000 %. Man har som mest haft 10 à 12 medverkande industriparter, men antalet är nu nere i 6. De faktorer som varit väsentliga för industrin vad beträffar att stöda denna verksamhet har varit

1. Rekrytering av forskare till industrin.

Industrin har under många år haft mycket svårt att fylla sitt behov av kvalificierad personal inom processreglering. Man har därför sett en utmärkt möjlighet till att göra detta genom att hålla intim kontakt med ett universitet, t ex genom att stödja universitetsforskning. Vid vissa möten har det varit så många som 80 personer

från industrin som deltagit. Man har deltagit för tor att studera studenternas insatser genom att lyssna till deras presentationer för att generera intresse hos studenterna för industriella problem. Med den ändrade situationen på USA:s arbetsmarknad är detta skäl nu ganska minimalt.

2. Intresse för forskningen.

Genom att industrin stöder forskningsprojekt på CWRU har man möjlighet att aktivt medverka i forskningen. Man får således Process Reports. Dessa delas endast ut till "Sponsørs". Övriga rapporter är öppen information och delas ut till samtliga. Det viktiga är att industrin får resultaten på ett mycket tidigt stadium. Man har också möjlighet att i viss utsträckning genom diskussioner påverka projekten. Professor Lefkovitz påtalade dock att forskningsprogrammen hela tiden styrs av CASE.

Från universitetets sida motiveras verksamheten dels av finansiella skäl och dels för att få en feed-back från industrin.

Man får alltså reaktion från olika "Sponsors" på forskningsprojekt, man får på ett tidigt stadium veta huruvida forskningen är relevant för dagens industriella problem. Studenter och fakultetens medlemmar blir på ett mycket tidigt stadium varse om väsentliga problemområden. Som ett exempel kan nämnas den verksamhet i programvara som startade för många år sedan. Den initierades vid universitetet och väckte sedan mycket stort intresse vid ett "Sponsors" meeting och man bestämde då att kraftigt öka denna aktivitet. Professor Lefkovitz påtalade också att det var ett ganska besvärligt sätt att skaffa pengar och att det egentligen var mycket enklare att få in pengar genom att söka dem från staten.

Organisation

Samarbetet med industrin organiseras således på detta sätt att man driver vissa forskningsprojekt. Dessa forskningsprojekt presenteras på "Sponsors" meetings. Presentationen görs i allmänhet av de studenter som genomförde arbetena. Programmet för Sponsors meeting denna gång framgår av appendix A i rese-

rapporten. Vidare får vid varje möte Sponsors tillgång till Process Reports. Ett exempel på en sådan finns tillgänglig på institutionen för Regleringsteknik vid LTH.

3. INSTITUTE FOR COMPLEX SYSTEMS

Man har nyligen företagit en omorganisation och bildat ett Institutet för Komplexa System. Denna verksamhet leds av professor Mesarovic. Nio olika departments är inblandade i verksamheten. Målsättningen är att studera socialt signifikanta systemproblem. För närvarande har man varit starkt engagerad i att skriva forskningsförslag och att försöka finansiera verksamheten. Bland forskningsförslag som lämnats in kan nämnas

- o Effekt av tvättmedel i vattensystem
- o Informationssystem för bibliotek
- o Helth Care Systems
- o Energisystem
- o Diskreta tillverkningsprocesser

Förslaget beträffande analys av effekten av tvättmedel i vattensystem har nu accepterats. Man har fått ett anslag på 0,5 M% för ett tvåårsstudie från Rockefellerstiftelsen och denna betraktas som ett startanslag. Projektet koncentreras till sjön Erie och det är ett verkligt interdisiplinärt projekt. Man har således med experter från ekologi, ekonomi, sociologi och medicin. Avsikten är att behandla hela beslutssystemet. Gruppens medlemmar kommer från 8 à 9 olika avdelningar och man betonar de regionala aspekterna. Man tar även upp vissa legala synpunkter. Som ett exempel kan nämnas att staten Ohio inte har någon restriktiv lagstiftning vad beträffar utsläpp av fosfat trots att sjön Erie är mycket olämplig i detta hänseende. Den är grund och har ganska liten vattenföring. Som exempel kan nämnas att man i Florida har mycket kraftigare lagstiftning beträffande fosfat, trots att vattenreservoarerna som där är tillgängliga troligtvis tål mycket mer. Det var också intressant att notera att för att få projektet så hade universitetet lovat att inte debitera någon overhead på forskningsanslaget.

Projektet om energisystem avser att analysera energiproblemet

för USA fram till slutet av detta århundrade. Man vill således analysera både efterfråge- och leveranssidan. Man vill uppställa en modell och göra de väsentliga avvägningarna, t ex mellan kärn-kraft och kraft från fosila bränslen. Beträffande kärnkraft är man också intresserad av att analysera balanseringen mellan fusion och snabba breedreaktorer och när man lämpligen ska sätta in ansträngningar på de olika områdena. Man är också intresserad att gå delvis ganska djupt beträffande den teknologiska utform-ningen av systemet.

Romklubbsprojektet etapp 2

Inom institutet för komplexa system har man fått i uppdrag att utveckla fas två av världsmodellen. Man utgår då i första hand från Meadows modell och man avser att komplettera den i olika avseenden. Arbetet leds av Mesarovic. Professor Schoeffler hade också några studenter, undergraduates, som för närvarande simulerade modellen på olika sätt. En grupp använde ett CSMP liknande språk på GE 4060, en annan grupp använde ALGOL, och en tredje grupp gjorde det i FORTRAN.

4. DISKRETA TILLVERKNINGSPROCESSER

Vid tillverkning av styckegods finns en rad intressanta systemproblem. Det är också ett område som är relativt nytt vad beträffar tillämpning av informations- och reglersystem. Man var för närvarande intresserad att studera fem problemområden.

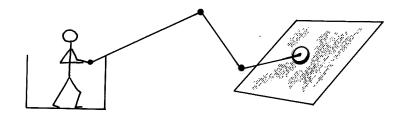
- o Testning
- o Maskinövervakning
- o Skedulering och produktionsplanering
- o Total processkontroll
- o Utnyttjande av industriella robotar

Verksamheten leds av professor Schoeffler. Han var av den uppfattningen att det fanns många intressanta systemproblem och
många intressanta tillämpningar av datorteknologi inom diskreta
tillverkningsprocesser. Testningen är ofta en kritisk del av tillverkningsprocessen. Testningegår ofta till så att man känner av
på en hel rad olika givare. På basis av de primära signalerna

gäller det att snabbt fatta beslut huruvida produkten skall accepteras eller om den ska ändras och skickas till tillbaka igen. Schoeffler ansåg att det fanna många tillämpningar för minidatorer som skulle få en mycket stor inverkan.

Maskinövervakning (produktionskontroll)

Arbete inom detta område omfattar flera olika faktorer. Målsättningen är att reducera tiden för stillastående hos maskinerna genom att göra bättre diagnos och övervakning av tillverkningsmaskinerna. Några enkla förstudier har visat att det ekonomiska incitamentet är mycket stort. Problemområdet omfattar utveckling av lämpliga givare. Detta betecknade Schoeffler som ett mycket svårt problem Det är t ex inte alls tillräckligt att bara mäta produktionshastigheten, det gäller också att ta reda på om man har tillverkat några enstaka element för att bara titta på hur de ser ut och maskinen kanske har gått i tomgång utan att det har funnits några tillverkningsämnen i den. En viktig faktor är utformning av operatörstationer och att operatören på ett förnuftigt sätt kan kommunicera med systemet. En annan viktig aspekt är att producera dokument som klart anger om hur produktionen har gått, liksom att göra diagnostiska prov på maskinerna och att göra förebyggande underhåll.


Produktionsplanering

Detta omfattar att kombinera inkommande order på lämpligt sätt och att bestämma i vilken ordning som de ska tillämpas. De problem som man för närvarande tittat på leder till heltalsprogrammering. Där hade man framförallt studerat heuristiska algoritmer och liknande. Man rekommenderade vidare en bok av Lasdon, en medarbetare vid Case Optimization in Large Systems. Totalstyrning av hela processen omfattar bland annat lagerstyrning.

Industrirobotar

Man hade vid Case också undersökt utnyttjandet av industriella robotar. En grundfråga som ställts var inte besvarad. Är det intressant att förse en industriell robot med mer intelligens, t ex i form av en minidator? Schoeffler påtalade att det var en

mycket märkbar trend inom amerikans industri idag att utnyttja mer och mer industriella robotar. Han gav också exempel på en industrirobot från GE (Man-made) som bestod av en hydraulisk arm och ett reglersystem enligt figuren.

Genom att den hade ett hydrauliskt system så kunde man manipulera synnerligen stora krafter. Den användes bl a för att sortera glasskivor och Schoeffler nämnde som exempel att en man hade tappat en glasskiva och lyckats fånga upp den i luften med denna apparat. Han påtalade också likartad verksamhet vid Stanford (McCarty) och vid MIT (Minsky). Som nämns hade man gjort flera olika förstudier och man hade klara indikationer på att det fanns ordentliga vinster. Som exempel nämnde han en studie som hade visat att ett total - system skulle ge en vinst på 50.000 \$ per år och systemet skulle kunna implementeras med en ansträngning av 6 manmånader. På fabriken har det hittills varit skeptiskt till att göra det, framförallt av det skälet att man var tvungen att sätta in manuella stationer där operatören skulle föra in all relevant information. Man var skeptisk till om detta skulle gå att göra på ett förnuftigt sätt. Schoeffler betonade också att en viktig del i kostnaden för sådana system är kabelkostnader. Den filosofi man hade på Case var för närvarande att prova marknaden genom att skicka ut olika forskningsförslag. Man tänkte sig bl a att gå vidare med den teoretiska analysen genom att titta på skeduleringsproblem och genom att undersöka lämpliga hårdvaruoch programvarukonfigurationer.

