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1-. Introduction

This paper considers stability analysis based on Integral Quadratic Constraints
(IQC), see [9] and [11-], for systems with nonlinearities. The systems are as-
sumed to consist of a nominal plant G in a positive feedback interconnection
with a causal and bounded perturbation Â, see Figure 1. The perturbation
can contain unmodeled dynamics, parametric uncertainty and nonlinearities.

Figure 1 Feedback interconnection of a nominal linea¡ and time invariant system
G with a perturbation A.

The idea behind the IQC approach for stability analysis is to find a de-
scription of A in terms of a bounded and Hermitian valued matrix function II
that define a valid IQC in the sense that

/_l nUr) (1)

for all square integrable inputs y to A. The matrix function II is called mul-
tiplier.

The IQC methodology gives a unified approach for multiplier based stabil-
ity analysis that has several advantages compared to the classical framework
in for example [2]. In particular it allows easy combination of different multi-
pliers that define valid IQC descriptions of A to improve the accuracy of the
description.

An important stability criterion for systems with nonlinearities is the Popov
criterion. The Popov multiplier is nonproper and can therefore not be used
directly in (1). We will assume that the nominal plant is strictly proper. We
can then use a reformulation of the main stability result in [9] and [11], which
allows the use of Popov multipliers in a straightforward ìMay, see [5]. This will
allow us to combine Popov multipliers with the multipliers corresponding to
slope restricted nonlinearities that were developed in [15].

The problem of finding suitable multipliers in stability analysis was noticed
by Zames in his influential work [14]. The search for multipliers in IQC based
stability analysis is generally an infinite dimensional problem. However, if we
restrict this problem to a finite dimensional subspace then it is possible to
formulate it as an optimization problem in terms of Linear Matrix Inequalities
(tMI). Recent progress on numerical software for solving LMIs, see for example

[a] and [3], has made this approach for stability analysis very attractive.
The Popov multiplier is useful in stability analysis of large systems since it

is defined by a small number of parameters, in general only one. It is therefore
comput ationally inexpensive to determine this multiplier.

The choice of a suitable finite dimensional subspace for the multipliers
that describe slope restricted nonlinearities is particularly hard. This prob-
lem, which has been discussed before in [1], willbe addressed briefly. We will
also give an example where a nontrivial upper bound for the achievable per-
formance with these multipliers can be obtained by use of a simple duality
argument.

î(i,)
L(v)(jr)

î(j,)

^(s)(j,)

)0,du
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Notation and Preliminaries
M* Hermitian conjugation of a matrix.

| . l The Euclidean noïm l*l = r/*'*.
RLg" The space consisting of proper real rational matrix functions with

no poles on the imaginary axis. If .[l e RL$x- then l/*(s) :
¡r(-r)t.

RH["- The subspace of RL[x- consisting of functions with no poles in
the closed right half plane.

P7 The projection operator defined by P7u(t) = u(t) when ú ( 7
andPTu(t)=0whent>7.

Lf [0, oo) The Lebesgue space of R- valued signals with norm defined by

lu(t)l2dt.

I"*(u, Hu) = uþ)r@u)(t)dt = L î.(j u). H (j u)î.(j u) d,ø,

ll"ll'= l,*
LT?*,oo)] is defined similarly as Lf [0, oo).

tä[0,oo) The vector space of functions / satisfying the condition Prl e
LT[O,oo) for all7 > 0.

An operator H :Lft10, oo) - Lnl}, oo) is said to be causal lf P7I{ P7 : PrH
for all T >0. This means that the output value at a certain timeinstant does
not depend on future values of the input.

A causal operator H onLftf},oo) is bounded if ã(0) = 0 and if the gain
defined as

ll¡rll : sup lrg:I Q)
Lflo,æi=ulo ll"ll

is finite. Note that the gain is defined in terms of functions in Li"[0, oo) and
not the corresponding extended space. However, the definition in (2) implies
boundedness on Lft[O, oo), since llPyHull < llãll llpr"ll for all u e Lfi10,æ)
and all T > 0.It can be shown that ll//ll is the smallest such bound, see [13].

