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INITTALIZING A KALMAN FILTER WHEN INITTAL VALUES ARE
UNKNOWN.

P. Hagander

ABSTRACT.

The usual formulas for Kalman filters are not applicable
when the initial values of the state are totally unknown.
If the system is observable there still exists a unique
estimate with a finite covariance from which the Kalman
filter could be started.

For discrete time systems it may take some timesteps to
achieve complete observability. During those steps there
exists no unique estimate. The projection of the estimate
on the unobservable subspace would lack a finite second
moment, and could in fact be chosen arbitrarily, e.g.
equal to zero. Formulas are deduced for these estimates
and their covariance, and in the single output case it.

is shown how they could be obtained by two recursive equa-
tions. The consequence for linear stochastic control is
also explained.
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1. INTRODUCTION.

established field, see €.g. [1]. The Kalman filter pe-
quires, however, a known statistic for the initial state.
For an observable system it is possible +o get an esti-
mate of the state fron the measurements of the output so
that the Kalman filter could bde started [2], even if the
initial state ig totally unknown. Fop discrete time sys-
tems the dimension of the observable subspace increases
with time. A natural question is, what state estimates
should be used before a system becomes completely observ-
able.

Of course, one should use the available information for
an estimate, although the projection on the unobservable
subspace would lack a finite second moment. This compo-
nent could in fact be chosen arbitrarily, for instance
such that the norm of the estimate is minimized. A pseu-

doinverse could be used.

The conseguences of unknown initial values fop linear fil-
tering apre investigated in [2] both for continuous and
discrete time., In [2] the duality with optimal control

was used to get formulas for observable systems. Those re-
sults suggested a restructuring of the problem by split-
ting the estimate in two parts. It is thus shown in Sec-
tion 2 how an estimate in the discrete time case can be
obtained directly also when the system is not completely
observable, i.e, during the first time steps.

Recursive equations fop the start up are obtained in the
gingle output case in Section 3 using results from recur-

sive least squares identification [3, 4],

Some remarks on lineap quadratic stochastic control and



oh cases with only a part of the initial state tot

concludes the repont

ally
unknowr



2, SPLITTING UP INTO TWO ESTIMATES.
Regard the system wWith totally unknown initial value X4

{ x(t+1) = $CT+1,tdx(t) + v(it) . x(O) = X
(1)

yit) = a(t)x(t) + e(t)

vV and e are independent white noise with covariances R1
and RZ’ (R2 > 0), and v and e ape independent of Xq -

The solution to the start up of a Kalman filter with un-
known initial values is given in [27]:

X(t[t=1) = xp(t|t=1) + VCE,00M ™ (o, t) AC-1,1) (2)
where

xp(t4+1 [t) = pxg (t[t=1) + KOOIy (t) = oxp(t|t=1) ]

(3)
L XH<OI"'1) = 0
KCE) = onte)oTronce) ol + R, 17" (1)
T o TP
n(t+1) = PNCt) ¢~ + R1 = K{t)enlt)e
(5)
B(0) = ¢
plt+1,+) = p(t+1,t) ~ K(t)e(t) (6)
ta=1
L ik IR T =1 .
M(to,t1) = E " (t,to)e {R2 * on(t)p”) eult,t,) (7)
t=t
0
ty=1
Meg=tot® T wTee,e 0T (R, 4 omce)eT) T pycey - Oxg(t]t=1)]
) el [

ty (8)



Note that (2) requires that the observability Gramian, M,
is nonsingular, which is not the case during the first
time steps,

The formula (2) suggests the splitting up of (1) into two

parts:
x1(t+1) = ¢x1(t) + v(t), x4(0) = 0
(9)
ye(t) = 0x,(t) + e(t)
Ko (t+1) = ¢x2(t), x,(0) = Xq
(10)
Yolth - = ex,(t)
X=X1+X2
(11)
Yy 2y ty,

Fince K and g used for xmyare the same as in a Kalman fil-
ter for the system (9); i.e.

