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Stability Analysis of an On-line Algorithm for
Torque Limited Path Following

Ola Dahl and Lars Nielsen

Dept. of Automatic Control, Lund Inst. of Technology
Box 118, §-221 00 Lund, Sweden

Absiract A secondary controller for on-line time
scaling of nominal high performance trajectories has
been proposed to handle path following with torques
close to the limits. Such nominal reference trajectories
are typically available from an off-line optimization.
The problem studied in this paper is the stability
properties of the closed loop system, including the
robot, the primary controller, and the new secondary
controller.

1. Introduction

A feedback scheme for torque limited path fol-
lowing by on-line trajectory time scaling is proposed
in (Dahl and Nielsen, 1989), where a secondary con-
troller is used for modification of the robot speed along
a geometric path. The scheme has been evaluated by
simulations and experimental results, and a stability
analysis provides further motivation of the feasibility
of the proposed secondary controller.

Fast motion along a geometric path is important
in several applications where the robot performance is
limiting the production speed e.g. gluing, arc welding
of small pieces, and laser or high pressure water
cutting. An off-line procedure (Bobrow, Dubowsky,
and Gibson, 1983, 1985; Shin and McKay, 1985;
Pfeiffer and Johanni, 1986) is used to obtain a nominal
trajectory to be used as a reference trajectory for the
robot’s control system. These trajectories typically
lead to torques at the limit, hence leaving no control
authority to take care of disturbances or modeling
discrepancies. One way to handle this is to reduce
the assumed torque bounds (Asada and Slotine, 1986,
Section 6.6), or have bounds on model errors (Shin
and McKay, 1987). Another idea is to do the best
possible in nominal time, but hence leave the path
(Slotine and Spong, 1985).

It is obvious from the optimization problem but

also from physical reasons that if the robot is behind
the nominal trajectory then it is impossible to catch
up if the controller already is at the torque limit. A
constructive way to handle the problem is to slow
down the reference trajectory if path tracking is at
priority. Further, it is untractable to be conservative
already in the trajectory planning stage because of
productivity reasons. These considerations are the
background to our research on schemes for on-line
modification of the time scaling of the reference
trajectory, where the goal is to keep following the path
at the expense of an increase in the path traversal
time. Ideally, the traversal time should only increase
if needed and then as little as possible.

This paper contains a stability analysis of such
an algorithm proposed in (Dahl and Nielsen, 1989).
Section 2 is a review of earlier results. The key ideas
can be summarized as follows. The primary controller
is left unchanged, only the reference trajectory is
changed. This keeps the dynamic properties of the
closed loop system, e.g. robustness is preserved. A
secondary control loop is used for modification of
only a scalar variable, which simplifies the design
and analysis of the secondary controller. A crucial
step is the observation that the primary controller
can be parameterized in the path parameter instead
of in time. Section 3 summarizes the assumptions
used in the stability analysis, and the results are
given in Section 4. The analysis shows that if the
nominal velocity profile is within certain limits, the
result is a bounded actual velocity profile. Stability
of the closed loop system including the robot, the
primary and the secondary controller is then obtained
by requiring a specified tracking performance for the
primary controller.



2. Torque Limited Path Following

This section is a review of our scheme for torque
limited path following by trajectory time scaling,
proposed in (Dahl and Nielsen, 1989).

Robot Dynamics and Torque Constraints

The robot is described by the rigid body dynamics

H(q)i+ v(g,4) +d(a)g+g(g) =7 (1)

where ¢ € R™ is the vector of joint variables, r € R™ is
the vector of input torques, H(q) is the inertia matrix,
v(q, ¢) is the vector of coriolis and centrifugal forces,
d(q) is the viscous friction matrix, and g(g) is the
vector of gravitational forces. The torque constraints
are in general given by a region E(g,q) where the
admissible torques satisfy = € E, but typically each
component of the torque vector is upper and lower
limited by constants leading to a hyper rectangle as
torque constraint region E.

Primary Controller

A primary controller for reference trajectory track-
ing is assumed available. The primary controller is
designed for good performance, disturbance rejection
etc., and is kept unchanged. It is however written in a
special form, suitable for the design of the secondary
controller.

