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Stochasti c Des i qn

ïhe deterministic design procedure can of course be used also when
disturbances äre acting on the plant. The choice of observer poïynomial
wil'l' however, be of importance not only during än initia'l transient period,If it is assumed that w(t) Ís gÍven by {3), then it is weil-known that the
optimal choice of observer polynornial is

T{q-l} * c{q-1),

in the sense of minimum variance. This is explicitely dernonstrated in [s] asa generali¿ation of the result on minimum variance regulators in igl.
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ÏII. CLASS OF ADAPTTVE CONTRCILLERS

A general adaptt've control scheme wi'll be defined in this section. The
scheme is a self-tuning version of the controTler described in sectjon II.It wjll be shown to include ear'tier proposed f,lRAS and STR as specia'l cases.

The pìant is stiT'i assumed to satisfy (1). The followjng åssumpt1ons are also
i ntroduced.

Al) The number of plant poles n and zeros m åre known,

A2) The time delay k is known and the sign of b* is known. t¡Jithout loss of
genera'l i ty bo i s assumed posi ti ve.

A3) The plant ís rninimum phase (cf. section II).

Re.mq3. Notice that some coefficients in A(q-ì) or B(q-r) *ay be zero. There_fore, it suffíces to knov¡ an upper bountl on the polynomiaî degrees to put
the equation into the fornr of (T) with known n and m. îhe condition on k inA2I is the counterpart of the continuous tin're condition, ilrat the poìe excess(i"e" the difference between number of po'les and number of zeros) is known.

The obiective of the controller is the säme as Ín section II, i.e. to minimizethe error defined by

e(t) * y(r) - yM{t).

The controTler to be described uses an imp'licit identification t7l. îhis meansthat the contrc]'ler pararneters are estimated instead of the parameters of themodei (1)' The first step in the developmen'[ of the aîgorithm is thenefore toobtain a modeT of the pìant' expressed in the unknov¡n ccntroîîer parameters.
Thuso u'çe the fdentrtv (4) and the equations {l} anrl (2) to wrjte for the er.rÛr;

TAMe(t) - lnMy(t) - rRMyM¡t¡ = (As + q-{k*l)Riy{.¡ * rnMyM¡t¡ *:

*11¡-rT\a q*trrrrr ibonSu(r) + Ry(r) - ruMuM¡ti] + sw(t). (g)
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Ïo obtain some flex'ibitity of the model structure, a filtered version of
the erro¡^ will be considered. Let Q and P be stable polynomials, defined
by

Q{q-i) = 1 + Q'Q-T + ... + q

P (q-l )=P

Define the filtered error by

-t
I 
(q ')P2(q

q
-nQ

nQ

)=lnFlQ + ... * pnpÇ

::ffi-:'rlTi lî,åi"-t;il;'-ol.P 
or desr*'nr, *no *0, respectiveTv' It is

-n
P

u*l nl 
]

e¡{r)=ffi*,r,

Using 15), e¡{t) can be written as

er(L) = # o*(ktì) ffiu(t) +$v{t) - teM
T*

-"*qe q+ bo{BS*Prl {Sn *YFL

ffi*a'¡ Ë

mM
-F- iF *(t)

TA"P

+

(6)

o'- 
tr,*l ) 

[uo +u*c.l 
J

Rejnaß. The poÏynomials Q and P give the necessary fTexibi.l.ity to cover both
MRAS and STR. The exact choices of the polynom'lals and their degreês wi'lT be
commented in the examples fn section IV. It shouTd also be noted that instead
of po"iynomia'ls Q and P, one coutd consider national functions. !{e will not,
however, e"laborate this case.

The general adaptive controller will first be Eiven for the deternrinístic
design case.
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Deterministìc Desi qn

Ïhe observer polynon¡iaT T ìs now determined a priori" Let 0 be a vector,
containing the unknown parameters of the polynomials BS-p, and R/bo and
the constant l/bo as the last element. Note that 0 contaíns the parameters
of the controlTer, described in section II.

Furthermore, define the vector rp(ti from

T
TBMr... ' * -T:- ,¡to)Jq) + )I t7)

where fhe numbers of u and y*terrns are compatibje with the definition of 0.
Note thai the elements of ro arê known signa.ls.

using the definitìons of û and e, it is possib'le to write (6) ås

er(t) =#q-(k+t,for$.jI+ booTu(r,l --dfuvú(r). {s}

This ¡nodeT, which invoTves the unknr¡wn paramet.ers ho and 0, can be taken as
a basis for a cÏass of artaptive contru¡lTers. The intent.ion is to estimate the
unknown parameters bo and 0, and tr¡ use these estimates in the control jaw.
Taking the different possibifities of choosing e"g. estimation aïgorithm and
control law into cons'iderationr å class of controllers can be characterized.!n
the foÏ'lowing way.