;1(t+1lt) = 4y (t[t=1) K Iy () = ox, (t]t-1)]

(12)
x1(Dl—1) z 0

It will be seen from the following that the second term
of (2) is in fact the egtimate of a quantity

208) = x)(t) = [x (t[t=1) - Xy (t]|t=1)] (13)
based on the measurements

n(t) = y(t) = ax (t]t-1) (1%)



In that way x4 is estimated by XH The meestlmate", g,
1s corrected by the systematic evror of the "x7~estimate",
Xgs 50 that the sum of the two estinmdtes gives the minji-

mum variance state estimate:

Theorem 2.1: The minimum variance estimate of the state
x(t) of (1) given Y

t-1 18

x(Ct[t=1) = xgltlt=1) + z(t]t-1) (15)
with XH defined by (3) and with z(tlt 1) being the minji-

mum variance estimate of z(+t) given n(s) up to g = t-1

(nt 1). Zz and n are defined by (13) and (14).

Proof: The linearity gives

x(t|t=1) = xi(t]Yt_1J + x2(t[Yt_1)

where (i, twq) and X (T]Yt 4) are mlnlmum variance es-

timates of xq(t) and x \t) given Y -1
It is easy to show how the vector

n(0)

n(t=1)

can be expressed as an invertible linear function of
Yi_4» SO that the knowledge of Ng.q @nd ¥, . is equiva-
lent.



Eqn. (13) thus gives

2(t]e=1) = x, ()Y, ) = k(tfe-1) + [y (1]

where the laszt term is the minimum variance estimate gi-
ven Y _ 4 ©f the minimum variance estimate of xﬁft) given
e
Y1 t-1° Since y1(s) and yzif) are independent, this term
3 ~

is equal to x,(t]y and (15) follows.D
1 .

Y
t=177

In order to get nice formulas for z, it can be proven

that z and n are governed by a dynamic system:

Theorem 2.2: z and n defined by (13) and (14) satisfy

the system
[(2(t+1) = p(t+1,t)2(0), 2(0) = x4

{(17)
n{t) = gz(t) + o(t)

where ¢ is white noise with the covariance (R2+enaT).'
-Proof: By direct use of the definitions of z, n and y:

2UER1) = xp(841) = [ (E41[t) = 2, (E41 1)) =

i

B0t = X (£[t=1) + % (xjt=1)] -

= Kty = yat) - eéﬁét]twi} + 62?(t1t~1)] w

iF

$2COREIY L0~ oxp(elt-1) + i (£]t=1)] = yzrt)

2(0) = x,(0) - x(0f-1) + x(0f=1) = g
ME) = yle) - explt|t=1) = v, () - ox, (t]t=1) + y,(t) -

G;HCt[t—1) o0, (1) = §1Ctjt—1) + 08z(t)



Define
e(t) = ;1(t|t-1>

the Kalman filter error of (12), which is white noise with
T
]

the covariance R2 + gle” . d

Having obtained this dynamic system (17) it is easy to
find estimates x(t|t-1) also when the system is not comp-

letely observable, that is to generalize the formula (2.

Note that

2CE|€-1) = w(t,0)2(0]t=1)

where z(0|t-1) is the minimum variance estimate of the

initial value z(0) = Xg+ Using the matrix notation

o " [nCoy £(0)
6y (1,0) . %

A= . ne o= . ey = |- (18)
ey(t,0)] ﬂ(t)J e(t)

the system (17) could be expressed as

Ny = Atxo + €4 (19)

Let RE be the covariance matrix of £,. According to

Theorem 2.2 R is block~diageonal and invertible.
et

The well-known estimation theory, as for instance in [51,

ig now divectly applicable to (19).



Corollary 2.1:Anyminimum variance estimate ?(0[ ) of x

0°
based cn Ny must satisfy
ATRTTA Z(0]1) = ARy (20)
Et tt

Its component in the nullspace of At could be chosen ap-
bitrarily and has infinite error covariance. The orthogo-

nal component, in the range space of AE, is unique.D

Not that (20) always has at least one solution, since
PI?
Athlnt lies in the range space of ATR 1A The solution

with minimal norm is obtained using the pseudoinverse.

Eqn. (20) could be reformulated ag

wTCS,OiaT(GH(s)eT + RQ)“19¢(590)}Z(0%t) .

|
o~ T
=

vF (5,000 (om(s)e” + R ) Tnes)

D)

]
it~

or using the quantities M and A defined by (7) and (8)
MCO,t)zC0t-1) = A(=1 ;1) (21)

The generalization of (2) could now be stated.