Linear time invariant convolution operators with transfer function -t/ €
RH["- are causal and bounded on Lflf0, *). A bounded convolution oper-
ator with transfer function fl € RLgx- defines a (possibly non-causal) map
of L2[0, oo) into L2(-oo, oo).

Let H : Il* € RL3*- and ø e LTl\,oo), then the quadratic form (.,.) it
defined by

where llu denotes the convolution å x u between t¿ and the impulse response
å corresponding to .Ë/, and û denotes the Fourier transform of a, which we
define as

t: u(t)e-i't dt.

We define the L1-norm of the impulse response å corresponding to a strictly
proper transfer function Il e RL$l as llåll1 : /å lh(t)ldt.

1----
t/2r

û,(iu) =
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We will finally make some remarks on absolute continuity, see [12]. Absolute
continuity of a function c : R* -+ R- implies that the time derivative ó ,= fi*
exists and is finite almost everywhere. Furthermore, an absolutely continuous
function æ is the indefinite integral of its derivative, i.e. the relation æ(¿) :
*o+ Iå ùþ)d.rholds for all ú ) 0. Fhomnow on it is assumed that æ is absolutely
continuous when make assumptions on the derivative å.

We will use that the condition that if æ,ù e Lfl},oo), then it follows æ is
bounded and æ(t) --+ 0 as ú --+ oo, see [2].

2. Stability Analysis Based on IQCs

The idea behind the IQC approach for stability analysis is to obtain descrip-
tions of the nonlinear, uncertain and time-varying components of a system
in terms of quadratic integrals. Let A be a causal and bounded operator on
I.nl},oo). Then A can be described by combinations of bounded and Hermi-
tian valued multipliers with Popov multipliers.

Donr¡lrrron 1

Let II1 = IIi € F-I.z'"xz'" and let II2 be the Popov multiplier

rllir,rr: l o -jult'l3\'' l-ju1- o I'
where Â: À" € Rrnxzn. We say that A satisfies the IQC defined by II:
IIr * IIz if there exists a positive constant 7 such that

([í] '' [i]).flí1,[T
l:lil":ll. zur.tt¡dt ) -tlsol',

0̂ til )=
lîU,)
lou,)

u
'(j

TI ) l* l,
for all U,'i!,a e LTI}, oo) such that t' = 

^(y). 
Here f and î denotes the Fourier

transforms of g and u respectively. We used the notation Uo= Cæo. n

Rpnranx l-

Differentiability is only necessary for the components of the vector y that
corresponds to nonzero ro1rys of À. The condition U € LTl\,oo) is thus not
necessary if IIz - 0.

The next example, which is adopted from [2] and [14], illustrates the use
of Definition 1 for describing nonlinearities with Popov multipliers.

Ex¿vrplo 1

Let g : R --+ R be a measurable fi:nction satisfying p(0) = 0 and a sector
condition aæ2 1p(t)t 1þæ2, where -oo ( a < B ( oo. Then rp satisfies the
IQC defined by the Popov multiplier

0 - j,\
0

3

II(jø) = j,\



where À e R. This follows since

¡T ¡u(T) tyo
2^ ]X J" 

p@)ùdt: zÀ rßï* Jo, eþ)do : -r^ Jo e@)do ) *tluol',

for all y,y e l.,il},oo), where we use 7 = lÀlmax(lcl,lBl). The third equality
follows since g(?) ---r 0 as ? -+ oo. tr

V[e will consider stability of the system

it = Aæ i Bu, æ(0) = co, (3)

g: Cæ,

u=L(y)*s,
where it is assumed that A e R?xn, B e Rlx*, C e RrnxT¿ a.nd that ,4 is
Hurwitz. It is further assumed that g € LnÍ},oo) and that A is a bounded
and causal operator on Li![O, oo).

