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A COMPARISON OF TWO SUBOPTIMAL DUAL CONTROLLERS ON A

FIRST-ORDER SYSTEM

Lars Pernebo and Jan Sternby

Abstract

Two suboptimal dual controllers are applied to a first
order linear system. The first controller is developed

by Sternby and the second by Tse, Bar-Shalom, and Meier.
The second controller is slightly modified to serve in a
stationary situation. The only unknown parameter of the
system is the gain, which varies sinusoidally. It is

shown that the effect on the system of the two controllers
is much the same even though they are based on completely

different calculations.
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1. INTRODUCTION

The concept of dual control was introduced already by
Feldbaum (1960). Still very few cases are known,
however, where the optimal dual control can actually
be calculated. It is therefore necessary to find
suitable approximations that will give good suboptimal
dual controllers. These will in most cases have to be

tested by simulations.

The aim of this report is to compare the performance of
two suboptimal dual controllers on a first order single-

-input single-output system with a time-varying gain.

The first controller is obtained by minimizing an approxi-
mation to the expected value of the sum of squares of

the output in the next two steps. The second controller

is a slight modification of the one described by Tse and
Bar-Shalom (1973).

The report is organized as follows. The system is defined
in chapter two, where also the optimality criterion is
specified. Chapters three and four describe one regulator
each. In chapter five the simulation results are shown and
discussed. Finally some concluding remarks are given in

chapter six.



2. THE SYSTEM AND THE CRITERION

Consider a system governed by the difference equation

y(t+l) - y(t) b(t)u(t) + e(t+l) (2.1)

with
b(t) =1+ 1.5 sin 0.04et (2.2)

The noise e(*) is a sequence of independent, Gaussian
random variables with zero mean and variance Q. Notice
that the sign of the gain is not constant. This makes the
system difficult to control.

Now, let the purpose of control be to minimize the criterion

N
lim £ £ = y2(k) (2.3)
N-o k=1

i.e. the output should be kept as close to zero as possible.
Finally, the admissible control strategies must be specified.
For an admissible control strategy the control signal at
time t, u(t), may be a function of ali the outputs observed
up to time t, i.e. y(t), y(t=1),..., all previously

applied inputs u(t-1), u(t-2),..., and the mean and
variance of the noise. The coefficient b(t) is considered

as completely unknown to the reqgulator. Thus the eqation
(2.1) is supposed to be known, but not eqgation (2.2). A gocd
control strategy will therefore include some form of

estimation of b(t).

The problem of finding an admissible control strategy for
the system (2.1) that minimizes the criterion (2.3) is,
however, too difficult to solve. Several suboptimal control
strategies for this kind of problem have been proposed in
the literature. In this report the performance of the
system is examined when using two different suboptimal

control strategies.



3. DESCRIPTION OF THE FIRST CONTROLLER

One suboptimal control strategy is obtained by minimizing

- [ reon)

l

with n = 2 at every time t. The example in Sternby (1976)

may serve as a motivation for doing so, even if that

example is not very practical. There, however, the difference
between using n = 2 or a larger n is small, while the

regulator obtained with n = 1 is not as good.

In order to estimate b(t) some kind of model is needed. This

is taken as
b(t+l) = b{t) + v (t+1) (3.1)

where v () is a sequence of independent Gaussian random
variables with zero mean and variance R. The sequences e(*)

and v(-) are assumed to be independent.

Now take b(-) as the state that obeys equation (3.1) and
y(+) as the observation according to equation (2.1). It is
then possible to set up a Kalman filter to estimate b(-:) as
in Astrém, Wittenmark (1971). Denote the estimate at time t
of b(t) by g(t) and its variance by Py, (t). Then

B(t+1) = D(t) +K(t) [y (t+1) -y () - b (t)u(t)] (3.2)

Py (£)+Q
Pb(t+l) = 3 + R (3.3)
u(e)? Py (t) +0

Py (t) « u(t)
K(t) = > (3.4)
w(L)? Py (L) +Q

A
A good starting point for the filter is b(0) = E(b(0)),
P, (0) = Var(b(0)). If the distribution of b(0) is not known



Pb(O) should be taken large, so thatAg(t) can take large
steps in the beginning. Notice that b(0) = 0 is a poor
choice if the regulator gives u = 0 for ﬁ = 0, since the
result will then be that B(t) = b(0).

