
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

ANSI C++ Committe Meeting, November 12-16, 1990

Brück, Dag M.

1990

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Brück, D. M. (1990). ANSI C++ Committe Meeting, November 12-16, 1990. (Technical Reports TFRT-7471).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/07695c0d-35db-4d88-ba54-93269ed29afe

CODEN: LUTFD2/(TFRT-7471)/ l-e/(1eeo)

AI\SI C++ Committee Meeting

I\ovember L2-I6, 1990

Dag M. Brück

Department of Automatic Control
Lund Institute of Technology

December L990

Department of Automatic Control
Lund fnstitute of Technology
P.O. Box 118
5-221 00 Lund Sweden

Doculment natnc

INTERNÄL REPORT
Datc oî iæuc

December 1990

Documcnt Numbcr
CODEN: tUTFD2/(TFnt-7 47 t)/ 1-el (1eeO)

Author(s)
Dag M. Brück

Supcrvicor

S p o n s o Ång o rg anis atio n
.A.BB Automation AB
Ericsson
Televerket

Titlc and ¡ubtitlc
ANSI C++ Committee Meeting - November 12-16, 1990

Abstract

This report describes some of the key issues at the November 1990 meeting of X3J 1.6, the ANSI C** comittee:

o The committee agreed on the termination model for exception handling, and resolved some issues relating
to protection when an exception is thrown.

¡ The committee decided to do nothing with respect to uoverriding." The problems that would be solved
by overriding inherited functions (requiring a special language construct) can be solved with existing
features in the language.

r The library working group is working on string and i/o libraries

¡ New issues for the extensions working group have been scheduled.

o There are proposals for making X3J16 develop an international standard directly, instead of first devel-

oping an American standard and then transforming this into an international standard.

Kcy words
n++ q+.-1..,.1i..+i^-

^
NrqT Yarl Ao¡s¡-au¡v¡¡, Ã¡t 9t, l\uø ¡v

Clasaífrcation eyetern and/or índcx tcrms (ìî any)

S up p I e mc nt ary bibli o g aphí e aI info t m at í o n

ISSN and kcy títle ISBN

Ldnguage

English
Numbcr of pages

I
Recipicnt'e notes

Sccuriúy claseífrcation

Thc repoú lmay be otdercd frorn thc Departmcnt of Autom¿tíc Control or bonowed through thc tlnivcrsíty Líbrary 2, Box 7010,
5-221 03 Lund, Swedcn, Tclcx: 33248lubbíslund,

1. Summary

X3J16 has voted in favour of the termination model for exception handling,
resolved some protection issues related to exception ha,ndling, and against
extending the language with new features for overriding (the problems can be
solved anyway).

The extensions working group will in the future work on proposals sub-
mitted to X3J16 on topics such as contrava¡ia¡rt return types, nrn-time type
information, etc. The core language working group has innumerable issues to
¡esolve (and does a good job). The libra¡ies working group will concentrate
on a nerv a,nd simplifies i/o-stream libra,ry, a string librar¡ a¡rd an interface
to the ANSI C libra,ry. The environment working group is apparentty doing
progress, a¡rd has produced reports at a steady rate. The international work-
ing group has been quite successful in build.ing an international network of
interested people, a,nd will get more a¡rd more important if X3J16 is chartered
to develop an international sta¡rda¡d. The real disappointment is the formal
syntax working group, which I believe does very little useful work at present,
but consumes a major portion of the meetings.

2. Exception handling

After lengthy discussions the committee firrully voted in favour of the termina-
tion model for exception ha,ndling [Ellis and Stroustrup, 1990]. An interesting
a,rgument for termination was given by Jim Mitchell (Sun Microsystems) who
implemented Mesa mariy yea,rs back:

o Resumption is not needed. In pa,rticular, resumption was used less and
less as applications matured.

o Resumption is difficult to describe a,nd understand.
o Resumption requires a complex double-faced protocol between a library

a¡rd a,n application. Resumable exceptions a¡e in this respect equivalent
to passing a libra,ry a pointer to a function in the application.

Another important a,rgument is that resumption requires an intact stack (if
the user wants to resume, a,nd there is no way to know in adva¡rce that he will
not). Consequently, the "object as resource allocator" technique described by
Koenig a.nd Stroustrup [1989] will not work, and other techniques are not well
suited to an environment with exceptions.

The following example will demonstrate the problem. An object is used
to temporarily turn interrupts off inside a critical region of the program. The
application turns the interrupts off by defining a,n rntOff object, and inter-
rupts a^re turned on again because the object is destroyed when leaving the
scope of the definition.

class Int0ff {
public:

Int0ff O { /* turn off {,/ }-fnt0ffQ { /* tu¡n on */ }
);

void criticalo
{

1

fnt0ff now;
// Tnterrupts turned off here
throw tterrort';

l
Objects allocated on the stack a¡e gua,ra.nteed to be destroyed eventually under
every proposed scheme. The problem is that u¡less the stack is unraveled at
the throw point, interrupts will be turned offwhile the stack is unraveled and
during the execution of the exception ha¡rdler. The only known alternative is
to decorate all firnctions with "catch all" ha.ndle¡s. In a.ny case, some time
will be spent in the runtime system locating the handler, before unrevaling
the stack.

