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Stochastic Design

The deterministic design procedure can of course be used also when
disturbances are acting on the plant. The choice of observer polynomial
will, however, be of importance not only during an initial transient period.
If it is assumed that w(t) is given by (3), then it is well-known that the
optimal choice of observer polynomial is

-1

T(q™h) = cioly,

in the sense of minimum variance. This is explicitely demonstrated in [5] as
a generalization of the result on minimum variance regulators in [8].



ITI. CLASS OF ADAPTIVE CONTROLLERS

A general adaptive control scheme will be defined in this section. The
scheme is a self-tuning version of the controller described in section II.
It will be shown to include eartier proposed MRAS and STR as special cases.

The plant is still assumed to satisfy (1). The following assumptions are also
introduced.

A1) The number of plant poles n and zeros m are known.

AZ2) The time delay k is known and the sign of b0 is known. Without loss of
generality b0 is assumed positive.

A3) The piant is minimum phase (cf. section II).

Remark. Notice that some coefficients in A(q-]) or B(q']) may be zero. There-
fore, it suffices to know an upper bound on the polynomial degrees to put

the equation into the form of (1) with known n and m. The condition on k in
A2) is the counterpart of the continuous time condition, that the pole excess
(i.e. the difference between number of poles and number of zeros) 1is known.

The objective of the controller is the same as in section II, i.e. to minimize
the error defined by

e(t) = y(t) - yM

(t).

The controller to be described uses an implicit identification [71. This means
that the controller parameters are estimated instead of the parameters of the
model (7). The first step in the development of the algorithm is therefore to
obtain a model of the plant, expressed in the unknown controller parameters.
Thus, use the identity (4) and the equations (1) and (2) to write for the error:

M M M

ety = 1AM (e) - WMoty = (as + "Ry ey - TaMM ey -

= q (k1) [bBsu(t) + Ry(t) - MM ()7 + sw(e). (5)



To obtain some flexibility of the model structure, a filtered version of
the error will be considered. Let ¢ and P be stable polynomials, defined

by
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where P] and P2 are factors of P of degree fip and Np respectively. It is
assumed that P1(O) = Py(0) = 1. ! 2

Define the filtered error by

Using (5), ec(t) can be written as

b BS M
o~ (k1) R 18 Qs 3
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ep(t) - S ue + fyey - Bl ]+ S
(6)
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Remark. The polynomials Q and P give the necessary flexibility to cover both
MRAS and STR. The exact choices of the polynomials and their degrees will be
commented in the examples in section IV. It should also be noted that instead
of poiynomials Q and P, one could consider rational functions. We will not,
however, elaborate this case.

The general adaptive controller will first be given for the deterministic
design case.



Deterministic Design

The observer polynomial T is now determined a priori. Let ¢ be a vector,
containing the unknown parameters of the polynomials BS-P2 and R/b0 and
the constant 1/b0 as the last element. Note that o contains the parameters
of the controller, described in section II.

Furthermore, define the vector @(t) from

of(r) = UM, uka) oy oy m Mty | (7)

where the numbers of u and y-terms are compatible with the definition of 6.
Note that the elements of ¢ are known signals.

Using the definitions of 6 and @, it is possible to write (6) as

- Q  =(k+1 t I QS
ec(t) = ;EM q (k+1) [bo Eé;l + boe w(t)] + ?ﬂﬁ; w(t). (8)

This model, which involves the unknown parameters bo-and 0, can be taken as

a basis for a class of adaptive controliers. The intention is to estimate the
unknown parameters b0 and 0, and to use these estimates in the control law.
Taking the different possibilities of choosing e.g. estimation algorithm and
contrel law into consideration, a class of controllers can be characterized +n
the following way.

Basic control scheme:-

0 Estimate the unknown parameters bo and 6 (or some combination of these)
in the model (8),

0 Use these estimates to determine the control signal.

A natural requirement on the controller is that it performs as the controller
in section II, if the parameter estimates are equal to the true parameters.



Stochastic Design

The algorithm described above can of course be used also when w # 0.
However, if w(t) is given by (3) with an unknown C-polynomial, it was
seen in section II that the choice T = C is optimal. Since C is unknown
it can be estimated. Some minor changes are then needed. Concatenate the
6-vector with a vector whose elements are the unknown parameters of C/b .
Also, redefine the g-vector as

M
o (1) = [u(tp-]), u(tP—Z)w_’ ﬂlﬁ X(t-n?._,_ _@P_ Mty

M
- %r uM(t-]),...] (9)

The filtered error can then be written as

ep(t) = a%q q~(k+1) {bo z,g]ﬂ + boeTcp(t)] + f% v(t) (10)

which constitutes the model for a class of algorithms in the same way as
in the deterministic case.

