LUND UNIVERSITY

An Architecture for Expert System Based Feedback Control

Arzén, Karl-Erik

1988

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Arzén, K.-E. (1988). An Architecture for Expert System Based Feedback Control. (Technical Reports TFRT-
7399). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/f7b7cc68-31fb-4e83-b338-d48dffd9cf01

CODEN: LUTFD2/(TFRT-7399)/1-07/(1988)

An Architecture for Expert System
Based Feedback Control

Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology
September 1988



Document name

Department of Automatic Control

Report
Lund Institute of Technology Date of issue
P.O. Box 118 September 1988
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-7399)/1-07/(1988)
Author(s) Supervisor

Karl-Erik Arzén

Sponsoring organisation

STU

Title and subtitle
An architecture for expert system based feedback control.

Abstract

It is a recognized problem that many industrial control loops are badly tuned or run in manual mode.
Two expert system approaches have been suggested for this problem. Fuzzy, rule-based control replace
control algorithms by linguistic rules which model the operators manual control strategy. Knowledge-based
control extends the range of conventional controllers by encoding general control knowledge and heuristics
concerning tuning and adaptation in a supervisory expert system. An architecture for knowledge-based control
is described where two concurrent processes are used for the knowledge-based systemn and the numerical
algorithms. A modular, blackboard-based approach is used. This allows the decomposition of the problem
into subtasks which are implemented as separate knowledge sources that can be rule-based with different
inference strategies or procedural. The framework can be compared with a real-time operating system and

has similar real-time primitives. The system has been implemented on a VAX 11/780 and used with good
experiences.

Key words
Real-time expert systems, Feedback control

Classification system and /or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient's notes
English 7

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.



Paper to be presented at the IFAC Workshop on

AT in real-time control, 21-23 September, Wales.

An architecture for expert system based
feedback control

Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology
Box 118
5-221 00 Lund, Sweden

Abstract. It is a recognized problem that many industrial control loops are badly tuned
or run in manual mode. Two expert system approaches have been suggested for this
problem. Fuzzy, rule-based control replace control algorithms by linguistic rules which
model the operators manual control strategy. Knowledge-based control extends the range of
conventional controllers by encoding general control knowledge and heuristics concerning
tuning and adaptation in a supervisory expert system. An architecture for knowledge-
based control is described where two concurrent processes are used for the knowledge-based
system and the numerical algorithms. A modular, blackboard-based approach is used. This
allows the decomposition of the problem into subtasks which are implemented as separate
knowledge sources that can be rule-based with different inference strategies or procedural.
The framework can be compared with a real-time operating system and has similar real-
time primitives. The system has beer. implemented on a VAX 11/780 and used with good

experiences.

Keywords: Real-time expert systems, Feedback control

1. Introduction

There is currently a significant interest in expert sys-
tem techniques in the process control community.
Applications of many different types have been pro-
posed, implemented and a few also fielded. This pa-
per considers the use of expert system, or knowledge-
based system, techniques in the closed control loop.

It is a recognized problem that many industrial con-
trol loops are badly tuned or run in manual mode.
This decreases the quality of the end product and
thus increases cost. The manual control task also
adds to the already high cognitive burden that pro-
cess operators are exposed to in modern control sys-
tems.

The reasons for the poor control are many. One
could be that the control loop is badly tuned from
the beginning. Another could be that the operating
conditions have changed since the initialization of the
controller. This could, e.g. be due to operation at
different operating points or time-varying dynamics.

The conventional solution to the problem of poorly
tuned control loops is to use adaptive controllers.
Adaptive controllers, e.g., (Astrém and Wittenmark,
1989), are currently beginning to be used in industrial
practice. There are, however, problems. Even though
an explicit self-tuning regulator periodically updates
the coefficients of a process model there still are many

parameters that must be set explicitly. Examples are
model orders and time scales. Such information can
be difficult to provide and process operators typically
lack the intuitive understanding that they have with
conventional PID controllers.

