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ON THE CONVERGENCE OF CERTAIN RECURSIVE ALGORITHMS

Lennart Ljung
Department of Automatic Control
Lund Institute of Technology
P.0.Box 725, 220 07 Lund, Sweden

ABSTRACT

Convergence with probability one of a recursive algorithm of stochastic appro-
ximation type is considered. Some extensions of previous results for the Rob-
bins-Monro and the Kiefer-Wolfowitz procedures are given. An important feature
of the approach taken here, is that the convergence analysis can be directly
extended to more complex algorithms.
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7. INTRODUCTION

Stochastic approximation algorithms of different variants have now long been
studied in many contexts. In this paper the following particular recursive al-
gorithm will be studied

x(n) = x(n=1) + y([£(x(n~1)) + eln) + 8(n)] (1)
where f(x) is the negative gradient of a real valued function V(x), {e(n)} is
a sequence of random vectors and {8(n)} is a null sequence. Algorithm (1) co-
incides with the one recently analysed by Kushner [1].

This algorithm has cbvious relations to the Robbins-Monro procedure [2] which,
perhaps is the best known one of the stochastic approximation algorithms. The
Robbins-Monro procedure is a way of stochastically solving the equation

f(x) =0

where to each value x there corresponds a random variable Y = Y(x) with distri-
bution P(¥(x) ¢ y) = H(y|x) such that

£(x) = [ ydH(y|x)

is the expectation of Y for given x. The Robbins-Monro procedure for finding
the root of f(x) then is

x(n) = x(n-1) + y(n)y(n) ; (2)
where y(n) is & random vector whose distribution function for given x(1), ...,
x(n=1), y(1), «vvy y(n=1) is }1ﬁy[x(n-1)]. The asymptotic properties of (2) have
been studied by many authors, e.g. [2], [3], [4] etc.

If g(n) = 0 all n, and

Eletm) |e(n=1), ...y e(N)] = 0 (3)

the algorithm (1) is a special case of (2). However, in many applications where
(1) is used, the disturbances {e(n)} are correlated, which violates (3) and then



(1) no longer can be described in terms of (2).

The Kiefer-Wolfowitz procedure [5] for minimization of a function has a similar
relationship to (1), and as is further described in [1] and in Section 5 below,
the inclusion of the terms {g (n)} then is essential.

Algorithms of the form (1) are also widely used in many applied fields, like
control theory, parameter estimation methods, etc. More general variants of (1)
have been analysed by the present author [6], [7], [8] with particular emphasis
on control theory applications. The approach in these references is to asssoci-
ate (1) with a deterministic differential equation, in terms of which strong

convergence of (1) can be studied.

In the study by Kushner [1] a similar idea is persued, though with an entirely
different technique and for convergence in probability.

The conditions that have to be imposed on the algorithm (1) are described in
Section 2, while Section 3 contains the basic lemmas of the analysis. The main
results about strong convergence of (1) are given in Section 4. Applications

of the results to the Robbins~Monro and to the Kiefer-Wolfowitz procedures are
treated in Section 5, As remarked above, algorithm (1) as just a simple special
case of the algorithms studied in [8]. In Section 6 extensions of the conver-
gence results to these more general algorithms are described.

2. GENERAL ASSUMPTIONS

A main concern of this paper is to prove convergence with probability one (w.

p-1) of (1) into the set
Dg = {x|f(x) = 0} (&)

To do this, certain assumptions:have to be imposed on (1) and these conditions
will now be stated.

The following general assumptions will be used throughout the paper.



Al: V(x) is a twice continuously differentiable function on R and dix' Vix) =

= - f(x) (column vector)
A2: {x|V(x) £ C} is compact for all C < sup V(x)

A3: The set DS consists of isolated connected sets.

Ah:  {y(n)} is a (possibly random) sequence of positive scalars, such that
y(n) + 0 and ‘%E’ y(n) = o (w.p.1)

A5: {B(n)} is a sequence of R* valued random variables, such that 8(n) + 0
W.p.1 as n »> =,

By A3 is meant that DS can be written as a union of comnected sets, such that
each of these gets has a strictly positive distance to the union of the other
sets. The assumption A3 can be replaced by

A3': The function V(x) is n times continuously differentiable, where n is
dim x,

as is explained after lemma 1.

In the main lemma the following two assumptions about the behaviour of (1) and
about the properties of the sequences {e(n)} and {y(n)} are introduced.

B1: Let z(n) be defined by
z(n) = z(n=1) + y(n) (e(n) - z(n~1))', z(0) = 0
Then z{n) + 0 w.p.1 as n + =,

B2: With probability one, |x(n)| does not tend to infinity as n + =.

