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A COMPARTSON OF TWO SUBOPTTMAL DUAL CONTROLLERS ON A

FIRST-ORDER SYSTEM

Lars Pernebo and Jan Sternby

Abstract

Two suboptimal dual controrlers are applied to a ffrst,
order Linear syst,em. The first controller is deveroped
by sternby and the second by Tse, Bar-shalom, and Meier.
The second controlrer is slightly modified to serve Ln a
stati-onary sÍtuatÍon. The only unknown parameter of the
system is the gain, which varies sinusoidalry. rt is
shown that the effect on the system of the two controllers
Ís much the same even though they are based on completely
different calculations.
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1. INTRODUCTTON

The concept of dual controï was introduced already by
Feldbaum (1960). stirl very few cases are known,
however, where the optimal dual control can actually
be calculated..It is therefore necessary to find
suitable approxi-mations that will give good suboptimal
dual controllers. These will in most cases have to be
tested by simulations.

The aim of this report is to compare the performance of
two suboptimar dual controrrers on a first order sÍngle-
-input single-output system with a time-varyj_ng gain.

The f irst control-ler is obtained by minÍmi zing an approxi--
mation to the expected value of the sum of squares of
the output in the next two steps. The second controller
is a slÍght modification of the one described by Tse and
Bar-Shalom (1973) .

The report is organized as follows. The system i-s defined
i-n chapter two, where also the optimality criterion is
specified. chapters three and four describe one regulator
each. rn chapter fÍve the simuration results are shown and
discussed. FÍnally some concluding remarks are gÍven in
chapter six.
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2. THE SYSTEM AND TIIE CRITERTON

Consider a system governed by the difference equatj-on

y(t+1) - y(t) = b(r)u(r) + e(r+t)

with

b(t) =1+1.5sin0.04rt

(2.L)

(2.2)

The noise e (. ) is a sequence of Índependent, Gaussian
random variables with zero mean and variance e. Notice
that the sign of the gain is not. constant. This makes the
system difficult to control.

Now, let the purpose of control be to minimize the criteri-on

lirn E

N+ø

-NT2ñuir" (k) (2 .3)

i.e- the output shourd be kept as close to zero as possible.
Finally, the admissibre contror strategies must be specified.
For an admissible contror strategy the. control signal at
time t, u (t) , may be a function of all the outputs observed
up to time t, i.e. y(t), y(t-I),..., a1l previously
applied Ínputs u(t-l), u(t-2) ,..., and the mean and
variance of the noise. The eoefficient b(t) is consiclered
as completely unknown to the regulator. Thus the eqation
(2.1) is supposed to be known, but not eqatj_on (2.2¡. A good
contror strategy will therefore inctude some form of
estimation of b (t) .

The probrem of finding an admissible control strategy for
the system (2.1) that minimizes the criterion (2.3) Ís,
however, too difficult to solve. several suboptimal control
strategies for this kind of problem have been proposed in
the literature. rn this report the performance of the
system is examined when using two different suboptimar
control strategies.
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3. DESCRIPTION OF THE FIRST CONTROLLER

one suboptimal control strategy is obtained by minimizing

n
E

k=1

2V =En y (r+k)

with n = 2 at every ti-me t. The example in sternby (1976)
may serve as a motivatj-on for doing sor even if that
example is not very practÍcal. There, however, the dj-fference
between using n = 2 or a larger n is smarr, while the
regulator obtained with n = 1 is not as good.

ïn order to estimate b(t) some kÍnd of model j_s needed. This
is taken as

b(t+t) = blt) + v(t+t) (3.1)

where v(') is a sequence of independent GaussÍan random
variables with zero mean and variance R. The sequences e(.)
and v(.) are assumed to be independent.