Corollary 2.2: The minimum variance state estimate x(t]t=1)

for (1) is given by

Q(tlt-1>

;n‘t]t“1> £ pt,002(0 t=1) =

i

xp(tlt=1) + 20t]e-1)



with xn(tgt-1) from (3), ¥(t,0) from (6) and z(0[t=-1) ful-
filling (21).0

Remark 1: Before the system becomes completely observable
there is arbitrariness in *(Dlt 1) for fulfilling (21).
The natural choice is

Corollary 2.3: The minimum variance estimate z (Glt 1) with

minimal norm is given by

. T -1 FT -
z (0]t=-1) = (A R A, )J'AT R N, =
m t'lt,lf’l t’!_L_.iL‘!
= MO0, 01%x¢-1) = p, A, i'p . (22)
’ t=17 =1 e el

with
D, , = R=1/2

“t-1

and using a formula from [4] fop the last expression.

Remark 2: ALl minimum variance estimates z(0[t-1) can = =
be written '

z(0]t-1) = 2 (0]t=1) + v(0[t=1)

where y(ult 1) is an arbitrary vector in the null space
of M(G,t). 2 (Olt =1) is also the minimum variance esti-
mate of the orthogonal projection of Xg on the range space

of M(0,t), of M+Mx0.



Remark 3: The covariance of %m(Olt—1) = MTMX0

is MT(0,t).

10.

Remari 4: For an observable system the covariance of the
S —— A
errors z(0|[t-1) = Xq = z(0]t-1) and %(tlt~1)

= z(t|t-1) are

cov %(Dit-i) = M“1(O,t)

it

cov ZCt]t-1) = yit,00M "o, t)4T¢t,0) = £(t)

Remark 5: Define Em(t]t~1) and Ew(t!tw17 by

i1

'\, - o
Zm((.,t 1)

[H

wct,OJM*(U,t>M(o,t>xo -z (t]t-

then

cov %m(tlt—ﬁ) z w(t,O)MT(O,t)wT(t,O) = Z(t)

by extending the definition of r(t).

-
£

w(t,O)M+(0,t§MEDBt)xO'» ¥(t,00z_(0]t=1)

i)



11.

3. RECURSIVE EQUATIQNS.

The pseudoinverse in (22} could be evaluated recursively,
see e.g. [4]. The formulas are simplified for time inva-
riant single output systems, where only one measurement

is added at a time. The dimension of the unobservable sub-
space is then decreased by one for each time-step until
the whole state space is Observable after n steps. Only
the single output case willi be treated in detail. The ela-
borate expressions by Cline [6] could be used for the mul-
tioutput case, but they do not seem to have any computa-
tional advantages.

Theorem 3.1: A minimum variance estimate of Xq from (17)

can be obtained by the recursions:(single output case):

A

[ 2001t) = 2(0]t=1) + K, (£)In(t) = 6p(£,00200 [t=1)] (5 = 1,29

3

K Ce) = Py ,00 07 (0p0t, 00, (£)yT(x,0)67)
fP,](tM) = Py(t) - KyCt)ey(t,00P, (1)
L P40 = T
2) (t 3 n)

Ky(t)

1

2 PQ(t)wT(t,O}e‘an{t,O)szt)wi(t,U)ei+®H(t}er+R2}mT
[ P,(t+1) = Polt) = Ky(tdep(t,00P, (1)

P2(n} N M~1(U,n)



Proof: Corollary 2.3 gives
z(a]t) = (p,a) D 4
Tt tt

and as long as At has full row rank

L B

(DtAt} B AJ’:DJE

so that

. _ oAt

ZCO]t) = At”t

Rewrite

IOL_L = E 1 n‘t' - .
Log(t,0) | MY

and use the formula [4] for the pseudoinverse, when adding

a row while increasing the rank (0 < t < n):

Ai = [Q} ql

Q = Eﬁi_1 - (I-Az_thq1)wT(txo)eTew(t,O)Ag_1/
/ew(t,O)(InA;_1At_1)wT(t,O)eT]

q = [(I*Ai_1At-1)¢T(t,d)6T/
/ew(t,O){I-AgujAt_?]wT(t,D)GT]

Define

L P
Py(t) = (I - A7 ,A )



13.

and

T T ) T Yot
K1(t) = P1(t)¢ (t,0)e /@w(t,o)P1(t)w (t,0)¢
then

£<o|t> = é(o!t-1) + K () In(e) ~ aw(t,O)é(o[t-1)]

and
' ot + _ -
P,(t+1) = I Ap gy g KyCodLew(t,00AL A, -0w(t,0)] =
= P1(t) - K1<t>ew(t,0)P1(t)
P(1) = I - gfe
%(OIU) = ¢Tn(0) K, (1) = ot

which proves the first part of the theoremn.