Two expert system approaches have been suggested
for the described problem. Both involve using the
expert system as a part of the feedback loop. In the
well-known fuzzy or rule-based approach, e.g., (Tong,
1984), the attempt is to model the manual control
strategy of the process operator. It is expressed as
qualitative, linguistic rules for how to choaose the con-
trol signal in different situations. The rules replace
conventional control algorithms. The intended appli-
cations are control of complex processes such as, e.g.,
cement kilns, for which either appropriate models do
not exist or are inadequate.

The sccond approach, from now on referred to as
knowledge-based control (Astrém and Anton, 1984;
Astrdm et al, 1986; Arzén, 1987), instead uses ex-
pert system techniques to extend the range of con-
ventional control algorithms by cncoding general
control knowledge and heuristics regarding tuning
and adaptation in a supervisory expert system. The
knowledge-based control approach is closer in spirit
to conventional adaptive control than fuzzy control
is. The approach is also motivated by shortcomings
of adaptive controllers.

The recursive identification algorithins and the con-
trol algorithms of adaptlive controllers can be scen



Supervislon
Knowledge —#1 algorlthms
A prlorl Based

informatlon System
Idantitication
= algorithma

— | Control o Process

|: algorithms

Figure 1. A knowledge-based controller

as the final algorithmic representation of an large
amount of underlying theoretical as well as practi-
cal control knowledge. This representation is however
not enough. It has to be combined with heuristic
logic that assures the controller performance under
non-standard conditions. These conditions include
switching between different operating modes, insuf-
ficient process excitation, control signal saturation
etc. The concept safety jacket or safety net (Isermann
and Lachmann, 1985; Warvick, 1988) has been estab-
lished for this logic. The safety net part of a controller
is often much larger than the actual algorithms and
is designed mainly from intuition, experience, and
simulation. Safety nets tend to be very complex. Ex-
perience has shown that design and testing is quite
time consuming.

The approach in knowledge-based control is to use
an expert system to represent the heuristic safety
net. The controller consists of the combination of
the expert system and a set of control algorithms,
identification algorithms and supervision algorithms,
as shown in Fig. 1.

The topic of this paper is the organization and archi-
tecture of a knowledge-based controller. Knowledge-
based control is a real-time expert system applica-
tion and, as such, contains several difficult problems
such as non-monotoning reasoning, representation of
time and temporal reasoning, reasoning under time
constraints, responsiveness to asynchronous events
etc. For an overview of these issues sece Lalfey et al
(1988) or Chantler (1988). Some of these issues are
still unsolved and will be probably never be com-
pletely solved. In several cases, however, practical
approaches exist that to some degree solve the prob-
lems.

There exist a widely spread mis-understanding that
adding intelligent behaviour to a controller is simply
a matter of generating a few rules and implementing
them in an off-the-shelf expert system shell. This is
far from the case. There is a strong interplay between
the architecture of the expert system and the type
of knowledge that can be naturally expressed in it.
The majority of the expert system software is still
intended for stand alone, off-line applications. Real-
time capacities are only available in few cases such
as, e.g., G2 (Gensym, 1987), PICON (Moore et al,
1985), and Muse (CCL, 1987).

Section 2 describes the overall organization of an ex-
pert system {ramework that has been developed and

Process

Result
box

Man-machine
communicatlon,

—

Figure 2. Overall implementation structure.

implemented on a VAX 11/780. The {rame-work was
developed for knowledge-based control applications
but is not restricted to it. The system has been used
for design of intelligent tuning controllers (Arzén,
1987). In Section 3, the architecture of the expert
system part of the controller is described together.
Implementational issues are described in Section 4.
Finally, Section 5 contains a discussion about the sys-
tem and a comparison with other systems.

2. Overall architecture

The knowledge-based controller consists of two major
parts: the numerical algorithms and the knowledge-
based system. To assure that the execution of the nu-
merical algorithms are not delayed by the knowledge-
based system the parts are implemented as two com-
municating concurrent VMS processes where the nu-
merical algorithms have the highest priority.