5. WATER RESOURCE MANAGEMENT

Man har för närvarande en grupp på Case som sysslar med Water Resource Management under Yakov Haimes. Man hade just fått ett forskningsanslag omfattande en summa av 70 KØ för en tvåårsstudie. I mycket stora drag ville man bygga upp en modell och analysera vattensystemet för nordöstra USA. Projektet var mycket brett upplagt och man avsåg att kartlägga tillgång och efterfrågan. Bland efterfrågan kan nämnas de krav som industrin och hushållen ställer och bland tillgångarna kan man nämna sjövatten, dammar, återanvändning. Man var också intresserad att undersöka vattenkvaliteten. Man hade där två motiv för att förbättra miljön, att öka den nationella inkomsten och för regional utveckling. Man baserade sig i stor utsträckning på en stor undersökning som just har genomförts på MIT. Man avsåg att bygga en modell i första hand en statisk Leonitieff modell som man sedan avsåg att utvidga till en dynamisk modell. Utbildningen ingick som ett viktigt moment i studien och som ett exempel bifogas i appendix B en kurs som man för närvarande har planerat att ge denna vår.

6. DISKUSSIONER MED PROFESSOR LEFKOWITZ

Professor Lefcowitz som var en av Eckmans medarbetare har framförallt varit verksam inom två områden.

- o Hierarkiska strukturer
- o Tillämpning av reglerteknik på industriell processreglering

Beträffande hierarkiska strukturer komman in på detta på ett mycket tidigt stadium, redan i samband med en IFAC artikel år 1960. Man särskiljde här fyra nivåer

DDC Optimering Adaption Självorganisation

Med DDC avser man bara att automatiskt exekvera givna beslut. Med optimering avsåg man att finna lämpliga börvärden för DDC-regulatorerna baserade på förenklade processmodeller. Med adaption avser man att uppdatera parametrarna i de förenklade processmodellerna och med självorganisationen avser man att uppdatera strukturen hos processmodellerna.

Man har arbetat på detta tema i många år, men man hade ännu ej

en samlad presentation över området, utan resultaten fanns framförallt i form av doktorsavhandlingar och examensarbeten. Speciella problem som man för närvarande Studerar, var möjligheten att ordna olika insignaler, t ex genom styrgreppens frekvens eller genom deras ekonomiska betydelse. Man var mycket intresserad av att undersöka hur man skall ta hänsyn till systemkostnaden. Bland de industriella tillämpningar som diskuterades nämnde professor Lefkowitz speciellt arbeten beträffande fetthydrering som man för tio år sedan var mycket aktiv med. Man hade således ställt upp matematiska modeller och diskuterat lämpliga styrstrategier. Dessa arbeten är inte fullständigt dokumenterade men jag fick två särtryck, D.P. Eckman och E. Lefkowitz "A Report on Optimization, Optimizing Control of a Chemical Process", Reprint Control Engineering, September 1957. Lefkowitz, Eckman "Application and Analysis of Computer Control System". Dessa rapporter är inte fullständiga men en mycket mer omfattande dokumentation finns i form av interna rapporter.

Katalytiska reaktioner nämndes som ett typiskt exempel på system där hierarkiska strukturer kunde vara lämpliga. Man tänkte sig således en kontinuerlig katalytisk reaktor där det i första hand gäller att reglera temperaturer och tryck baserat på ett ekonomiskt kriterium. Allteftersom reaktionen fortgår så kommer katalysatoraktiviteterna att sättas ner genom att det bildas kol på ytan och man är då tvungen att stänga av reaktorn och regenerera katalysatorn. För att driva processen optimalt krävs att man har god kontroll på denna process och att man kan bestämma regenereringstillfället optimalt. Vidare kommer katalysatorn i det långa loppet att förstöras så att så småningom så gäller det efter många cykler att bestämma sig för när man ska byta ut katalysatorn. Vid sådana system kan man således klart urskilja tre nivåer.

7. DISKUSSIONER MED GILL BLANKENSHIP

Gill Blankenship var en nytillkommen fakultetsmedlem från MIT. Han hade utfört sin doktorsavhandling under S. Mitter. Problemet var att finna stokastiska motsvarigheter till Popov-satserna. Han hade fått ett resultat i det fall då återkopplingskoefficienterna var vitt brus. För närvarande var Blankenship sysslesatt med flera olika problem, bl a att finna ett fall där olinjär filtrering

kan lösas exakt. Han arbetade med de typer av bilinjära modeller som på sista tiden studerats av Roger Brocket och han försökte generallisera dessa genom att lägga till brus.

Vidare tittade han på ett linjärkvadratiskt problem där styringreppen var grupperade enligt reglerkostnad. Förutom det vanliga
linjärkvadratiska kriteriet ville man också i varje steg minimera
det antal komponenter av styrvariabeln som medverkar i reglering.
Blankenship hade också tittat på distribuerade system. Ett ämne
finns i en ugn, ovanför ugnen finns ett antal pyrometrar. Problemet
var att bestämma huruvida man hade jämn temperatur inne i ämnet.
Problemets lösning är känd om man känner yttertemperaturen på
ämnet. Svårigheterna var här att man hade pyrometermätning och man
var tveksam på vilka resultat de gav, bl a fanns det en gas mellan
ämnet och pyrometrarna som starkt kunde påverka mätresultaten.

8. DISKUSSIONER MED PROFESSOR SCHOEFFLER

J. Wieslander projekt

Tillsammans med Jim Schoeffler diskuterade jag också Johan Wieslanders projekt. Frågan att snabba upp Macro Template Assemblern diskuterades och likaledes att implementera den på minidator. Det konstaterades att den stora andelen i minnesutrymmet var det fält på 3 x 8.000 ord som behövdes. Ordlängden måste vara minst 23 bitar, det behövs en pointer på 13 bitar för att adressera cirka 8 k, dessutom behövs en flagga på två bitar och man behöver ange ett värde med 6 à 8 bitar. Professor Schoeffler påpekade att man kanske inte behövde ha så långa fält som 8.000 utan att man kanske kunde nöja sig med hälften, men även så går det inte att implementera med ett enda ord på 16 bitsmaskin. Hastighetsreduktioner diskuterades också och professor Schoeffler bedömde det så att en förflyttning från UNIVAC 1108 till GE 4060 skulle reducera hastigheten med ungefär en faktor 10. Beträffande grundfrågan så bedömdes det inte vara så angeläget att snabba upp kombilatorn till ett pris av att göra den mindre flexibel, enligt de linjer som Johan hade skisserat. Vi diskuterade också nya språk. Jim berättade att han tänkte använda ett nytt språk som innehöll den gamla blockstrukturen i RTL plus vissa drag av BLISS där man dock eliminerade "DOT" notationen. Beträffande

tidsplanerna så hade Jim förhoppningar att några faser skulle vara klara i slutet av sommaren. Ett alternativ till att använda detta språk skulle vara att använda C3 som dock inte lämpar sig direkt för reelltidsspråk. Preliminärt överenskom vi att en intressant möjlighet skulle vara att Johan åkte över till CASE på några månader när den nya kombilatorn är klar. Johan skulle sedan förse den med en slutdel som genererar kod för vår PDP 15 och han skulle sedan utnyttja kombilatorn till att generera monitorsystem för reelltidsstyrning på PDP maskinen. Professor Schoeffler påpekade också att arbetena med det virtuella minnet hade gjort mycket stora framsteg. Man kunde således läsa block om 64 ord med en hastighet om i medeltal 35 msek/ord.

Kurs i Systems Engineering

En kurs med denna titel har under många år givits vid CASE. Dess innehåll har kraftigt varierat från år till år. Föregående år behandlades t ex Water Resouces. Innevarande år hade Schoeffler givit kursen. Den handlade om Industrial Manufacturing in Control. Den innehöll bl a

Simulering
On-line datorer
Industriella processreglering- och tillverkningssystem
Organisation av programvara

Beträffande simulering hade man undervisat i simuleringsspråk såsom GPSS och Simula. Detta år hade man koncentrerat undervisningen till detta och man hade lagt mindre tonvikt på språk för simulering av kontinuerliga system av typ CSMP. Avsnittet om on-line datorer och programvara omfattade ungefär det som ingick i kursen Schoeffler presenterade i Lund, se appendix C. Beträffande industriell processreglering så gav man fundamenta, d v s karakterisering av insignal, utsignal och störningar. I kursen ingick också projektarbete omfattande analys av förhållandena vid en bensinstation, dimensionering av antalet tankar, etc. Organisation av ett exekutivprogram för reelltidsdatorer. Världsmodellen som angivits av Medows. Till nästa år kommer kursen att ändras och den kommer framförallt att ha stor tonvikt vid icketekniska system.

9. NYA KURSER

Man har under de senaste åren varit mycket aktiv med kursreformer, bl a har man infört kurser i systemteknik till icke-tekniker. Ett program som varit ganska svårt att få igenom men som numera funnit sin form är en utbildning för en bachelor examen i komplexa system. Ett preliminärt kursprogram finns bifogat i appendix E. Man hade även ett program på doktorsnivå i komplexa system. Detta program framgår av appendix D.