Path Following by Trajectory Time Scaling

The path is given in parametrized form f(s) € R"
where s is the scalar path parameter. A nominal ref-
erence trajectory f(s,(t)) where s,,(t) is the nominal
path parameter, is available from an off-line proce-
dure. The time scaling is done by on-line modifica-
tion of the nominal path parameter s,(t), resulting in
an actual path parameter s(t). The modified reference
trajectory f(s(t)) is then used as input to the primary
controller. The goal is to have an actual path parame-
ter s(t) resulting in fast motion without violating the
torque constraints.

Nominal Trajectory

The nominal path parameter s,(t) is represented by
the nominal velocity and acceleration profiles vy, (s)
and a(s). These functions are computed from the
nominal path parameter as

$a(t) = va(sa(t))

i) = anlon(®) = (o)

Note that the functions v, and a, depend only on the
nominal trajectory s,(t), 8.(t), and 3,(t), and can
thus be precomputed and stored in advance.

Secondary Controller

The secondary controller uses measurements of the
robot’s speed and position to control the path param-
eter s, and is given by the dynamical system

Ay = ﬁaﬂ(s) + %a(vﬂ(s)2 - 32)
§ = sat(a,, s, 3,¢,¢é) (3)
5(0) = 4n(0)
3(0) = 3,(0)

The secondary controller (3} computes the path accel-
eration § as the limitation of the auxiliary variable a,.
The path acceleration is limited by the function sat,
by computing bounds on the path acceleration from
the torque constraints, using information about the
actual position and speed of the robot. The function
sat will be defined more precisely in the following sub-
sections. The result of using the secondary controller
(3) is that the path acceleration is limited so that the
torque constraints are not violated. The term fay,(s)
is a feedforward term from the nominal path accel-
eration, and the term }a(vn(s)? — 5?) is a feedback
from the nominal and actual path velocities. The pa-
rameter 3 is chosen as § =1 or 8= 0, where 3 =0
corresponds to the case where the nominal path ac-
celeration a,(s) is not specified. The limitation of §
occurs only if needed, i.e. if the unlimited path accel-
eration a, leads to violation of the torque constraints.
Otherwise, the feedback term results in § approaching
the nominal velocity profile v, (s).

Path Parametrization of the Primary Con-
troller

The function sat will now be more precisely defined.
The bounds on path acceleration used by the function
sat are computed from a parametrization of the
primary controller. The parametrization has the form

‘r=bl(s,é,q,tj)§+b2(3;-§,91¢j) (4)

As an example of the controller parametrization, a
computed torque controller, given by

T =H(q)(d: + Kpe + Kyé) + 8(g, 9)
+ d(q)d + §(q)



is parametrized as

bi(s,q) =H(q)f'(s)
ba(s, 4,9, 8) =H(@)(f"(8)3% + Kpe + Koé)
+ (g, 4) + d(g)d + §(q)

where the reference trajectory is denoted g,, the
tracking error e is defined as e = ¢, — ¢, K, and K,
are feedback matrices, and the variables H y By (2, and
g represent an available model of the robot.

On-line Constraints on Path Acceleration

On-line constraints on the path acceleration 5 can be
computed from equation (4). First, note that since
e = g, — q and ¢, = f(s), we can equivalently regard
by and b, as functions of s, 3, e, and é. The controller
parametrization is then rewritten as

T = bi(s,3,e,8)5 + by(s, 4,¢,€) (5)

On-line bounds on § are now computed as the maxi-
mum and minimum values of 5§ that results in 7 € E,
when 7 is given by (5). Note that for certain values of
8, 8, e, and é, these bounds do not exist, since there
may be no § resulting in 7 € E. This reasoning is sim-
ilar to the analysis used in off-line trajectory planning
(Bobrow, Dubowsky, and Gibson, 1983, 1985; Shin
and McKay, 1985; Pfeiffer and Johanni, 1986). There,
it is assumed that the robot is moving along the path,
resulting in an equation for the robot dynamics of the
form

a1(8)d + az(9)s® + as(s)é + aq(s) = 7 (6)

This equation is used to compute off-line constraints
on § and §, which then can be used in the trajectory
planning. Here, we get on-line constraints from equa-
tion (5), resulting in constraints on § and § depending
on the tracking errors e and é.

The saturation function sat

The function sat is used for limitation of § by the
on-line bounds on path acceleration computed from
the controller parametrization (5). Given s, e, and é,
it depends on § whether these bounds exist or not.
There are thus requirements on the path speed s.
The limitation function sat is meaningful only if the
requirements on § are satisfied. We therefore define
sat as follows.