We define well-posedness and stability for the system in (3) as follows.

Dorlnlrror.¡ 2
The system in (3) is well-posedif for any initial condition æs and for any input
g e Ln[O,oo) there exists a unique solution (x.,u) e Li.[O, oo) x Lft[O, oo),
where æ is an absolutely continuous function. Furthermore, the map from g to
(æ, u) should be causal. n

Do¡'IxItIot¡ 3
The systemin (3) is stable if it is well-posed and if there exist constants c ) 0

and p ) 0 such that
T

lgl'dt,

for all 7 > 0 and for arbitrary æ¡ € R,n and g € Lfrf0, oo). n
'We can now use the following stability result.

Tnoonou 1

Assume that there exists a continuous parametrization L", T € [0,1] of the
operator A such that

l-. A : A1 and A" is a causal and bounded operator on Lfr[0, oo) for any
z e [0,1].

2. For some ß ) 0 we have that

llA,(s) - arr(s)ll < Klrz - "'l 
. llyll,

for all y € L2[0, oo).

3. For arry r € [0, ]"], A" satisfies the IQC defined by the multiplier II :
IIr -l IIz, where IIr = IIi e.P'L3'xz'" and II2 is a Popov multiplier.

Furthermore, assume that the parametrized system

ù : Aæ I Bu, ø(0) : cs, (4)

g:Cæ,
u:A,(y)Ig,

satisfies the following properties

f"' uor + þ12)dt < pl*olz * 
" l"

4



ç(v,t) slope

ea.
g

Figure 2 Nonlinearity in sector[o,B]

L. It is stable when z = 0.

2. It is well-posed for any z € [0,1].

Then the system in (a) is stable for all z e [0, L] if there exists e ) 0 such that

(II'(jr) +n2(ju)) 1-ef, Vø)0,

where G(s) : C(sI - A)-tn.

Proof: A full proof is given in [5]

Rorr¡¡.nx 2
The parametrization of A can often be taken as A, = zA

Rpru¡,nx 3
It follows from the proof that we could allow the operator G to have a direct
term, i.e. G(s) = C(sI - A)-'A + D € RH3"-, under the condition that
-lt D = 0, where À is the parameter in the Popov multiplier fI2.

Rnu¡.nx 4
It is sometimes useful to verify exponential convergence to zero of the state
vector æ. If for example g =0, then the conditions in Theorem l imply expo-
nential convergence if the operator A is memoryless and bounded. This follows
from a result in [9].

3. IQC Descriptions for Nonlinearities

We will in this section consider multiplier descriptions for nonlinearities. It
is assumed that the nonlinearities are regular enough to define operators on
L2"[0, oo).

3.1 Sector Bounded Nonlinearities
Sector bounded nonlinearities are defined as follows, see Figure 2

G(j')
I

G(j')
I

n

5



e(v)
slope

slope

Figure 3 Nonlinearity with slope restricted in the interval [a,B]

Dnrrxrrron 4
'We define sectorfa, þ), to be the class of nonlinearities p : R2 -' R, which
satisfy the following conditions

(i) (p(0,¿) = 0, V¿ e R+.
(ii) ayz < p(y,t)y 1 þU2, Vy e R, ú e R+.

where a andB areconstants satisfying -oo < a < B <æ. tr

It is easy to verify thai a sector bounded nonlinearity satisfies the IQC used
in the circle criterion, i.e. arly g € sector[a,B] satisfies the IQC defined by

U

Il(jc.r) =
P _1B-a B-a
-c¿1 IT åt t* 1I'

1
- ø-d

This follows since

lrrî,u] "lrå,,)] = &*'- p(v't))(p(v'ú)- as) > 0'

where the last inequality follows from the sector bound.