The class of algorithms described above contains many different schemes.
Apart from the choice between fixed or estimated observer polynomial, the
choices of control law and estimation algorithm generate different schemes.
The choice of estimation a]gorithm will be commented upon in connection with
some examples in section IV and further discussed in section V. To proceed,
it is, however, convenient to specify one particular method.

A Special Parameter Estimator

A characteristic feature of the model reference methods is that the estimation
is based on a model 1ike (8), where the parameters b and & enter bilinearly.
The estimazion scheme will be described in the determ1n:st1c design case.
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Let Eo(t-1) and g(tul) denote estimates at time t-1 of b, and 6. Using the
model (8), a one step ahead prediction of ef(t) is defined as

- _ - Q fr e oy u(t-k-1 NPT I Lo
ef(tft 1) = ;;M'[bo(t 1) ] + bo(t 1) 6 (t-T)p(t-k 1)]. (11)

The prediction error g(t) is defined as
e(t) = ee(t) - eg(tt-1), ~ (12)

where ef(t) is given by (8), and is usually used in the parameter updating.
The following expression is obtained for e(t) if it is assumed that the dis-
turbance w(t) is equal to zero:

o(t) = gl @, - b (£-1) (LI + 8T (- 1yo( k1))

+ bo(e-g(t-U)Tcp(t-k-'l)]. (13)

In analegy with the continuous time case, the following parameter updating
is used in the constant gain case:

Fo(t) {Eo(t-n i@,j']ﬂl + 87 (t-1)o(t-k-1)

4 : +T e(t), (14)
by | Loy o(t-k-1)

where T is a constant, positive definite matrix.

Remark. It is straightforward to define stochastic approximation (SA) or
least squares (LS) versions of the algorithm (14). For LS T is replaced by
P(t) & (%w(s)wT(s))"] and a SA variant uses e.q. l/trP-T(t) instead of I'. Here

[5135%311,+ GT(t-1)w(t-k-1)]

p(t) 2 t ;
o(t-k=1) |
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The intention with the algorithm (14) is to exploit the properties of a
strictly positive real transfer function in order to establish convergence
of €(t) to zero. The motivation is the successful use of the Kalman-
Yakubovich lemma in continuous time, [1]. The problems which arise will be
discussed next. Let us just briefly comment upon the stochastic design case.
The algorithm given by (17), (12), and (14) cannot be applied directly to
the model (10), because the C-polynomial is unknown. This implies that the
prediction cannot be calculated according to (11). An easy modification is
to replace € in front of the paranthesis with an a priori estimate of C or
even with unity,

Choice of Control Law

The control law, given in section II, can be written as

u(t) = - P (a7 ") (6 (),

where 8 is the vector of true parameters. Any reasonable control law should
equal this one when the parameter estimates are correct. Notice that a para-
meter estimator like (14) has the objective to force the prediction error
e(t) to zero. It would thus be desirable to choose a control such that
;f(t{tn1) is equal to zero, because convergence of ec(t) to zero would then
follow from the convergence of e(t) to zero, cf. (12). This implies the use
of the control law

u(t) = -Py(a7") (87 (t+k)o(t))

as seen from (11). This control law is, however, non-causal. It is therefore
natural to modify it in the following way:

, - N
u(t) = -Py(q” ) (6 (t)o(t)). (15)
This control law is used in almost all control schemes of the type considered.

Difficulties with Convergence Analysis

There are two key problems in the analysis of the schemes of MRAS type de-
scribed above. The first problem is that the control law (15) has to be used
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if a causal control law is required. This imptlies that ep(tft-1) is not
equal to zero in the case k + 0. This in turn means that it is not easy
to conclude that ef(t) tends to zero even if e(t) tends to zero.

The second problem is to show that e(t) tends to zero. Consider for simplic-
ity the case k = 0, which is analogous to the case for continuous time
systems, where the pole excess is equal to one, cf. [1]. Then e(t) is equal

to ef(t) if the control law (15) is used. Contrary to the continuous time
case, convergence of ef(t) to zero cannot be proved straightforwardly. The
reason is the following one. If the control Taw (15) is used and it is assumed
that bo = 1, the equation (13) can be written

e(t) = ep(t) = H(g™")q™! [-67(t)o(t)]. (16)
Here
=]
...] Q
H(g )=~—--—f9—n)—-,—& =
T(q )A™(q™ ")
and

~

8(t) = 6(t) - 0.
In continuous time the estimation error e(t) is given by
_ vroaT X
e(t) = G(p)[-6 (t)o(t)].