The same problem occurs in other forms of resource allocation: locking
of databases, caching of data, closing temporary files, freeing of large amounts
of memory (stack and heap), etc.

Another critical issue is protection when a class object is caught by a
ha¡rdler for a base class of this object. Without any constraints at all, it
would be possible to convert a,n object to its private base class, which is illegal
in the current language. Instead of the very strong restrictions discussed at
the previous meeting, essentially the same rules that today determine if we can
create a local variable in a function will also hold for creating an exception
object. In addition, a handler for a private base class will not "match" an
object of a derived class.

3. Overriding

A problem with name clashes that a¡ises when two class hiera¡chies a¡e merged
was described in [Brück, 1990a]. Overriding (previously known as renaming)
was conceived to solve a potential problem with multiple inherita.nce:

class cowboy { virtual void drawO; };
class picture { virtual void drawo; };
class animated-cowboy : public picture, public cowboy {

ll ...
);

The problem is to call one of the derived functions with a pointer to one of
the base classes (the draw functions a¡e virtual). This is not possible in the
example above, and overriding üras designed to preserve virtualness.

class aninated_cowboy : public picture, public cowboy {
virtual void paintO = picture::draw;
virtual void shooto = cowboy::draw;

1;
One of the fundamental questions whenever a nevr featu¡e is discussed is "can
this problem be solved with existing features in the la,nguage?" In the case of
overriding the answer was "no" for a long time, until Doug Mcllroy came up
with the obvious solution - to insert an intermediate class:

class lpicture : public picture {
virtual voÍd paintO;
void drawO { paintO; }

l;

2

class lcowboy : public cowboy {
virtual void shooto;
void drawO { shootO; }

);

class a¡imated-cowboy : public lpicture, public Icowboy {
// no problem

);
This solution solves the problem at the cost of introducing two new classes
when a narne clash occurs. The meeting decided to do nothing, i.e., not to
adopt any new syntax for overriding. A detailed discussion of the problems
and several possible solutions is found in [Stroustrup, 1990a].

4. New extensions

The extension working group has now ha¡rdled the two "big" issues that were
pa,rt of the original cha¡ter: templates a,nd exception ha¡rdling. Future work
will be initiated by proposals for extensions or issues that other working groups
think a¡e beyond their expertise. The issues listed below have been submitted
to X3J16, or are expected to be submitted soon.

To facilitate rapid turna¡ound in this working group, a guideline for sub-
mitting proposals will be written. Work will become much easier if the original
proposal contains some marual-like description of the new feature, references
to related pa,rts of the reference manual, describes the problem addressed by
the new feature, considers alternative solutions and how this one will affect
other parts ofthe language.

Contravariant return types

A virtual firnction redefined in a derived class must retu¡n the same type as
the original virtual function in the base class. Alan Snyder (Hewlett-Packard)
has proposed a,n extension so the redefined function can return a type different
from the original return type [Snyder, 1990].

struct B {
virtual B* funcO;

Ì;

structD:publieB{
D* frurcO;

);
The requirement is that there must exist an implicit conversion from the re-
defined retu¡n type to the original one (D -t B). This feature is, as fa¡ as I
ca,n tell, useful a.nd type-safe. A potential problem is that it may constrain
the implementation of function calls, and increase compiler complexity.

Run-time type inforrnation

Mtoy existing Cf* programs use some mechanism for storing type infor-
mation in objects. A common use is to make safe t'downcasts," i.e., casting
a pointer to base class into a pointer to derived class. Having seen many

3

bad Simula prograrns that used this approach instead of using virtual func-
tions, Stroustrup deliberateþ designed C** without any builtin mechanism
for determining the actual type of an object at runtime. There seems to exist
legitimate needs for inquiring the type, a¡rd even Stroustrup agrees that the
issue should be reconsidered.

The big issue is how much information should be stored. There exist
proposals for a minimum amount of information (a typename), and proposals
for "meta classes" that contain a complete description of a class object. Types
a¡e cn¡rently not first-class citizens in C**, a,nd probably never will be.

European representation

C and C** prograrns are inherently difficult to represent with non-american
national cha¡acter sets, because ofthe use of l, {, and other funny cha¡acters.
The ANSI C committee invented trigraphs, so { could be written as ??(.
Ihigraphs a¡e of course painful to write a,nd read, a.nd I ca¡rnot believe anyone
has ever written a C progra,rn using them.