Now take b(.) as the state that obeys equation (3.1) and
y(.) as the observation according to equation (2.L). It is
then possible to set up a Kalman filter to estimate b (. ) as
in Ä,ström, lvittenmark (1971). Denote the estimate at time t
of b (t.) UV A ttl and its variance by pO (r) . Then

â(t*r) = â(r) +K(r) ty(t+r) -y(r) -âttlu(r)1 (3.2)

P (r+r)
Pb (r). Q +R (3.3)b

K (r)

2u (t) P (t) +9b

Pb(r). u(r)
2u(r) P (L) + Qb

(3.4)

A good starting point for rhe filrer is Ê tOl = E [b (0) ) ,
Pb(0) = var(utol). rf the distriburion of b(0) is not known
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Pb(0) should be t,aken large,
steps in the tregínning. Noti

^so that b (t)
^ce that b (0)

can take large
=0isapoor

since the

b
(r)

(t) +

choice if the regulator gíves u = O for â = 0,
result will rhen be rhar Attl = A(O).

The minimization of v, and v, for the system (2.L) assuming
model (3.1) for b(t.) is discussed j-n .A,ström, Wittenmark
(1971). using their results it can be shown that for our
case the minÍmal value Vl of V, is

ly(t) *âr.)u(t) l2 + e + u( t't2 pvI=mín {r u(t) l'

The corresponding u (t) is

,rlttl = - AttlY(t)
ffiz."ilÐ

(3.5)

(3.6)

This is thus a cautious, but non-dual controrler, since Ít
takes into account the present uncertainties, but not the
future observation program.

The minimal value vl of V, is given by

v; mÍn
u (r) {rort) + â(r)u( Ð12+e + u(r)' no

Pb (t+1) y (t+l) 2

+E 'Ð+
b (r+1) 2

(3.7)
+P (r+r )b

The fj-rst three terms are the expected loss due to y(t+r¡
and the last term is the conditi-onal expectation of the
mj-nimal loss from y(t+2) given Ft= [y(t), y(t-1),
... t u(t-1), u(t-2),... l.

The basic random variabre in the expectation is y (t+1) ,
whose conditional distribution gi-ven Ft is Gaussian.
However, y (t+1) occurs in both the numerator and in the
denominator (througrr â tt*rl ) . ït is therefore not possible

'.1 )
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to get a simple anarytical expression for the expectati-on.
rn sternby (L977 ) tire folrovring approximation v¡as suggested

Pb (t+1) y (t+r )
2

â ta*r 't2 * p
(3.8)r.] *E

E IPb(r+r)y(r+1)2lrrl

b 
(t+1) E tâ(t+r)2+p (r+1) I Ft

+0 (3.e)

lb

rt origlnates from a series expansion of the denominator.
But using (3.2) (3.4) gives for the denomÍnator

--^ 2 _ 
^ 

-)
E t b(r+1)' *nb(r+1) I Frl = lì(t)" +pb(r) +R

Now insert the approximatj_on into (3.7) to get

v) *¡ mi_n
u (t) { (, o(t) +âr.l,rt*l t2 +e+u(t)2 P(r))

eo (t) . Q + n(,.r (t) 2 eo (t) + O)

(t)2+eo(r) +n) (u(r)2 pb(t) +q)(û
1+

)

To find the minimum the derivative w.r.t. u(t) is calculated,
and its zeroes are determined usÍng a root finding algorithm.
Finarly the minimum is found by comparing the losses for
these values of u (t) . For further details about thÍs regulator
refer to Sternby (I977).
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4. DESCRTPTION OF THE SECOND CONTROLLER

4.1 Preliminaries

The second controrrer to be considered is described in
Tse, Bar-Shalom (1973). Some of the theoretical background
can be found in Tse, Bar-Shal-om, Meier (1973).

The system considered in Tse, Bar-Shalom (1973) is
descrlbed by

x(t+l) = A(t,e(t) ) x(t) + B(t,,9(r))
y(t) = C(t,e(t)) x(t) + w(t), t 2

u(t) + e(t+l)
0

(4.1)

(4.3)

where the control u (t) ís scalar and O (t) € Rs is a vector
of unknor¡rn parameters described by the Markov process

(4 .2)

The vectors {*(O),e(0),e(t),w(t),v(t), t > 0} are assumed to
be mutually independent Gaussian random varj-ables with
known statlstics

x (0)

e (0)

e (t)
!,¡ ( t)
v (r)

- ¡¡ (1 (o) , p**
- N(e(0), Pee

- N(0, O(t))
- N(0' c(t))
- N (0, R(t) )

(0) )

(0))

The unknown parameter o (t) is assumed to enter linearly in
A(t,'), B(t,.) and C(t,').