3.2 Static Nonlinearities
Static (time-invariant) nonlinearities satisfying the conditions of Example 1-

can be described by the Popov multipliers

II(jø) =
0

jrÀ
-i,\

0

where À generally can be taken as an arbitrary real number.

3.3 Slope Restricted Nonlinearities
We will here consider memoryless nonlinearities with restricted slope.

DpprxruoN 5
We define slope[a, B] to be the class of memoryless nonlinearities g : R --+ R
which have the following properties:

(i) p(0) = 0.
(ii) o(u- vz)z < (p(vt) - e@2))(lro-vz) 3 þ(v, - ur)', vlro,vz e R*

where a,B are constants with -oo < a < B < æ. tr

6



tpt_

I P-"
L -"

e(s)
1+6

1

0

L * H(iu).

slope B

t + H(ju)
0

a

v

Figure 4 Stiction Nonlinearity

The above definition is illustrated in Figure 3. At every point, the slope of
rp(y) lies in the sector [", þ].
The slope restricted nonlinearities satisfies the IQCs defined by, see [15],

_L
-(1 + á)

1l+
1 1

T

II- B-a
1

B-a
1

(5)

where ll is a strictly proper rational transfer function with corresponding
impulse response å. satisfying the following constraints

L. The L1-norm constraint lllrllt < t.

2. h(t) ) 0 for all ú € R. If rp is an odd function then this constraint is no
longer needed.

We note that the multipliers in (5) contain the multipliers for sector bounded
nonlinearities. This follows if we use H :0. The multiplier description in (5)
also holds for multivariable slope restricted nonlinearities, see [1].

3.4 A Stiction Nonlinearity
We define stiction nonlinearities to be nonlinear functions that may change
slope from B to a in a small region where the slope is arbitrary negative, see

figure 4. The formal definition is as follows

DorrNrtrors 6

We define stictionfa, P),to be the class of nonlinearities <p:R --+ R satisfying
the following properties.

(i) <p is odd.

(ii) For positive values of y, the function rp is defined as

p(v): þv,
€[1+aU,L*6+ay),

where a,B and6 are constants with 0 < a < P < æ, þ ) 0, and á > 0.

n
The nonlinearities in stiction[a,B] can be described by the same multipliers
as in (5) with the exception that the L1-norm of the impulse response corre-
sponding to 1l satisfies lllzlll < Ll(6 + 1). This follows from the same argument

y<(L+6)lp
y > (L+ 6)lp

I



e(u)
1

-1

Figure 5 Saturation Nonlinearity.

as in [1-0], where the case with B = oo is treated. We have

(þv - ç(v))(ç(v) - as + h* (ç(u) - av))(t)
>_ (þy - e@))k(y) - ay - sisn(y) sup lp(s) - aul.ll¿ll'X¿)

> (þy - e@))(e(y) - as - sisn(s))(¿) > 0, V¿ > 0,

where the second inequality follows since 
I 
rp(g) - ayl < L + 6, and 

| | 
å,1 

| 1 < t I 0 +
á). The last inequality follows since for positive gr, we have e@) - ay - L ) 0,
wJnen By - e(y) ) 0. The reverse inequalities hold for negative y. Integration
with respect to time from zero to infinity gives the desired IQC.

It is interesting to note that if we, for the case when B is infinity, let rp be
multi-valued at zero with <p(0) € [-1 - á,1 + ô], then we obtain a model for
friction with stiction, see [L0].

3.5 Combining Multipliers
Common nonlinearities, such as for example saturations and dead-zones, be-
long to all classes above. They can therefore be described by the multiplier
II : D c¿II¿, where a.¿ ] 0 and where II¿ is a representative from any of the
classes above.

Exan¡pr,o 2

The saturation nonlinearity in Figure 5 satisfies the IQCs defined by the mul-
tipliers

u

II-

where À ) 0, 4 € R, and where /l e RLo" is strictly proper with impulse
response Iz, satisfying lllrllt I À.