Bja,rne Stroustrup and Keld Simonsen have proposed a digraph represen-
tation for ISO C, and a revised paper deals with C** [Stroustrup, lgg0b].
The new symbols a,re:

or
cor
and
cand
xor
conpl

I conditional or

&& conditional and

complement

&

;
)
t
l
t

(:
:)
!(
)
! I infix subscript operator

ro my view, this proposal is practical and useful; it solves a problem for many
European/Africa¡r users, and has a better "look and feel" than the trigraph
proposal. It does not solve the more general problem of representing national
cha¡acter sets (e.g., Katakana) in strings, however. Some people believe the
entire discussion is mea.ningless because the ISO Latin-l cha,racter set takes
ca¡e of the problem.

Garbage collection.

Ga^rbage collection will surely a¡rive on the table of the extensions working
group; there is reason to expect a proposal from Fha¡rce. The working group
decided not deal with this (or any other) issue until a proposal is submitted.

New keyword: inherited

A number of people have asked for some way to specify an anonymous base
class in C++. Basically, you would be able to write:

struct B { virtual void fooo; };
struct D { void tooo; };

4

void D::fooo
{

Ínherited: :fooO i / I instead of 'B: :foo,
// ao aomo more

Ì
The advantages are a more explicit inheritance relationship, and easier modi-
fication of the class hierarchy. I like the keyword i¡¡herited (whictr is used in
Mac C**), but super is used in SmallTalk a.nd other languages.

The proposal for X3J16 [Brück, 1990b], is enclosed in A.ppendix A. It has
a fairly long section on reasons for introducing inherited.

5. International concerns

There is a possibility that X3J16 will get promoted to develop an international
standa¡d directl¡ instead of first developing an American standa¡d which even-
tually becomes a,n international sta,nda¡d.

Changing from type 'D' to t¡rpe 'I' development will not cause any signifi-
ca,nt cha.nges in the development of the sta,ndard, until the first Draft Standard
is sent out for comments. ANSI regulations already permit foreign pa,rticipa-
tion in its technical comrnittees, and X3J16 has decided to hold one meeting
per yeax outside USA (the fi¡st is in Lund, June 1gg1).

The main advantages of this cha"nge would be to incorporate comments
from outside USA ea¡lier in the standa¡dization, and to reduce the ballotting
periods. There is hope of producing an international standa¡d earlier, and
with less effort.

6. Template ambiguity

The following is an interesting (?) example of difficulties of interpretating the
mearring of a template, a,nd also demonstrates the con-flicts between decla¡a-
tions a¡rd statements in C** (example from Andrew Koenig).

Ínt ï;

tenplate (c1ass T)
class Y {

void fO { T::Q (x); }
);

struct Â t void Q(int); Ì;
struct B { typedef int Q; };

Now, these definitions are likely to confuse many compilers. There is no way
to determine what r: : Q refers to when the template is pa,rsed; this ca^n not
bc donc until tcmplate instaritiation, a¡rd then (at least) twu ruealings are
possible:

Y<Â> Y : : f calls function A : : Q with the global va¡iable x as an argument.
Y Y::f defines a local va,riable x of type B::Q. The parentheses are op-

tional, but still legal.

5

Difficulties in interpretation a,re probably inevitable with a mechanism as
flexible as C** templates. It would be interesting to see to what extent other
la^nguages with generic data types (e.g., Ada) suffer from these problems.

7. References

Bnücr, Dlc M. (1990a): "ANSI C** Committee Meeting - July 9-18,
1990," TFRT-7459, Depa,rtment of A.utomatic Control, Lund Institute of
Technology, Lund, Sweden.

Bnücr, D¡,c M. (1990b): "New keyword for C**: inherited," Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden, ANSI
document nurnber X3J16/90-0086.

Er,r,rs, Mlncnor and B¡lnnn SrRousrnur (1gg0): The Annotated CI*
Refercn ce M anual, Addison- Wesley.

KonNIc, Anonnw a.nd B¡¡,ntn Srnousrnur (1989): "Exception Handling
for C**," Ptoceedings of the C*t at Work confetence, October 1_g8g,

ANSI document mrmber X3J16/90-0042.

SrYlnn, Al¡,t¡ (1990): "A Proposal to Revise C** Subtyping Rules,,,
Hewlett-Packard, CA, USA, ANSI document nr¡rnber X3JlOlg0-0049.

Stnoustnup, BJARNE (1990a): "Summa,ry of Overriding Issues,,, AT&T
Bell Laboratories, Murray Hitl, NJ 07974, ANSI document number
x3J16/e0-0098.

Stnoustnup, BJARNE (1990b): "A Europea,n Representation for C**,,,
AT&T Bell Laboratories, Murray Hill, NJ 07974, ANSI document number
x3J16/90-0099.

6

Appendix A. New keyword for C**: inherited

The following is a reprint of X3J16 document number 90-0086.