Notice that assumption B2 as such does not preclude that a subsequence of
{x(k)} may tend to infinity.

These conditions are fdirly implicit, and more easily checked cnes are desirable.
Several ways of verifying B1 and B2 are possible, and in two lemmas it will be
shawn that e.g. the following conditions ensure B1, B2.

C1: e(n) has an innovations representation

n
e(n) = ) hin,k)vk)
k=0

where {v(k)} are independent random vectors with zero mean values and unit



covariance matrices, and such that E}v (k)| 2P < ¢ for some integer p.
Furthermore [h(n,k)l <a nkn_k where {an} is non-decreasing and *» < 1.

c2: {y(m)} is a deterministic, non-increasing sequence such that

|
1lim sup . 1 _<w

e v(n) y(n-1)

Moreover

D
(Y (n)a?) <

a1 8

where o and p are defined in C1.

|
< o

E“;l(— f(x)

Ch: Dy = {x||f(x)] €8} is compact for some § > 0.

C3: sup

The reason for including a sequence {oen} in €1 that may tend to infinity is to
allow treatment of schemes like the Kiefer-Wolfowitz procedure, where the vari-

ance of the disturbances increases to infinity.

Finally, it will be shown that the set D¢ defined by (4) into which the esti-

mates converge may be replaced by the smaller set

4

Dy = {x|f(x) = 0 and the matrix Z=

f(x) is negative semi-definite} (5)
This requires the following additional assumptionsg.

D1: The sequence {8(n)} is a deterministic seQuence. Furthermore, the sequence
{e(n)} can be decomposed as e(n) = e(n) + v(n) where e(n) is independent
of v(n) and e(k) k # n such that E e(n) =0 and E a(n)e(n)T 3> ¢l for some
¢ > 0 and all n.

D2: The set DS consists of isolated points.

Assumption D1 implies that e(n) is not exactly predictable from the other va-
riables e(k) k # n. It should not be regarded as a very restrictive condition.



3. BASIC LEMMAS

Convergence of (1) w.p.1 foliows from the following main lemma.

Lemna 1. Assume A1 to A5 and B1 to B2. Then

x(n) » Dg = {x[f(x) = 0} w.p.T as n+> =

Proof: Let Q¥ be a subspace of the sample space such that

* = {B1 holds} n {B2 holds} n {A4 holds} N {A5 holds}

Clearly P(*) = 1. Consider from now on a fixed realisation w* € Q* and let us
study the sequence {x(k)} = {x(k,w*)}. We shall throughout suppress the argu-
ment w*, on which most of the variables (including subsequences) below depend.

In view of B2 there exists a cluster point x* to {x(kJ)}. Let n, be a subse-
£{x*)| = & > 0. From (1) we obtain

quence such that x(nk) -+ X*. Suppose that

directly
. . 3
x(3) = x(n ) + % y(klelk) + % YOOBk) + ) y(KE(x(k=1)) =
nk+1 nk+1 nk+1
= x(my ) + 8,4(n ) + 8,5 ) + £(x*) 3: v(k) + Rny 53 o X* ) (6)
nk+1
where

S.(n,_.3) = -Yl y(k)el(k)
nk+‘1

S,(n»3) = % Y(k)B(K)
r)k+1

R(ny 53,x*) = % Y(k)(f(x(k—‘l )) f-f(x*)]
Myt

Now suppose that ny ¢ j € m(nk,."r) where m(nk,r) is such that



min, ,7)
nkz+1 Y(k}"t<°°asnk-+°° (7)

The number m(nk,r) is finite for any k and any 1 < = due to A4, Then we claim
that

8;(ny»3) > 0 uniformly inn < j «mln,1) for fixed v as n > = (8)

Proof of claim:

i=2: |8y(ny 3] « max |8()
e

i=1:; From the definition of z(n) in B1 we have

-r+0asnk+maccordingtoA5

z(3) = z(n) + 81(nk,j) - %1 y(k)z(k=1)
n +

or

IS,‘(nk,j)i < |z(3)| + |z(nk)| + 1 max.iz(i)[ ~0asm +®

meed
according to Bi.
Let B(x*,0) = {x||x-x*| < o} and C* = max{sup ‘% f(x)‘n}
XE B(x*,1)

Choose from now on a fixed sphere B* = B(x*,0*) with
0 < o* < min(1,8%/8C%)

We pecall that &% = |f(x*)|. The reason for this particular choice of ¢* will
be clear below. Clearly,