DEFINITION 1

The function sat(z, s, 3, ¢, ¢€) is defined as the limita-
tion of z by the on-line bounds on §, computed from
the controller parametrization (5), if § is admissible,
and 0 otherwise. The path speed § is admissible if
8 € S(s,e,¢é), where S(s, e, é) is a set of s-values such
that $ € S implies that there exists on-line bounds on
the path acceleration §.

Remark 1. The set S is typically an interval 0 <
§ < 8yqg, but may also be more than one interval,
corresponding to islands in the phase plane in off-line
trajectory planning (Shin and McKay, 1985). The set
S used in the stability analysis in Section 4 is defined
below in Definition 2.

Remark 2. The value 0 is chosen as a safety value. If
the constraints on § are violated, the path speed & is
kept constant. This is convenient for the analysis but
other methods could of course be considered. O

Time Scale Transformation

We have introduced the nominal velocity profile v,
and the nominal acceleration profile a, in (2). We
introduce in the same way for the actual trajectory
s(t), the actual velocity and acceleration profiles, v
and a, as

§(1) = v(s(t)), 8(2) = a(s(t))
Introducing y and y, by
¥(s) = 395 %(s) = 5vals)? (7)

the nominal and actual path accelerations are given
by

dy,(s) 5= dv(s)
ds ' ds

ofs)= B )

ay(s) =

The algorithm (3) can now be written in the trans-
formed time scale as

dyr
ar—ﬂds +a(yr_y)
d_y = sat(a,, s, 3, €, €) (9)

ds

1.
y(s0) = 5810

where 3,, = $,(0). We see that by using the trans-
formed time scale, the secondary controller, given by
the algorithm (3) and rewritten in (9), can be regarded
as a first order system, where the derivative of the
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Figure 1. A block diegram of the robot with pri-
mary and secondary control loop. The primary con-
troller is parametrized in s. Observe that b; and by
depend on measured quantities.

output y is limited by the function sat. The effect
of using the algorithm is that the saturation function
limits the slope of the actual velocity profile v(s) = s.
If the bounds on path acceleration are not activated,
we get § = -j} = ay, resulting in a linear system with
an s-time constant L. The algorithm (9) is further de-
scribed in (Dahl and Nielsen, 1989; Dahl, 1989) where
it is also used as a part of an algorithm for the min-
imum time case, where it is not sufficient to consider
only the path acceleration constraints. An additional
scaling of the nominal velocity profile is introduced
and the scaling factor is updated on-line. The algo-
rithm (3) is illustrated in Figure 1, where a block di-
agram of the system with the secondary control loop
is shown.

3. The Closed Loop System

The stability analysis of the nonlinear closed loop
system, shown in Figure 1, is based on the following
assumptions.

Robot Model The robot dynamics are given by

H(q)§+ v(a,d) + d(q)d+g(q) =7 (1)

Path The path is given in parametrized form f(s)
and the derivatives f’(s) and f”(s) exist and are
bounded.

Primary Controller The reference trajectory us-
ed by the primary controller is ¢.(t) = f(s(t)).
Typically, reference values for speed and acceleration

are available, resulting in a primary controller having
the inputs

qr = f(s)a gr = f’(s)éx gr = f"(s)“}2 + f’(s)‘;’;
The primary controller can be parametrized as
T =by1(s,3,€,€)5 + by(s, 3, ¢, €) (5)

and the output 7 of the primary controller is con-
strained by 7 € E, where F typically is given by con-
stant bounds, resulting in 7 € E if 7" < 1y < T
for all 4, 1 < ¢ < n, the number of joint variables.

Nominal Trajectory The nominal reference tra-
jectory is represented by the nominal velocity and ac-
celeration profiles, v,(s) and an(s), equation (2).

Secondary Controller The secondary controller
is given by (3), and written in the transformed time
scale, using (7) and (8), as

d
a, =ﬂ%+a(yr—y)

& _ sat(ar,s,3,¢€,¢€) (9)

ds
1,
y(s0) = 583.0

The saturation function sat is given by Definition 1.