The objective is to find an admissible control seguence
t"ttl fl=j such that the cost functional

r - r It"(N)-p(N))r w(N) [*(w)-o(x)) r-

N-1
+I

k=0
[x (rl -p (k) )t * (k) (x (k) -p (k) ) + l t:<l u2 tr.l ]

(4.4)
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is minimj-zed. It is assumed that W(k) >
that the reference trajectory {p (k) ll_o i" given a priorj-.

Below, the algorithm in Tse, Bar-Shalom (Ig73) will be
described when applied to the system in chapter 2. ïn this
special case most of the formulas of the algorithm take a
much simpler form.

The system (2 -r) can be described by the scalar equations

x(t+1) = x(t) + b(r)u(r) + e(r+1)
y(t) =x(t), t2 o

(4.5)

(4.7)

(4.8a)

(4.8b)

since the variation of b(t) , gi-ven by (2.2), is consÍdered
as unknown, b (t) will instead be supposed to be given by

b(t+t) = b(r) + v(r+l), r > 0. (4.6)

The objective is to minimize the criterion (2.3). However,
for this problem to fit in with the formulation in Tse,
Bar-Shalom (L973) Iet us start with considering the cost
functÍonal

2J_E Vüx (N) + 2(k)+Àu (k)2
I

0

)(iIrì)(l

(il [iì)

N-
T

lç=
xW

can be writtenThe system (4.5) - (4.6)

+ \
)

x (t+1)
b (r+1)

v (L)

u (r)
I

e (t+1)
v (t+1)

(r 0)
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4.2 The Alqorithm

Step 1. Denote the present time by t and suppose that the

estimates

ô(ttt) = 6(ttr-r) +

0

P (rlr)

(v (tl - * ttIt-r) )

P (r I r,-1)xb

(f ltli:iì) and P (trt-1) are siven. Here
)(fi (il r-r)

(rlr-1)
Ís some esrj.mare or (il [iì) given /t_t = {y (t-1) ,y (t-2) , .. . }.
Analogously p (tl t-I) is some estimate of the covariance of

(f l:l ) ntrr.r, /t-r. Furthermore, suppose that y (t) is
available.

Slep 2. Compute (8 l:ltl) and P (tlt) usins a second order

filter. See e.g. Jazwinski (f970). Since (4.8b) is IÍnear
this will be identÍcar to a Kalmanfirter, which in this
case gives

*(tlt) = y(r) (4.e)

P*b (r I r-1)
F;¡EITTI (4. r0)

(4.11)
0

(rlr-1) -
2

P

P

OP bt) P** (tlt.-r)

The matrix P is partitioned as p

step 3. solve the optimal control problem for the system

z(j+I) = z(j) + ô(tlr)[(j) j = r,...,N-l

with the cost functional

l u

P

P

Ar

bb

xx

xl:

2z
N-1

+IW
J

J = w ,2(l¡)
t

2
( j ) + ( j ) .
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The solution is given by

I(j) = - r(j) z())

where

j = tr... rN-l

10
u(t) 1

s ( j+11 a ttttlt(j)=-
À + s qi+r) ô2 tttt)

s ( j+t) t2 (rtr)
ffi

(4.l2)

S(j+r) + w S(tl)=w (4.13)s ( j ) = t-

P (t+11 r)
I u(t)
0t

step 4. fn the sequel the so called remaining duar cost will
be catculated. Given *ttttl and A(tlt) it witl be a function
of u(t) on1y. The desired value of u(t) is then obtained by
minimizing the dual cost numerically with respect to u (t,) .
As a starting value for the numerical mÍnimization algorithm
j-s chosen u(t) = - t(r)*(ttt).

step 5. (The calculation of the remaining dual cost as a
function of u (t) starts here. )

(r+11 r)
(r+11 r)
(See e.

carculare (8
predictor.