Description

The keyword inherited is a quaffied-class-narne that represents a¡r anony-
mous base class ($5.1).

inherited 2 2 nønln

denotes the inherited member nome. The meaning of inherited z zname is
that of narne, pretending t}rrat name is not defined in the derived class ($10).

st¡uct A { virtual void Ua¡dIeO; };
struct D : A { void frandleO; };

void D :: handleo
{

À::handleO;
inherited: :handle();

)
In this example Â::handle and inherited::handle denote the same name.

When a class is derived from multiple base classes, access to inher-
ited: in&Tne may be a,rrbiguous, and can be resolved by qualifying with the
class name instead ($10.1.1).

The dominance rule does not apply to qualified narnes, and consequently
not to inherited i 2narne ($10.1.1).

Motivation

Many class hiera¡chies are built "incrementall¡" by augmenting the behaviour
of the base class with added functionality of the derived class. Typically, the
function of the derived class calls the function of the base class, and then
performs some additional operations:

struct A { virtual void handle(int); };
struct D : Â { void handle(int); };

void D :: handle(int i)
t

Â::handle(i);
// other stuff

Ì
The call to handre () must be qualified to avoid a recursive loop. The example
could with the proposed extension be written as follows:

void D :: handle(int i)
{

inherited : :handte (í) ;
/l ot};.er stuff

7

)
Qualifying by the keyword inherited can be regarded as a generalization of
qualifying by the name of a class. It solves a number of potential problems
of qualifying by a class name, whic.h is pa,rticula^rly important for maintaining
class libraries.

Unambiguous inheritance

There is no way to tell whether Å::handleO denotes the member of a base
class or the member of some other class, without knowing the inheritance tree
for class D. The use of inheritsd: :handte0 ma^kes the inheritance relation-
ship explicit, and causes an error message if handleO is not defined in a base
class.

Changing name of base class

If the narne of the base class .4, is c.hanged, all occurrences of À::handleo
must be cha"nged too; inherited: :handleO need not be c.hanged. Note that
the compiler can probably not detect a,ny forgotten Â: : name if n&n¿e is a data
member or a static member function.

Changing base class

Changing the inheritance tree so class D is derived from B instead ofA requires
the same c.hanges of A::ha¡rdleO as cha,nging the name of the base class.

fnserting intermediate class

Assume that we start out with class D derived from A. We then insert a new
class B in the inherita¡rce chain between A and D:

struct Å { virtual void handle(int); };
stmct B : Â { void handle(int); };
struct D : B { void handle(ínt); };

Calling Â : :handle O from D : :handle O would still be perfectly legal C*f af-
ter this change, but probably wrong ariyway. On the other hand, irürerited: :handle Ol
would now denote B::handleO, which I believe reflects the intentions of the
prograrnmer in most cases.

Multiple inheritance

Most class hiera¡chies are developed with single inheritance in mind. If we
c-hanse thp inhprifnn¡p traa sn rlaac T'l ic ¿la¡ivo,l f-^- tr^fl. A --,1 Et rrra æ^*.___-__o_ .Iru s, ,rv óL!.

struct Å { virtual void handle(int); };
struct B { virtual void handte(int); };
struct D : Á,, B { void handle(int); };

void D :: handle(int i)
{

A::handte(Í); // v¡.anbjrguoug
inherited::handle(i); // ambiguous

)
Irr this case .å,::hand1e0 is legal C** a,nd possibly u¡rong, just as in the
previous example. Using inherited: :handteO is arnbiguoushere, a¡rd causes

8

an error message at compile time. I think this behaviour is desirable, because
it forces the person merging two class hiera¡chies to resolve the arnbiguity. On
the other ha,nd, this example shows that inherited may be of more limited
use with multiple inherita¡rce.

Consequences

Programs currently using the identifier inherÍted must be edited before re-
compilation. Existing C** code is otherwise still legal after the introduction
of the keyword inherited. Existing libraries need not be recompiled.

I believe ir¡herited has a small impact on the complexity of the language
a¡rd on the diffi.culty of implementing compilers.

Although this is another feature to teach, I think inherited makes teach-
ing a,nd lea,rning C** easier. This is not an entireþ new concept, just a
generalization of qualifying narnes by the name of a class.

Experience

This is not a new idea, and similar mechanisms a¡e available in other object-
oriented languages, notably Object Pascal. The C** compiler from Apple
has inherited as described above, although its use has been restricted to
solving compatibility problems with Object Pascal.

Summary

Tlús paper proposes the extension of C** with the keyword inherited, a

ryatified-cl&ss-nanre used to denote a¡r inherited class member. The adva¡r-
tages are a clea¡er inherita¡rce relationship a¡rd increased programming safety.
The implementation cost is small, a¡rd the consequences for existing code mi-
nor.

I