The minimization of Vl and v, for the system (2.1) assuming
model (3.1) for b(t) is discussed in Astrdm, Wittenmark
(1971). Using their results it can be shown that for our

case the minimal value V; of Vl is
* A 2 2
V, = min {[y(t)-+b(t)u(t)] + Q + u(t) Pb(t)} (3.5)
u(t)

The corresponding u(t) is

uf () = - bery (e) (3.6)

A 2
b (t) +Py (t)

This is thus a cautious, but non-dual controller, since it
takes into account the present uncertainties, but not the

future observation program.
The minimal value V; of v, is given by

v; = min {[y(t)+]g(t)u(t)]2+Q+u(t)2 P () +
u(t)

P, (t+1) y(t+1)?
| 7o)

+ E [Q + } (3.7)

A 2
b(t+1) +Pb(t+l)

The first three terms are the expected loss due to y (t+1)
and the last term is the conditional expectation of the
minimal loss from y (t+2) given Ft==[y(t), y(t=1), ...
oo, u(t-=1), u(t-2),... 1.

The basic random variable in the expectation is y (t+1),
whose conditional distribution given Ft is Gaussian.
However, y(t+l) occurs in both the numerator and in the
denominator (through g(t+l)). It is therefore not possible



to get a simple analytical expression for the expectation.
In Sternby (1977) the following approximation was suggested

P, (t+1)y (£+1)2 E [Py (t+1)y (£+1) 21 F ]
E [ ’ F }m (3.8)
t

A 2 A 2
b (t+1) +Pp (t+1) E[b(t+l) +Pb(t+1)|Ft]

It originates from a series expansion of the denominator.
But using (3.2) - (3.4) gives for the denominator
A
E[b(t+1)2 4P (t+1) 1 F) = B()2 42 (£) +R

Now insert the approximation into (3.7) to get

* ) A 2 . 2
vi min { ([y(t) +b(t)ul(t) 12+0+u(t) P(t)) :
u

2
P, (t) - Q+R(u(t)® P, (t) +0Q)
e 2 ) +e} @9
(b(£)% +P, () +R) (u(t)2 P, (t) +Q)

To find the minimum the derivative w.r.t. u(t) is calculated,
and its zeroes are determined using a root finding algorithm.
Finally the minimum is found by comparing the losses for

these values of u(t). For further details about this regulator
refer to Sternby (1977).



4. DESCRIPTION OF THE SECOND CONTROLLER

4.1 Preliminaries

The second controller to be considered is described in
Tse, Bar-Shalom (1973). Some of the theoretical background

can be found in Tse, Bar-Shalom, Meier (1973).

The system considered in Tse, Bar-Shalom (1973) is

described by

x(t+1l) = A(t,6(t)) x(t) + B(t,0(t)) u(t) + e(t+l)
(4.1)
y(t) = c(t,8(t)) x(t) + w(t), t =20

where the control u(t) is scalar and ©(t) € RS is a vector

of unknown parameters described by the Markov process
8 (t+l) = D(t) ©(t) + v(t+l) t>0 (4.2)

The vectors {x(0),8(0),e(t),w(t),v(t), t>0} are assumed to
be mutually independent Gaussian random variables with

known statistics

x(0) ~ N(k(0), B__(0))

8(0) ~ N(8(0), Py (0))

e(t) ~ N(0, Q(t)) (4.3)
Ww(t) ~ N(0, G(t))

v(t) ~ N(0, R(t))

The unknown parameter 6 (t) is assumed to enter linearly in
A(t,+), B(t,*) and C(t,").

The objective is to find an admissible control sequence
{u(t)}f;é such that the cost functional

J=E [(x(N)—o(N))T W(N) (x(N)-p (N)) +

(4.4)
N-1

+ £ (x(k)-p(k))
k=0

T w@ (x®=-p X)) +2 (k)uz(k)]



is minimized. It is assumed that W(k) 2 0, a(k) > 0 and
that the reference trajectory {p(k)}g=0is given a priori.

Below, the algorithm in Tse, Bar-Shalom (1973) will be
described when applied to the system in chapter 2. In this
special case most of the formulas of the algorithm take a

much simpler form.