Basic control scheme:-

o Ësti¡¡ate the unknov¡n parameters bo and t (or some combination of these)
i n the mode't (B) .

o use theçe estimates to detern'ine the contror signal.

A naturaT requirement on the controller is that it performs as the controller
in seetíon II" if the paranleter estímates ane equal to the true parameters.
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Stochastic ûesiqn

The algorfthm described above can of course i:e used also when w + 0.
However, if w(t) is given by (3) with an unknown c-polynomia'!, i.t was
seen in section II that the choice T = C is optimal " Since C is unknown
ìt can be estimated. $ome minor changes are then needed. Concatenate the
o-vector w'ith a vector whose elements are the unknown parameters of Clbo.
A'lsa, ¡ edefine the ç-vector as

,prir) = l$=U, -{Fä,..",r!r), f,F},..,- # um{t),

- -# uter-r),...J

The filtered errCIr can then be written as

er(t) - # o-(k*l) fo. q+ nooro{ti] -ffi',r,

(e)

( 10)

which constitutes the model for a c'lass of algorithrns in the same v{ay as
in the deterministic case

The class of, algorithms described above contains many different schemes.
Apart from the choice between fixed or estimated observer po'lynomiaï, the
choices of control ìaw and estimation algorithm generate different, schemes.
The choice of estimation algorithrn wi'11 be commented upon in connection with
sor0e examp'tes in section IV and further discussed in section V. ïo proceed,
it 'is, however, convenient to specify one particuîar method.

P,S 'ial Paramete r Ëstinrator

A characteristic feature of the model reference nlethods is thet the estimationis baserl on a modeT like (B), where the parameters b* and 0 enter bilinea.rìy.
Ïhe estínralion scheme w'i'i'l be described ín the deterministic design case.
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Let bo(t-ì) and O(t-l) denote estimates at tine t-l of bo and 0. Using the
model (8), a one step ahead prediction of er(t) is defined as

âr{*ft-r) = 
Tþ footr-r) 

s(iJI * ûo{t-r¡ ôT¡t-r)p(r-k-r)]. (ìr)

The prediction error e(t) is defíned as

e(t) = e¡(r) - âr{tilt-r), (rz)

where et(t) is given by {B}, ano Ís usua'l'ly used in the panameter updating.
The following expression is obtained for e(t) if it is assumed that the dis-
turbance w(t) is equal to zero:

e(t)=#[,o,-ûo(t-T}).ry*ôT1t-Ï)to(t.k.1})+

+ bo(s-ô(t-¡))Ttr{t-r-ri]. (r3)

In analogy with the continuous time case, the followÍng parameter updating
is used in the constant gain case:

I
I

bo(r) qP* ôT(r*r)ç(r-k-l)
1rtÍl=lIiJI

I
I

b0(r-1 )II
l*tlJL Ê{r), (l4)

0(r) o(r-'t) u(t-k-'l)

where I is a constant, positive definite matrix.

Remarb" It is straightforwand to define stochastic approximation {SA} or
Teast squäres {LS} versions of the algorithm {la). For LS i is repìaced by
P(t) * l*,ptsh,T(s))-T ana a sA varianr uses e.g. l;trr-iqtj tnsteac of f. Here

"i* * ôr¡t-t i'{r(t-k-î ) 

I
e(t-k-.| ) .j

,f(t) å
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The intention with the algorithm (.l4) is to expioit the properties of astrictly positive real transfer functíon Ín order to establish canvergence
of e{t) to ¿ero. The motivation is the successfu'l use of the Ka.lman-
Yakubovich ler¡rna in continuous time, [iJ, The probìems which arise wjlt be
discussed next' Let us iust brÍefTy conrnent upon the stochastie design case.
The algorithrn gfven by (1l), {12}, and {.I4} eannor be appTied direetîy to
the modeJ (10). because the c-poTynomia'i is unknown. îhis inrplies that theprediction cannoL be cajcuÌated accordjng to {il), An easy modificat,ion isto repTace c in front of the parenthesis wiÈh an a priorj est.imate of c or
ever¡ v¡ith unity.

Choi ce of ton trol l-aw

The contr¿rl law, given in seetion II, can be written as

u(t) = - P' iq-l ) (oTto{r)) ,

where t is the vector of true parameters. Any reasonabie controî îaw shouîd
equaÏ this one wher¡ the parameter estimates are correct. Notice that a para-
meten est'"ímator like (14) has the obiective to force the predictjon errore(t) to;Ierc' It would thus be desirable to choose a eontroï sr¡ch thatef(tlt-ii is equal to zero, because convergence of er{t) to zero would thenfollaw from the convergence of e{t) to zero, cf. {ra). Th-is impties the useof the control law

u(r) = *r., {c-l ¡ 1ôT¡t+r<¡ç(t) )

as seen from {'lì}. This contnoÏ .law is, however, non-causaÏ. It is thereforenaturai to modify it. in the foTlowÍng way:l

uit) = *Pt(q-l)(âT(t)*(t)).
( t 5)

Tl'lis conÈrol ïaw is used in almost all control schemes of the type considered.