Positive realness of G{p) can be used to prove the convergence of e(t) to
zero. It is, however, not possible to use the same arguments in discrete

time, because the transfer function H(q"q')-q'1 can never be made positive
real. The difference appears because a discrete time transfer function must
contain a feedthrough term to be strictly positive real, whereas a continuous
time trensfer function may be strictly proper. This difficulty is also emphas-
ized in [2].

The problem with the time delay and also, in the case k # 0, the previously
mentioned problem to relate convergence of ¢(t) and ef(t) are closely related

to the boundedness of the signals of the closed loop system. This can be seen

in e.g. [4]. It seems that no general soluticen to the problems has been present-
ed so far,
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IV. EXAMPLES OF THE GENERAL CONTROL SCHEME
Some special cases of the procedure proposed in section IIl will now be
given. Both model reference adaptive systems and self-tuning regulators

will be shown to fit into the general description.

Example 1. Tonescu's and Monopoli's Scheme

The scheme by lonescu and Monopoli is presented in [4] and is 3 straight-
forward translation of the continuous time MRAS by Monopoli [9] into discrete
time. The continueus time procedure was commented upon in detail in [1]1. In
the same way it is possible to treat the scheme in [4] as a special case of
the general algorithm. Choose the polynomials as

P, = T of degree k
PZ of degree n-~1
Q=P = PIPZ of degree n+k-1.

The equation (6) then transforms into

p . N
ec(t) = e(t) = Eﬁ-q‘(k+1) [bo Héfl + b (BS-py) 4EL 4 g X(E) --%; uM(t)], (17)

where the disturbance w has been assumed to be zero as in [4]. This is the

model used by Ionescu and Monopoli and the estimation scheme is similar to

the one in (14). The polynomial Pz-is chosen to make PZ/AM strictly positive
real. Some modifications of the estimation scheme are done to handle the problems
discussed at the end of the preceeding section, although no complete solution

is presented. The concept of 'augmented error', introduced by Monopoli in [9],

is translated into discrete time. It can be shown that the augmented error

n(t) is given by

p
n(t) = e(t) - :ﬁ(Kn n(t)|e(t-1)1%), K, constant.

It is shown in [4] that n(t) tends to zero, but a boundedness assumption is
needed in order to establish convergence of e(t) or es(t). Finally, it should
be noted that P, and P, are called Z. and Z, in [4].
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Example 2. Bénéjean's Scheme

Bénéjean presented both a continuous time and a discrete time algorithm
in [3]. It was shown in [1] that the continuous time scheme is closely
related to Monopoli's scheme. In the same way it can be shown that the
discrete time controller is very similar to Ionescu's and Monopoli's
scheme. The model used by Bénéjean is obtained by reparametrizing (17)
as follows:-

p

ef(t)ze(t)z_%q (k+1) [ _(_M).+b(35p)_(_)li_l
A

_ | M
+RAE L (p -8, )“—Pﬂl]

The estimation algorithm is similar to the one used by Ionescu and Monopolj.
As in the continuous time case, more parameters have to be estimated.because
of the reparametrization.

In the two MRAS examples above the natural choice Q = P has been used. This
implies that the filtered error es(t) equals the error e(t). Anothe& possibil-
ity is to choose the polynomials so that the transfer function Q/TA" becomes
very simple. This is done below.

Example 3. Self-tuning Pole Placement Algorithm

A pole placement algorithm with fixed observer polynomial is described in [7].
It can be generated from the general structure in the following way. Choose
the polynomials @ = TAM and P = 1, i.e. ec(t) = TAMe( t). This implies that (6)

has the simple form

~(k+1) T

ef(t) = g [bou(t) + b&a o(t)], (18)
where the elements of ¢ are simply lagged input and output signals. The noise
has been assumed to be zers. The model (18) s used in [7] with a minor modifi-
cation. The parameters which are estimated by a least squares algorithm are b

and b 50+ As the last element in 6 is 1/b0, the effect is that cne parameter 15
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known to be equal to ocne. If 6 and ¢ are redefined not to include the last
known element, the equation (18) can be written as

ee(t) = T(y(t) - YMe)) = 4 KD b uce) + boelort) | - ey,

which is the model used in [7]. o

In the three examples above the choice of observer polynomial T was made in
advance. However, if there is noise of the form given by (3), the optimal
choice of observer polynomial is T = C, see section II. Since C is unknown,
it must be estimated as described in section III. Below some schemes of this
type will be described.