REVISED SCHEDULE

32ND SPONSORS' MEETING OF CONTROL OF COMPLEX SYSTEMS PROGRAM

Wednesday, May 3, 197	72	
9:15 - 10:00 a.m.	COFFEE AND DONUTS	Crawford 13
10:00 - 12:45 a.m.	SESSION I	Crawford 14
Introduction	on	I. Lefkowitz
Program Ove	erview	J. D. Schoeffler
Simulation Systems	Analysis of Large and Complex	J. P. Riley
On Self-Tu	ning Regulators	K. J. Astrom
1:00 - 2:15 p.m.	LUNCH	Faculty Dining Room
2:15 - 4:45 p.m.		
SESSION II	J. D. Schoeffler, Chairman	Crawford 14
computer	-	S. Sunderland
On the Dev Theory	elopment of Discrete Event System	K. J. Chadha
A Virtual Applicat	Memory Organization for Minicomputer ion Software	L. Bronner
Computer-A	ided Design for Large Scale System	L. Bronner
	re Organization for a Three Computer ical Control System	V. Mileti
An Interac veyance	tive Model of An Urban Wastewater Con- System	I. Dear
SESSION III	D. Macko, Chairman	Crawford 13
On-Line Co	ordination of Interacting Systems	C. Whitfield
	Multilevel Control Applied to the p Mill Process	T. Fukuda
	ethodology for Automated Inspection ern Recognition	D. Kylin
A Decision port Tra	Structure for Making On-Line Sup- deoffs for Large Complex Systems	F. O'Neil
3:20 - 3:35 p.m.	COFFEE BREAK	
8:30 - 10:30 p.m.	SOCIAL GET-TOGETHER	<u>Howard Johnsons'</u> <u>Penthouse</u>

Thursday, May 4, 1972

9:00 - N:25 p.m.

SESSION IV G. Blankenship, Chairman	Crawford 14
Small Signal Models for Estimation of Input Variables from Secondary Process Measurement	s D. Easterday
Some Simulation Models for One-Dimensional Distributed Systems	P. F. Salamon
Distributed System Identification Using Quasi- linearization	R. T. Schenke
Recent Developments in Stochastic Control and Filtering	G. Blankenship
SESSION V Y. Y. Haimes, Chairman	Crawford 13
A Multilevel Approach to Planning for Capacity Expansion in Water Resource Systems	W. S. Nainis
Vector Optimization for Control with Perfor- mance and Parameter Sensitivity Indices	· · F. Gembicki
Regional Water Quality Management	· · S. Rosen
The Planning and Operation of a Regional Water Quality Management System: A Multilevel Approach	· · M. A. Kaplan
10:10 - 10:25 a.m. COFFEE BREAK	
10:10 - 10:25 a.m. COFFEE BREAK 11:30 - 12:30 p.m. LUNCH	Faculty Dining Room
	Faculty Dining Room
11:30 - 12:30 p.m. LUNCH	Faculty Dining Room Crawford 14
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m.	Crawford 14
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing	Crawford 14 L. S. Lasdon
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class	Crawford 14 L. S. Lasdon S. J. Mathis, Jr.
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing Synthesis of a Crude Oil Supply System	Crawford 14 L. S. Lasdon
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class	Crawford 14 L. S. Lasdon S. J. Mathis, Jr.
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class of Integrated Industrial Systems	Crawford 14 . L. S. Lasdon . S. J. Mathis, Jr W. Driscoll
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class of Integrated Industrial Systems SESSION VII 1. Leskowitz, Chairman Regulator Design with Consideration of Obser-	Crawford 14 . L. S. Lasdon . S. J. Mathis, Jr W. Driscoll Crawford 13
11:30 - 12:30 p.m. LUNCH 1:00 - 2:45 p.m. SESSION VI L. S. Lasdon, Chairman Development of an LP Program for Ship Routing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class of Integrated Industrial Systems SESSION VII L. Leskowitz, Chairman Regulator Design with Consideration of Observation and Control Implementation A Multilayer Control Hierarchy with an On-	Crawford 14 . L. S. Lasdon . S. J. Mathis, Jr W. Driscoll Crawford 13 . G. Blankenship

CASE INSTITUTE OF TECHNOLOGY

Q F CASE WESTERN RESERVE UNIVERSITY

PRESENTS

A One Week Short Course on

IERARCHICAL APPROACH IN THE PLANNING,
OPERATION AND MANAGEMENT OF
WATER RESOURCES SYSTEMS

May 22-26, 1972

Co-sponsored by the

MERICAN WATER RESOURCES ASSOCIATION

engineering methodologies.

A ONE WEEK SHORT COURSE

Engineers and Public Officials Interested in Water Resources Systems

May 22-26, 1972

HIERARCHICAL APPROACH IN THE PLANNING, OPERATION AND MANAGEMENT OF WATER RESOURCES SYSTEMS

Co-sponsored by the AMERICAN WATER RESOURCES ASSOCIATION

Devoted to understanding the hierarchical approach to model formulation an optimization of large complex water resources systems.

Designed for engineers and public officials concerned with the planning, operation and management of regional water resources systems.

Purpose

To present a comprehensive survey of the applications of the hierarchical approach to large complex water resources systems. In particular to discuss the applications of decomposition and multilevel optimization techniques to multiobjective functions in water resources, multiregional conjunctive use of ground and surface water resources, modeling and identification in water resources, regional management of complex multiple purpose water resource and hydrologic systems, regional water quality control and management, and recent research results and applications in current literature.

Format

Monday through Friday. Two sessions in the morning: 8:30 -There will be four 90 minute lectures given each day 10:00 and 10:30 - 12:00, followed by two sessions in the projector transparencies will be provided to the participants example problem; thus the theory and its applications are afternoon 1:00 - 2:30 and 3:00 - 4:30. Extensive use will be made of visual aids, and a complete set of all overhead prior to the lectures. New methods and theory introduced in Often, while a new method is discussed, it will be simultaneously developed and applied to a water resource discussed in parallel. This approach provides the participant with a close grasp of and comprehension of the material discussed. Separating the lectures will be a "coffee break" and Three out of the five 3:00 - 4:30 afternoon sessions will be devoted to "Workshop" and problem working. In addition optional special evening tutorial sessions will be available to those participants who need a further review of systems lecture will be presented and explained via simple examples. opportunity for informal discussion of the lecture material.

When:

May 22-26, 1972 Monday through Friday 8:30 am - 4:30 pm

Where:

Crawford Bldg. Room 13 Case Institute of Technology Case Western Reserve University Cleveland, Ohio

For:

Engineers and public officials interested in water resources systems

Course Notes:

A complete set of notes along with a complete set of all overhead projector transparencies are provided which cover the lectures in detail.

Prerequisite:

B.S. degree in Engineering, Science or equivalent experience.

Location:

Case Western Reserve University is in Cleveland, Ohio, easily accessible by air and road transportation. There is also public transportation from the airport to the university area. More detailed travel instructions are available upon request and will be supplied in response to registration.

Housing:

The University has reserved a block of rooms at the Howard Johnson Motor Lodge in University Circle (3 minutes walking distance from the campus). More detailed housing information will be supplied in response to registration.

HIERARCHICAL APPROACH IN THE PLANNING

OPERATION & MANAGEMENT OF WATER RESOURCES SYSTEMS

SCHEDULE COURSE

MONDAY, May 22

Morning

Review of Fundamentals in Systems Engineering. Linear and dynamic programming, and Lagrange multipliers.

Afternoon

Haimes

Decomposition and Multilevel Optimization. Basics in the multilevel approach, different decomposition methods, and second-level coordinator techniques, saddle point and duality concepts.

Evening

'Get together" party

TUESDAY, May 23

Morning

Modeling and Systems Identification in Water Resources, The identification of aquifer parameters, and other hydrologic characteristics via quasilinearization and multilevel approach.

Afternoon

1:00 - 2:30

Rothenberg

"Data Management".-what data is necessary for water esources operation and management. How to obtain it, and techniques for processing it into useful information.

3:00 - 4:30

Resources, Model formulation and solution strategies via multilevel approach. Multiobjective Functions in Water

Evening

Optional Tutorial Session

NEDNESDAY, May 24

Morning

Multiregional Conjunctive Use of Ground and Surface Water Resources. Joint consideration of the system modeling-identification problem with the system optimization

oroblem.

Afternoon

Haimes

1:00 - 2:30

in Water Economic Models Used Joint Environmental Resources Planning

3:00 - 4:30

Ricca

Ohio Watersheds. The Ohio State University version of the Stanford Streamflow Simulation Model. Presentation of the Application of the Stanford Streamflow Simulation Model to nodel's basic structure.

Evening

Optional Tutorial Session

THURSDAY, May 25

Morning

Hal

Optimum Operations for Planning of a Complex Water Resources System. The California Water Project.

Luncheon - Speaker: Dr. Ira Whitman, President of AWRA, Ohio Section

Afternoon

Ë

Optimum State Dynamic Programming. Project Planning and nvestment Timing in Large Scale Water Resources Systems.

Evening

Haimes

Social Hour

FRIDAY, May 26

Staff

Morning

Haimes

Approach. Multipurpose water resource systems, input-output and cost-effectiveness analyses. Multilevel Resources Management via Regional Water

Haimes

Regional Water Quality Control and Management via Multilevel Approach. System of Effluent charges and taxation.