)
I

and P (t+1 I t) using a second order

. ,fazwinski (1970).) Since, in this case,

the right member of (4.8a) is linear (u(t) fixed) we get

*(t+ilt) = *(ttt) + Ê(ttr)u(r) (4.14)

ß(t+ilt) = Attlt) (4.1s)

P(rlr) +
o0
OR

(4.16)



step 6. compute a future nominar trajectory {xo(j)\1¡*r,
{uo (i I {=l.r throush

13

(4.17)

(4.18)

(4.1e)

*o

0

( j )

( j )]=[: ""i'][;:b

(j+r)
(i+r)

uo(j) - - t(j) xs(j)

with startíng point

*o (r+1)
(r+1) j=t â (t+r I t)

A (t+r I t)b
0

N-1
j=t+1Here {t(j)} is given by (4.I2, .

Step 7. hlrite

t;tt| t

xo(j)
bo (j)

6x(j)
ôb(j)

u(j) = us(j) + 6u(j) j = t+lr...rN

The deviations from the nominar values are due to the noise
and the fact that future measuremenLs will give other
estimates of b(j), j>t+1, which wilt give future control
laws that differ from L(j) , j > t + t. It is the fact that.
the algorithm takes the possÍbility of future changes of the
unknown parameters into account, that makes the control
strategy dual.

Introducing (4.19) into (4.ga) gives

l=[
uo (j)

+

ôx(j)

6b (j) l.l
bo (j)

l.I
I6x (j+1)

ôb (j+1) 01 0

ôb(j)6u(j)

0

e (j+1)

v (j+I)It ôu(j) +

(4 .20)



The remaining cost at tj-me t + I can be written

14

(4 .22)

J (t+1) = E !Vx
N-T

(N) + : InIx
j =t+l

(j) + t u ( j )
2 2 2

Ë
L V'l x

N_1
(N)+ r

j =t+I
2 w *frt:l + 

^ "frt:l]
+

0

+E 2Wx (N)
0

N-1
E

j =t+1

ôx(N) + w[ox(N))2 +

+

(4.2t)

Here the first term does not depend on 6u(j). Now the second
term is mÍnÍmized with respect to {ôu(j) }T=1.1 using (4.20) as

a dynamical constraint. This j-s done using dynamic programmÍng

with retention of up to second order terms in the deviations
ôx(j), ôb(j) and 6u(j).

The (approximatety) optimal value of J(t+1) assocj"ated with
the given nominal trajectory is

J* (r+1) = s (r+r) â2 (t+r lt) +

2w xo(j)6x(j) +w(ox(j))2 + 2rus(j)6u(j) + r(óu(j))2]

+tr Þtjlj-t) -Þ(jtj) s(j)
N
I

j=t+l

where Þtjlj-fl and F(jlj) are the estimatÍon-error covariances
given by the Kalman filter for the system (4.20) with
õb ( j ) öu ( j ) put equal to zero. The starting value j-s

Þ (r+11 r) = P (r+11 r) .

s (j)
s(j)
sxb(j)

sxb (j )

sbb(j)

where S(j) is given by (4.13) and

(4.23\



15

S*t (j) = S1i+1)uO(J) + S*t (j+1)

fuo (j¡5 1i+1) +sù (j+1))bo (j) +s (j+1)xo (j+1)
bo(j)s(j+1)

I + S(j+1) b3(j)

sbb(j) = s (j+r)ufr (j) +2sxb1i+1)uo(j) *roo13+1)

lbo (j)s (j+1)uo (j) + bo (j)s" (j+r) + s 1i+t) xo (j+1) J 
2

À + s(j+1) b
0

( j )

sxb (N) = SaO (N) = 0

The (approximately) optimal dual loss is now given by

(4 .24)

(4 .2s)

(4.26)

(r+1tr)
(r+11 r)

to (u (t) ) =Àu (r) + J* (r+1)

u (t) using for Ínstance a quasi-Newton method. Now

and P(t+1lt) are calculated from (4.L4) - (4.16).

2

step 8. The dual loss (4.26) is minimized with respecÈ to
/*.
\s

4.3 Some Modifications of the Alqorithm

The given"algorithm demands a fix terminar time N. However
the problem, as stated j-n sectj-on 2 | is to f ind a controller
working in a steady state situation. The idea is then to
assume that the difference between the terminal time N and
the presenL Lirne L is, not necessarlly constant, but arways
large. It is shown below that it is then not necessary to
sum from t*l to N in (4.22) when forming the dual loss, but
it is sufficient to sum from t*l to t*n for some fixed n.