[R(ry 53 ,x%)]| < |£(x(i-1)) = £(x*)| - =

max
nk+‘i g£1g]

Choose from now on



i

T = t* = p¥*/6% (g 1/8C*%)

and denote m(nk,'r*) = mj*c‘ From (6) we have that for j g ml"c‘,

]
|x(3) - x*| < Ix(nk) - x*| + IS.](nk,j){ + S, ()| + [£Ge0)| 21 y(k) +
ny

+ % max |£(x(i=1)) = £(x*)| (9)
nk+1sisj

Choose k » K'i so large that

|85 (ms3)| < p*/8 i=1,2 mn o<dcm

and

[x(n ) = x*| < /2 (Then in particular x(n ) € B¥)
If x(i) € B* for i = Thse s »J=1, then

max1 O E G-} - £ | < ot
m +1sig]

and
[x(3) = x*¥| s o*/2 + p*/8 + p*/8 + & * + CFp*& < o%/2 4+ o*/u + p*/8 + O*/8 < oF

Hence also x(j) € B*.
By induction it follows that

x(j) € B* nksjsnt)t;k>1§1
In particular we have
*y o RO
x(mk) x¥ = T*F(X*) + Rz(nk) (10a)
whepre

[Rym )| ¢ [x(n) = x*| + [S,(n ,m)| + |Sy(ny k)] +
Kk .

M
+ Cro** + 6*|7* - T y(D) (10b)

M+



8.

V(x(mO) = VO*) + (x(mb) - x¥)V, (x*) + (x(m;)«- X*)V, (8) (x(uf). ~ x*) . =

= VOxR) = TRE(XR)V, (%) + (x(m) - 3]V, (6) (x(m) - x*). +

+

RQ(nk)Vx(x*) (11)

Now Vx(x*)

Hence

- f(x*) and V (8) = - £.(E)5 € € B

Ry(n IEC) + fetm) - x*)E () femt) - 2] <

S {lxtn ) = x| + [s,(n w0 | + [Sy(ny ,mo | +

E 3
" 2
+ CHp*od 4 S [* - ] v(§)]}+ CFO* (12)
N
k

Choose k > K* so that
lx(nk) - x*| < §*%/16 = p*/8

IS4 (m) |+ [S,(n ymf) | < s*1*/16 = 0*/8

y(3)
y

< t*/16 = p*/8s*

|

*

i
PﬁMKE*

Then the RHS of (12) is less than
(recall that p* = §*t*)

*2 '1*1.‘
(8%) [T* s b g 16C%0% T*] b CRo*r¥e* ¢
16 8*

(5*)
16

(3T%20%) + CF/8C*r*(6%)% < (6™ 202

where the first 1nequa11ty follows from t* < 1/8C* and the second one from
the definition of p*



Hence,
V(x(m¥) < v(x*} - £ 2+ (%)% /2 < Vo) - | £02)] Y2 (13)
for k > K¥.

This holds for all cluster points x* such that
| £ > 0

Therefore, if x* is any cluster point with V(x*) = V* and |[£f(x*)| = 6* > 0
then (13) implies that x(j) belongs infinitely often (namely for j = ni) to

DF o= {x|V(x) & V& = tF(5%)%/2)

which is compact according to assumption A2. Hence there is at least one clus-
ter point in D*, and if this does not belong to DS we may repeat the argument.

Let V = inf V(x) where the infinum is taken over the cluster points of {x(k)}.
Since the set of cluster points is closed, it follows that there is a cluster
point x with V(x) = ¥. Obviously x € Rq3 otherwise we could use (13) to infer
the existence of a cluster point with still lower value of V. Similarly, all
cluster points x with V(%) = ¥ must belong to Dg.

We shall now proceed to show that there can be no cluster point outside DS‘
Such a point x° would cbviously vield V) = V© > V. Then V(x(a)) > V + d in-
finitely often for some sufficiently small d. Since V is continuous we can ac-
cording to A3 choose this d so small that the compact area

D = {x!\-fﬁwgvs‘l(x) sV+d} (14)

has no point in commor with DS .

Since the "step size" |x(n+1) - x(n)| tends to zero when x(n) € {x|V(x) ¢ ¥ + d},
it follows that x(k) would be inside D and cross it infinitely often "uphill"
and "downhill". Consider now a special convergent subsequence of "upcrossings"

of D:

Let {x(n}‘c)} be defined as follows:



10.

a¥
1Tl

Vixtni-1)) <7+ 35 V(x(ng)) 2V +

V(x(n]’{ + sk)) >V +d

where s, is the first s for which x(n}'{ +s) @ D. Let x(n]'() +X as k » =, Clear-

1y V(x) = T + -‘% and |$)| =T 5 0. Now define §, T as above and let 5 be so

small that B(X,p) has no point in common with {x|V(x) 3 V + d}. Then, from (13)
~ - d s 2 .