The man-machine interface is implemented as a sepa-
rate process. From this process, the user can interact
directly with the knowledge-based system and indi-
rectly with the algorithms. The timer process is used
to implement certain real-time interrupts described
in the next section. The overall structure is shown in
Fig 2.

The knowledge-based system and the man-machine
interface are both written in Lisp. The Lisp used is
the Unix dialect Franz Lisp, (Foderaro et al, 1983).
The software package EUNICE, (Kashtan, 1982),
is used to create a Unix environment under VMS.
The reason for using Lisp is mainly its powerful
symbolic processing capabilities. A drawback with
Lisp in a real-time system is the garbage collection.
The problem can be avoided in two ways. By using
a Lisp system with incremental garbage collection
the garbage collection activity is spread uniformly in
time and performed in the background. The second
approach is to write Lisp code that does not generate
any garbage. This is what is done in G2.



The numerical algorithms

The numerical algorithm process is written in Pas-
cal. It consists of a library of different algorithms
such as PID algorithms, pole-placement algorithms,
discrete filters, relays, recursive least-squares algo-
rithms, level crossing deteclors, etc. The algorithins
are uniformly coded and have well-defined interfaces.
It is relatively straight forward to add new types of
algorithms to the system. The process is connected
to A/D and D/A converters.

The algorithms can principally be divided into three
groups: control algorithms, identification algorithms
and monitoring algorithms. The control algorithms
all compute a control signal based on command and
measurement signals. Only one control algorithm can
be running at a time. The identification and moni-
toring algorithms all in some sense extract informa-
tion from the numerical signal flow. This informa-
tion is sent to the knowledge-based system. The al-
gorithms in these two groups can be viewed as filters
or feature extractors that send information to the
knowledge-based system only when something signif-
icant has happened. During steady-state operation,
the knowledge-based system is not involved and the
system resembles a conventional controller. The sep-
aration between the numerical algorithms and the
knowledge-based system is favourable from the paint
of information flow. If a knowledge-based system was
interfaced directly to a physical process or to an exist-
ing control system, numerical information would have
to be sent forth and back again at a high rate. The
knowledge-based system also had to itself extract all
useful symbolic information from the signals. This is
a task that often is expressed in the form of numer-
ical algorithms. Using expert system techniques for
such tasks is often inefficient.

Inter-process communication

The processes communicate by sending messages
through mailboxes shown as rectangles in Fig. 2. The
messages that are sent to the algorithms via Outbox
are configuration commands, parameter changes, and
information requests from the knowledge-based sys-
tem. The messages that go to the knowledge-based
system contains results obtained by an algorithm,
alarms that have been detected, answers to infor-
mation requests, user commands, and timer inter-
rupts. Messages to the knowledge-based system are
normally sent to Inbox which is a standard first-in,
first-out VMS mailbox. Messages with priorities in-
dicating their importance are allowed. This is made
possible by having an internal mailbox inside the
knowledge-based system process into which the mes-
sages in Inbox are inserted according to their pri-
ority. Important messages such as alarms and timer
interrupts have a high priority and are thus taken
care of as fast as possible. Answerbox is used for re-
sponses to information requests that has been made
by the knowledge-based system. Resultbox is used
by the knowledge-based system to return results to
the man-machine interface.