Haimes

instructors:

Systems Engineering, with a minor in Water Resources Systems Engineering) in 1970, both from the University of Jniversity, Jerusalem, Israel. He received a M.S. degree in Engineering (majoring in Systems Engineering) in 1967, and a Ph.D. in Engineering with distinction (majoring in Large Scale .⊑ Mathematics, Physics and Chemistry in 1964 from the Hebrew dearee B.S. his received Haimes California at Los Angeles. >. Yacov

Dr. Haimes is an Associate Professor of Engineering in the Systems Engineering Division, School of Engineering, Čase there from 1970 to 1971. His research and consulting activities are in the areas of modeling and optimization of large systems Western Reserve University. He was an Assistant Professor in application to water resources systems. He has participated in numerous short courses given by UCLA, Utah State Univ., using decomposition and multilevel techniques; in particular Jniversity of Arizona, Colorado State Univ. and others.

numerous publications on system identification, optimization ORSA, ORSIS, Sigma Xi, and Tau Beta Pi. He is the author of of large systems, water quality control, and regional water Dr. Haimes is a member of AGU, ASCE, AWRA, resource management.

Guest Lecturers:

Staff

Dr. Norbert Dee, Environmental Planner, Battelle Memorial Institute, Columbus, Ohio. Dr. Warren A. Hall, Professor of Engineering, Department of Soil Science and Agricultural Engineering, University of California, Riverside, California. Vincent T. Ricca, Assoc. Professor of Civil Engineering, Department of Civil Engineering, The Ohio State University, Columbus, Ohio. Ğ.

Douglas Rothenberg, Asst. Professor of Engineering, Systems Engineering Division, Case Western Reserve Univ., Cleveland, Ohio. <u>۔</u>

ON THE HIERARCHICAL APPROACH

answer to the solution of large and complex water resource system is achieved, and a more accurate and representative become both feasible and dimensionality is achieved and the total solution effort is thus more flexible models can be constructed to represent the The hierarchical approach by decomposing the problem into subproblems at one level and coordinating the solution of the subproblems at a higher level and yet maintaining an overall optimum to the whole system, seems to be an excellent problem into subproblems, a conceptual simplification of the more complex a reduction in reduced, sometimes at the expense of more computational effort. None of the system model functions need be linear, systems. By virtue of decomposing the Furthermore, eal water resource problem at hand. mathematical model may computationally tractable.

Permit No. 1402 CLEVELAND, OHIO

 GIAq

Mon-profit Organization U. S. POSTAGE

Format: There will be two 75 minute lectures Extensive use will be made of visual aids. New presented and explained via simple examples. Separating the lectures will be a aboratory. The class will be split up into given each morning Monday through Friday. discussion of the lecture material. A third 75 minute lecture will be given in the afternoon followed by informal sessions devoted to several small groups for this purpose. In methods and theory introduced in lecture will 'coffee break'' and opportunity for informal use during evenings for special problem working, computer usage made may be provisions addition, computer orojects.

digital computer as a hybrid system, and a Facilities: The by laboratory provide techniques presented. The Systems Engineering Laboratory includes a data acquisition and control of real-time may be operated in real-time, in high-speed epetitive modes for iterative analog computations, or in conjunction with the Graphic communication with the computers s provided through a CDS 904 terminal. The industrial control components to permit a GE 4060 digital computer system suitable for systems, an EAI 580 analog computer which Honeywell H21 digital control computer. includes several completely nstrumented benchscale process units, and wide range of research and experimentation on real-time data acquisition and control and experience with designed to -aboratory and Computer ectures are supplemented experiments **Familiarization** nethods and aboratory systems.

Course Notes: A complete set of notes is provided which cover the lectures in detail. Faculty: Irving Lefkowitz, Douglas Rothenberg, and James D. Schoeffler are Professors of Engineering and members of the .5 years, extensive research and education Systems Research Center where, for the past the field of data acquisition, computer control, software, and computer applications have been carried out. effort in

Location: Case Western Reserve University is in Cleveland, Ohio, easily accessible by air and road transportation. There is also public transportation from the airport to the detailed travel instructions are available on request. area, More university

We'll send you details on accommodations Housing: Accommodations are available at several hotel and dormitory facilities within easy walking distance from the University. when you send in your Registration Form. Registration and Fees: Course fee is \$275 and and computer charges, and parking on the includes complete course notes, laboratory campus for the week. Return Registration Form by May 1, 1972. For further information write or phone:

Case Western Reserve University Systems Research Center Cleveland, Ohio 44106 Professor I. Lefkowitz

Phone: (216) 368-4078

Cleveland, Ohio 44106

Systems Research Center

Case Western Reserve University

Short Course for Industry:

AND CONTROL NOITAMAONI, INFORMATION SYSTEMS FOR DATA REAL-TIME MINICOMPUTER

S761, 3S-SS yaM

BINE CARINATA A CLIN A ACCESSORING, INIVED CONTRACTOR

Devoted to detailed understanding of minicomputer hardware, software, and applications. Designed for engineers concerned with the use of modern minicomputers. Only limited familiarity with computers is assumed.

COURSE AND LABORATORY CONTENT

modern minicomputers: memory, various registers, Organization of Minicomputer Hardware characteristics instruction sets. Structural

utilization: problem of small word size Modes of addressing memory and their tradeoffs in addressing, effects on choice of Word Size and Memory Addressing in Minis mini for various applications.

Input/Output Devices for Data Acquisition & Control

Analog and digital I/O devices: multiplexors, speed, Noise, converters, actuators. interfacing problems.

Software for control of I/O: drivers, I/O re-entrant software, interrupt Structures and Control of I/O Devices dedication of I/O devices. request subroutines,

Real-Time Executive Programs for Minicomputers Organizations for executive or monitor allocation systems. Effect of application on software: all core systems, overlay systems, partitions, dynamic choice of organization. core loads,

Organization of software for high volume critically fast response systems including Dedicated Data Acquisition I/O Software extensive operator communication.

data acquisition, process monitoring, process control, operator communication, message General structure of real-time systems for Fundamentals of Real-Time Systems

direct, feedforward, interacting, and adaptive Review of basic principles and tools for Background Theory for Direct Control control

0 control systems: control Background Theory for Supervisory Control scheduling adaptive control, Hierarchical computer on-line optimization, manufacturing systems. sequencing

Characteristics of commercial packages and software systems for data acquisition, direct control, supervisory Data Acquisition and Control Packages sequencing control, control.

Scheduled Lab Experiments:

1. Real-time data acquisition and control of a simple flow process.

communication with data acquisition and ç console operator control systems. Graphic ď

Real-time Fortran programming for data acquisition and control ကံ

Digital simulation for data analysis and system design. 4

Fourier Fast 0 based Analysis Transform r.

Demonstration of computer aided-design system. 6.

The laboratory facilities will be available also to carry on any additional experiments of their own choosing. for students

automation, and

manufacturing control

CANT WESTERNAME RESERVED CRIVERSITY

CASE INSTITUTE OF TECHNOLOGY

SYSTEMS RESEARCH CENTER

Registration Form (to be returned by May 1, 1972) REAL-TIME MINICOMPUTER SYSTEMS FOR DATA ACQUISITION, INFORMATION PROCESSING, AND CONTROL

I am interested but I'd like Name: further information Mail Address: _ Please register me in the course Check for \$275 enclosed Check to be mailed by Zip Code City State Make check out to: Case Western Reserve University Company: Mail to: Prof. I. Lefkowitz Systems Research Center Case Western Reserve University Phone: _ Cleveland, Ohio 44106

CASE INSTITUTE OF TECHNOLOGY

GRADUATE STUDY PROGRAMS

Leading to the M.S. and Ph.D. Degrees

in the

SYSTEMS ENGINEERING DIVISION SCHOOL OF ENGINEERING

SYSTEMS & CONTROL ENGINEERING PROGRAM

Directed to problems of modeling, information processing and control of complex systems with major focus on technological systems.

Major Thesis Research Areas: Optimal control theory and design. Stochastic control and estimation. Direct digital control. Control of discrete processes. Real-time computer systems and software for control. Computer-aided design. Multi-layer control approach to complex systems.

J. Haimes

SYSTEMS ANALYSIS PROGRAM

(with Department of Operations Research)

Oriented to problems of simulation, data gathering and decision-making of large scale systems that are primarily non-technological in nature.

Major Thesis Research Areas: Modeling and management of urban systems. Health care delivery systems. Transportation systems. Environmental problems. Systems identification of large scale problems. Joint solution to system identification and optimization.

Ruchardson. Palitical

MATHEMATICAL SYSTEMS THEORY PROGRAM

(with Department of Mathematics)

Focuses on the characterization of systems, their structure and behavior, and on systems-oriented problems on a rigorous, mathematical level.

Major Thesis Research Areas: General systems theory. Coordination of interacting systems. Theory of multilevel hierarchical systems. Decision-making and control of systems.

WATER RESOURCES SYSTEMS ENGINEERING PROGRAM

(with Chemical Engineering Division)

Directed to problems of planning, operation and management of large-scale water resources systems, with major focus on the hierarchical approach.

Major Thesis Research Areas: Systems identification of water resources systems. Regional water resources management and water quality control. Optimum planning of complex water resource systems. Multi-objective functions in water resources. Optimal allocation and scheduling of soil, water and financial resources for crop growth.