V{x(m(n}":ﬁ))] <V + 7 - ¥4/

and x(j) € B(?cg,?a’)‘, n}I; € 3 g m(n}'c,?). Thig contradicts the definition of n}& as

a sequence of upcrogsings. Therefore D will not be crossed upwards infinitely

many times, ana since there is a cluster point in Dg s the sequence {x(k)} will
remain in any neighbourhood of De. This concludes 'the procf of Theorem 1. o

Note that in the proof a fixed realization is considered throughout. Therefore
~ the conclusion of the theorem holds for any sequences {e(n)}, {y(n)}, {8(n)}
fegarded as reailzations of stochastic processes or not) such that Bt, B2, Ak
and A5 hold.

Remark. Notice that assumption A3 is used only to infer the existence of the set
D in (14) disjoint from Dg. For a general set Dg but under the additional assump-
tion A3' it follows from the Morse and Sard theorem that the set § = {z|V(x) = z,
X € Dg and z £ Vo) iz a compact set of measure zero. This also implies that a

set D can be chosen disjoint from Dg -

Notice also that it follows from the proof that {x(n)} cannot oscillate between
the isolated areas in Dg. '

In order to verify assumption B1 certain conditions on the sequences {y(n)} and
{e(n)} have to be introduced. The recursion in B1 can be solved which gives

n
z(n) = ) y(Ir(n)elk) (15)
k=1
where
n
I'(n,k} = I {‘1 - Y(i)) k <ny _ In,n) =1

izk+?



1.

If {e(n)} is a sequence of independent random variables, many approaches to
prove convergence of z(n) are available, but we shall not pursue that here

(cf [61). The fairly common choice y(n) = 1/n gives T'(n,k) = }1{ and then va-
ricus "laws of large numbers" can be applied to (15). A, for the present con-
text suitable variant is given by Cramér and Leadbetter [9], p. 94-9&(where it
is given for continucus time stochastic processes, but the proof is also valid

for discrete time processes):
Let y(n) = 1/n and assume E e(n) = 0,

P + P

|E e(nde(m)]| < X
1 + |n-m|%

0 € 2p<q<1 (16)

Then z(n) » 0 w.p.1 as n +» .
Another result that appears to be useful in applications is the following.

Lemma 2. Assume C1 and C2. Then Bl holds.

Proof: lLet
L = 1im sup - .
T y(n)y y(n-1)

The moments of z(n) are estimated in the following claim.

Claim: If L £ 1 then

/2

Elzm)|* < ¢ Y (ym) ™4 1< r<2p

The claim is shown by straightforward calculation of the moments of sums like

Mer Dhest
T, = an v(Irln , ,»ide(d) where lim Z (i) = 1>0
:|.~--Tlk koo J_mk

and then linking such estimates together using Minkowski's inequality. The
formal proof is given in [6].

With this claim, Chebydrev's inequality can be applied to yield



. 20~ D 25
Ezm|® ¢ yBm) o P
P(lz(n)| > &) < ¢ - _

2P eZp

A4

and
I Pllam] > ) s =2 | Ry oPeo
n=l P n=1

The Borel Cantelll lemma now assures
zln) » 0 ag n+ww.p.1. 2
If L » 1 we take

z(n} = z(n~1) + lyln} %: a(n) =~ IE .'::(nﬂ-'l)é

~

- . . , . 1 A . v .
whigh, according to Lemna 1 and lemma 3 {V(z) < BT z“/) converges w.p.t to zero if
]

L . .o {
z{n) = z(n=1} + Iz;f-ﬁn}ifml el{n) ~ Z{I‘l’""i)g
does. But this latter algorithm converges w.p.1 according to the first part of
this proof. o

The veason for assumption B2 is that it very well may happen that the sequence
{x(n)} tends to infinity even when assumptions A and Bi are satisfied. Further
coenditions on the functions V(x) and fi(x) = - 4 V(x) have to be introduced to

dx
engure B2.

Lemma 3. Assume A1 to A5, Bt and C3 to Ch. Then B2 holds.