The system (2.1) can be described by the scalar equations

Xx(t+1l) = x(t) + b(t)u(t) + e(t+l)
(4.5)
y(t) = x(t), t>0
Since the variation of b(t), given by (2.2), is considered

as unknown, b(t) will instead be supposed to be given by

b(t+l) = b(t) + v(t+l), t > 0. (4.6)

The objective is to minimize the criterion (2.3). However,
for this problem to fit in with the formulation in Tse,
Bar-Shalom (1973) let us start with considering the cost

10

functional
N-1
J=E[Wx2(N) + 5 W x%(k) +)\u2(k)] (4.7)
k=0
The system (4.5) - (4.6) can be written
x(t+1)) _ (1 u(t))/x(t)) e (t+1))
(b(t+l)> = (o i )(b(t)/ * <V(t+l)} i Ba)

x(t)

v = a o) (4. 8b)
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4.2 The Algorithm

Step 1. Denote the present time by t and suppose that the

A A
ggt:z:i;) and P(tlt-1) are given. Here <EEE:E:%;>
x(t)

is some estimate of (b(t)) given Vt_l=={y(t-l),y(t—2),...}.

estimates (

Analogously P (tlt-1) is some estimate of the covariance of
x(t) ; .
(b(t)) given yt—l' Furthermore, suppose that y(t) is

available.

A
Step 2. Compute (EEE:E;) and P(tlt) using a second order

filter. See e.g. Jazwinski (1970). Since (4.8b) is linear
this will be identical to a Kalmanfilter, which in this

case gives

R(tlt) = y(t) (4.9)
P_, (tlt=-1)
_ _ xb _ 4 _
Btlt) = B(tit-1) + b (eTED) (v (t) - R(t1t-1)) (4.10)
0 0
P(tlt) = 2 (4.11)
P% (tlt-1
0 Py (Ele-1) =572 ;t:t—l;
XX
P P
The matrix P is partitioned as P = xx X0 .
Pyb  Prp

Step 3. Solve the optimal control problem for the system
z(3+1) = z(j) + B(tlt)u(j) j=t,...,N-1

with the cost functional
- N-1 -
T=Wz2MN) + ¥ wz2(3) + A 5A(§).
j=t
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The solution is given by

u(i) = - L(3j) z(3) j=t,...,N-1
where
S(j+1) B(tlt)
L(j) = 3 (4.12)
A+ S(3+1) B (tlt)
. A2
S
S(j) = (l - (3+1) b (zlt) ) S(j+1) + W S(N)=W (4.13)
A+S(5+1) B2 (tlt)

Step 4. In the sequel the so called remaining dual cost will
be calculated. Given ﬁ(tlt) and B(tlt) it will be a function
of u(t) only. The desired value of u(t) is then obtained by
minimizing the dual cost numerically with respect to u(t).
As a starting value for the numerical minimization algorithm
is chosen u(t) = - L(t)ﬁ(tlt).

Step 5. (The calculation of the remaining dual cost as a
function of u(t) starts here.)

A

X(t+1]t) .
Calculate (6(t+l|t)) and P (t+l|t) using a second order

predictor. (See e.g. Jazwinski (1970).) Since, in this case,

the right member of (4.8a) is linear (u(t) fixed) we get

R(E+11t) = {(tit) + Brelt)u(t) (4.14)

Be+11t) = B(tle) (4.15)
1 u(t) 1 0 QO 0

P(t+llt) = P(t|t) + (4.16)
0 1 u(t) 1 0 R
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Step 6. Compute a future nominal trajectory {xo(j)};it+1,
. -1
{uO(J)}I;Lt+1 through
Xo(3+1) } [ 1 uy(3) xo(3) | (4.17)
bo(j+l) 0 1 bo(j) '
uo(j) = = L(3) x%p(3) (4.18)
with starting point
X (t+1) R(t+llt)
by (t+1) | = | B(t+llt)
Here {L(§)} ! . is given by (4.12)
DY is 9 y (4.12).
Step 7. Write
[ x(3) ] [ X5 (3) ] [ 6x (3) ]
_ N (4.19)
b(3) bg (J) &b (3)

u(j) = uo(j) + du(j) j = t+1,...,N

The deviations from the nominal values are due to the noise
and the fact that future measurements will give other
estimates of b(j), j>t+1l, which will give future control
laws that differ from L(j), j>t+1. It is the fact that
the algorithm takes the possibility of future changes of the
unknown parameters into account, that makes the control

strategy dual.