The use of Lisp has interesting consequences for the

communication between the knowledge-based system
and the man-machine inlerface. Mailboxes can be
seen as text files where a text line corresponds to
a message. In Lisp there is no syntactical difference
between data objects and program code, i.c., Lisp
functions. Lists are used to represent both. This
makes it possible to implement remote evaluation
of Lisp functions. An arbitrary Lisp function can be
sent to the knowledge-based system from the man-
machine interface where it is evaluated and the result
is returned in Resultbox. erronous

3. Knowledge-based system
architecture

A standard off-the-shelf expert system framework,
OPS 4, was used to implement the knowledge-based
part of the system in a first prototype (Arzén, 1986a,
1986b). OPS 4 (Forgy, 1979) is a simple rule-based,
forward-chaining expert system framework. The rea-
son for this choice was the data-driven nature of
knowledge-based control. Data in the form of signif-
icant events detected by the algorithms are sent to
the knowledge-based system which should react and
generate some response. The framework OPS 4 uses
the incremental pattern-matching algorithm RETE
(Forgy, 1982) and is therefore also reasonably fast.
Another reason for the choice was simply that the
system was available to us and that we wanted to
test the basic ideas rapidly.

Experiences of a prototype

The first prototype was used to implement a relay-
based PID auto-tuner (Astrém and Higglund, 1984).
Experiments with the prototype gave many results
concerning both the feasibility of the approach and
the demands on a expert system f{ramework for
knowledge-based control. We were reassured in that
the approach is feasible. The response times for the
knowledge-based system were acceptable. The sam-
pling rate for the numerical algorithm process was
1 second. It took approximatively 2-3 sampling pe-
riods from that a message was sent to the until a
responding message was returned. A second positive
result was a clean implementation of a relay auto-
tuner that clearly benefited from the separation of
logic and algorithms. The time and effort to make
extensions to the controller were significantly smaller
than for comparable implementations in conventional
languages.

The negative experiences all concerned OPS4. It be-
came clear that a simple forward-chaining rule sys-
tem is not sufficient. An expert system framework
must allow for a modular decomposition of both the
rulebase and the database. For the database, this
could be achieved by a frame system. The rulebase
must be decomposable into rule groups for the differ-
ent subtasks. Further it was found that one knowl-
edge representation technique is not enough. Some
subtasks contains large sequential elements. These
are more naturally represented procedurally than



Global
Database
(Blackboard)

Scheduler

P
AR
Knowledge sources

J L\

Figure 3. Knowledge based control structure

with rules. It was also clear that backward chaining
inferencing would be useful for some problems. The
most important drawback with OPS 4 was, however,
that it is not designed for real-time operation. It has,
c.g., no possibilities to have time-outs associated with
database elements, no means for halting the rule exe-
cution for a certain time, and no possibilities to check
rules at given time intervals.

A blackboard system

Based on the experiences of the prototype, a real-
time expert system framework has been developed.
The reasoning model chosen as the basis for frame-
work is the blackboard model, (Nii, 1986). A global
database, the blackboard, is available to different, co-
operating knowledge sources. The database allows for
frame structures for storing associated information.
The knowledge sources can be thought of as different
actors, each of which solves some subtask of the prob-
lem. The knowledge sources also have their own local
databases. Knowledge sources can be rule-based with
either forward or backward chaining and procedural,
The structure of the framework is shown in Fig. 3.
A knowledge source implements the domain knowl-
edge for a certain task. It is often associated with one
or more numerical algorithms. It could for example
contain the heuristic logic surrounding an algorithm.

The knowledge sources have primitives for adding,
modifying, and deleting frames both globally and lo-
cally. They also have primitives to halt their execu-
tion for a certain time or until a certain database
element is added to the blackboard. It is possible to
have forward chaining rules that are tested with spe-
cific time intervals and to associate validity intervals
with database elements.

The operation of the knowledge-based controller in-
volves the activation of different knowledge sources
both in sequence and in parallel. A typical case when
knowledge sources are active in parallel is during
the steady state control of the process. One knowl-
edge source takes care of the actual control algorithm
while other knowledge sources implement dilerent
monitoring aspects.