FACULTY

Banerji, R.B., Professor (Joint appointment with Computer & Information Sciences Department): Artificial intelligence, pattern recognition, learning systems.

Blankensbip, G.L., Assistant Professor: Stochastic control and estimation, analysis of feedback systems, control applications.

Brosilow, C.B., Associate Professor (Joint appointment with Chemical Engineering Division): Process dynamics, computer simulation of distributed systems, control of industrial processes.

Haimes, Y.Y., Associate Professor: Modeling and optimization of large-scale systems, hierarchical approach, applications to water resources systems.

Katona, P.G., Associate Professor (Joint appointment with Biomedical Engineering): Modeling of physiological systems, bio-medical engineering.

Lefkowitz, I., Professor; Acting Head of Systems Engineering Division: Modeling and computer control of industrial processes, hierarchical approach to control of complex systems.

Macko, D., Associate Professor: Theory of hierarchical systems, decision-making and coordination in large-scale systems.

Mesarovic, M.D., Professor; Director of Systems Research Center: General systems theory, applications to bio-medical, urban and industrial systems.

Orner, P.A., Associate Professor: Control theory, modeling of physical systems, bio-medical engineering.

Rothenberg, D.H., Assistant Professor: System modeling, feedback control, systems simplification and decentralized control.

Schoeffler, J.D., Professor: Real-time computer systems and software, applications to control of industrial processes and manufacturing systems.

The above faculty are all members of the Systems Research Center. The Center provides staff, facilities and environment for interdisciplinary research on large-scale systems problems.

LABORATORY

The Systems Engineering Laboratory provides excellent experimental and computational facilities for real-time data acquisition, simulation, on-line process control, and interactive computer-aided design. There is also direct linkage to the Computing Center to provide additional capabilities for large-scale simulation and multi-computer systems studies. Several completely instrumented prototype processes are connected to the computer facilities for study of modeling and control problems in complex systems.

FINANCIAL AID

Various assistantships, traineeships and fellowships are available with stipends starting at \$425 per month (less tuition).

INFORMATION

For further information and application forms write: Professor I. Lefkowitz, Systems Engineering Division, Case Western Reserve University, Cleveland, Ohio 44106.

Proposal for a Curriculum Leading to the Degree of Bachelor of Science in Complex Systems

In 1969 CWRU embarked on a program of research and education in Complex Systems. As part of this program, the Committee on Systems Education, consisting of faculty members from many disciplines, has designed undergraduate curricula in complex systems. The B.A. program has been adopted by the faculty of Arts & Sciences. It is proposed that Case Institute adopt the B.S. curriculum described herein.

The educational need to which this new curriculum is directed is the education of students in the systems approach, its concepts, applications, and skills. In particular, the core courses that must be developed to implement the new curriculum are intended to teach the systems approach—from application to theory and skills. The following statement defining the Systems approach provides the conceptual framework within which the curriculum has been planned.

A complex system may be classified as environmental, social, political, technical, medical, human, or combinations of these and other ways of categorizing complex situations that we want to understand and improve. It could, in principle, lie entirely within the domain of an existing discipline (the kidney, for example, can be regarded as a complex system) or fit no discipline (Lake Erie Pollution). Our program is oriented toward systems that involve several of the traditional disciplines and precise definition of a system will depend on the interests of the investigator and the purpose of the work. Some examples are: urban transport, population control, sewage treatment, etc. We shall emphasize what we call the "Systems Approach" to these problems.

The principles of the systems approach can be used as a means to improve our <u>understanding</u> of complex phenomena (in this role it may be called systems science), and an extension of these principles can be used to improve our <u>actions</u> and procedures (in this role it may be called systems engineering or systems management). The principles may be summarized this way. "The systems approach is a functional analysis of the system, treating the components, their interrelationships, and the context at the same time". Some of the most characteristic features of the Systems Approach are as follows:

1. Function of Components
The phrase "functional analysis of components" means that each of the components of a system is examined in terms of its function as opposed to a detailed examination of, let us say, its physical characteristics. Thus, in an analysis of health care problems, a doctor is principally identified as a "component whose function is treatment of illness", an ambulance is a "means of transportation" and so on. A more detailed description (the precise skills of the doctor, the fittings of the ambulance) is deferred.

2. Interrelations of Components

A systems description stresses the relations among components in terms of their functions. Thus various techniques of logical analysis and information theory play as large a role in the study of these relations as do the conventional disciplines.

3. Context Provides Objectives

Functional analysis of the context means that the system under consideration is analyzed in terms of the function it serves in its larger context. Thus the function of health care delivery is "to improve the general health of the public". Analysis of the goals or purposes of a human system leads of course, to the problem of conflicting values and requires a broad outlook, some acquaintance with social philosophy, and some notions of how to approach resolutions of conflict in objectives and values.

4. Context Determines Feasibility

We emphasize the improvement of actions and procedures. This means that examination of context must include some considerations that are very difficult to quantify such as political feasibility, popularity, etc.

5. The Balanced Approach

It is not uncommon for a problem to be approached in terms of one or two of the points listed above. (One can cast almost any analysis into this form). The systems approach emphasizes a balance among all these considerations, calling upon other disciplines when a more detailed account of a component or of the context is needed. In this way the system under consideration always remains central to the analysis.

6. Modelling and Abstraction

Frequently a system, or some of its important features, can be abstracted into a quantitative mathematical model. In this case, computer simulation techniques become very important. The goal of work on the problem may be either optimization or prediction. An illustration of the range of computer techniques can be found in meteorology. On the one hand, dynamical equations for the atmosphere can be used to study the weather (theoretical model). On the other hand, a preceptron or other "learning machine" can be "trained" to make weather forecasts from current meteorological data (adaptive simulation). Although most complex systems are not fully quantifiable, knowledge and mastery of computer techniques is an important tool in their analysis.

Proposed Degree Requirements:

Students majoring in Complex Systems are required to complete eight new systems courses, including Syst. 101, 102, 201, 202, 301, 332, 351, & 352. (Catalog course descriptions are attachment A).

In addition to the Case Core, other requirements include STAT 281, ENGR 112, & PHIL 360. Students are required to select a minor sequence of no less than 12 hours with the program committee. Typical minor programs are indicated in attachment C.

Courses in Complex Systems

- SYST 101 Problems in Systems I. Introduction to systems approach to complex problems; introduction to systems concepts; multidisciplinary approach through emphasis on case problems; cases deal with wide range of issue, living to non-living, social to technical, quantitative to qualitative. Prerequisite: None. Corequisite: Calculus.
- SYST 102 Problems in Systems II. Continuation of SYST 101. Emphasis on process of extracting analyzable systems problems from real world; measurement as a source of data; choice of goals for systems; issue of value judgements; introduction to disciplines and problem areas where systems approach is active. Prerequisite: SYST 101. Corequisite: Calculus.
- Mathematical Models of Systems. Development, using examples, of mathematical models to describe systems, analyze their properties, and test appropriateness for specific problems. Topics include; Finite state systems, graphical and network descriptions, and difference equation descriptions. Term project to construct model of some real system. Prerequisite: SYST 102 (May be taken concurrently).
- SYST 202 System Optimization. Formulation of specific decision problems in terms of optimization; examination of some mathematical techniques for solution. Topics include; extrema of differentiable functions of n variables, linear programming, non-linear programming, dynamic programming, statistical optimization. Term project to apply methodology to specific system. Prerequisite: SYST 201.
- SYST 301 Systems Theory. Structures of systems models, methods of model building, and integration of material studied in SYST 101, 102, 201, and 202. Topics include: Interactions and integration of subsystems; feedback, regulation, control, and sensitivity; goal seeking; adaptation and learning. Prerequisite: SYST 202.
- SYST 332 Computer Simulation. Development of insight into systems problems via simulation rather than manipulation of tractable mathematical models. Topics include: Simulation of continuous and discrete systems, probability concepts in simulation, and verification of simulation models. Case studies using computer. Prerequisite: ENGR 112.
- SYST 351 Senior Project I. Integration by senior students of systems skills and knowledge through substantial involvement in a two-semester project that is large enough for real challenge and limited enough to permit significant accomplishment in two semesters. Prerequisite: SYST 301.
- SYST 352 Senior Project II. Continuation of SYST 351. Problem areas such as environmental control, management of justice, and population control would provide the theme topic(s) for both the small project groups and regular seminar of a particular year. Prerequisite: SYST 351.

Proposed Case Institute of Technology Undergraduate Curriculum in Complex Systems for the B.S. Degree

FALL SEMESTER		SPRING SEMESTER	
Freshman Year Regular Case Core	17-8-18	Freshman Year Regular Case Core	16-5-16
Sophomore Year Syst. 101 - Problems in Systems I Syst. 201 - Mathematical Models of Systems Math. 223 - Mathematics III Engr. 112 - Numerical Methods Phys. 213 - General Physics III Humanities or Social Science Sequence I	3-0-3 3-0-3 3-0-3 2-2-3 3-0-3 17-2-18	Sophomore Year Syst. 102 - Problems in Systems I Syst. 202 - System Optimization Math. 224 - Mathematics IV Phys. 214 - General Physics IV Phys. 205 - General Physics Lab Humanities or Social Science Sequence II	3-0-3 3-0-3 3-0-3 3-0-3 1-3-2 3-0-3
Junior Year Syst. 301 - Systems Theory Stat. 281 - Intro. to Probability Minor Sequence I Humanities or Social Science Sequence II Open Elective	3-0-3 3-0-3 3-0-3 3-0-3 15-0-15	Junior Year Syst. 332 - Computer Simulation Phil. 360 - Philosophy of Social Science Open Elective Minor Sequence II Humanities or Social Science Sequence IV	3-0-3 3-0-3 3-0-3 3-0-3 15-0-15
Senior Year Syst. 351 - Senior Project I Minor Sequence III Social Science Elective Open Elective Sids. 301 - or 302 - Interdisciplinary Symposium	3-0-3 3-0-3 3-0-3 3-0-3 15-0-15	Senior Year Syst. 352 - Senior Project II Minor Sequence IV Social Science Elective Open Elective Humanities or Social Science Elective	3-0-3 3-0-3 3-0-3 3-0-3 15-0-1
Credit Hour Distribution Case Core 66 Complex Systems Major 39 Minor Sequence 12			Additional the Second of the S

Open Electives

TOTAL.