Introducing (4.19) into (4.8a) gives

(6x(j+1)J (1 u0<j)] 6x(3)] [by@)]
6b (j+1) 0 1 &b (3) 0

6b(j>6u(j)] {e(jﬂ)J
+

0 v (3+1)

(4.20)
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The remaining cost at time t + 1 can be written

N-1
J(t+l) = E [w M) + & Wx2() + A u2(j)] =
j=t+1

N-1
- E [w X2 4+ T Wxo(3) + A ug(j)} +
j=t+1

-+

E [zw xo (M) 6x(N) + w(ex)? +

N-1
+ I 2W xo(j)éx(j)-FW[6x(j))2-+2Au0(j)6u(j)-Fl(éu(j))z]
j=t+1

(4.21)

Here the first term does not depend on 6u(j). Now the second
N-1

j=t+1
a dynamical constraint. This is done using dynamic programming

term is minimized with respect to {éu(j)} using (4.20) as
with retention of up to second order terms in the deviations
6x(3), 6b(j) and éu(j).

The (approximately) optimal value of J(t+l) associated with

the given nominal trajectory is

J* (t+1) = S (t+1) R2(t+1l1t) +

N
+ tr [ b3 (ﬁ(jlj-l)-P(jlj)> S(j)]r (4.22)
j=t+1
where P (jlj-1) and P(jlj) are the estimation-error covariances
given by the Kalman filter for the system (4.20) with

8b(j)éu(j) put equal to zero. The starting value is
P(t+llt) = P (t+1llt).

_ ( S(3) Sy, (3) ]

S(j) = _ _ (4.23)
be(J) Sbb(J)

where S(j) is given by (4.13) and
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be(j) = S(j+l)u0(j) + be(j+l) -

) (uy (IS (3+1) +8, (3+1) )by (3) +S(3+1)x, (3+1)

: bo (3)8 (3+1)
A+ S(3+1) bo(j)

(4.24)
Spp(3) = S(+1)ug (3) +25, (3+1)ug(3) +5,_ (3+1) -
[0y (3)5 (+1)ug (3) +by (3)S,, (3+1) +S (3+1)xy (3+1)1°
- = (4.25)
A+ S(3+1) b (3)
Sg, M) = 8 (M) =0
The (approximately) optimal dual loss is now given by
g (u(t)) = au?(£) + I* (£+1) (4.26)

Step 8. The dual loss (4.26) is minimized with respect to

Q(t+1|t)>

u(t) using for instance a quasi-Newton method. Now <ﬁ(t+llt)

and P (t+1llt) are calculated from (4.14) - (4.16).

4.3 Some Modifications of the Algorithm

The given algorithm demands a fix terminal time N. However
the problem, as stated in section 2, is to find a controller
working in a steady state situation. The idea is then to
assume that the difference between the terminal time N and
the presenl Liwme L is, not necessarily constant, but always
large. It is shown below that it is then not necessary to
sum from t+l1 to N in (4.22) when forming the dual loss, but

it is sufficient to sum from t+1 to t+n for some fixed n.
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Make the following assumptions.

(i) Define S =1im S(j), where S(j) is given by (4.13).

jor—co
Given n, it is supposed that N is always so much
larger than t+n so that S(t+n) =~ S.

(ii) Let L be given by (4.12) with S substituted for
S(j+1). Suppose that n is chosen so large that

(L-Btle)n)™ L &(e+11t) ~ 0. (4.27)

(iii) Suppose that P (t+nlt+n-1) ~ 1lim P(jlj=1) and

P(t+nlt+n) ~ 1lim P(317). Jriee
j>+oo

Since the Riccati equation giving S(j) normally converges
in a few steps (for low order systems) then assumption (i)
is reasonable for a controller designed to work over long

time intervals.

Since L is designed by optimal control methods it will give
an asymptotically stable closed loop system. Therefore n can
always be chosen such that (4.27) is fulfilled for given
ﬁ(tlt) and Q(t+l|t). It is however not possible to choose
the same n for all Q(tlt) and Q(t+llt). In assumption (ii)
it is supposed that there is an n such that (4.27) is
fulfilled for all ﬁ(tlt) and ﬁ(t+l|t) that will occur.
Simulations have shown that this assumption is mostly
fulfilled.

If assumption (ii) is fulfilled then the nominal trajectory
{xo(j)},{uo(j)} tend to zero, which means that the system
(4.20) becomes time invariant. This means, in turn, that

the limits 1im P (jlj-1) and 1lim T (jlj) exist. Therefore
J>+oo >+
it is always, if necessary, possible to increase n so that

assumption (iii) is fulfilled.



Suppose assumptions (1), (ii) and (iii) are fulfilled.