A separate rule-based module schedules the selec-
tion of knowledge sources at two different levels. The
first level involves the sequential activation of dif-
ferent knowledge sources. The second level involves

the scheduling between different knowledge sources
that are active simultaneously. This resembles the
scheduling in an ordinary real-time, multi-tasking
operating system where the knowledge sources are
the equivalents of concurrent processes, A knowledge
source runs until it explicitly returns control to the
scheduler, e.g., if it has to wait for some information
or if it is finished. A simple extension which allows
interrupts among the knowledge sources is described
in Arzén (1987). With this extension, priorities can
be associated with knowledge sources. The scheduler
contains frames with information of the state of the
different knowledge sources and frames which con-
tains information about the conditions on which a
knowledge source is waiting.

The primitives that involves wailing a certain Lime
are implemented with the help of the timer process.
A primitive that causes a knowledge source to wait
a certain time gives rise to a message to the timer
process. The message contains the desired wakeup
time and a unique identifier for the waittime request.
A high-priority message is returned to the scheduler
when the waiting time has elapsed. This message
causes the state of the waiting knowledge source to
be changed to ready.

Knowledge source combination

The operation of the knowledge-based controller typ-
ically consists of a sequence, with parallel parts, of
knowledge source activations. Three different meth-
ods for combining knowledge sources into sequences
have been implemented.

The most straightforward way is to use primitives
that let knowledge sources activate and deactivate
each other. A knowledge source has the possibility
to wait until another knowledge source is finished.
Procedural knowledge sources also have the possibil-
ity to call other procedural knowledge sources, and
await and use their returned result.

Another alternative is to have a number of pre-stored
sequences. One example of a sequence could be the
initial tuning sequence. Other scquences could be
used to return to steady-state control when different
alarm conditions have been detected. Combination of
knowledge sources into sequences is basically a pro-
cedural operation. It is therefore natural to express it
with procedural knowledge sources. In order for this
to be possible, wait primitives that allows waiting for
conjunctions and disjunctions of multiple events have
been implemented. .

The last and most complex method is to dynami-
cally generate sequences. This is accomplished by as-
sociating goal states, i.e., post-conditions, and ini-
tial states, i.e., pre-conditions, with each knowledge
source. Each knowledge source can be viewed as an
operator that transforms the state of the system from
its initial state to its goal state. A sequence is recur-
sively generated by comparing the desired goal and
the current state with the pre- and post-conditions
of the operators. This formulation turns the problem
into a planning problem. The scheduler generates a



plan which then is executed.

The possibility for different knowledge representa-
tion techniques allows the user to choose the tech-
nique most natural for each sub-problem. The various
methods of combining knowledge sources give a rich
and flexible structure. For instance, it is possible to
have one knowledge source that contains monitoring
rules which are checked periodically. If something er-
roneous is detected the rules can invoke other knowl-
edge sources that focuses on the problem. These
knowledge sources could, e.g. be backward chainers
that tries to verify some hypothesis concerning the
error or procedural knowledge sources that performs
some procedural tests. Meta-knowledge sources with
knowledge about the applicability of other knowledge
sources are also easy to implement.

A knowledge source in a knowledge-based control
application could be, e.g., contain knowledge about
design of different controllers. Another knowledge
source could contain knowledge about modelling
and modecl validation. Other examples could contain
knowledge of different monitoring aspects of the con-
troller. The possibility to refer to past signal values
is important in a real-time environment. This is pos-
sible through statistics knowledge sources that com-
putes signal statistics over different time horizons.
These knowledge sources are associated with numer-
ical algorithms that collect the signal values.

The described framework has been used for the de-
sign of elaborate extensions of relay auto-tuning.
This is described in Arzén (1987).

4. Implementation

The implementation of the expert system [ramework
is built on the object-oriented system Flavors (Can-
non, 1982) and the forward-chaining production sys-
tem YAPS (Allen, 1983). The YAPS system is a
pattern-matching system in the same spirit as the
OPS family with a similar optimized, incremental
matching algorithm. The important difference is that
YAPS is written in Flavors and allows Flavor in-
stances in its database. These Flavor instances can
be instances of other YAPS systems.