Dí ffi cu T ti es with Conve ce Anaï st5

There are two key probrems in the analysis of the schemes of MRAs type de-scribed above' The first problem is that the contro'l law (ls) has to be used
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if, a causa'l contnol raw is required. This implies that âr{tlt-r) is not
equal to zero in the case k + û. This in turn means that it is not easyto conclude that et(t) tends to zero if e{t,} tends to ze¡^'.

The second prof:lem is to show that e{t) tends to zero. conside¡^ for simpïic-ìty the case k * 0n $/hich is analogous to the case for continuous tîme
systems, where the poTe excess is equal to oneo Çf. í.!J. îhen a(ti is equalto e¡(t) if the control law (15) is used. contrary to the continuous tjme
case' cÛnvergence cf e¡{t} to zero cannot be proved straightfonvardly. The
reason is the following one. If the contro? law {15) is used and it is assumedthat bo = 1, the equation (ì3) can be written

r(r) = e¡{r) = H(q-Ï).q-l r-ãT(t},p{t}:. (ï6}

Flere

t
H(q- 1

)
T{q- iA ln-1'? )

and

0(t) * ô{t) * 0"

In cont'irruous time the estirnatf on errar e(t) is given by

Ê(r) = G(pir-õTtr)ç{t)t.

PosÍtio¡e rea]ness of G{p} can be used to prûve the convergence of e(t) tozero' Ït js, hCIwever, not possibTe to use the så¡Re anguments in dfscrete
time, because the transfer function H{q-1),q-T can never be nade posítive
real " The differûnce appears because a dfscrete time transfer functîon mustcontain a feedthrough tenn to be strict.iy pasitive reaÏ, whereas a continuoustjme tr¿nsfen functi*n may be -str.icily_ proper. îhis crifficuìty is arr; -;;;;;_ized in IZJ.

The probìem with the time deray and arso, Ín the case k + ü, the prev.iousry
mentioned problem to relate cçnvergence of e{t) and e¡(t} are closeïy relatedto the boundedness of the signals of the closed '!oop system. îhis can be seenin e'g' t4l' It seems that no general solution to the protrîems has been present-ed so far.
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IV. TXAFÍËLES ÛË THE GENERAT CONTROL SCHTME

Some special cases of the proceclure pnoposed in section III wiil naw be
given. üoth rnodei reference adaptive systeins and self*tuning regulators
u¡iïl be shawn to fit inta the general description.

I e "l . Tonescu ,s and Mono I i 's Scheme

The scheme hy lonescu and l4onopaTÍ is presented in i4l and is a straight-
fsrward trans?ation of the continuous t'ime MRAS by lvlonopo'l.i tgl jnto djscrete
time' The contin!¡ous Èime procedure v{¿ts commenbetl upon în detaÍï in lll. In
the same way it is possible to treat the scheme in [4J as a speciaT case of
the gener¿T algorÍthm. Choose the polynomials as

r
L

p

P

r
?*t of degree k

of degree n*12

Q = P = P.¡Pä of degree n+k-T.

ïhe equation {õ} then transforms into

p?

;m"o
et(t) = eiÈ) =

-{k+l} "q+ bo(BS-Fz) !$tI.- *$sI-4Io-
M

u (r) , {17)
"1

I
I

-,

where tl¡e disturbance w has been assumed to be zero as in i4l. This is the
model used by lonescu and Monopol'! and the estimation scheme is sinrjiar to
the one in {T4). The po'lynomial P, is chosen to make pzllll strictìy positive
real' ssne modifications of the estimation scheme are done to handle the prob'lems
discussed at the end of the preceeding section, although no compìete solutionis presented. The cancept of 'augmented error', introduced by Monopoli in lgj,is transTateel into discrete time. It can be shown that the augmented error
n(t) is given by

n{t} = €(t) 
ft,Kn 

n(t) lç(r-r} l?) , Kn consranr.

It is shown in t4l that n(t) tends to zero, but a boundedness assumption is
needed tn order to establish convergence of e(t) or e¡(t). Finally, it shouîd
be noted that p, and p, are called Z, and Z* în t4l.
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Example 2. BênÉjean's Scheme

Bénéiean presented both a continuous tÌn¡e and a discrete time aTgorithrn
in [3]. It was shown in tìJ that the contihuous t,ime scheme is closely
related to Monopoli's scheme" In the same wäy ìt can be shown that the
discrete Èime controlJer is very simiTar to lonescu's and Monopoli,s
seheme" The rnodel used by Bênêjean js obtained by reparametrizing (17)
as foìïows:*

e*ir) = e(r) = ft o-(k+r) lr. *qk.l + botnS-rrÉß)$*.I +

The estir¡ation algorithm is símilar to the one used by lonescu and Monopoli.
As in the continuous time case, niöre parameters have to be est.imated.because
of the reparametrization.