Proof: Consider as in the proof of lemma 1 & fixed realization o* € g*.

let C = sup| £, | -

Let C and ® replace C* and &* in the proof of Lemma 1. Then p and t can be cho-
sen gichally outside D};

Vurther take x* = x(k) which gives with fﬁk = m(k,t) for (13)



13.

for all k » K and such that x(k) § D5

Therefore, if |x(k}| > », x(k) would remain outside the compact area Dg from
a certain Ky on. With K; = max(K,,K) and n; = n,_, + m(n;_.,1)3 ny = K we
then would have

T §%/2

Lt

V{xCnyd) < {x(Ky) -

which would imply that Vix) » -« This is impossible since V is bounded from

below, according to AZ. o

The set D, consists both of local minima, local maxima and saddle points of V.
In fact, as might be expected only the local minima are posaible convergence

peints as shown in the following lemma.

Lemma 4. Assane A1 to A, C1, €2 and D1 and that x{n) + x* on a set of poaitive
measure as n - w,

Then £(x*) = 0 and all eigenvalues of the marrix

o giatn

3
a‘;{' Zt'(}() .
| X=X

have non positive real part.

d ., P —
pos £(x) ymyk -5 the second deriva
tive matrix (the Hessian) of V in x*. The condition is that this should be posi-

. d .
Ramark: Since flx) = - poom V(x}, the matrix -
tive semidéfinite.

Froof: let x(n) » x* on 0¥, with P(2*) > 0. Dencte f (x*) = A. Then

£(x) = £(x*) + Alx=x*) + gloex*) (173
where

gx}/|x| » 0 as x» 0 (18)
It follows directly fram the proof of Lemms 1 that £(x*) = 0. Suppose that the

assertion of the theorem is not true, i.e. that at least cne eigenvalue of A
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Let L be a left eigenvector for this eigenvalue:
1A = uLg i >0
Introduce the following notation

L{x(n) - x*} = A L8(n) = En, Lg{x(n) - x*) = én

e(k) = Le(k) (of D1)

fon) = L 7 hik,3v(I) = elk) (cf C1)
i=n
§§ bl

Fle,n) = L 2 hilk,i)(3)
j=0

Then Le(k) = e(k) + F(k,n) + Flk,n) and these terms are mutually independent
since hil,k)v(k) = e(k) = v(k) - Efe(k)|e(k=1), ..., e(0)] is independent of
ek},

Multiplying (1) by L from the left gives, using (17)

Ve = Vyemq * ¥OO[uy,_y + €GO (ynp Fion) + By + g ] (19)
Solving (19) from k = n to k = m gives

Yy = I‘Cmgn)/ﬁn_)[}cn + F_(m,nHF (m,n) + Fm,n) +I E(m,n) + G(m,n)] (20)

where

m
oy y(k)

m
n#1

Pmen) = 1 {1+ py(k)) ~e
ntl

N —

= wen——
e M

¥ yoore,m oo
Yy(n) n+1 ’

F (m,n) =
€



IS

am

and F, F, B and 8 defined similarly from fCc,n), T(k,n), E?k and ék respectively.
Since u > 0 it is possible to for each n take m = m(n) such that

r{m(n) ,n)

WV
—

Now we have

_ . m(n) . m(n) :
E[Fp(m(n),n)] = ¥ va0?r e 2EEG0? L v00%rten ™ s ¢ > 0
. y(n) k=n y(n) n

where ¢, is independent of n. Here the last inequality follows readily from the
definition of m(n) and the properties of {y(n)}, of [8] p. 86. Since 'E"e (m(n1),n1)
is independent of f’e (m(nz),nz) for ny > m(n,) it follows from the second Borel-
Cantelll lemma that

I?E (m(n),n)i '3 ¢, > 0 for infinitely many n w.p.1, i.e. in particular a.e. an *,

Moreover, since Fe and T are independent, also

l'f'e(m(n),n) + Fm(n),n) | » ¢, i.0. a.e. on 9% (21a)
Furthermore
o~ 1 n
F(m(n),n) = Y rin,k)vk)
Yyan) k=0

where

m(n) -1
oK) = y(3IrG,m he k)

J=n
and

m(n) ._, - :
K & ~PIRCORI
[n(n,k) | < Y(mazey 'jgn- S c:-,‘Y(n)D‘r-r't‘(n))H1 T Gy [m(n))arﬁ(n)}‘n ‘

where the first inequality follows from C1 and the last one from C2 (cof (8]
P- 54). Now



16.

n 2p n-ki 2p
EiP(m(n),n)lZp S o (m(n))p ®atn) Tk Zk " H1 A E ‘1I1 Iv(ki)[ £
TRREI i= fis

p_2p
%m(n)

s cpv (mn)) e
From Chebyshev's inequality and the Borel-Cantelli lemma together with €2 it

now follows that
Flm(n),n) + 0 wep.1 as n » » (21b)

It is easy to verify that Y(k)r(k,n)q = 1. Therefore ¥ will dominate over

bl
- k=n
G(m(n),n) for large n and for w € o* according to (18) since x(k) + x* cn O*.