The YAPS system originally only allows arbitrarily
nested list structures of containing numbers, atoms,
and Flavor instances as database elements. The sys-
tem has been modified to allow frame structures. The
system has also been extended to allow for auto-
matic explanations of how database elements have
been added to the system.

The Scheduler is implemented as a flavor which in-
herits a YAPS flavor. The scheduling strategy is rep-
resented with rules. The different types of knowledge
sources are implemented as different flavors. Each in-
dividual knowledge source is an instance of the cor-
responding flavor. Each knowledge source is repre-
sented as a frame in the scheduler database. The
frame contains slots for the type of knowledge source,

Scheduler - YAPS system

Schaduler dntab nsal

T
|
|
|
1
Knowledge :
1
}
I
I

Global

Database
S0Urces

Rules |

0,

Scheduling rules

Figure 4. Implementation structure

e.g., forward or procedural, for the state of the knowl-
edge source, and for the actual flavor instance that
implements the knowledge source.

The implementation structure is illustrated in Fig. 4.
The actual interface between the knowledge sources
and the scheduler consists of a relatively small set
of messages for which the knowledge source favors
should supply methods. This makes it easy to add
new types of knowledge sources to the system.

A slightly simplified example of a rule in the sched-
uler is given below.

(p schedulel
"If a knowledge source is resady
and no other knowledge source is
running then run this knowledge source"
(frame knowledge-source
status active
state ready
instance -x)
(- (frame Xnowledge-source
state running))
-
(modify 1 state running)
(<~ -x ’run))

The forward chaining knowledge sources are imple-
mented as instances of a flavor that inherits a YAPS
flavor. This gives a structure where several YAPS sys-
tems reside as database elements inside the Schieduler

YAPS system.

The backward chaining knowledge sources are based
on an small expert system example in Winston and
Horn, (1981), which has been extended and embed-
ded in Flavors. Currently they can only ask ques-
tions to the operator when an answer cannot be au-
tomatically deduced. A possible extension would be
to, in that case, allow a backward chaining knowledge
source to invoke a forward or procedural knowledge
source that returns the needed answer.

The procedural knowledge sources consists of Lisp
functions. In order to allow interrupts of these func-
tions at arbitrary places the entire state of the Lisp
computation must be saved. This is not possible with
the Franz Lisp of the basic system. Instead Lisp has
been used to write a register machine based inter-
preter for a procedural Lisp-like language that allows
the computation to be suspended.



5. Summary

An general experl system framework for real-time ap-
plications has been presented. It has been developed
for knowledge-based control applications but is not
restricted to it.

The framework has real-time facilities. It is modu-
larized into knowledge sources that can be compared
with concurrent processes. This is similar to the Muse
system. In the current version, however, the knowl-
edge sources cannot interrupt each other. With a sim-
ple extension this is possible. The knowledge sources
have primitives to wait a certain time or for a cer-
tain database element. These primitives are used to
implement periodic rule testing in a way similar to
G2 and Picon.

Validity intervals can be used to indicate how long
database elements remain valid. In contrast with G2
and Picon the validity intervals are not propagated
to inferred facts. History values of important signal
values are maintained. It is not possible to store
history values of arbitrary frame attributes.

The system allows for both rule-based and procedural
representation which is very important. The flexible
means of combining knowledge sources gives a rich
structure.

Tiere are many similarities between real-time op-
erating systems and real-time knowledge-based sys-
tems. Real-time operating systems for process control
have evolved over a long period of time. This paper
indicates a new system architecture where real-time
operating systems, databases, object-orienteci pro-
gramming, and knowledge-based systems are com-
bined.

The execution speed of the system is of the order of
one forward chaining rule per second. The system is
currently being ported to a Symbolics - IBM PC en-
vironment where the knowledge-based system resides
on the Symbolics and the numerical algorithms reside
on the IBM PC. Preliminary results indicate a factor
of 10 in increased speed. Other possible candidates
for migration are systems where powerlul symbolic
processing capacity is combined with conventional
computing. One example of this is the p-Explorer.