Make the following assumptÍons.

Define S=Iim S(j), where S(j) is given by (4.13).
j*--

Given n, it is supposed that N j-s always so much

larger than t*n so that S(t+n) n¡ S.

(i)

( ii)

( iii)

16

(4 .27',)

Let L be given by (4.L2) with S substituted for
S (j+1) . Suppose that n is chosen so large that.

(r-ô(tIr)L)t-t *(r+ttr) ^, o.

Suppose that
Þ (t+n I t+n) æ

P (t.+n I r+n-l )

lim Þ(jlj).
j++-

Þ (j I j-r) andAi Iim
j++-

Since the Riccati equation giving S (j ) normally converges
in a few steps (for low order systems) then assumption (f)
is reasonable for a controller designed to work over long
time intervals.

Since L is designed by optimal control methods it wílI give
an asymptotically stable closed loop system. Therefore n can
always be chosen such that (4.27) is fulfilled for given
ôttlt) and *(t+rlt). rt is however not possible to choose
the same n for alf ô(tlt) and *(t+llt). rn assumption (ii)
it j-s supposed that there is an n such that (4.27 ) is
f ul-f il1ed for all A ttltl and * (t+I I t) that will occur.
Simulations have shown that this assumption is mostly
fulfilled.

ff assumption (fi) is fulfilled then the nominal trajectory
{xO(j)i,{uO(j)} tend to zero, which means Lhat the system
(4.20) becomes time invariant. This means, in turn, that
thc limits lim ntjlj-fl and lim P(jlj) exist. Therefore

j++- j++æ
it is always, if necessary, possible to j-ncrease n so that
assumption (ifi) is fulfilled.
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Suppose assumptlons (i), (ii) and (iii) are fulfilled.
ït will be shown that summation from t*l to t*n i_n (4.22)
will give the same control u(t) as summation from t+l to N.Furthermore it is sufficj_ent to solve (4.24) and (4.25) inthe interval [t+t, t*n] with sxb (t+n) = sbb (t+n) = 0.

Assumptions (i) and (ii) e
in rhe inrerval rt+n, Nr. ï"ï.11,'":å'il.;rl i.rrlîj:]"^, 

o

that s*u ( j ) and sr,¡ ( j ) is then equal to zero in the sameinterval' Equation (4.13) shows that s(j) is independent ofu(t). It therefore foltows that B(j) is independent of u(t)in the interval I t+n, N] . Assumpti_on (iii) and (ii) ensurethat p tj tj-rl and Þ(j rj) roo are independent of u(t) in theinterval [t+n, N]. Therefore the sum
Nr rÞrjrj_1) _Þ'(jtj)) s(j)j=t*n+l \'

in (4.22) is independent of u(t) and can be dÍsregarded whenu(t) shall be determined to minimize (4.26).

Motivated by the results above we change the given argorithmso that t+n j_s substituted for N j-n (4.22). Furthermore(4'24) and (4-25) will be sorved onry in the interval
lt+t, t*nl with s*r, (t+n) = tbb (t+n¡ = 0. ïn step 4 and 6L is substituted for L(t) and L(j). These modifications
eliminate the terminal time N from the argorithm.

one more modification of the given algorithm is made.attttl = 0 then there is no steady state sorution toTherefore if lôttltl I f s for some e > 0 rhen Atttrlput equat ro e. s j-sn (6 f tl r) ) .

Tf
(4. 13) .

is

Finally a few words have to be sai-d about the criterion(2.3) that was to be minimized. Since, in this case,
y (t) - x (t) Lhe r.odif ied argorithm wirr minimize the
criterion
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2;r-E Wy (N) +t

t

N-
E

t=

1

0
w y2 (t) + 

^oz 
tt) 

J

for large N. The effects occurring at the end of the time
interval, when the RÍccati equation (4.13) has not reached
its steady state solutÍon, are not taken into account. The
algorlthm ís therefore (approximately) minÍmi zing

lim
N++ø

ir1
ï-



19

5 STMULATIONS

Let the two controllers described in section 3 and 4 be

called Reg I and Reg 2 respectively. The controllers were

applied to the system described by equations(2.1) and
(2.2) with noisecovarÍance Q = 1. Observe that the
controllers are not allowed to be based on eq (2.2) but
rather on eq (3.1).