Example 4. Astrom's and Wittenmark's Self-tuning Regulator

The self-tuning regulator by Astrom and Wittenmark is described in [10]. It is
based on a minimum variance strategy, which minimizes the output varjance. This

is a special case of the problem considered in section II with AM = 1 and

uM = yM = (. Inserting this into (6) and using the polynomials Q = P = 1, the

following is obtained

ep(t) = y(t) = ¢ q (KD [bou(t) + b (BS-T)u(t) + Ry(t)] + Sv(t)

This model can be written analogously with (10) es

T

ep(t) = y(t) = & g (kD) [bou(t) + 8 m(t)} + Sv(t) (19)

and is the basis for the self-tuning regulator. Since C is unknown, the pre=
diction is chosen as in (11) with T = C replaced by unity, cf. the discussion
in section II:-

ep(t]t-1) = y(t]t-1) = by (t=1)u(t-k-1) + 8" (t-1)p(t-k-1). (20)

The fact that C is included in (19) but not in (20) makes it somewhat unexpected
that the algorithm really converges to the optimal minimum variance regulator.

It is shown in [11] that the scheme (with a stochastic approximation estimation
algorithm) converges if 1/C is strictly positive real. If instead a least squares
estimation algorithm is used, convergence holds if 1/C - 1/2 is SPR. The condi-
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tion on 1/C and its relation to the positive real condition for MRAS will
be further examined in the following section. o

Example 5. Clarke's and Gawthrop's Self-tuhing Controller

Clarke and Gawthrop consider a 'generalized output'
- = -1 -1, M )
o(t) = Pl "y(t) + Q(q Hu(t-k-T) - R(g™")u"(t-k-1)

and applies the basic self tuner to the system generating this output, [12].
It is possible to treat the algorithm within the general structure in the
special case Q = 0 in their notation. Thus, change the notation into:

o(t) = Mq y(t) - ¢ (KM= Mgy

Then it follows that @(t) equals eq(t) = AMe(t) if P = 1 and Q = A, If the
noise is given by (3) and T is chosen to be equal to C, the equation (6) can
be written as

ep(t) = ¢ g (K1) [bou(t) + by (BS=1)u(t) + Ry(t) - CBMUM(t)} + Sv(t)

This is the model used in [12], where also the fact that the first parameter
in C is known to be unity is exploited. The prediction is calculated as in
exampie 4, i.e. C is replaced by 1. The estimation part consists of a least
squares algorithm. a
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V. THE POSITIVE REAL CONDITION

A special model structure and a specific estimation scheme were described

in section III. The structure was obtained from an analogy with the model
reference adaptive systems in continuous time. The intention was to use the
properties of positive real transfer functions to establish convergence. It

was noted in example 4, section IV, that a positive real condition also appears
in the analysis of a self-tuning regulator in the presence of noise. The rela-
tions between the conditions in the two cases will be treated below.

First consider the deterministic design case and for simplicity assume that
k = 0 and bo = 1. If the control law (15) is used, we have from (16)

e(t) = -H(q ")yle' (t-1)o(t-1)1. (21)

We want to show in a simple way that a positive real condition really appears
in the analysis in a natural way. To-do so, assume that a modified version of
the parameter updating (14) is used:-

6(t) = o(t-1) + AL o), (22)

lo(t-1)]°

This algorithm is similar to stochastic approximation schemes and is used in
e.g. [4]

Subtract the true parameter vector & from both sides, multiply from the left
by its transpose and use (21) to get

~ = =t 2
lo(t)|? = Jo(t-1)|2 + 2 LENIO(ET) o), € (8)
Jo(t-1)]° lo(t=1)]

a0 (<)

a1y -2 M@, )
lo(t-1)[ o(t-1)]°
= Jo(e-1y|? - 2 E(E)I/H-172)e(t) (23)

lo(t-1) |
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It can be seen that the positive real condition enters in a natural way.
If 1/H - 1/2 is positive real, the parameter error will eventually decrease.
Moreover, ¢(t)/|@(t-1)| tends to zero if 1/H - 1/2 is SPR.

