LUND UNIVERSITY

DYMOLA - A Structured Model Language for Large Continuous Systems

Elmqvist, Hilding

1979
Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Elmqvist, H. (1979). DYMOLA - A Structured Model Language for Large Continuous Systems. (Technical

Reports TFRT-7175). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/7e585a94-7027-4889-8956-37488ed2867e

CODEN: LUTFD2/(TFRT-7175)/1-008/(1979)

"DYMOLA -

A STRUCTURED MODEL LANGUAGE
FOR LARGE CONTINUOUS SYSTEMS

HILDING ELMAVIST

DEPARTMENT OF AUTOMATIC CONTROL
LUND INSTITUTE OF TECHNOLOGY
SEPTEMBER 1979

Dokumentutgivare Dokumsntnamn Dakumombotockninq

Lund Institute of Technology Bhsber LUTFD2/ (TFRTS ?175)/1 il R
e apars Dept of imtomatie Confol Utgivningsdatum _Arond-botocknlna
ﬁéiaing Elmqvist §épt 1979 5676

F&riattare

Hilding Elmqvist

0TS

— .
Dokumenttitel och undertitel

D¥MOLA - A Structured Model Language for large Continuous Systems

Referat (sammandrag)
Aémodel language, called DYMOLA, for continuous dynamical systems is presented.

Large models are conveniently described hierarchically using a submodel concept.

| The ordinatry differential equations and algebraic equations of the model need

not be converted to assignment statements. There is a concept, cut, which corre-
sponds to connection mechanisms of complex type, and there are facilities to
conveniently describe the connection structure of a model. A model can be
manipulated for different purposes such as simulation or static design calcula-

| tions. The model equations are sorted and they are converted to assignment state-

ments using formula manipulation.

Referat skrivet av |

@dthor

F&rslag till ytterligare nyckelord

4470

Klassitikationssystem ot,;h_-klau(e-r;_
| 5070

! (annea i .
i ﬂ %%Etlcai models, Slmulatlon languages, Computerized 31mu1at10n, Nonlinear

‘ systems, Ordinary differential equations, Compilers. (Thesaurus of Engineering
| and Sc1ent1f1c Terms, Eng J01nF_Counc11 USA.

| Omfﬂng | Ovriga bibliografiska uppgifter
| B5pages 15672
Usorak i
. English _
| Sepl-(retessuppmfte_r__ - o T I;SN i o - 1 1ISBN T
| 60T0 60T o 50T6 -
| Dokumentet kan orhbllas frén N Mottagarens uppgnfter o o
- Départment of Automatic Control 62Th

| Lund Institute of Technology
. Box 725, 5-220 07 LUND 7, Sweden

Pris

| 5670) -
Blankett LU 11:25 197607

S1S-
pB1

DOKUMENTDATABLAD enligt SIS 62 10 12

DYMOLA - A STRUCTURED MODEL LANGUAGE
FOR LARGE CONTINUOUS SYSTEMS

Hilding Elmgqvist

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

ABSTRACT

‘A model language, called DYMOLA, for continuous dynamical
systems is presented. Large models are conveniently described hierar-
chically using a submodel concept. The ordinary differential equations
and algebraic equations of the model need not be converted to assign-
ment statements. There is a concept, cut, which corresponds ta con-
nection mechanisms of complex type, and there are facilities to con=
veniently describe the connection structure of a model. A model can be
manipulated for different purposes such as simulation or static design
calculations. The model equations are sorted and they are converted to
assignment statements using formula manipulation.

INTRODUCTION

A common principle for solving large problems is decomposition of
the problem into a set of smaller subproblems which are either solved
directly or decomposed further. The original problem is then solved by
combining the subproblem solutions.

This principle is used when modelling large systems. The system
is considered as a set of subsystems. This decomposition is often in-
herent in the physical system. An industrial plant, for example, is in
[act designed according to the decomposition principle. The language
to describe the model should reflect this and encourage the use of sub-
models. The languages of CSSL-type have a MACRO-concept which
corresponds to submodels.

A madel must also contain a description of how submodels interact
with each other. The introduction of submodels are often done in a
way that the interactions between submodels are rather limited. The
interaction is often restricted to a set of connection mechanisms. Such
connection mechanisms often correspond to some physical devices such
as shafts, pipes,electrical wires etc.

In the languages of CSSL-type there are no constructs correspond-
ing to such connection mechanisms. The connections are done by means
of variables. Each macro has formal input and output variables. The
connection of two submadels is done by having the same variable ap-
pear as actual variable in both of the corresponding macro calls. This
way of describing the connections between submodels tends to hide
the connection structure of the model. One reason is that the details
of the connection mechanisms, such as the variables involved, are con-
sidered at the same time. A model language ought to have a means of
defining abstract connection mechanisms and a means of describing the
connection structure in a natural way.