n

ïn the two MRAS examples above the natural choÌce Q = F has been used. This
implies that the filtered error e¡{t) equals the error e(t}. Another possibit-
ity is to choose the polynom'lals so that the transfen function QITAM l*"o**,
very sinpïe. This is dsne below

Ex ïe 3. Self-tuni Poïe Placement Al ri thm

* R Y#J" + (boBS-B*P, l{:r1

A pole placement atgorithm with fixed observer poìynomia'l is described in t?1.It can be generated fr.om the generaT structure in the foltowing way. Choose
the poTynomials Q = TAM and P = Io i.e. *ftt), TAMe(t). Thi, i*pties that (6)
has the sinrple form

e¡(t) = o-(k+T) tuou(r) + booTç(r)I, iìs)

h¡here the elements of q are sirnply Tagged inpuÈ and output s'ignals" The noíse
iras been assumeci to be zerÕ. The nrodeï (18) is used in t7l with a minor modifi*
eatiçn " 

"lhe parametarrs which are estimated by a least squares algorithm are b*
and b^fl" As'i:he Tast element jn 0 is ì/bo, the effect is that one parameter js



known to be equal to one" If 0 and ç are redefined not to include the last
know¡'r e'lement, the equation (.I8) can be written as

15

ft

(20i

er(t) * TAM(y(t) - vM(t)) = o-(k+I) luoulr¡ + booT,o(r)] - r*MyMlt¡,

which is the model used in [7].

In the three examples above the choice of observer polynomia'l T was made in
advance" Huwever, if there is noise of the forrn given bv {3), the optimal
choíce cf observer poÏynomial is T = C, see section IT. Since C is unknown,
it must be estimated as described in section TII. Below sCIme schemes of this
type will be described.

Example 4 . Aström' s and t{i ttenmark 's Se'lf-tuni nq Reguï ator

The self,*tuning regulator by Ã,ström and ttittenmark is descrjbed in il0l. It is
based on a minimum variance strategy, which mÍnimizes the output variance. This
is a sp*ciaT case of the problem considered in section Ii with Ail = I and

uM * yH = 0. Inserting this into {6) and using the polynomial$ Q = p = l, the
following is obtained

er{ti *y(t) =}o Ir
loor(r) + ho(Bs-r)u{r) + Rv{tij + sv(t}- (k+l )

-(k+])

ïhis modeÏ can be wrjtten anaïogous'ly wiilr {.l0) as

( t e)

and is the basis for the seìf-tuninE regulator. Since C is unknown, the pre=
diction"is chosen as in (11) with T * C replaced by unity, cf. the discussion
in section II:-

ârttlt-r) = i(*lr-,t) = ûo(t-llu(r-k-r) * ôT{r*ì}ro{r-k-î).

e¡(t) =y(t) =$u fnout.¡ + orro(r)J + sv(t]

The fact that C is included in (19) but not jn (20) makes it somewhat unexpecïect
that tl¡e a'lEarithm really converges to the optima'l minimum variance regulator.
It is shown in [ll] tnat the scheme (with a stschastic approxtmation estimat'ion
algorithrn) converges if 1/C is strictly positive reaT. if i¡rsteacl a .teast 

sqL¡aï.*s
esti¡'ne.ticn a'lgoriühm is used, convergence halds if 1lC * 1/2 1s SpR" The condi-
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tion on l/C and its relation to the positive rea'l condition for MRAS will
be further examiiined in the following section.

le 5. Clarke,s and Gawth 's Self-tuhi ControT T er

E¡

clarke and Gawthrop consider a 'generalized output'

o(r) = p(q-1)v(r) + Q(q-1)u(r-k-î ) - R(q-l ¡uMlt-r.-r ¡

and applies the basic self tuner to the system generating this output, tiz].Ït is possible to treat the algorithm with'in the genera'l structure in the
speciaT case Q = 0 in their notation. Thus, change the notation into:

û{r) = AM(q-T)r(r) - q-(k+t}sM(q-t)ut(.}.

Then it follows that Õ(t) equals e¡(t) = nMe(t) if p = I and Q = AM. ïf the
noise is given bv (3) and T is chosen to be equal to c, the equation (6) Ëan
be written as

ee{t) = } o-(k+1) [uouç*¡ 
+ bo(BS-î)u(r) + Rv(r) - cnMuM¡*]] * sv(r)

This is the model used in [î2], where aîso the fact that the first parameter
in c'is known to be unity is exploited. The prediction is calcuTated as in
examp'ie 4, i 'e. C is neplaced by T. The estimation part consists of a least
squares algorithm.
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V. THI POSITIVH RËAL CONDTTION

A special model stnucture and a specific estimation scheme were described

in section IIT. The structure was obtained from an analogy with the ntodel

reference adaptive systems jn continuous tirne. The intentirn wac to use the
properties of positive real transfer functions to establish convergence. It
was noted in exarnple 4, sect.ion IV, that a positive neaT condition also appears

in the anaiysis of a seTf-tuning regulator in the presônce of noise. The re'la-
tions hetween the canciitions in the two cases will be treated be^low.