Restrictions on Path Speed The set S in Defin-
ition 1 is defined as

DEFINITION 2
Given by(s, 4,¢,€) and by(s, 4,¢,é) in the controller
parametrization (5). The set S(s, e, ¢€) is then defined
as § € § if there exist finite §-bounds §,,:,(s, 4, €, é)
and §ymaz(9, 3, €, €) such that §,00 > 0, and §pipn < 0.
|
Note that this definition of S can be interpreted as
a restriction on the path speed $, since there may
exist 8 such that the bounds exist but have the same
sign. Note also that with S according to Definition 2,
sat(z, s, 4, e, ¢) is finite and that | sat(z,s,3,¢e,¢) |<
|z | for all z, s, 4, €, and é.

4. Stability Analysis

The purpose of the stability analysis is now to show
that given a nominal velocity profile, the actual
velocity profile results in v € F and tracking errors
e and ¢é smaller than a given tolerance.



Outline of Proof

The idea in the stability proof is to first show that
given a bounded nominal velocity profile, the result of
using the secondary controller (9) is that the actual
velocity profile is also bounded, and the bounds are
independent of the tracking errors e and é. This is the
result of Theorem 1 below. The stability of the closed
loop system is then shown by the following reasoning,
which is formalized in Theorem 2.

1. Given a nominal velocity profile, bounds on the
actual velocity profile are given by Theorem
1. Furthermore, the path speed s should be
admissible when $ is below the bound given by
Theorem 1, and the tracking errors are smaller
than a given tolerance, e.g. given as | e(t) |< emaz
and | é(t) |< émas for all . This means that the
resulting torques will also be admissible as long
as the tracking errors are smaller than the given
tolerance.

2. The primary controller should give tracking er-
rors below the specified tolerance, when the refer-
ence trajectory is satisfying the bounds computed
by Theorem 1.

3. Since the bounds computed in 1, gives tracking
errors below the tolerances, § will be admissible
during the complete motion, and therefore the
torques will also be admissible.

Note that in 2, the torque limits do not have to
be taken into account. The primary controller gives
bounds on the tracking errors, given the bounds on
the reference trajectory. The bounds on the reference
trajectory are independent of the tracking errors, and
given by Theorem 1. This means that the tracking
error bounds will be satisfied during the motion. Since
the path speed $ is admissible for all tracking errors
below the tracking error bounds, the resulting torques
will also be admissible.

Stability of the Secondary Controller

A stability result for the algorithm (9) is given below.
The result is based on the observation that the
algorithm can be interpreted as a first order system
with input y, and output y, and where the derivative
of the output, %, is limited. The limitation is done
by the function sat, and occurs only if the bounds
used in the limitation have different signs, i.e. if § is
admissible, see Definitions 1 and 2. If this is not the
case, the value of sat is 0, resulting in % = 0.

TEEOREM 1—Stability of the Secondary Controller
If the secondary controller is given by the algorithm

(9), and
1. y(s)= %vﬂ(s)2 satisfies A + € < ¥, (8) < Ymaz —

A, Aye> 0forall s > 59, and | B | is bounded
for all s > sq.

2. The feedback gain o satisfies o >| %%Vf(s) | for
all s > so.

3. y(s) = 3v(s)? satisfies the initial conditions e <
¥(%0) < Ymaz, v(s0) > 0.

then

* € < y(8) < Ymaz for all s > so, and v(s) > 0 for
all s > s9. The resulting path acceleration § = 4L

ds
is bounded by | ;‘H‘ I<| 5% | + | @Ymaz |-

Proof: The upper bound y(3) < Ymaz is first shown.
Suppose that for some s, s = 3, > 30, ¥(32) > Yas.
Then, since y(30) < Ymaz, there are one or more values
of 5,30 < 8 < 33 where Y¥(3) = Ymas. Let s; be
the largest of these values. This gives y(s1) = Ymaa,
Y(8) > Ymaz for 81 < 8 < 35. Then, by the Mean Value
Theorem, there is a point 0y, 9; < o1 < 89, such that

dy.  _ y(s2) — y(s1)
a(d’l) = —33‘T >0

Using equation (9), this gives
dy
ds

Since the lower bound in the limitation by sat is never

positive, this implies a,(o) > 0. This gives

(01) = sat(a,(01), 01, v(01), e(01), €(01)) > 0

dy,

ar(al) = ﬁ ds

(01) + a(yr(o1) — y(o1)) > 0

But y(01) > Ymaz and y,(01) < Ymaz — A implies
¥r(01) — y(o1) < —A < 0. This results in a,(0y) < 0
ifa>| g—%}“—"(q) | which gives a contradiction. Hence,
Y(8) < Ymaz for all 3 > 3.