The fundamental way of describing submodels is by equations.
Physical laws are formulated as for example mass and energy balances
and phenomenological equations. In CSSL such equations must be
entered as assignment statements which, alter automatic sorting, give
an algorithm for assignment of derivatives and auxiliary variables.

This paper describes a model language called DYMOLA (Dynamic-
Modelling Language). It is designed to overcome some of the drawbacks
with languages of CSSL-type.

Dymola has a hierarchical submodel concept. Abstract connection

mechanisms are introduced by means of the concept cut which defines
the variables associated with each connection. The connection struc-
ture of the model is described by & connection statement. The model
equations are entered in their original form. They need not be converted
to assigment statements.

The compiler translates the connection statements to equations.
The equations obtained can then be used [or different calculations such
as simulation or static design calculations. The user specifies which
variables are considered known. The equations are automatically sorted
and transformed to assignment statements to get an algorithm that
assigns the unknown variables. Systems of equations that have to be
solved simultaneously are then detected. The assignment statements
are obtained by automatic formula manipulation.

The complete definition of the Dymola language can be found in
Elmgqvist [1].

SUBMODELS

A model can be defined hierarchically according to the following
pattern.

modal <model identd>
declaration of submodels
declaration of variables and connection mechanisms
equations and connection statements

end

If several subsystems have the same model, their descriptions do
not have to be duplicated. It is possible to define a model type with the
same structure as model . Such a madel type can then E%%uplicated
with a submode] -statement.

VARIABLES AND EQUATIONS

The Iollowing types of variables can be declared in a model:
parameter, constant, local, terminal, input and output (see the syntax
in the appendix).

The terminal variables decribe the interdependence between a sub-
model and its environment. The input and output variables are special
cases of terminal variables. They are introduced to make it possible to
indicate causalities in the model.

Some types of variables can be referenced from the outside of a
submodel using a dot-notation.

The equations of the submodels have the form
<eoxpresalon> = <expression>

where <expresaion> is defined as for Algol-80. An equation can thus
contain the if-then-else construction. It is also possible to call functions
and procedures written in some algorithmic language, Derivatives are
denoted by x/, x” or der(x), der2(x) ete.

C1i from <C2 - C3> c2 €3 at C1
«Ci - C2> frop C3 c2 €3 at C1
€1 from C2 none €2 at C1
5. <C1 — C2> par <C3 - C4> <C1 - C2> €1 at C3
€2 at C4
0. <C1 — €2> loop <C3 ~ C4> <Ci - ¢2> CL at c4
€2 at €3
7. <€1 - €2> branch <[c3 c¢ ...) - ¢c5> <C1 — C5> €2 at C3
C2 at c4
8. <Ci - [C2 €3 ...]> Join <C4 - C5> <C1 - C5> €2 at c4
C3 at C4
9. (c1) c1 none
(KC1 - €2>) <c1 - ¢2> nona
(ct c2 ... (ce c2 ...] none
(<C1 =~ €2)> <C3 = C4&> ...) <lc1¢3 ...)] - [C2C4 ...1>
none

Example
Consider the electrical network in fig 3.

Ry

R

=

Fig 3. Electrical network

The system can for example be described with the following connec-
tionstatement.

;cnnecgcgﬂtﬁﬂlm(C&(th_gna))_t_o_ﬂ

In order to explain how this statement is evaluated, assume that the
submodel G has the cut declaration

palp cut €o(...)
and theother submodels have the path declaration
main path P<Ci - C2>

The connection statement could then be represented as

G:C0 to <E:C1 - E:C2> to ¢R1:C1 ~ A1:02) to (<C:Ci - €:C2» par
(<R2:C1 ~ R2:C2> to <R3:Ci - R3:C2>)) to 0:CO

The steps performed when evaluating this expression are given
below,

1. Effect c:co at E:e1
Result E:c2 to <R1:C1 - R1:C2> to (<C:C1 - C:C2> par
(CR2:CL ~ R2:C2> to <RI:C1 - R3:C25)) to G:CO
2, Effect E:c2 at ri:c1
Result Ri:cz to <c:c1 - c:c2> par (CR2:CL - R2:C2> to
<R3:C1 - R3:C2>)) to G:CO
3. Effect R2:C2 at R3:C1
Result R1:C2 to (<C:C1 = C:C2> par <R2:G1 = R3I:C2>) to G:CO

11

4. Effect C:C1 at R2:C1, C:C2 at R3:C2

Result Ri:c2 to <cic1 - c:c2» to G:co
5. Effcct R1:C2 at C:C1

Result c:c2 to G:co
8. Effect C:C2 at G:CO

Result none

MANIPULATION OF EQUATIONS

The manipulation of the equations is described in Elmgvist [1], [2].
Only a brief survey is given here.