First r:orisider the deterministic des'ign case and for simplicity assume that
k = 0 and bo = l. If the control law (T5) is used, we have fnom ('l6i

ã(ti = -H(q I 
) rõt(r-i )ç(r-1) t. (2'¡)

llle want to show in a sìmple way that a positive reaì condition realTy appears
in the ana'iysis fn a natura'l way. To'do ss, assume that a mod'ified versîon of
the parameter updating (14) is useel:-

âtrl = ô(.-i¡ +33-\ F,(r).
lu{t-l ) l' t22j

This aTgonithm is similar to stochastìc appnoximation schemes and is used in
e.s. t4 l.

Subtract the true parameter vector 0 from both sides, multiply from the left
by its transpose and use (2.l) to Eet

lõttll2 = lõ1t-r Ilz *, õT(t-tlt(t;l) 
e (r) +

lo(t-1 ) | "

¿c (r)

lç(t=l ) l2

e(t) 6 t
2

= lo{r-r) I -2 g (r)

lç(t-1) lz

4L
+

lç(t-l ) I

= ¡õ4t-tilz - 2 çlt)1.11¡t-1/?Jç(t)-.

fto(t-l)l¿
,(7.3)
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It can be seen that the pos'itive real condition enters in a natural way.

If Ï/H - 1/2 is positÌve reaT, the parameter eryor" wi'|1 eventually decrease.

Moreover, Ê(t)/le(t-l)l tends to zero if I/H - 1/Z is SpR.

Tt shouÏd be noted that the boundedness condition mentioned at the end of
section III appears because (23) only proves convergence of Ê(t)/lç(t-l)1.

It is straightforward to use the ideas in [1] to show that the positive real
conditiûn can be avoided. Thus, let i denote the signal obtained by fiìtering
x b,y Q/TAH and rewrite {8) as

er(t) = q-l tq.r eT,ï1t)],

where the same assumptions as above are used. Now consider thfs as bejng the
model instead of (8). The prediction (ll) is then repìaced by

¡_
âr{tlt-t)= UFU*âT1t-tiç(t-t) (24)..|

and instead of (21) we have

Tr(t) = -6 (t-1)o(t-1) 
"

If the pararueter updating {22} is neplaced by

-¡öqr-r¡1?-
?

õttl ,= õ1t-r ¡ * :rfIJI- 
'ç*¡lo(t-l ) l'

the foÌ'Iowing is obtained:-

lä{r)l? = lutt-i)l?+a õlrå-:tølçl-l e(r} + *'zrtllu(r-])l' l,¡(Ëir 
=

(25)

t: (r)
l,iqt-r I ¡2

It thus fo'l'lows that e (t)/I,¡(t-lll tends to zero without any positive reaï
condition. Ûf counse, the boundedness of the ciosed loop signaTs mentioned
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in section lil'is still a problem. The conclusion is that it is possible
to eliminate the positive real condÍtion in the deterministic design case
if a modified estimation scheme is used.

Now, consider the stochastjc desígn, where the observer polynomïal c is
estimated. The transfer function H(q-1)n which was previously known, nou,
contains the unknown C-poìynomiaT. This impìies that the filtering in (Za)
and (25) cannot be done with the true C-po'lynonia'!. The positive real condi-
tion then enters in the same_h,äy as in ex. 4, section IV. The positive real
condition nn H{q-l} = 1 /c(q' l¡ ano a boundedness conditjon are fn fact suffi-
cient to assure convengence for the self-tuning regulator in ex. 4, see pll.
A natural modifÌcation in order to weaken the ccndition on t is to filter withÂ4

l/C(t), where C(L) is the tirne-varyinE estinrate of C. This Ís discussed in ll.¡l"

The conc'lusion of the discussion above is that the positive real condition,
which appeärs in the analysis of both deterministic MRAS and stochastic STR,
are e¡f a símilar technical nature. There iso however, an inrportant dïfference.
Ïhe eondi'Lion can be eliminated f,or the deterministic cðse by choosing another
estimation aigor'Ìthm, whjch incTudes filtering by the transfer function H(q-1).
In the stochastjc cöse, the positive real condition is not possible to be dis-
pensed with, because the fjlter js unknown.
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VT. ÜOI{CLUÛTNû REMf\RK5

An attempt to describe both modeT referenee adaptive regu'lators and se]f'-
tuning regu'latons in a unified nanr¡er has been made. It Nras been shor+n that
MRAS ean h¡e derived f,rom the STR po'int of view and that both types of schemes
can be thought of as composed of two parts" The finst is a panarneter esÈirnator
based on a mode'l obtained from analysis of the known parameter case, The seeonr]
part consists of a feedback law, which is iclentical to the knor,lri parameter case
but with the estimates rep'lacing the unknown parameters.