Remark: It might happen that x(r) - x* would be "very close" to the null space
of L so that y n Would be an order of magnitude smaller than |x(n) - x*|. How-
ever, this cannot happen for all n larger than some N o since according to as-
sumption D1 a full rank random vector, independent of previous data is added
to x(n) for each n. Therefore, in a sufficiently small neighbourhood of x* the
distribution of x(n) will be non-degenerate. ]

From (20) follows that since o = 0 on 9*¥ we must have
H{m(n),n) & F_(m(n),n) + Fm(n),n} + F(mn),n) + Bmn),n) +
+Y 4+ G(mn),n) + 0 on % as n » = (22)

But F_ + F is independent of all terms in H except G. Therefore (22) would
imply that F + 1_-"E + "part of" G tends to zero on 9 , which in particular means
that G does not tend to zero due to (21a). Since G is dominated by Y on 9%, the
term Y would then tend to infinity. But F tends to zero according to (21b) and
B is determlmstlc. Therefore Y ~would dominate H, which violates (22), and we
have arrived at a con tradlcfmn to the assumption that f (x*) has a positive

eigenvalue. o
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4. MAIN RESULTS

The lemmas of the previous section can be combined into several results. It
should be noticed that in addition, Lemmas 1 and 2 are results of independent
interest. Two theorems will now be given concerning convergence of (1).

Theorem 1. Assume Al to A5 and C1 to Ci. Then x(n) + Dy w.p.1 as n+ = .,
Proof: Follows from Lemmas 1 to 3.

Theorem 2. Assume A1 to A5, C1 to C4 and D1 to D2. Then x(n) tends to a point
in Dy w.p.Tasn>e (DM defined by (5)).

Proof: It follows from Theorem 1 that x(n) converges into Dg Ww.p.1 and as re-
marked after Lemma 1 {x(n)} cannot oscillate between isolated points in Dg.
Therefore, except on a set of measure zero, x(n) will converge to a point in

DS’ Obviously Dg consists of at most a denumerable number of points. Any such
point to which x(n) converges on a set of positive measure must satisfy the con-
ditions of Lemma 4. This concludes the proof of Theorem 2.

Now, if V(x) is such that C3 or C4 do not hold it might happen that x(n) tends
to infinity. This can be seen from the following simple example.

Example 1. Let V(x) = E—‘-x% and en) =0 n 22, ¥(n) = 1/n, B(n) = 0 all n.
Then 1f x(0) = 0, x(n) = x(n-1) + %(- x(n-‘l)3)', n x 2; x(1) = e(1). Clearly,

1

x(nj will tend to infinity if |e(1)| » 2. o

However, in any application of the algorithm (1) this will certainly be preven-
ted somehow. A very straightforward idea is to project the estimate x(n) into a
compact area D,. Then (1) takes the modified form

Dy

x(n) = [x(n—-'i) + y(n) (f(x(n-’l)) + e(n)” (23)

where

[Z]

Dy . Z.J.fZED2
D1"

some value in D, if Z ¢ D,
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and where D‘l : D2 are compact areas such that D,[ < D2.

For the modified algorithm (23) obviocusly B2 holds. However, Lemma 1 cannot be
directly applied because of the modification of (1). The following result holds
though.

Theorem 3. Consider the modified algorithm (23). Assume A1 to A5, B2, and
that

(1) sup V(x) < inf V(x)
X€D1 x@D2

(i1) Dy = D, (D defined by (%))
Then x(n) + Dg w.p.1 as n +» .

Proof: Let sup V(x) = V, and inf V(x) = V, and introduce
L 1 2
X€D1 x!iD2

D= x]V(x)$V2~—-——-——-—-', V(%) 3 Wy & =S
4

Then sug]fx[ = C is less than infinity since B is bounded and
XED

infl]f(x)] = §

x D

is greater than zero due to (ii).