1.2

129

Typical Minor Sequences

Fnyinonmont	
Environment Geol. 114 & 115 (1) Geol. 240 Physics 364 Pol. Sc. 335 Econ. 386 URES. 318 Biol. 355 URES. 201 & 202	Man & Environment Urban Geology Physics of the Environment Politics & the Environment Urban Economics Urban Sociology Ecology Intro. to Urban & Environmental
Engr. 262 Engr. 263 Geo. 302 Soc. 310	Studies Environmental Quality Criteria Environmental Problem & Engineering Natural Resources Soc. Environment & Personality
Derived Theme Minor Phsyics 364 Biology 355 Pol. Sc. 335 Engineering 262 Geography 302	Physics of the Envioronment Ecology Politics and the Environment Environmental Quality Criteria Natural Resources: Environmental Use, Misuse & Conservation
Systems Theme Math. OR Encon. 101 Engr. Mang. Biol. 357 Engr. 416 Engr. Engr. 410 Engr. 415 Comp.	Linear Algebra Intro. to OR Economics Control Engineering I Management and Organization Environment Seminar Optimization Systems Engineering I Systems Theory I Decision Making and Control Computer Systems
Man and Society (Theme would be a Econ. 101 & 102 Econ. 206 or 207 Econ. 385 Econ. 364 Pol. Sci. 337 Pol. Sci. 241 SEEP 304 Soc. 350	selection of 12 - 18 hours). Principles of Econ. Intermediate Theory (micro & Macr.) Introd. Soc. Econ. Compet. & Public Policy Politics of Planning Political Behavior Sci., Technology, & Social Change Industrial Soc.

Sociology of Organization

Social Psych. & Personal Dynamic Group Dynamics & Interpersonal Dynamics

Soc. 390

ORAD 310 ORAD 303

Personality and Society	
PSCL 313	Psychology of Personality
SOCI 310	Social Environment and Personality
PSCL 253	Social Psychology
ANTH 371	Culture and Personality
SOCI 390	Sociology of Organizations
Public Policy in Industrialized Society	
Public Policy in Industrialized Society Posc 241	Political Behavior
Posc 241 ECON 207	Political Behavior Intermediate Macrotheory
Posc 241 ECON 207 POSC 343	
Posc 241 ECON 207	Intermediate Macrotheory

PLANNING, OPERATION AND MANAGEMENT HIERARCHICAL APPROACH IN THE OF WATER RESOURCES SYSTEMS May 1972

The American Water Resources Association Case Western Reserve University

Case Institute of Technology of

CASE INSTITUTE OF TECHNOLOGY OF CASE WESTERN RESERVE UNIVERSITY

PRESENTS

A One Week Short Course on

HIERARCHICAL APPROACH IN THE PLANNING, OPERATION AND MANAGEMENT OF WATER RESOURCES SYSTEMS

May 22-26, 1972

Co-sponsored by the AMERICAN WATER RESOURCES ASSOCIATION

Nonprofit Organization Permit No. 1402 Cleveland, Ohio

WATER RESOURCES SYSTEMS - SHORT COURSE

A ONE WEEK SHORT COURSE

for

Engineers and Public Officials Interested in Water Resources Systems

May 22-26, 1972

HIERARCHICAL APPROACH IN THE PLANNING, OPERATION AND MANAGEMENT OF WATER RESOURCES SYSTEMS

Co-sponsored by the AMERICAN WATER RESOURCES ASSOCIATION

Devoted to understanding the hierarchical approach to model formulation and optimization of large complex water resources systems.

Designed for engineers and public officials concerned with the planning, operation and management of regional water resources systems.

Purpose

To present a comprehensive survey of the applications of the hierarchical approach to large complex water resources systems. In particular to discuss the applications of decomposition and multilevel optimization techniques to multiobjective functions in water resources, multiregional conjunctive use of ground and surface water resources, modeling and identification in water resources, regional management of complex multiple purpose water resource and hydrologic systems, regional water quality control and management, and recent research results and applications in current literature.

Format

There will be four 90 minute lectures given each day Monday through Friday. Two sessions in the morning: 8:30 -10:00 and 10:30 - 12:00, followed by two sessions in the afternoon 1:00 - 2:30 and 3:00 - 4:30. Extensive use will be made of visual aids, and a complete set of all overhead projector transparencies will be provided to the participants prior to the lectures. New methods and theory introduced in lecture will be presented and explained via simple examples. Often, while a new method is discussed, it will be simultaneously developed and applied to a water resource example problem; thus the theory and its applications are discussed in parallel. This approach provides the participant with a close grasp of and comprehension of the material discussed. Separating the lectures will be a "coffee break" and opportunity for informal discussion of the lecture material. Three out of the five 3:00 - 4:30 afternoon sessions will be devoted to "Workshop" and problem working. In addition optional special evening tutorial sessions will be available to those participants who need a further review of systems engineering methodologies.

When:

May 22-26, 1972 Monday through Friday 8:30 am - 4:30 pm

Where:

Crawford Bldg. Room 13 Case Institute of Technology Case Western Reserve University Cleveland, Ohio

For:

Engineers and public officials interested in water resources systems

Course Notes:

A complete set of notes along with a complete set of all overhead projector transparencies are provided which cover the lectures in detail.

Prerequisite:

B.S. degree in Engineering, Science or equivalent experience.

Location:

Case Western Reserve University is in Cleveland, Ohio, easily accessible by air and road transportation. There is also public transportation from the airport to the university area. More detailed travel instructions are available upon request and will be supplied in response to registration.

Housing:

The University has reserved a block of rooms at the Howard Johnson Motor Lodge in University Circle (3 minutes walking distance from the campus). More detailed housing information will be supplied in response to registration.

HIERARCHICAL APPROACH IN THE PLANNING, OPERATION & MANAGEMENT OF WATER RESOURCES SYSTEMS

COURSE SCHEDULE

MONDAY, May 22

Morning

Haimes

Afternoon

Review of Fundamentals in Systems Engineering. Linear and dynamic programming, and Lagrange multipliers.

Afternoon

Haimes

Decomposition and Multilevel Optimization. Basics in the multilevel approach, different decomposition methods, and second-level coordinator techniques, saddle point and duality concepts.

Evening

"Get together" party

TUESDAY, May 23

Morning

Haimes

Modeling and Systems Identification in Water Resources. The identification of aquifer parameters, and other hydrologic characteristics via quasilinearization and multilevel approach.

Afternoon

1:00 - 2:30

Rothenberg

"Data Management"--what data is necessary for water resources operation and management. How to obtain it, and techniques for processing it into useful information.

3:00 - 4:30

Haimes

Multiobjective Functions in Water Resources. Model formulation and solution strategies via multilevel approach.

Evening

Staff

Optional Tutorial Session

WEDNESDAY, May 24

Morning

Haimes

Multiregional Conjunctive Use of Ground and Surface Water Resources. Joint consideration of the system modeling-identification problem with the system optimization problem.

1:00 - 2:30

Dee

Joint Environmental Economic Models Used in Water Resources Planning

3:00 - 4:30

Ricca

Application of the Stanford Streamflow Simulation Model to Ohio Watersheds. The Ohio State University version of the Stanford Streamflow Simulation Model. Presentation of the model's basic structure.

Evening

Optional Tutorial Session

Staff

THURSDAY, May 25

Morning

Hall

Optimum Operations for Planning of a Complex Water Resources System. The California Water Project.

Luncheon - Speaker: Dr. Ira Whitman, President of AWRA, Ohio Section

Afternoon

Hall

Optimum State Dynamic Programming. Project Planning and Investment Timing in Large Scale Water Resources Systems.

Evening

Social Hour

FRIDAY, May 26

Morning

Haimes

Regional Water Resources Management via Multilevel Approach. Multipurpose water resource systems, input-output and cost-effectiveness analyses.

Afternoon

Haimes

Regional Water Quality Control and Management via Multilevel Approach. System of Effluent charges and taxation.

How to mike

Dlan and man very verle

Instructors:

Yacov Y. Haimes received his B.S. degree in Mathematics, Physics and Chemistry in 1964 from the Hebrew University, Jerusalem, Israel. He received a M.S. degree in Engineering (majoring in Systems Engineering) in 1967, and a Ph.D. in Engineering with distinction (majoring in Large Scale Systems Engineering, with a minor in Water Resources Systems Engineering) in 1970, both from the University of California at Los Angeles.

Dr. Haimes is an Associate Professor of Engineering in the Systems Engineering Division, School of Engineering, Case Western Reserve University. He was an Assistant Professor there from 1970 to 1971. His research and consulting activities are in the areas of modeling and optimization of large systems using decomposition and multilevel techniques; in particular, in application to water resources systems. He has participated in numerous short courses given by UCLA, Utah State Univ., University of Arizona, Colorado State Univ. and others.