It will be shown that summation from t+1 to t+n in (4.22)
will give the same control u(t) as summation from t+1 to N.
Furthermore it is sufficient to solve (4.24) and (4.25) in
the interval [t+1, t+n] with be(t+n) = Sbb(t+n) = 0.

17

Assumptions (i) and (ii) ensure that uy(3) ~ 0 and xg(3) =~ 0

in the interval [t+n, N]. By (4.24) and (4.25) it follows
that be(j) and Sbb(j) is then equal to zero in the same
interval. Equation (4.13) shows that S(j) is independent of
u(t). It therefore follows that S(j) is independent of u(t)
in the interval [t+n, N]J. Assumption (iii) and (ii) ensure
that P(jlj-1) and P(jlj) too are independent of u(t) in the
interval [t+n, N]. Therefore the sum

N

I (P(313-1) =B (313)) 5(3)

J=t+n+1

in (4.22) is independent of u(t) and can be disregarded when

u(t) shall be determined to minimize (4.26).

Motivated by the results above we change the given algorithm

so that t+n is substituted for N in (4.22). Furthermore
(4.24) and (4.25) will be solved only in the interval
[t+1, t+n] with be(t+n) = Sbb(t+n) = 0. In step 4 and 6
L is substituted for L(t) and L(j). These modifications

eliminate the terminal time N from the algorithm.

One more modification of the given algorithm is made. If
Q(tlt) = 0 then there is no steady state solution to (4.13)
Therefore if |B(tlt)| < ¢ for some & > 0 then B(tit) is
put equal to e-sign(ﬁ(tlt)).

Finally a few words have to be said about the criterion
(2.3) that was to be minimized. Since, in this case,
y(t) = x(t) Lhe modified algorithm will minimize the

criterion
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N-1
T OWyZ(t) + }\uz(t)]

J=E [w v2(N) +
£=0

for large N. The effects occurring at the end of the time
interval, when the Riccati equation (4.13) has not reached
its steady state solution, are not taken into account. The
algorithm is therefore (approximately) minimizing

lim Y J.
N->+co



19

5. SIMULATIONS

Let the two controllers described in section 3 and 4 be
called Reg 1 and Reg 2 respectively. The controllers were
applied to the system described by equations (2.1) and
(2.2) with noisecovariance Q = 1. Observe that the
controllers are not allowed to be based on eq (2.2) but

rather on eq (3.1).

The following initial conditions were chosen:

The system Reg 1 Reg 2
v (0) = 0 () = 2 R(01-1) =
P, (0) =1 B01-1) =
P(0Ol-1) =

Simulations showed that the following parameter values

give satisfactory results.

Reg 1 Reg 2

R = 0.01 R = 0.01
A/W = 0.01
e = 0.1

The system was simulated from t = 0 to t = 300. The simula-
tion was done 25 times for each controller with 25 inde-
pendent noiserealizations {e(t)}igg . The same 25 realiza-

tions were used for Reg 1 and Reg 2.

Let the value of the costfunctional at the end of simulation

(1)

i be V . Then the mean value of the cost is estimated as
25 .
M= ¥ vid), (5.1)
25 .
i=1

Let oy be the standard deviation of V, where V is the value
of the costfunctional at the end of a simulation. Then 0y

is estimated as
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4

25 . .
ERIVASERE A0S
o, = \| =Lt . (5.2)
24

The value of oy gives a measure of the magnitude of the
expected difference between M and the value of V in a
single simulation. Since the simulations are independent

the standard deviation of M can be estimated as

oy = VoE g (5.2a)

which can serve as an estimate of the error in M.

Reg 1 was simulated for n = 1 and 2 while Reg 2 was

simulated for n = 1, 2 and 20. The results are given below.

Reg 1 Reg 2
n=2 n=1 n = 20 n =2 n=1
M £ oy 475 + 14 593 % 26 454 + 13 462 + 12 496 + 14
Oy 68 130 65 61 69
CPU-time 16.5 4.1 33.4 6.0 5.6

The CPU-time is given in seconds for one simulation on

UNIVAC 1108. However, the simulations were performed using a
large simulation package, and a part of the CPU-time is due
to the administration of this package. Therefore the figures
are not quite accurate, but may serve as an indication of the
computation time required for each case. For Reg 2 with n = 20
the condition (4.27) was fulfilled (the left member was less
than 10°°) for every t € [0, 300] but for n = 2 and 1 it
was never fulfilled. Despite this the performance for n = 2
was almost as good as for n = 20, but the computation time
was much shorter. This may serve as another motivation for

taking n = 2 in section 3.
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Intuitively, for n = 1, Reg 1 and Reg 2 should be very
much alike, since both are minimizing a one-step loss.
There are, however, certain differences. For Reg 2 with

n = 1 the costfunctional to be minimized is given by
A
Ip®)) = w? () +sI (keI belvu®)? +p, (tltu (©4R] (5.3)

JD[u(t)) does, in this case, not depend on the future
observation program, which means that the control has no
dual effect. However, JD(u(t)] depends on the present
uncertainty of the parameter estimate Pbb(tlt). This makes

the controller a "cautious controller".