The basic structure of, the two approaches is the same, but some diffenences
appea!". For examp'le, the optimal observer palynomial is estimated jn several
STR' whereas MRAS use a fixed obsenver. There is also ôn important difference
in the estimatÍon structure. The estimation in MRAS is based on a model, which
'is biÏinear in the parameters" Furthermore, positive nealness of a certain
transfer function ptays an important role in the design of estimatíon scheme.
The relation between the choice of estimation aÏgorithm and the positive real
conelition was exaníned. The conclusion t,tas that the condition can be dispensed
with in the deterministíc design, but that the condition is lmportant when the
observer is estimated Ín the stochastic design situation.



21

ACKNOldLTDGËMENT

This work is part of a forthcoming Ph.D. thesis. i would tike to thank
my thesis adviser, professor K.J" Aström, who proposeä the problem and
provided valuab'le guidance. I 'Also wouid tike to thank professor L. Ljung
for important discussions on the subject.



22

RTFËRENCES

lll B. Egardt, "unification of some adaptive contnol schemes - part I,
continuous time", Dept. of Automatic controlo Lunä Institute of
Technology, Lund, sweden, coü[Nr LUTFD2T(TFRT-7I4a] /r-0?B/(r978)

tzJ i-0. Landau and G. Béthoux, "Algorithms for discrete time mocieï
reference adaptive systems", Proc" of the 6th IFAü ì^torld tongress, lgZS.

13] R" Bênêjean, "La commande adaptive ã modèle de référence evolutif,,,
universitó scientifique et Médicale de Grenoble, March lg17.

t4l T' Ionescu and R.V. Monopoìi, "Discrete model reference adaptir¡e contnol
with an auEmented error signar',, Automatica, voì. 13 No. 5, pp Fû7 - 512,
Sept" 1977.

t5l P.J, Gawthrop, "some interpretations of the setf-tuning controìler,,,
Froc. of 'the IEE, vo.I. 124, 0ct. 1977.

t6l t. Ljung and I.Ð. Landau, "Model reference adaptive systems and se.lf-
tuning regulators - some connections", Preprints of the 7th IFAC l,lorld
Congress, pp tg73 * tggû, Helsinki t978.

Ï7j K"J" Ãströni, B. ldesterberg and B. lüjttenrnark,,,Srlf-tuning controî.lers
based on pole*placement design", Dept. of Autom" control, Lund Institute
af Technol agy, Lunci , sweden , cODtN : uJ|rtz/ {TFRT-31 4a) / r -52/ (r 97s} ,

lBi K'J ' Aström, "Introduct'ion to stochastic controj theor.y,,, Academic press,
New York 197û.

l9l R'v' MonopoJi, "Model reference adaptive controi with an augmented er^ror
signal", IËEI Trans. Autom. contro'l, vol. Ac*ig, pp 474 - 4g4, ûct. 1974.

I lö1 K"J- Äström and B. [,Iíttenmark, "ûn seTf-tun.ing negu']ators,,, Automatica No. B*
pp 185 * 199,1973.

tIll L. Ljung, "0n positive real transfer functions and the eonvergence of some
recursive schemes"n IËËE Trans. Autom. control, vol Ac-zz ñlo.4, pp 53g - 5ss"
Sept. 1977.



2a
L¿

l12l fl"!'J' clarke ancl p.J. Gawthrop, ,'seTf-tr.rning contro'¡ler,,, proc. iË8,
vol. TZZ No. 9, Sept. 1gl1.



24

ACKN0I¡JLEDGEMENT

The author wourd tike to thank professors K.J" Âstri¡m and L. Ljung forimportan't discussions on the subject. several usefut conments on theearly versïon in t5] by professor I.D. Landau and rekn. Dr. L. pernebo
are aïso gratefully acknowledged.



25

RËFERgNCTS

tll L' Ljungo "0n positive reaî transfer functions and the con_vergence of some recursive schemes,,, IIEE ïrans. Automat.Contraì r vol . AC_ZZ, pp 5j9 _ 55û, Sept î977.

t21 p'J' Gawthrop, "some interpretations of the seîf-tuningcontno'lleroo, proc. of the IE[, vol . 12.4, Oct ,rrr:-"',,*
[3i L' !-jung and I'D' Landau, "Mode] reference adaptive systemsand se'lf-tuning reguÏators * some connections,,, tÕ be presentedat the 7th IFAC htorld Congress, Helsinki Ig7B.