Dr. Haimes is a member of AGU, ASCE, AWRA, IEEE, ORSA, ORSIS, Sigma Xi, and Tau Beta Pi. He is the author of numerous publications on system identification, optimization of large systems, water quality control, and regional water resource management.

Guest Lecturers:

- Dr. Norbert Dee, Environmental Planner, Battelle Memorial Institute, Columbus, Ohio.
- Dr. Warren A. Hall, Professor of Engineering, Department of Soil Science and Agricultural Engineering, University of California, Riverside, California.
- Dr. Vincent T. Ricca, Assoc. Professor of Civil Engineering, Department of Civil Engineering, The Ohio State University, Columbus, Ohio.
- Dr. Douglas Rothenberg, Asst. Professor of Engineering, Systems Engineering Division, Case Western Reserve Univ., Cleveland, Ohio.

ON THE HIERARCHICAL APPROACH

The hierarchical approach by decomposing the problem into subproblems at one level and coordinating the solution of the subproblems at a higher level and yet maintaining an overall optimum to the whole system, seems to be an excellent answer to the solution of large and complex water resource systems. By virtue of decomposing the problem into subproblems, a conceptual simplification of the more complex system is achieved, and a more accurate and representative mathematical model may become both feasible and computationally tractable. Furthermore, a reduction in dimensionality is achieved and the total solution effort is reduced, sometimes at the expense of more computational effort. None of the system model functions need be linear, thus more flexible models can be constructed to represent the real water resource problem at hand.

Registration and Fees:

Course fee is \$200 which includes complete course notes and use of laboratory. A three-day registration fee (May 22-24) of \$150 are also available for participants who cannot stay for the complete five-day course.

Enrollment may be made by individuals or companies. Any number of persons from a single company may enroll as long as there are vacancies. Reservations may be requested for industry and government employees requiring time to obtain authorization. Companies may enroll for a given number of individuals, supplying names later. To insure enrollment, (class size is limited), individual names must be received by the university before May 1, 1972. For additional applications, please use separate sheet giving the information requested on the enrollment form.

	Reserve University,	nount of \$ing, Operation and Man-			Time		Mailing Address for Course Correspondence	State Zip	
REGISTRATION FORM FOR ENROLLMENT	Mail to: Mrs. Kathy Roberts, Systems Research Center, Case Western Reserve University, Cleveland, Ohio 44106	Enclosed is a check (payable to Case Institute of Technology) in the amount of \$to cover enrollment(s) indicated: "Hierarchical Approach in the Planning, Operation and Management of Water Resources Systems," May 22-26. 1972.	, 22-24, 1972	Yes No	Departure: <u>Date</u>	Position or Title	Mailing Address for (City	Signature
EGISTRATION FOR	berts, Systems Resear o 44106	able to Case Institute ndicated: "Hierarchic rces Systems," May 2	\$200 Full Enrollment \$150 Partial Enrollment, May 22-24, 1972	nmodations?	Time	First I.		Zip	
Œ	Mail to: Mrs. Kathy Roberts, Sy Cleveland, Ohio 44106	Enclosed is a check (payable to Case Institute of Technolc to cover enrollment(s) indicated: "Hierarchical Approach agement of Water Resources Systems," May 22-26. 1972.	3200 Fi	Do you wish hotel accommodations?	Arriving: Date	Last Name	Business Address	City State	Daytime Phone

REAL-TIME MINICOMPUTER SYSTEMS FOR DATA ACQUISITION, INFORMATION PROCESSING, AND CONTROL

May 22-26, 1972

Devoted to detailed understanding of minicomputer hardware, software, and applications. Designed for engineers concerned with the use of modern minicomputers.

Only limited familiarity with computers is assumed.

COURSE AND LABORATORY CONTENT

Organization of Minicomputer Hardware Structural characteristics of modern minicomputers: memory, various registers,

instruction sets.

Word Size and Memory Addressing in Minis

Modes of addressing memory and their
utilization: problem of small word size
tradeoffs in addressing, effects on choice of
mini for various applications.

Input/Output Devices for Data Acquisition & Control

Analog and digital I/O devices: multiplexors, converters, actuators. Noise, speed, and interfacing problems.

Interrupt Structures and Control of I/O Devices
Software for control of I/O: drivers, I/O
request subroutines, re-entrant software,
dedication of I/O devices.

Real-Time Executive Programs for Minicomputers
Organizations for executive or monitor
software: all core systems, overlay systems,
core loads, partitions, dynamic memory
allocation systems. Effect of application on
choice of organization.

Dedicated Data Acquisition I/O Software
Organization of software for high volume critically fast response systems including extensive operator communication.

Fundamentals of Real-Time Systems

General structure of real-time systems for data acquisition, process monitoring, process control, operator communication, message switching, lab automation, and manufacturing control.

Background Theory for Direct Control

Review of basic principles and tools for direct, feedforward, interacting, and adaptive control.

Background Theory for Supervisory Control
Hierarchical computer control systems:

on-line optimization, adaptive control, sequencing control, scheduling of manufacturing systems.

Data Acquisition and Control Packages

Characteristics of commercial packages and software systems for data acquisition, direct control, sequencing control, supervisory control.

Scheduled Lab Experiments:

- 1. Real-time data acquisition and control of a simple flow process.
- 2. Graphic operator console for communication with data acquisition and control systems.
- 3. Real-time Fortran programming for data acquisition and control.
- 4. Digital simulation for data analysis and system design.
- 5. Analysis based on Fast Fourier Transform.
- 6. Demonstration of computer aided-design system.

The laboratory facilities will be available also for students to carry on any additional experiments of their own choosing.

SYSTEMS RESEARCH CENTER
CASE INSTITUTE OF TECHNOLOGY
CASE WESTERN RESERVE UNIVERSITY

Format: There will be two 75 minute lectures given each morning Monday through Friday. Extensive use will be made of visual aids. New methods and theory introduced in lecture will be presented and explained via simple examples. Separating the lectures will be a "coffee break" and opportunity for informal discussion of the lecture material. A third 75 minute lecture will be given in the afternoon followed by informal sessions devoted to problem working, computer usage and laboratory. The class will be split up into several small groups for this purpose. In addition, provisions may be made for computer use during evenings for special projects.

Laboratory and Computer Facilities: The lectures are supplemented by laboratory experiments designed to provide familiarization and experience with the methods and techniques presented. The Systems Engineering Laboratory includes a GE 4060 digital computer system suitable for data acquisition and control of real-time systems, an EAI 580 analog computer which may be operated in real-time, in high-speed repetitive modes for iterative analog computations, or in conjunction with the digital computer as a hybrid system, and a Honeywell H21 digital control computer. Graphic communication with the computers is provided through a CDS 904 terminal. The laboratory includes several completely instrumented benchscale process units, and industrial control components to permit a wide range of research and experimentation on real-time data acquisition and control systems.

Course Notes: A complete set of notes is provided which cover the lectures in detail.

Faculty: Irving Lefkowitz, Douglas Rothenberg, and James D. Schoeffler are Professors of Engineering and members of the Systems Research Center where, for the past 15 years, extensive research and education effort in the field of data acquisition, computer control, software, and computer applications have been carried out.

Location: Case Western Reserve University is in Cleveland, Ohio, easily accessible by air and road transportation. There is also public transportation from the airport to the university area. More detailed travel instructions are available on request.

Housing: Accommodations are available at several hotel and dormitory facilities within easy walking distance from the University. We'll send you details on accommodations when you send in your Registration Form.

Registration and Fees: Course fee is \$275 and includes complete course notes, laboratory and computer charges, and parking on the campus for the week.

Return Registration Form by May 1, 1972. For further information write or phone:

Professor I. Lefkowitz Systems Research Center Case Western Reserve University Cleveland, Ohio 44106

Phone: (216) 368-4078

REVISED SCHEDULE

32ND SPONSORS' MEETING OF CONTROL OF COMPLEX SYSTEMS PROGRAM

Wednesday,	May	3,	1972
eministration and the second of the second o	med with making	matter matter and to	NAME AND ADDRESS OF THE OWNER, OF TAXABLE PARTY OF TAXABL

9:15 - 10:00 a.m.	COFFEE AND DONUTS	Crawford 13
10:00 - 12:45 a.m.	SESSION I	Crawford 14
Introduction		I. Leskowitz
Program Overvie	W	J. D. Schoeffler
Simulation Anal Systems	ysis of Large and Complex	J. P. Riley
On Self-Tuning	Regulators	K. J. Åström
1:00 - 2:15 p.m.	LUNCH	Faculty Dining Room
2:15 - 4:45 p.m.		
SESSION II	J. D. Schoeffler, Chairman	Crawford 14
Evaluation of R computer Syst	teliability of On-Line Mini- tems	S. Sunderland
On the Developm Theory	ent of Discrete Event System	K. J. Chadha
A Virtual Memor Application S	y Organization for Minicomputer oftware	L. Bronner
Computer-Aided	Design for Large Scale System	L. Bronner
	ganization for a Three Computer Control System	V. Mileti
An Interactive veyance Syste	Model of An Urban Wastewater Con	I. Dear
SESSION III	D. Macko, Chairman	Crawford 13
	ation of Interacting Systems	C. Whitfield
	ilevel Control Applied to the 1 Process	T. Fukuda
A Design Method Via Pattern R	ology for Automated Inspection ecognition	D. Kylin
	cture for Making On-Line Sup- 's for Large Complex Systems	F. O'Neil
3:20 - 3:35 p.m.	COFFEE BREAK	
8:30 - 10:30 p.m.	SOCIAL GET-TOGETHER	<u>Howard Johnsons'</u> <u>Penthouse</u>

Thursday, May 4, 1972

9:00 - N:25 p.m.