The following initial conditions v¡ere chosen:

The system

y(0) = 0

Reg 1

 b(0) = 2

P5(0) =1

Reg 2

l to t-rt
6'to r-rl
P(01-r)

0

2

ï

SÍmulations showed that the followj-ng parameter values
give satj-sfactory results.

Reg I Reg 2

R - 0.01

^/w 
= 0. 01

e = 0.1

R 0. 01

The system was simulated from t = 0 to t - 300. The simula-
tion was done 25 times for each controller with 25 inde-
pendent noiserealizations {e (t) }l:3 . The same 25 realiza-
tions were used for Reg I and Reg 2.

Let the value of the costfunctional at the
i be v(i). Then the mean value of the cost

end of simulation
is estimated as

(s. r)IT
25
TV

i=1
(i)

M

Let o be the standard deviati-on of Vv
of the costfunctional at the end of a

i-s estimated as

, where V is
simulation.

the value
Then o'
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25r t(v
i=l

(i) 2 (i)
MV l

o (5 .2)v
24

The value of or, gives a measure of the magnitude of the
expected difference between M and the value of V in a

single sj-mulation. Since the simulations are independent
the standard deviation of M can be estimated as

o

Reg 1 was

simulated

I=-
'/ß

Ivl
ov ( 5. 2a)

simulated for n = 1 and 2 while Reg 2 was

for n = 1, 2 and 20. The resul-ts are given below.

which can serve as an estimate of the error in M.

Reg I Reg 2

11 =2 rì=1 11 =20 n=2 n=1

M * o
M

475 * L4 593 t 26 454 x 13 462 * L2 496 * 14

ov 68 130 65 61 69

CPU-time 16.5 4.1 33.4 6.0 5.6

The CPU-tj-me is given in seconds for one simulation on

UNIVAC 1108. However, the simulations were performed using a

large simulation package, and a part of the CPU-tj-me is due

to the adminístration of this package. Therefore the fígures
are not quite accurate, but may serve as an ìndication of the
computation time required for each case. For Reg 2 with n = 20

the condition (4.27) was fulfilled (the left member was less
than 10-6) for every t € [0, 300] but for n = 2 and 1 it
\^/as never fulfilled. Despite this the performance for n = 2

was almost as qood as for n = 20, but the computation time
was much shorter. This may serve as another motj-vation for
taking n = 2 in section 3.
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Intuitively, for n = 1, Reg I and Reg 2 should be very
much a1Íke, since both are minimizing a one-step 1oss.
There are, however, certain differences. For Reg 2 with
n = 1 the costfunctional to be minÍmized is given by

to(u(t)) - ru (r) +sf [*ttrr)+A(rtr)u(r))2 +e,.o(ttt)u2 (r)+R ] (s.3)

.Jo[u(t)) does, in this case, not depend on the future
observation program, which means that the contror has no
dual- effect. However, .ro(u(t)) depends on the present
uncertalnty of the parameter estj-mate pbb(tlt). This makes
the control-ler a "cautious contro11er".

For Reg I with n = I the cost functional is given by

[v(tl *Attl,r(t))2 + o *,r2(r)pb(L) (s.4)IV

This also gives a "cautious controller". The maj-n
differences between Reg I and Reg 2 for n = 1 are:

(i)

(ii)
À was chosen nonzero in (5.3) .

(5.3) is minimi-zed numerically while (5.4) is
minimized analytically.

(üi) Pbb(tlt) j-s not the same as pO(t) even though
simulations have shown that they are very much
a1Íke.

(iv) ïn Reg 2 $(rlr) | is trounded from betow.

rt is believed that the difference in performance is mainly
due to (iv). Indeed, simulations of Reg t have shown that
sometj-mes when â ttl is very close to zero it happens that
u (t) becomes too small to give a good performance and a
turn off phenomenon occurs.