The lower bound y(s) > € is now shown by the
same method. Suppose that for some s, s = 34 > 3¢,
Y(s4) < €. Then, since y(sg) > ¢, there are one or more
values of 5,80 < s < 34 where y(s) = €. Let s3 be the
largest of these values. This gives y(s3) = ¢, y(s) < €
for 83 < s < 34. Then there is a point 03,53 < 03 < sy,
such that

Hon) = Mol =t

Using equation (9), this gives

dy .
(o2) = sat(ar (o), 02, v(02), (o), (0r3)) < 0



Since the upper bound in the limitation by sat is
always nonnegative, this implies a,(02) < 0. This
gives

d

ar(02) = B=(02) + a(r(02) — y(02)) < 0

But y(o2) < € and y,(03) > €+ A implies y,(03) —
y(o2) > A > 0. This results in a,(03) > 0 if
o >| %%(ag) | which gives a contradiction. Hence,
y(s) > e for all s > so.

We have shown € < y(s) < ypag for all s > so.
Since v(s0) > 0, and y(s) = 3v(s)? > 0 for all s > s,
$ = v(s) will continue to be positive, i.e. v(s) > 0
for all s > s¢. Furthermore, the function sat has the
property | sat(z,s,v,e,¢) |<| z | for all z, s, v, €, and
¢é, which gives the bound on § = %"L as

dy , dy, .
| = |=| sat(B < +a(yr —y),8,v,6,¢) |<
dyr dyr
r < Mmaz
|85 |+ ] oy — ) 1<I B2 | + | athmas |

(|
Theorem 1 shows that if the gain « is chosen suffi-
ciently large, and y,(s) and ,B‘-ij‘f are bounded, then

y(s) and %’} are also bounded, and the bounds are
independent of the tracking errors e and é.

Stability of the Closed Loop System
We can now state the following result.

THEOREM 2—Stability of the Closed Loop System
If

1. The nominal velocity profile v,(s) satisfies A +
€ < 592(8) < Ymaz — B, A, > 0, for all s > s,
and | A% | is bounded for all s > 30, and the
feedback gain o satisfies a >| 'g—%"-(s) | for all
8 2> 39.

2. The actual velocity profile § = v(s) satisfies the
initial conditions € < -;-v(so)2 < Ymaz, ¥(80) > 0.

3. The motion starts at s = 3¢ with zero tracking
error, i.e. 3(0) = s, €(0) = é(0) = 0.

4. The primary controller has the property that
| € |< €maz and | é |< émag for all 8 > s, if
| § ISl ﬂ% | + I QYmaz | and l 3 |S Vﬁymafc for
all s > 3¢, and €(0) = é(0) = 0.

5. The path speed $ is admissible if § < v/2Ymaz,
I € IS emaz) a‘nd I é |S é‘m.a:n'

then

*  The closed loop system is stable in the sense that

| € 1< emar and | € |< épqg for all s > s, and
is admissible for all s > s,.

Proof: Assumptions 1 and 2, together with Theorem
1, give 0 < $ < v/2¥maz for all s > 3o, and | § I<|
ﬂ"%’f | + | @Ymaz | for all s > so. Assumptions 3
and 4 then give | e |< emar and | € |< épmaz for all
s > sg. Assumption 5 together with the bound on
§ then implies that s will be admissible during the
motion, i.e. for s > 3¢, which in turn implies that 7
will be admissible for all s > 3.

Remark. Note that the result holds for any primary
controller, satisfying Assumption 4. A result showing
the possibility of achieving a primary controller with
this property is given in (Craig, 1988, p. 30) for a
computed torque controller based on an uncertain
model of the robot. a

Restrictions on Path Speed

The following Lemma is given to demonstrate that the
fact that § is admissible, i.e. § € 9, can be interpreted
as a restriction on .

Lemma 1

Suppose that the torque constraints can be expressed
as | T |[< Tynaz, where | 7 | denotes the vector norm of
7. A necessary and sufficient condition for $ admissible
is then given by | b1 |# 0, and | b |< Timas.