SESSION IV G. Blankenship, Chairman	Crawford 14
Small Signal Models for Estimation of Input Variables from Secondary Process Measuremen	nts D. Easterday
Some Simulation Models for One-Dimensional Distributed Systems	· · P. F. Salamon
Distributed System Identification Using Quas linearization	i- R. T. Schenke
Recent Developments in Stochastic Control and Filtering	d G. Blankenship
SESSION V Y. Y. Haimes, Chairman	Crawford 13
A Multilevel Approach to Planning for Capacin Expansion in Water Resource Systems	ty · · W. S. Nainis
Vector Optimization for Control with Performance and Parameter Sensitivity Indices	· · F. Gembicki
Regional Water Quality Management	· · S. Rosen
The Planning and Operation of a Regional Wate Quality Management System: A Multilevel Approach	er • M. A. Kaplan
10:10 - 10:25 a.m. COFFEE BREAK	
11:30 - 12:30 p.m. LUNCH	Faculty Dining Room
1:00 - 2:45 p.m.	
SESSION VI L. S. Lasdon, Chairman	Crawford 14
	OI WALLOW I LA
Development of an LP Program for Ship Rout-	the officer digit is the original through the control of the contr
ing	· · L. S. Lasdon
ing Synthesis of a Crude Oil Supply System	the officer digit is the original through the control of the contr
ing	· · L. S. Lasdon
ing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class	L. S. Lasdon S. J. Mathis, Jr.
ing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class of Integrated Industrial Systems	 L. S. Lasdon S. J. Mathis, Jr. W. Driscoll Crawford 13
ing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class of Integrated Industrial Systems SESSION VII 1. Leskowitz, Chairman Regulator Design with Consideration of Observation and Control Implementation A Multilayer Control Hierarchy with an On- Demand Updating Policy	 L. S. Lasdon S. J. Mathis, Jr. W. Driscoll
ing Synthesis of a Crude Oil Supply System Multilevel Techniques for Scheduling a Class of Integrated Industrial Systems SESSION VII I. Leskowitz, Chairman Regulator Design with Consideration of Observation and Control Implementation A Multilayer Control Hierarchy with an On-	 L. S. Lasdon S. J. Mathis, Jr. W. Driscoll

ROSTER

SPONSORS' MEETING NO. 32 - MAY 3, 4, 1972

I. INDUSTRIAL REPRESENTATIVES

BABCOCK & WILCOX/BAILEY METER CO. GENERAL ELECTRIC COMPANY

J	_	Ad	ams	;

R. Bilski

G. Carlo-Stella

L. Haberman

R. Klosky

R. Olmstead T. Scheib

R. Beauregard

A. S. Brower

D. Kampfer

J. M. Wexler

MARATHON OIL COMPANY

T. Deiro

J. Howell

BETHLEHEM STEEL CORPORATION

J. G. Foulds

C. F. Long

MOBIL RESEARCH & DEVELOPMENT CORP.

P. Halbert

M. Tayyabkhan

ESSO RESEARCH & ENGINEERING

H. Mosler

J. D. Simon

J. L. Woodward

THE FOXBORO COMPANY

E. H. Bristol

P. Holst

VISITOR

R. Ash - Procter & Gamble

II. FACULTY

R. E. Bolz

G. L. Blankenship

Y. Y. Haimes
J. T. Koppenhaver

L. S. Lasdon

I. Lefkowitz

D. Macko

M. D. Mesarovic

H. R. Nara

P. A. Orner

C. W. Rose

D. H. Rothenberg

J. D. Schoeffler

S. Guberinic

0. Semenkov

J. P. Riley

K. J. Astrom

Dean, School of Engineering

Assistant Professor, Engineering

Associate Professor, Engineering Assistant Director, Research Administration

Professor, Operations Research

Acting Head, Systems Engineering Division Associate Professor, Engineering

Director, Systems Research Center

Associate Dean, Engineering Associate Professor Engineering

Assistant Professor, Information Sciences

Assistant Professor, Engineering

Professor, Engineering Visiting Postdoctoral Fellow

Visiting Postdoctoral Fellow

Invited Lecturer, Utah State University

Invited Lecturer, Lund Institute of Technology

III. STUDENTS

M. Alpert

L. Bronner

K. Chadha

C. Conneighton

I. Dear

W. Driscoll

D. Easterday

J. Foley

T. Fukuda

F. Gembicki

B. Gunter

T. Harrington

R. Ishida

M. Kaplan

D. Kolo D. Kylin

H. Lopez

H. Lycakis

S. Mathis

P. Merluzzi

V. Mileti

W. Nainis

F. O'Neil E. Rechtschaffen

S. Rosen

P. Salamon

R. Schenke

R. Schmotzer

S. Sunderland K. Tsuji R. Walters

T. Weisman

C. Whitfield

S. Yoshii

W. Yu

<u>Undergraduates</u>

B. Alleshouse

J. Bendfeldt

K. Beracz

H. Jacobs

K. Mendelson

J. Milligan

D. Mumford

R. Sirow

E. Snyder

M. Stafford

T. Takacs

D. Wright

IV. STAFF

D. Brachi

G. Cadwallader

M. Cantini

K. Roberts

T. Shook

P. Worrell

Technical Secretary

Administrative Assistant, Systems Research Ctr.

Administrative Secretary

Technical Secretary

Project Engineer, Systems Research Center

Student Helper

32ND SPONSORS' MEETING OF CONTROL OF COMPLEX SYSTEMS PROGRAM

Wednesday, May 3, 1972

8:30 - 10:30 p.m.

	9:15 - 10:00 a.m. COFFEE AND DONUTS		Crawford 13
	10:00 - 12:45 a.m. SESSION I		Crawford 14
	Introduction	1	. Lefkowitz
	Program Overview	J	. D. Schoeffler
	Simulation Analysis of Large and Complex Systems	J	. P. Riley
1.00	12:00 - 2:35 p.m. LUNCH		Astronu Crawford 13
	2:80 - 4:90 p.m.		
	SESSION II J. D. Schoeffler, Chairman		Crawford 14
	On the Development of Discrete Event System Theory	.	K. J. Chadha
	<pre>Evaluation of Reliability of On-Line Mini- computer Systems</pre>		S. Sunderland
,	DDC Software Organization for a Three Com- puter Hierarchical Control System	a. 6	V. Mileti
	A Virtual Memory Organization for Minicom- puter Application Software		L. Bronner Urban
	Computer-Aided Design for Large Scale System		L. Bronner
	An Interactive Model of An Urban Wastewater Conveyance System		I. Dear
	SESSION III D. Macko, Chairman		Crawford 107
	On-Line Coordination of Interacting Systems		C. Whitfield
	A Study of Multilevel Control Applied to the Hot Strip Mill Process	6 . 6 .	T. Fukuda
	A Design Methodology forAutomated Inspection Via Pattern Recognition		D. Kylin
	A Decision Structure for Making On-Line Sup- port Tradeoffs for Large Complex Systems	•	F. O'Neil
	Automatic Dipper Control forStripping Shovels		Takacs, et al.
	3:00 - 3:15 p.m. COFFEE BREAK		

SOCIAL GET-TOGETHER

Howard Johnsons' Penthouse

Thursday, May 4, 1972

9:00 - 12:00 noon

		· ·	•
	SESSION	G. Blankenship, Chairman	Crawford 14
	Recent Dev Filteri	velopments in Stochastic Control ng	and G. Blankenship
Eliminate ges chrombarat pistilation	u. Small Sign Variable	nal Models for Estimation of Inp es from Secondary Process Measur	
pishta giatic	Some Simu	lation Models for One-Dimensiona uted Systems	l P. F. Salamon
	Tuning Lin	near Quadratic Controls	V. Mileti
	SESSION V	Y. Y. Haimes, Chairman	Crawford 107
		vel Approach to Planning for Cap on in Water Resource Systems	acity W. S. Nainis
	Distribute lineari	ed System Identification Using Q zation	uasi- R. T. Schenke
		timization for Control with Perf nd Parameter Sensitivity Indices	
	Regional N	Water Quality Management	S. Rosen
		ing and Operation of a Regional Management System: A Multileve h	
	10:20 - 10:40 a.m.	COFFEE BREAK	
	12:00 - 1:15 p.m.	LUNCH	Crawford 13
	1:15 - 2:45 p.m.		
	SESSION VI	L. S. Lasdon, Chairman	<u>Crawford 14</u>
	Developme Routing	nt of an LP Program for Ship	L. S. Lasdon
	Synthesis	of a Crude Oil Supply System	S.J. Mathis, Jr.
		l Techniques for Scheduling a Cl grated Industrial Systems	ass W. Driscoll
	SESSION VII	I. Lefkowitz, Chairman	Crawford 107
		Design with Consideration of Ob and Control Implementation	oser- G. Blankenship
		yer Control Hierarchy with an Or Updating Policy	ı- K. Tsuji
	Applicati An Exam		esign: C. Rose
		· Computer surgiculars	