In general we find an IQC description of an operator A in terms of a convex
cone II4 of multipliers, which then can be used for the stability analysis as

described in the next section.

4. LMI Computations

Assume that we have a description of A in terms of a convex cone II4 of mul-
tipliers. The stability analysis can then be formulated as the following convex

0 À-iuq+H(ju)

^ 
+ juq t H (ju). -2(À + Re l/(jø))

8



feasibility test

Stability Test: Find II € II¡ such that

l"',']. n,,', l*",'] ' o' vø e [o, oo] (6)

The convex cone II4 is in general infinite dimensional We need to restrict the
search to a finite dimensional subspace in order to have a tractable problem. It
is possible to parametrize a finite dimensional convex subset of fla such that
the corresponding restricted stability test can be reformulated as a feasibility
problem involving LMIs. 'We can, for example, use the parametrization

rI(j r) = ú (j u). M(À)v(jø),

where !t in general is a nonproper rational function in order to include the
Popov multiplier, and where M(^) is a symmetric matrix that depends linearly
on the parameter vector À. The range of À needs to be restricted in general. We
assume that this can be done with the LMI constraints ATMQ)Ap ( 0, & -
Ir"'rK'

Next introduce realizations'i[(s) : C,tþI - A,t)-'B+ * D,p! E,¡s and
G(s) = C(sI - A)-'n * D where -E¡ is associated with the Popov part of the
multiplier and where it is assumed that .4.7, does not have any eigenvalues on
the imaginary axis. ïf 8,,¡D : 0, then standard transfer function multiplication
gives a realization iÞ6(s) : C6þI - Aò-t BA * D6 of

iÞo: ü li] ,

and the stability test above can, by the positive real lemrna, be formulated as

the following LMI test

LMI Test: Find À and P = Pr such that

A6 86

IO
c6 D6 ,i^,1 lír

T P
0

0

0

P
0

B4

0

D6

(0,

þTMQ)ak(0, fr =L,...,K.
In our format, multiplier descriptions for diagonally structured operators can
easily be obtained by addition and augmentation of multiplier descriptions for
the elements in the structure, see [6].

We will next discuss a possible parametrization of the multipliers for slope
restrictednonlinearities in the format above. Let H = H.* Ho.e RLoo have
realizations H" : C.(sI - A.)-L B" and Ho. = Co.(sI - Ao")-t Bo. for the
causal and anti-causal part, respectively. Then we have

llåll, = 
lo* 

V."o*B.ldt+ 
lo* 

V.""-A'.'Bo.1dt.

Introduce basis multipliers H¿ - H¿" * Hio., i : L,...,¡f on this form and
use

N
ä: I(ÀI - \,)n,,

i=1

I



hr(t) hz(t) hs(t)

t

Figure 6 Impulse responses with little overlap.

where À;+,Ài ) 0, as a finite dimensional parametrizationof l/ in (5). Then
the constraint

t(Àl+Àc)llr¿cll <1 (z)

ensures that llåll1 < L. It is now easy to obtain a finite dimensionalparametriza-
tion of the multipliers in (5) in the format suggested above, see [7].

The L1-norm constraint in (7) is generally conservative. The case when
the slope restricted nonlinearity is not odd can be treated without any con-
servativity with the method developed in [1]. This is a conseqü.ence of the
requirement that h(t) >_ 0, Vú > 0. The multiplier for odd slope restricted
nonlinearities gives extra flexibility since å(t) need not be positive. In order to
use this flexibility, we need to find basis multipliers H¿ with impulse responses
that overlap as little as possible in order to avoid unnecessary conservativity
in (7), see Figure 6. This is generally hard since the impulse responses h¿ are
combinations of exponential functions and it would require multipliers with
high order transfer functions to obtain the desired overlap condition. This af-
fects the speed of the LMI conditions.
The above discussion indicates that it is crucial to choose suitable basis mul-
tipliers f<¡r the stability analysis. The next proposition can be used to obtain
conditions for unfeasibility of the stability test in (6) for a system with an
odd, slope restricted nonlinearity. A different approach to the same problem
has been suggested in [8].