The connection statements are translated to equations by the com-
piler. This means that the model then consists of only equations. They
can formally be written as

j(ti éIz'zlp) - 0
where ¢ is time, z is a vector of state variables, z is a vector of auxiliary
variables and p is a vector of parameters.

In order to use an explicit integration algorithm, 2 and z should
be solved for. The model cquations often have special characteristics.
All variables are not present in each equation. The Jacobian of f with
respect to £ and z thus contains many zero elements, i.e. it is sparse.
This means that the solution could be obtained more efficiently by
partitioning the system of equations into a set of smaller systems of
equations. In fact, many of the systems of equations will be scalar.

The algorithm for partitioning uses only structural information,
i.e. whether a variable is present in an equation or not. The first
problem is to determine which variable to solve for in each equation, It
is called finding an assignment. The next step is to find a partitioning
of the equations into minimal systems of equations that must be solved
simultaneously and to sort them for correct computational order. This
is called finding the strong components of the associated bipartite graph.

The total effect of these two algorithms is finding two permutation
matrices operating on the columns and the rows of the Jacobian and
making it block triangular.

When this procedure has been performed it is thus known in which
order the equations should be solved and which variables to solve for.
The blocks correspond to systems of equations that must be solved
simultaneously.

The equations are then converted to assignment statements for the
unknown variable. This is done only for equations which are linear in
this variable. An important observation for model equations is that
there is often such a lincar dependence in the simulation case.

One important advantege with automatic manipulation of the
equations is that the same basic equations could be used for different
calculations such as simulation and static design calculations. The al-
gorithms only have to know which variables are known and which are
unknown,)

The structural analysis is very useful for the modeller. It gives
information about causalities and algebraic loops in the model. This
can then be compared with the modeller's perception of these properties
in the real system.

A compiler for the language and the algorithms for the manipula-
tion of the equations have been implemented using the programming
language Simula. Thecomplete program listing ean be found in Elmgqvist
[1). The input to the program is a model in Dymola and the output is

The description of the IPturb is shown below.
modal type IPturb
pubaodol (turbsection) IP1 IP2 IP3 IP4
path steam <IPi:insteam —~ IP4:outgteamd
cut extractl (IPl:extract IP2:extract IP3:extractl

cut extract2 [IP4:extractl
path power <IP1:inpower - IP4:outpowar>

connect (steam) IP1 to IP2 tg IP3 to IP4
connect (power) IP1 f£o IP2 to IP3 tg IP4

end

The overall description of the power station in accordance with fig
4 is shown below,

model powerstation

pubnodal (superheater) superhi superh2 superhd
sybmodel (attemperator) attempl attenpa
gubmodol (turbeecton) HPturb

pubnodel drumeyst reheater controlvalvae
pubmode]l IPturb LPturb

pubmodol condensor epliteteam dearator
pubmodel prehi preh2

submodel feadwaterpump feedwatervalve
Bubmodel combchamber economiger

connoct (heat) combchamber to (econcmizer =)
drumeyat::risers superhi superh2 superhd reheater)

gonnect (ateam) drumeyet::drum to superhi Lo attempi to ->
superh2 to attemp2 to superhd to controlvalve to =->

HPturb to reheataer to IPturb to LPturb Lo condansor

(extract) (KPturb IPturb:extracti) to preh2 ->

IP:extract2 to eplitetean to (dearator prehi:extract2)-)

LP to preht:extractl

{feedwater) condensor to prehl to dearator tg =>
feedwaterpump to preh2 to feedwatervalve to ~>
(economizer to drumeyst::drum attempi attemp2)
(condensate) preh2 to dearator =)
prehi to condensgor

(power) HPturb to IPturb to LPturb

The total number of equations for this model is about 400. The
cquations was sorted for the simulation case. Eleven systems of equa~
tions was discovered. The largest contained 17 nontrivial equations,

CONCLUSIONS

The Dymola language contains several new constructs that cor-
respond to the way large dynamical models are developed.

A model can be decomposed into a set of submodels. Theinteraction
of a submodel with its environment is often naturally considered as a
sct of interactions from different other submodels through distinct con-
nection mechanisms. This corresponds to cut declarations. Interactions
might be further decomposed by introducing hierarchical cuts. The
basic level of dcfining an interaction is by associating a set of terminal
variables with it.