As in the proof of Lemma 3 p and 7 can be chosen from O and § globally in U,
and for a fixed realization in o* :

v[x(m(k,?nJ < V{x(k)) - 78272

for all k > K and x(k) € D. Therefore V(x(k)} is strictly decreasing in D from

a certain k on. Since, as before, the step size x(n) - x(n-1) tends to zero in
D, it follows that x(k) cannot pass from D, to a value outside D, after a cer-
tain value of k. Hence from this value on the algorithm (23) coincides with (1)

and Theorem 1 now completes the proof of Theorem 3. g

Clearly, this theorem can be combined with Lemmas 2 and 4 to yield cbviocus variants.
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5, THE ROBBINS-MONRC AND KIEFER-WOLFOWITZ PROCEDURES.

The analysis gives some extensions of the "classical" convergence results on
the Robbins-Monro procedure, e.g. [2], even though the results given so far
deal with a fairly cpecial structure. In the first place it is possible to

treat the case with dependent disturbances fe(n)} in (1). Moreover, the fre-

quently cited condition

Voym)? < o (21)
1

has been shown to be unnecessary. When the disturbances {e(n)} satisfy C1 (with

o = constant), and when {y{n)} satisfies C2 it is sufficient that

y(n)P < » (25)

A3 8

This condition together with CZ are satisfied e.g. for v(n) = e ® 1/p < a g 1.
There consequently is a trade-off between conditions on {y(n)} and on the mo-
ments of {e(n)}. The following exemple shows that (24) can be relaxed only if
higher moments of {e(n)} exist.

Example 1. let {e{n)} be a sequence of independent random variables where e(n)
has the distribution

1/v(n) with probability y(n)"
e(n) =
0 with probability 1 - y(n)®

The moments Eje(n)|® are uniformly bounded only for s g r.

Assume that

) v = o  and ¥ )T <« for some e > i

n=1 n=1

Then



] Plly(mem)] 21) = § vy ==
n=1

n=1

and since the variables {e(n)} are independent

ly(tr)e(n)| = 1

i.o. w.p.1

from the Borel-Cantelli lemma. With z(n) defined by the algorithm in B1

z(n) = (1 = y(n))zln-1) + Y(n)e(n).
ma 2

Ele(n)| 2(rt=)

would have to be uniformly bounded. Thus the moment conditions on e(n) cannot
be dispensed with.

o
It can also be remarked that in many applications,
y(n) =

A(n)/n

appears to be a suitable choice of gain sequence, where A(n) is a possibly ran-

x(n) =

dom sequence tending a.e. to a positive constant A. Then (1) can be written

The term (A(n) - A)}f(x(n-1)} then can be jucorporated in
in Section 3 for the choice y(n) =
conditions on {e(n)} and {A(n)}.

x(n=1) + = {Xf(x(n—'i)] + (x(n) - ) £f{x(n=-1)) + rx(n)e(n) + A(n)B(n)]

g{n). The

1/n then can be applie

to infer B1 from mild

A frequently encountered problem in applications is to find the minimum of a
function V(x) from noise corrupted measurements

yi(x) = V(x) + w(i)

(26)
where {w(i)} is a sequence of random variables with zero mean values.

20.

z(n) will consequently w.p.1 not converge to any limit. To be able to apply Lem-
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In the Kiefer-Wolfowitz procedure [5] it is suggested to form an estimate of
the negative gradient at x = x™*
d(x*,c)

based on (linear operations of) at least n+1 measurements of V(x) in the sphere
around x* with radius c. Then

d(x*,c) = - é‘)—c V(x) + B+e
x=x*
where
8] < e |V"(&)] £ belongs to B(x,c)

and e is formed from the variables w(i) and has a variance
Elel? ~ ma(i)/c?

The Kiefer-Wolfowitz procedure amounts to choosing a decreasing sequence c, 0
and then take

x(n) = x(n=1) + y(n){d(x(n—'l),cn]‘}
Suppose that the function V(x) satisfies A1, A2, A3, C3, C4 and {y(n)} satis-
fies C2, At and w(i) satisfies C1 with o constant (which implies that the

corresponding sequence {e(n)} satisfies C1 with 4y = 1/ck). Then Theorem 1
implies that x(n) tends to Dg w.p.1 as n » = if

P
(Y(n)/ci) <

=pr 8

which is less restrictive a condition on {y(n)} and {c } than the one given by
Blum [3]:

-] * 2

; cny(n) < o and ZI: (Y(n)/cn) < @
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6. EXTENSIONS

In this section it will be discussed how the results of Sections 3 and 4 can
be extended to more general algorithms than (1).

1) First it is not necessary that f(x) is the negative gradient of V. It is

clear from the proofs that what matters is only that V is a twice continuocusly
differentiable function, subject to A2, such that the scalar produt '(%V(x)] Tf(x) <
< 0 cutside a compact set Dg- Then under the appropriate additional assumption
convergence of x(n) to Dg follows. Therefore we may dispense with the assump-

tion é%-V(x) = - f(x) and instead postulate the existence of such a function V.