[41 R'v' Monopoli' "lvlodel reference adaptive contror with an augmentederrrr signaÏ,,, IFËE Trans. Automat. Controî, v0ï" AC_19, pp 47q -494, Oct lgl4.

l5l B' Egardt, "A r¡nffied approach to modeï refenence adaptr-ve systemsand self-tuning regurators", Dept. of Automatic contrûîo LundÏnstitute of Techno'logf , Lund, Sweden, C0DEN: LUîFnZ/¡finf_Zl J4)/ (197g).

t6l J.hl. G'itbart, R.V. Monopoli and C.F. price,,olmproved 
eonvergenceand increased fTexabirity in the design of modeî reference adaptivecontnol systems", proc. of the ïËEE symp. on Adaptive processes!Univ. of Texas, Austin, lgZ0" 

-s"'r'

t7l R'v' Monopo'rï, "The Karman-yakubovich remna in adaptfve controî

;ïïir:esisn,,, 
rËrr Trans. Auromat" Conrroï, vot. Ac*ts, pp s?7 _ szs,

tBl K.J. Aström, ,'Reg.lerteorÌ,, 
{Ín Swedish), Aînrquist & t¡îkseîî (?ndeditianlo StockhoTm T976.

f'l K'S' Narendra and L's" varavani, "stabîe adaptive controïrer des.ign,part I¡ direct control,,, proc. of the îg7Z IËFE Conf. on Decisionand Control, pp Bgl _ gg6 , 1977.



26

t1t 1

ttûl R, Bénêjean, "La commande adaptive ã modèle de rêfêrence
évolutif", université scientifique et Médicale de ûrenoble,
March 1977.

A" Feuer and A.s. Morse, "Adaptive control of sing'le-input,
single-output Iinear systems", proc. of the .I977 

IEEË conf.
on Decision and Control, pþ T03û - 1035, 1977.

t'|21 p.C. Parks, "Lyapunov redesign of model reference adapttve
control systems", IEEE Trans. Automat. control, voï. Ac-Tt,
pp 362 - 367, July 1966.

tl3l B. Egardt, "unification of some adaptive control schemes -
part II, discrete time',, to appear, 197g.



UNIFICATIÛN OF SÛME ADAPTIVE CONTROL SCHEMËS. PART II, DISCRETE ÏIÍVIE

Bo Egardt

Department of Autonat.!c Control
Lund Institute of TechnoTogy
Box 7ZS

S-22t A7 LUNÐ l, Sweden

Abstract

Adaptive contror can be approached from many different points of rriew.In recent yeärs there have been much progress made both on moder referenceadaptive systems (MRAS) and on self-tuning regurators {srR). îhe two approaoh-es are here treated in a general franework. ii r, shown that rvrRAS can bederived fron"r the 5ÏR point of view. speciar attention is paid to the positivereal condition' which appears in the anaîysis of both types of schemes. ïtis shcvrn that this condition can be dispensed with in the deterministic case.Some proi:Tems, specific for the dÌsarete tÍme case, are also examined.



I, IN]'RTÛUCTION

Adaptíve control of constant but unknown pîants in continuous time wasconsídered in an öccompünying paper, ['t]. îhe purpose of that paper ouasto shou¡ that two cûfnïûn approaches, the moder reference adaptive systems(MRASi and the self-tuning regurators {sîR}, åre essentiar.!y equivaÌent.This paper gives the corresponding treatment of discrete tirne systems.

The MRAS phÌ'losophy has been appTied to the d'iscrete time case in t2 - 41.Stabi'lity theory is the major design tooi, The sîR approach has been usedalmost exclusively for discrete time systems. îhe basic idea is to use acertainty equiva'rence structure, i.e. to use a contror Jaw for the knownparameter case and iust repÌace the unknown parameters by their estÍmates.since the control algprithms obtained by the MRAS and the srR approachesðre very sinlilan' it is of interest to investigate the connections betweenthe two approaches. Results in this direct.ion rr* gìven in t5r and 16r.

The purpose of the present paper is to provide a unified treatment of bothI''RAS and srR for problenrs with output ree¿¡aci. It wi|r be show, that MRAScan be derived usÌng the STR approach

Ïhe nature of the positive real condition, associated with both types ofscher¡es' wiTl be exam'ined ín dehil. It is shown that this condition canbe avoided in the deterministic case"

The paper is organized as fotows. A design procedure for known prants isdescribed in section II. using this design method as a basisr ê crass ofadaptíve controters is defined"in section IIï" some probrems, whtch areassociated with the design and analysis of the schemesr ðtê a.lso dtscussed,

In section IV' it is shown that both MRAS and sïR can be treated as speciaìcases of the algorithrn proposed in section ïII. The positive rea.l conditionis examined in section v' concTudfng remarks are fina'lïy given in section vL
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II. DESIGN METHOD FOR KNOI,,N PLANIS

A design metho4which wit'l be the basis for the general adaptive atgorithmin the next section, is described below. It is a straightforward translationof the procedure described in tll into discrete time. It consists essentiaïîyof a pole p"racement. Reratecr schemes can be found in e.g. t3 _ sr and t7r.