Acknowledgements

The author would like to thank Professor Karl Johan
Astrém and Sven Erik Mattsson for many useful
discussions. This work has been supported by the
National Swedish Board for Technical Development
(STU) under contract 85-3084.

References

ALLEN, E.M. (1983): “YAPS: Yet another production
system,” TR-1146, Department of Computer Science,
University of Maryland.

Arzén, K-E. (1986a): “Expert systems for process
control,” in D. Sriram and R. Adey (Eds.): Proc.
of First International Conference on Applications of
Artificial Intelligence in Engineering Practice, Springer
Verlag, Berlin, pp. 1127-1138.

ARzEN, K-E. (1986b): “Use of expert systems in closed
loop feedback control,” Proc. of American Control
Conference, Secattle, WA.

Anzin, K-E. (1987): “Realization of expert system based
feedback control,” Ph.D. thesis CODEN: LUTFD2/
TFRT-1029, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

AsTrOM, K.J. and J.J. ANTON (1984): “Expert control,”
Proc. 9'th IFAC World Congress, Budapest, Hungary.

AstrOM, K.J. and T. HAGGLUND (1984): “Automalic
tuning of simple regulators,” Proc. IFAC 9'th World
Congress, Budapest, Hungary.

AstrOM K.J. and B. WITTENMARK (1989): Adaptive
Control, To appear, Addison-Wesley, Reading, MA.

AsTrom, K.J., J.J. ANTON and K.-E. ARrzéN (1986):
“lxpert control,” Autematica, 22, 3, 277-286.

Cannon, H.I. (1982): “Flavors: A non-hierarchical ap-
proach to object-oriented programming,,” unpublished

paper.
CCL (1987): “Muse product description,” Cambridge
Consultants Limited, 4 pages.

CHANTLER, M.J. (1988): “Real-time aspects of expert
systems in process control,” Colloquium on Exper:
Systems in Process Control, IEE, Savoy Place, London
UK.

Foperaro, J.K., K.L. SKLOWER and K. LAYER (1983):
“The Franz Lisp Manual,” T? Berkeley, California.

Forgy, C.L. (1979): “OPS4 User's manual,” Technical
report CMU-CS-79-132, Department of Computer Sci-
ence, Carnegie-Mellon University.

Forgy, C.L. (1982): “Rete: A fast algorithm for the
many pattern/many object pattern match problem,”
Artificial Intelligence, 19, 1, 17-37.

GENsYM (1987): G2 User’s manual, Gensym Corp.,
Cambridge, MA.

IsErRMANN, R. and K.H. LACHMANN (1985): “Parame-
ter-adaptive control with configuration aids and super-
vision functions,” Automatica, 21, 6, 625-638.

KasHTAN, D.L. (1982): “EUNICE: A system for porting
UNIX programs to VAX/VMS,” Artificial Intelligence
Center, SRI International, Menlo Park, California.

Larrgy, T.J., P.A. Cox, J.L. ScuMipT, S.M. KAaoO,
and J. Y READ (1988): “Real-time knowledge-based
systems,” AI Magazine, 9, 1, 27-45.

Moorre, R.L., L.B. IAWKINSON, M.EE. LEVIN and
C.G. KNICKERBOCKER (1985): “Expert control,” Proc,
American Control Conf., Boston, MA, pp. 835-887.

N1, H.P. (1986): “Blackboard systems: The blackboard
model of problem solving and the evolution of black-
board architectures,” AI Magazine, 7, 2, 38-53.

TonNG, R.M. (1984): “A retrospective view of fuzzy con-
trol systems,” Fuzzy Sets and Systems, 14, 199-210.

Warvick, K. (1988): Implementation of self-tuning
controllers, Peter Peregrinus, London.

WinsToN, P.H. and B.K.P. HorN (1981): Lisp, Addi-
son-Wesley, Reading, MA.