Proof: Suppose that § is admissible. We then have
bounds on § such that 7 is admissible for all 3,
satisfying $min < § < 3ynaz, where &y < 0, and
3maz = 0. This means that 7 is admissible if § = 0,
ie. | 10 + bz |< Tinas, which implies | b2 |< Tgg.
Furthermore, the bounds on § are finite, which implies
| b1 |# 0, since if | by |= 0, then b; = 0, which results
in | 7 |=| b2 |< Tinaz for all §, which contradicts the
fact that the bounds on § are finite.

Suppose now that | by |< Tyas, and | by [# 0. We
then have

| 618+ by [<| by || 5]+ |
which gives bounds on § as

w‘|b2|
[ b1 |

—|b
Eminz—Tmaz l 2 | SSS Lo

| b1 |

= Smaz

and we see that there exist finite bounds on 3,
satisfying .z > 0, and 8y,in < 0, i.e. $ is admissible.
O



The interpretation of ¢ admissible as a restriction
on § is motivated as follows. Suppose that the con-
troller is a computed torque controller. The controller
parametrization then gives

b =H(q)f'(s)
by =H(q)(f"(s)3% + K.é+ Kpe) + 9(q, §)
+d(g)d + §(q)

Suppose further that the tracking errors are small, so
that ¢ =~ ¢, and § ~ ¢,. Since ¢, = f(s), the vector
¥ can then be approximated as #(q,q) =~ 9(gr,¢r) =
v(f, f')é%. This gives

b2 ~ J?I(qr)f”(s)éz + ﬁ(f: f’)éz
+d(q)f'(s)s + §(q)
= b318% + bazs + baa

and we see that the equivalent formulation of 3
admissible as given by Lemma 1, | b; |< Tmaz, now
gives restrictions on the path speed 3.

ExAaMPLE 1

The restrictions on § will be illustrated by two nu-
merical examples. For both examples, three curves in
the s-3 plane will be shown. These are the admissi-
ble region, i.e. the region where there exists bounds
on the path acceleration, the region where the bounds
have different signs, and the minimum time trajectory.
The computations will be done under the assumptions
that the tracking errors are small, i.e. the open loop
gystem (1) is used in the computations. The purpose
is to show that requiring different signs on the on-
line bounds on path acceleration, see Definition 2, is
not a significantly restrictive assumption. It will be
shown that for the examples considered, the minimum
time trajectory is almost inside the region where the
bounds on path acceleration have different signs. The
first example is a decoupled cartesian robot, described
by the model

midi + digi =7, i=1,2

where m; = mp = 0.045 and d; = d; = 0.0048. The
torques are constrained by | ; |< 0.2, and the path is
f1(8) = 0.4(1 — cos(s)), f2(s) = 0.8sin(s). The result
is shown in Figure 2. As can be seen from the figure,
the minimum time trajectory is entirely contained in
the region where the bounds have different signs. The
second example is a planar two link robot with links
of length one and unitary masses concentrated at the
joints. The torques are constrained by | 7; |< 10, and

1-1-‘I |
| i
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Figure 2. The different regions in the s-5 plane for

the cartesian robot. The solid line is the admissible
region, the dashed line is the region where the bounds
on path acceleration have different signs, and the
dotted line is the minimum time trajectory.

o

Figure 8. The different regions in the s-5 plane for
the two link robot. The solid line is the admissible
region, the dashed line is the region where the bounds
on path acceleration have different signs, and the
dotted line is the minimum time trajectory.

the path is a circle in cartesian space with a radius of
0.5 and a midpoint with cartesian coordinates (1,0).
The result of this example is shown in Figure 3. In
this example, the minimum time trajectory is in some
intervals slightly above the region where the bounds
have different signs.

5. Conclusions
A stability analysis of a complete closed loop system,

including the robot, the primary controller, and the
time scaling secondary controller, has been presented.



The interpretation of the path parameter s as a trans-
formed time scale is a key idea in the analysis. Using
the transformed time scale, the secondary controller
is written as a first order system with limitation, re-
sulting in a simplified analysis compared to using the
original time scale. The stability analysis includes a
stability result for the secondary controller, showing
that if the nominal velocity profile is within certain
limits, the actual velocity profile will be bounded,
and the bounds depend only on the nominal trajec-
tory. The stability of the closed loop system is then
shown, assuming a specified tracking performance for
the primary controller. The scheme for on-line tra-
jectory scaling has previously been shown feasible in
simulations and experiments, and the stability analy-
sis presented here provides additional insight and jus-
tification of the design of the secondary controller.
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