A comparison of the CPU-time for Reg 1 and Reg 2 with n = 2

shows that Reg 2 requires much less time. Most of the
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computatj-on time for Reg 1 is however used by a rootfinding
algorithm. This means that the computation t,ime is very
insensitive to the number of parameters to be estimated.
For Reg 2, on the other hand, the computation time
increases rapidly with the number of parameters. Further-
more the rootfinding algorithm of Reg I is believed to be

not as efficient as it could be. I^fith a better such
algorithm the computation time can be reduced.

Another important aspect on the regulators is the number of
parameters to be chosen in advance. For Reg I there is only
one, R. This has to be chosen for Reg 2 as well. But wíth
the latter regulator there is also e to choose and 

^/W.
On the other hand ¡,/W adds to the f lexibility of Reg 2, and

can be used to improve i-ts performance.

For flgures I to 5 a typical simulation is shown in the
interval t € [60, 180]. This is the most int'eresting piece'
since the gain changes sign twice. The same noise reallzation
is used for the two controllers and Reg t has ¡ì = 2 while
Reg 2 has tì = 2 and n = 20.

On all pages corresponding curves for the three cases are
shown with Reg I on topr Reg 2 with n = 2 in the middle and

Reg 2 wÍth n = 20 at the bottom. The curves are all
surprisingly similar. Yet Reg 1 and Reg 2 ate calculated
in completely different ways and use dj-fferent estimation
methods. It is only around the sign changes of t.he b-parameter
that there are some differences.

The estjmation method of Reg I responds more quickly when

the b-parameter changes sign from positive to negative.
After a while, however, the estimates are the same agai"n. For
L¡ i¡rureasing boLlr esLimaLion mel-hods give step-wise changes

in the estimate. This is because the closed-loop system is
unstable if b anA A are constant and b > 2t. The output will
then increase and this will give a large correction of the
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^estj-mate b. This fact also explains why the estimate Ls
much more accurate around the up-crossings of zero than
around the down-crosslngs.

Another difference is that around the zero-crossings of b
Reg 1 and Reg 2 with n = 2 give smaller j-nput,s than Reg 2

with n = 20. This is because wíth a small number of steps
to go not so much can be gained by making the input large
to get a good estimat,ion.
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2

Reg 1,
11 =2

Reg 2,
n=2

Reg 2,
n=20

0

-2,
60. 90 l 20, r t0. I 80.

2

0.

0.

2,

Figure 1. The parameter b and Íts estimate â
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0.

Reg

n=

Reg

I
2

0

,2

2

0.

n=

Reg 2,
n=20

0

0

60 s. I 2{r. t5f). r80.

Figurc 2. Thc cstimatod varianco of b.
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50.
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3J0

250

1æ.

m.

1!0.

250.

rã0.

50,

Reg 1,
n=2

Reg 2,
n=2

Reg 2l
n=20

50.

3$.

60. s. l20. r3().

FÍgure 3. The lossfunction.

1ß0.
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-2
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-2. C

2.5
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Reg 1,
n=2

Reg 2l
n=2

Reg 2l
n=20

60. grt 'r 20. I co. r 60.
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Fi-gure 4. The output y.
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t0.

-t0.

-30

t0.

-t0.

-30.

r0.

-t0.

-30.

Reg L,
n=)

Reg 2,
n=2

Reg 2,
n=20

60. s. r20. r30. rB0.

FÍgure 5. The input u.
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6. CONCLUSIONS

The most striking result of the comparison in this report
is the similarity j-n behaviour of the regulators. Even
n = I in Reg 1 gives a fairly good performance of the
system. This j-ndicates that other qualities than small
differences in the resultJ-ng loss may be of interest when

choosing between suboptimal dual controllers. It is thus
of course desÍrable to have as few parameters as possíble
to choose before applying the regulator. In that respect
Reg I is good, because it has only one, while Reg 2 has two.
AIso, in some applications, the execution time on a computer
may be critical. For the simple example of this report
Reg 2 with n = 2 is much faster than Reg 1, but the
executj-on time for Reg 2 will increase rapidly with the
number of parameters and will probabl-y exceed that of Reg I
already for Lwo or maybe three parameters.

A well-known and much faster alternative is to use
with n = I, but add an extra probÍng signal to the
to assure a good estimation. Thís has.been done by
authors. Then again there j-s an extra parameter to
i-.e. the amplitude of the extra input.

Reg 1

input
several
choose,
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