Ïhe pìant is assumed to satisfy the difference equation

A(q-l)v{t) = q-(**%ou{q-l )u{r) + w(r), (t}

where q*l is the backward shift operator, k is a nonnegative integer andA(q-T) and B(q-l) are ;r;Ã;ats derined by

A(,;-1) = r * u¡Q-t + ... + anQ-n

giq-l) = I * blQ T * ... + b*Q-m.

frurthermor'eu w(t) is a nonmeasurabÌe disturbance. The parameter bo is notincluded in the Û-polynontiaÏ, because it wilî be treated in a special wayin the estimation part of the adaptive contrqî.rer in sectÍon IïL
The objectíve of the controlTer design is to make.the dif,ference between theplant output v(t) and the reference rnodet outputlùii¡--r']i];;'as possib.reîn some Ëên$e. rhe reference output yM-is ;;i;;-, ro Èhe command input uMby the ref*rence modeï given f:y

vM(r) 3
* i k+T )uM

ufi(t) 3
-¡ o-(t+t ) aufnnfr-T*. . .*

uM(t) (zj
rfru-*)

A (q- t+afr nuMon'
-l +. ". -n

where eaeffic'fents fn the poTynomials may be zero. It is seen that the timedeÏay in the reference modeJ is greater than or equaî to the time de1ay in thep'lant" l'his js a natural assumption to avoid non*causar controï îaws 
"
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The problem will be approached by assuming a controner configuration asseen in fig" I.

w

L Contrsller

I
I
I

Fig.. T. Controller Configuration

llere R' 5 and T are poTynomials in the backward shift operator. Motivationfor thÍs structule can be found in e'g. t7J. It can be shown that the con*troller is close'ly related to the solutfon frr¡n¡ an ordinary state space set-up with Kaiman filter and feedback from the state estimates. Notice that theprosess zeros are cancelTed' This irnpTies that only mintmum phase systems canbe considered' 0ther versions which aîïow nonm'inimum phase systems are discussed

li jj';rll:r:;:rt'omiar can be inrerprered as rhe characrerisric porynom.íar

The design procedure will be given for two dif,ferent problems. in the firstone, the disturbances are negTected and

reference signal. The procedure w

servo-problem. This means that the desïgn concentrates on tracking a given

the probìem is treated as a pure

0n the other hand, if the disturbance is
referred to as a detemi ni sti c des i gn.
considered as part of the problem,the contr"oller shou ld have a reguïatfng property too and the design is stochastf*.

Itrn interesting speciaT case of the stochastic probrem Ís when the disturbancelv(t) is a moving average given by

w{t) = c{q-l}v(t}, (ï +.tq-j +... + cnQ-n)v(t},

iÏ1 be

(3)
where {v{t)} are independent
design .is considered first.

Tq llsMlq{}
g Plcnt

*R{q{}

, zero-mean random variables. The detenninÍstic
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Determ'ini stic Des'ign

Assuming w(t) = 0, it is--possibre to have the prant output equaï to thereference model output yM{t}. îhïs is obtained by making the closed-looptransfer function equar to the reference moder transfer function, i.e.

- (k+'1 )rM

A {q-

.I

o-(k+l)o uB(q-1ir(q-T) sM(q-l)
nlq-l¡non -t(q ')s( q-r )+q- 

( k+ t
boB (q- |

) ntq-r)]

or', êQu*va'lentTy"

T(q-l)Atr(q-l) = A(q-I)s(q-li + q-(k+r)n(q-t). 
(4)

Ïhe abserven poTynomfaT T is canceÏled in the closed-loop transfer functíon.Negìecting the effects af initiaì values, it can therefore be chosen arbitrari_Ïy' l^fhen T has been determined, the equation {4) has many solutions R and s.It wijl, however, be required that the degree of S is ress than or equaî tothe time de'lay k' Then there is a unique sorutfon to i4). îhe degree of R wirjdepend ûn n, k, ôrd the degree of î. Furthermore, it is requîred that S(û)+ Ain order to get a causal controT law. As seen from {4) this is equiva.rent toT(0) + t]' Finalr-!on the s and T-poîynonriaîs are scaïed so bhat.î(0) = s(0) _ l.The deterministic design procedure can thus be summarfzed în the foîrowing steps:

1) Choose the polyno¡nial T(q-Ì) defined by

"r(q-l) 
= 

,l + tiQ-T + ".. + tn*q-nT.
'rT

2) 5o'lve the pclynomial equation

T(q-t),qM(q-l) * A(q-Iis(q-T) * q-(k*rln(q-l)

for the unique solutíons n{q-?) and S(q-l), defined by

ft{q"l) = rCI +. rlQ i * ... * ,.n*Q-nR

s{q-l) * 'r * 11Q-l + ... * r¡Q-k.