13

The connection of submodels is often viewed as a block diagram or
a graph. The connection statement makes it possible to conveniently
describe such diagrams as text. Since directions are often associated
with this kind of diagrams, it is natural ta introduce the concept of a
path.

Because the basic means of describing models is equations, the
models can be written in a form that is independent of what calculations
they are used for,

.

ACKNOWLEDGEMENTS

The author wants to thank Professor Karl Johan Astrém for his
support and guidance during this work. :

This research was supported by the Swedish Institute of Applied
Mathematics (ITM).

REFERENCES
(1] Elmqvist, H., A Structured Model Language for Large Continuous

Systems, Ph.D. Thesis, TFRT-1015, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden (May 1978).

[2]) Elmqvist, H., Manipulation of Continuous Models Based on Equations
to Assignment Statements, Proc, IMACS Congress 1979 / Simulation
of Systems, Sorrento, Italy (September 1979).

[3] Lindah}, S., A Nenlincar Drum Boiler - Turbine Model, Report
TFRT-3132, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden {1976).

APPENDIX
Syntax Notation

The following syntax notation is used: | means or, { } groups
terms together, [] means that a group of terms is optional, { }* means
repetition one or more times, [] means repetition none or more times.

To make the syntax smaller, it has purposly been left incomplete
in some respects. It does not contain the definitions of basic items such
as <tdentifier> and <number>. Trivial productions such as <modael
ident>::=<identifier> are omitted,

New line is treated as ;. Continuation of a statement on the next
line is indicated by ~> at the end of the line.

Syntax For The Dymola Language

<model npac>::=[<mod¢l typa>;].<model>

<model)::=model <modael identd; <mbpdel body> end
<model type>::=modal type <model type ident>; <modal body> end
<model body>::=<submodel part)> <declaration partd>
<etatement partd

<submodel part.>::=[<model>: | <model type>; |
<@ubmodel 1n:orp>;].
<oubmodel incorpd>::=gubnodal [(<modol type identd)]
{(model identd [(<parnmeter 11::))]}'
<parameter listd: :={<numbar>}‘l
{(parametar):(numbar)}.

<daclaration partd: :=[<var1ablo declaration>; |
<cut doclaration>;] <node daclarationd; |
<path declarationd;]‘

<variable doclaration>:i=

<path dnclara!.ion)::ahnnl path {(path ident>
paranotar {¢variable> {e<nunvers}"1

{<path clausox | <path spoc>} }

constant {(varlahla):(nunb.r’)}-l <path claused>:i=< {<cut>1.} - {<cut>1.} >
local {(hrubh}}‘\ <path spec>::=<aodol apoec>|. .<path tdanty]!
gorninat {<vartavios}’ <path ident>

-
Lnput {“““m”} L <statement pari)::=[<oquatton>: | <pracedure call>; |
output {{urllhl.}} | .

5 <connection atstenent;]
dafault {<uruh1.‘)n<n\unr)} | '

external {<var: abla>}’|

<aquation>: :mgaxpressiond> = Laxprassion>
snsernal {<variabie>}”

Kvariable spech>: :-[<mad¢l lpo:).]q:urubh)
LJ
gvarisbley: iadidentifier> <procedure :al.l)::s{(varubh lpu>} -

<procedura tdent> { {(nxprunon}')
<cut declaration>::={natn] sut {¢cut tdent> [«ut)]).

geuty::=dcut claused | <Lcut apecy>
<cut clauped:im{ <variable cut>) |
[¢<hierarchical cut>]
<Lyariable cutd: :=[<cut. elanant)
[J' [(:ut. Illllln‘.}].]
<cut eleaontd>::i=<variable> 1—<v:rubh>l H

<connection statemsnt>: 1=gonnech [(<idont>)]
{<¢onno=uon o:pnulon)}.

. <connection expressiony:: tion dary>

{ {asi=isoi-igronipazi//| 1o0plbranchijotn}

Lconnection gsecondary> }.

Zconnectlion socondary>::=
<nierarchical cut>:i={<eut>| N [umu_d«enno:uon primary>
<cut spec>:i=dmodel Ipi:)[:(clﬂ- mon»]l <connection primary>: :=<:onnu!.lcn opersnd> |
<cut ident> . . ¢ {<connection oxpr-nlon)i.} b
<model specy: i=<aodel 1dent>|1 :<aodel 1dentd) <connection operandd:is<cut 8pecy | <path spec> 1
<nods identd>
<node daclaration>::spoda {<node tdent>

i(nod. chuna)]}.
<node claumed:i=(&variable cutd) |
[<hierarchical nodeéd 1
<hierarchical nodu)::={<nodo clause> |
<node identd> | .—}-

14