PROPOSITION ].-UNFEASIBILITY
Consider the problem: Find a strictly proper /l e RL$1 with corresponding
impulse response satisfying ll¿llt < 1", such that Re (G(ju)(t + H(ju).)) a
0, Vø € 10, oo]. This feasibility problem has no solution if there exist frequen-
cies ø1 , ... ,uN-7 € [0,oo) and 21,... ,zN ) 0 such that

]V

! z¡Re G(jrx) I :"1
k=r ¿€B

where &tlv : oo,

I zrRe (G(¡u¡)ei'ot)
ff-1

(8)
/c=1

10



Proof: Unfeasibility means that there exist frequencies ø1,

[0, *) and scalars ztt... ,zN ] 0 such that

JV

! z¡Re (G(ju¡)(t 1- H(ju¡").)) > 0.

ß=1

We have n(j*) = 0 and

H(iue) =

A simple argument shows that

IV iv-1

, (lrff-f €

(e)

I z¡Re G(jrn) ) sup
ã ú€a.

t: h(t)e-i'nt dt.

! z¡R" (G(iu¡)ei"nt) f* Þ{t)lot,
Ic=1

is sufficient for (9) to hold (it is actually necessary as well). This proves the
proposition since the last integrai is less than one. tr
It is clear that the choice of frequencies for the application of Proposition f- is
a very delicate task. In fact, the right hand side of (8) will be I lz¡G(ju¡)l for
most choices of frequencies. In this case the condition (9) of the proposition
cannot hold unless the frequencies are chosen such that G(irn) € R+ for all
k.

The next example illustrates the use of the proposition.

Ex¿.tvrplu 3
Let A in the system (3) be an odd slope restricted nonlinearity <p e slope[0, &],
see Definition 5, and let the linear part of the system have the transfer function

G(s) : ,

where a : 0.9997 and B : 9.0039. This is a system with two very distinct
resonances at us x 1 and ø = 3. The purpose of the example is to find an upper
bound on k such that stability of the system is guaranteed. The multiplier
11(s) = -ffi# can be used to prove stability for & = 0.0048. If we use

the dual with ø1 = l- and u2 = 3, then the condition in (8) is satisfied if
& : 0.0061-. Hence, the duality gap is reasonable small despite the low order
of the multiplier fl. Figure 7 shows the Nyquist curves for G(ju) - | when
& : 0.0061- and & - 0.0048, respectively. Note that we use the convention of
using a positive feedback loop. This implies that the multiplier we search for
should be such that (G(ju)- åXl + H(ju).) is in the left half plane.

If we use the Popov multiplier combined with a multiplier for the circle
criterion, then the stability criterion becomes

Re ((c(jø)- åltt - Àjc..,)) < o, vu.

For the case with & : 0.0048 we obtain the following necessary condition for
this stability test

1

Re ((c(j)- ilf t + iÀ)) < o,

1

Re ((c(je)- iltr + i3À)) < o,

11
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Figure 7 The upper plot shows the Nyquist diagram of G(ju) - 1/k, when
fr :0.0061. There is no solution to the feasibility test in Proposition 1 for this value
of ,t. The lower plot shows the Nyquist diagram of G(ju) - 1/È, when À :0.0048.
The multiplier H : 6.251(6 + 2.5)2 proves stability for this value of fr.

which has no solution since G(j) - I = 175.5 + jtLL.9 and G(j3) - å :
-65.5 - iL44.2. n

5. Conclusions

The paper illustrates how Popov's multiplier for stability analysis of systems
with nonlinearities can be combined conveniently with multipliers for slope
restricted nonlinearities in an IQC framework. The stability analysis can be
formulated as a feasibility test for linear matrix inequalities.
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