For Reg 1 with n = 1 the cost functional is given by

vy = (ve) +Bmu))? + o + u?(t)p, (8) (5.4)

This also gives a "cautious controller". The main

differences between Req 1 and Reg 2 for n = 1 are:

(i) A was chosen nonzero in (5.3).

(ii) (5.3) is minimized numerically while (5.4) is

minimized analytically.

Uii)Pbb(tlt) is not the same as Pb(t) even though
simulations have shown that they are very much

alike.

A
(iv) In Reg 2 |b(tlt)]| is bounded from below.

It is believed that the difference in performance is mainly
due to (iv). Indeed, simulations of Reg 1 have shown that
sometimes when Q(t) is vefy close to zero it happens that
u(t) becomes too small to give a good performance and a

turn off phenomenon occurs.

A comparison of the CPU-time for Reg 1 and Reg 2 with n = 2
shows that Reg 2 requires much less time. Most of the
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computation time for Reg 1 is however used by a rootfinding
algorithm. This means that the computation time is very
insensitive to the number of parameters to be estimated.
For Reg 2, on the other hand, the computation time
increases rapidly with the number of parameters. Further-
more the rootfinding algorithm of Reg 1 is believed to be
not as efficient as it could be. With a better such

algorithm the computation time can be reduced.

Another important aspect on the regulators is the number of
parameters to be chosen in advance. For Reg 1 there is only
one, R. This has to be chosen for Reg 2 as well. But with
the latter regulator there is also ¢ to choose and A/W.

On the other hand A/W adds to the flexibility of Reg 2, and

can be used to improve its performance.

For figures 1 to 5 a typical simulation is shown in the
interval t € [60, 180]. This is the most interesting piece,
since the gain changes sign twice. The same noise realization
is used for the two controllers and Reg 1 has n = 2 while

Reg 2 has n = 2 and n = 20.

On all pages corresponding curves for the three cases are
shown with Reg 1 on top, Reg 2 with n = 2 in the middle and
Reg 2 with n = 20 at the bottom. The curves are all
surprisingly similar. Yet Reg 1 and Reg 2 are calculated

in completely different ways and use different estimation
methods. It is only around the sign changes of the b-parameter

that there are some differences.

The estimation method of Reg 1 responds more guickly when

the b-parameter changes sign from positive to negative.

After a while, however, the estimates are the same again. For
b increasing bolh eslimalion methods give step-wise changes
in the estimate. This is because the closed-loop system is
unstable if b and Q are constant and b > 2@. The output will

then increase and this will give a large correction of the



A
estimate b. This fact also explains why the estimate is
much more accurate around the up-crossings of zero than

around the down-crossings.

Another difference is that around the zero-crossings of b
Reg 1 and Reg 2 with n = 2 give smaller inputs than Reg 2
with n = 20. This is because with a small number of steps
to go not so much can be gained by making the input large
to get a good estimation.
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6. CONCLUSIONS

The most striking result of the comparison in this report

is the similarity in behaviour of the regulators. Even

n =1 in Reg 1 gives a fairly good performance of the
system. This indicates that other qualities than small
differences in the resulting loss may be of interest when
choosing between suboptimal dual controllers. It is thus

of course desirable to have as few parameters as possible

to choose before applying the regulator. In that respect
Reg 1 is good, because it has only one, while Reg 2 has two.
Also, in some applications, the execution time on a computer
may be critical. For the simple example of this report

Reg 2 with n = 2 is much faster than Reg 1, but the
execution time for Reg 2 will increase rapidly with the
number of parameters and will probably exceed that of Reg 1

already for two or maybe three parameters.

A well-known and much faster alternative is to use Reg 1
with n = 1, but add an extra probing signal to the input
to assure a good estimation. This has been done by several
authors. Then again there is an extra parameter to choose,

i.e. the amplitude of the extra input.
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