It should be noted that the boundedness condition mentioned at the end of
section IIf appears because (23) only proves convergence of e(t)/|o(t-1)].

It is straightforward to use the ideas in [1] to show that the positive real

condition can be avoided. Thus, let x denote the signal obtained by filtering
x by Q/TA™ and rewrite (8) as

es(t) = q”! [ Eé%l + etﬁ(t)],

where the same assumptions as above are used. Now consider this as being the
model instead of (8). The prediction (11) is then replaced by

e(t[t-1) = -Eigill + 0T (t-1p(t-1) (24)
and instead of (21) we have
- ol o
e(t) = -6 (t-1)o(t-1).

If the parameter updating (22) is replaced by

6(t) = 8(t-1) +--§§13:Jlm?—e(t) (25)
lo(t-1) |

the following is obtained:-

- ~ T - 2
[0(0)]* = Jo(e-1) 5z SLEDOTL) gy e ()
P
B(t-1) | J(t-1)

it

?
- 2wy
Tle(t"!)l T — ik
lo(t-1)|
It thus follows that e(t)/|®(t-1)| tends to zero without any positive real
condition. Of course, the boundedness of the closed loop signals mentioned
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in section III.is still a problem. The conclusion is that it is possible
to eliminate the positive real condition in the deterministic design case
if a modified estimation scheme is used.

Now, consider the stochastic design, where the observer polynomial C is
estimated. The transfer function H(q"]), which was previously known, now
contains the unknown C-polynomial. This implies that the filtering in (24)

and (25) cannot be done with the true C- -polynomial. The positive real condi-
tion then enters 1n the same way as in ex. 4, section IV. The positive real
condition on H{q ) = 1/C(q" ) and a boundedness condition are in fact suffi-
cient to assure convergence for the self-tuning regulator in ex. 4, see [11].
A natural modification in order to weaken the condition on C is to filter with
1/E(t), where E(t) is the time-varying estimate of C. This is discussed in [11].

The conclusion of the discussion above is that the positive real condition,
which appears in the analysis of both deterministic MRAS and stochastic STR,
are of a similar technical nature. There is, however, an important difference.
The condition can be eliminated for the deterministic case by choosing another
estimation algorithm, which includes filtering by the transfer function H(q'1).
In the stochastic case, the positive real condition is not possible to be dis-
pensed with, because the filter is unknown.
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VI. CONCLUDING REMARKS

An attempt to describe both model reference adaptive regulators and self-
tuning regulators in a unified manner has been made. it has been shown that
MRAS can be derived from the STR point of view and that both types of schemes
can be thought of as composed of two parts. The first is a parameter estimator
based on a model obtained from analysis of the known parameter case. The second
part consists of a feedback law, which is identical to the known parameter case
but with the estimates replacing the unknown parameters.

The basic structure of the two approaches is the same, but some differences
appear. For example, the optimal observer polynomial is estimated in several
STR, whereas MRAS use a fixed observer. There is also an important difference
in the estimation structure. The estimation in MRAS is based on a model, which
is bilinear in the parameters. Furthermore, positive realness of a certain
transfer function plays an important role in the design of estimation scheme.
The relation between the choice of estimation algorithm and the positive real
condition was examined. The conclusion was that the condition can be dispensed
with in the deterministic design, but that the condition is important when the
observer is estimated in the stochastic design situation.
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UNIFICATION OF SOME ADAPTIVE CONTROL SCHEMES - PART 11, DISCRETE TIME

Bo Egardt
Department of Automatic Contro]
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Abstract

Adaptive control can be approached from many different points of view.

In recent years there have been much progress made both on model reference
adaptive systems (MRAS) and on self-tuning regulators (STR). The two approagch-
€S are here treated in @ general framework. It ig shown that MRAS can be
derjved from the STR point of viey. Special attention 1s paid to the positive
real condition, which appears in the analysis of both types of schemes. It

1s shown that this condition can be Jdispensed with in the deterministic case.
Some problems, specific for the discrete time Case, are also examined.



I. INTRODUCTION

Adaptive control of constant but unknown plants in continuous time was
considered in an accompanying paper, {1]. The purpese of that paper was
to show that two common approaches, the model reference adaptive systems
(MRAS) and the self-tuning regulators (STR), are essentially equivalent.
This paper gives the Corresponding treatment of discrete time systems,

The MRAS philosophy has been applied to the discrete time case in [2 - 4].
Stability theory is the major design tool. The STR approach has been used
almost exclusively for discrete time systems. The basic idea is to use a
certainty equivalence structure, i.e. to use a control law for the known
parameter case and just replace the unknown parameters by their estimates.
Since the contro] algorithms obtained by the MRAS and the STR approaches
are very similar, it is of interest to investigate the connections between
the two approaches. Results in this direction are given in [5]1 and [6].