In the theory of differential equations, see e.g. [10] or [11], such a function

is known as a Lyapunov function, and it guarantees that the solution of the dif-

ferential equation

Lxo = skw) 27
for any initial condition x° € %' at 1 = 0 tends to the set DS as T tends to in-
finity. Conversely, the existence of an invariant set DS to the differential
equation (d.e.) (27) such that for all initial conditions, the solution tends
to Dg implies the existence of a function V(x) with the aforementioned proper—
ties. (An invariant set DS of a d.e. is a set such that a solution that belongs
o also belongs to DS for all other t, = «» < t < o, The set
such that solutions starting at xo tend to Dg is known as the
domain of attraction of DS.)

to DS for a certain 7

of all values xU

Therefore A1 and A2 can be replaced by
A1' The d.e. (27) has an invariant set Dg with global domain of attraction.

Actually, if an invariant set does not have a global domain of attraction At,
A2 and B1 may be replaced by

A1 The d.e. (27) has an invariant set DS with domain of attraction DA

B1' x(n) € D i.o. w.p.1
where D is a compact subset of DA.

To make the d.e. (27) meaningful, we here assume that f is an everywhere defined
locally Lipschitz-continuous function.
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Actually, in the proof of Lemma 1, it was shown that the sequence {x(n)} locally
and asymptotically follows the trajectories of (27). In fact, under additional
conditions the trajectories of (27) can be associated with the asymptotic beha-
viour of (1) in a more strict sense, cf [6] - [8].

It may alsc be remarked that the derivative of f in Lemma 4 can be interpreted
as the system matrix for the linearized d.e. around a stationary point x*. lLem-
ma 4 then (essentially) states that x(n) may converge only to stable, staticnary

points of the d.e. (27).

2) The analysis can be applied not only to the structure (1) with additive dis-
turbances but also to the case

x(n) = x(n=1) + y(n)Q(n3x(n=1),e(n)) (28)
A function f is defined as

f(x) = lim E Q{n,x,e(n)) (29)

N>

where the expeétation is over the distribution of e(n), with x regarded as a
fixed parameter. It is assumed that the limit exists. With f thus defined we
may study the d.e. (27) and relate convergence of (28) to stability properties
of (27) as above. Some further technicalities in the proof of the theorem are
required in this case, but the basic paths of the proofs remain the same. The
structure (28) is studied in detail in [6].

3) As a final increase of complexity, it may be assumed that the disturbance
term e(n) in (28) depends on previous estimates x(k), k < n. In particular a
structure like

"

wn) = gln,en=1),x(n-1) ,v(n))

h(n,cp(n) ,x(n-‘l)) (30)

1

e(n)

or 3 linear variant

@(n) = A(x(n-1 Yo(n-1) + B(x.(n-ﬂ]v(n)

1]

e(n) = C(x(n=1))o(n) (31
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can be postulated, where {v(n)} is assumed to be a sequence of independent ran-
dom vectors. These structures are of particular interest in control theory and

in certain sequential parameters estimation applications, cf e.g; Hannan [12].
They are treated at length in [8]; the theorems are also quoted in [7]. The ana-
lysis again follows that of the simpler variant (1). A variable e(n,x) is defined

for each x by

Pr,x) = gn,en=1,%),x,v(n)}; @©(0,x) = 0

e(n,x) = h{n,e(n,x) ,x)
and it is assumed that the limit

£(x) = 1im E Q(n,x,e(n,x)}

>

exists with expectation over {v(n)}. The corresponding d.e. (27) is then analysed
for stability properties, and these are related to strong convergence of (28),
(30) as above.

The proofs for the case (28) and (30) or (28) and (31) are considerably more
technical than those given in Section 3, but differ from them essentially only

by an increased amount of book-keeping over small terms.

7. CONCLUSIONS

Strong convergence of a certain recursive algorithm. (1), has been the main topic
of this paper. The approach of the convergence results has been to study the be-
haviour of the algorithm realization-wise outside a given nullset of realiza-
tions. The convergence results (Thecrems 1 and 3) imply certain extensions com-
pared to the classical results on strong convergence of stochastic approximation
algorithms. Also the classification of possible convergence points, Theorem 2,

seems TO be new.

It is believed, though, that the important merit of the present approach is that
the method of proof extends directly to more complex algorithms as described in
Section 6, while it does not seem 1o be clear how the conventional technique
would be applied to, say, (28) and (30).
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