The purpose of the present paper is to provide a unified treatment of both
MRAS and STR for problems with output feedback. It will be shown that MRAS
can be derived using the STR approach,

The nature of the positive real condition, associated with both types of
schemes, will be examined in detail. It is shown that this condition can
be avoided in the deterministic case.

The paper is organized as follows. A design procedure for known plants is
described in section II. Using this design method as g basis, a class of
adaptive controllers ig defined in section III. Some problems, which are
associated with the design and analysis of the schemes, are also discussed.

In section IV, it is shown that both MRAS and STR can be treated as special
cases of the algorithm proposed in section III. The positive real condition
is examined in section V. Concluding remarks are finally given in section VI,



IT. DESIGN METHOD FOR KNOWN PLANTS

A design method, which will be the basis for the general adaptive algorithm
in the next section, is described below. It is a straightforward transiation
of the procedure described in [1] into discrete time. It consists essentially
of a pole placement. Related schemes can be found in e.g. [3 - 5] and [7]..

The plant is assumed to satisfy the difference equation

Aa (e = 7% Bia T ure) v ey, M
where q"1 is the backward shift dperator, k is a nonpegative integer and
A(q'i) and B(q“]) are polynomials defined by
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Blg™ly =1+ AL b a™.

Furthermore, w(t) is a nonmeasurable disturbance. The parameter bo is not
included in the B-polynomial, because it will be treated in a special way
in the estimation part of the adaptive contrnller in section III,

The objective of the controller design is to make the difference between the
plant output Y(t) and the reference model output yM(t) as small as possible
in some sanse. The reference output y" is related to the command input uM
by the reference model given by

‘(k+])(bM+qu‘T+...+qu"m)
0 1 m M
M= Won 4t (2)
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where coefficients in the poiynomials may be zero. It is seen that the time
delay in the reference model is greater than or equal to the time delay in the
plant. This is a natural assumption to avoid non-causa] control Tlaws,



The problem will pe approached by assuming a controller configuration as
seen in fig. 71,

e I

ml | m | 1 | |
Lrol Tlg ’)Bqu") bOB(q-ys,qq, -T%l Plant Y

| |

'l -RIGT) H

LControHer _ o _l

TR emmn s s, ey

Fig. 1. Controller Configuration

Here R, S and T are polynomials in the backward shift operator. Motivation

for this structure can be found in e.g9. [7]. It can be shown that the con-
troller is closely related to the solution from an ordinary state Space set-

up with Kalman filter and feedback from the state estimates. Notice that the

be considered. Other versions which allow nonminimum phase systems are discussed
in [71. The T-polynomial can be interpreted as the characteristic polynomial

of an observer.

the controller should have a regulating Property too and the design is stochastic.

An interesting special case of the stochastic problem is when the disturbance
w(t) is a moving average given by

M(t) = STV = (1 e v L, cpa Mv(t), (3)

where {v(t)} are independent, Zero-mean random variables. The deterministic
design is considered first,



Deterministic Design

Assuming w(t) = 0, it is possible to have the plant output equal to the
reference model output yM(t). This is obtained by making the closed-1oop
transfer function equal to the reference mode] transfer function, j.e.

g~(k+1)BM(q—]) )

AT
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or, equivalently,

1@ )G = A s(q ) g~ Drg ). (4)

ly. When T has been determined, the equation (4) has many solutions R and S.
It will, however, be required that the degree of S is less than or equal to
the time delay k. Then there is a unique solution to (4). The degree of R will
depend on n, k, and the degree of T. Furthermore, it is required that S(0)+ 0
in order to get a causal control law. As seen from (4) this is equivalent to
T(0) + 0. Finally, the S and T-polynomials are scaled so that T(0) = S(0) = 1.
The deterministic design procedure can thus be summarized in the following steps:

1} Choose the polynomial T(q'T) defined by

Tra=ly _ -1 -n

Mg ') =1+ t]q + ...+ tn qQ T.

T
2) Solve the polynomial equation
“1..M, - - - - -
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for the unique solutions R(q"]) and S(q-]), defined by

R(qMT) =rg+ ?]q_I + ..+ ranmnR
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