For the second part use D, defined in Corollary. 2.3 and

t

- -
Dio4hioy

dtew(t,OJ

thus

~1

s

di = (em(t)ol + R,)

Use theé formula for adding a row without increasing the

rank (t 2 n) and drop the indices t-1:



14,

" ) + .
z(0]t) = (DeAL) Dyny =
. aZoa) " (ayTy (e, 0)0T
1+ aey(t,0)(0a) T (pay TyT (000
[n(t) ~ ey(t,0)(pa)TDn] =
- 3C0[t-1) + '’y e, 04" .
A + ov(t,00(A %) Ty (¢, 0) 6T

© () - 6y(t,002(0]t=1)]

With

P,(t) = (A"D?a)™" = Mo,y

the rest of the proof is an application of the well- known
inversion lemma.r

Remark 1: Note that this minimum variance estimate is
equal to the mean Square estimate for 0 ¢ t < n.

Remark 2: Note that P (t) is the error covariance for
z(O]t 1) t 3 n,, cf. Remark 4 of Section 2.

It is Now easy to obtain formulas for z(t[t 1) =
= y(t, O)Z(Olt .



15.

Corollary 3.1: A minimum variance estimate z(t|t-1) for

(17) can be obtained by the recursiéns.

2Ct+1|t) = VOt+1, 8D 20t |t-1) + K (£)[n(t) - e;(t|t-1)]

(i = 3,4)
£(o|-1) = 0 (23)
1) (0 ¢ t < n)
T 7,7
Ka(t) = p(t+1,8)P(t)e (8P,4(t)e™) (24)
Pa(t+1) = y(t+1,0)P, 1)y (t+1,1) -
= Ky(e)oP (t)yT (e, 1) ' (25)
Pa(0) = I
2y (t 2 n)

T T T -1
KyCt) = p(e+1,0)P, (t)e” (6P, (t)e” + enmlt)e” + R,)

1

PL(t+1) = (el )P, CE0p (t41,1) = K (£)0P, ()3T (41 ,t)

Py(n) = p(n,00M" " (0,n)¢ (n,0) (26)

Proof: Use

Py(t) = y(t,00P, (£ (t,0)
and
Py(t) = y(t,00P,¢t)y7 (t,0) o



186.

Remark 3: The term (ePSCt)eT) is nonzero for t < n, but
P.(n) = 0.

Remark 4: Note that

P, Ct) = 2(t) = cov Z(t|t-1) (t » n)

For t » n, x(t+1|t) should be computed by the usual Kal-
man filter where

P(t) = n(t) + 5(t)

but for 0 ¢ < n two recursions are needed, one for x

t
N I
zl

and one for
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4. REMARKS ON LINEAR QUADRATIC STOCHASTIC CONTROL.

The loss function

N-1 T
J= B o= E ] (x(£)Qux(t) + u (1)Qult)) +
0
T _
+ X (N)QOX(N) (27)

should be minimized with respect to u(0), ..., u(N) sub-

ject to the constraint

[ x(t+1) = px(t) + ru(t) + v(t) x(0) = x4
(28)

1 y(t) = 6x(t) + e(t)

where v and e is independent zero mean Gaussian white
neise with covariance R, and RZ’ The mean value in (27)
should be taken with respect to the introduced statis-
tics (v and e). The initial state is an unknown constant
as before. The choice of u(t) is restricted to a linear

map of Yt—1‘

Rewrite J using an identity in [1]:

T NS g
J = BixpS(0)x, + Yovi (eSSt dvit) +
{ 0
N-1 T 7 :
+ ) (ult) + LOx(E)) [Q, + I S(t+1)T] »
0

«(aCt) + L(t)x(t))} 2

T N—1
= xS(0)xy + g tr R, (£)S(t+1) +
N=-1 T TI .
+ E ] (u+lx) (QfTVS(t+1)F)(u+Lx)

0



18.

where
T -1
L(t) = (Q, + T7SCt+1)T) T S(t+1)e (29)
and
. T , T
S(t) = ¢ S(t+1)¢ + Q1 - ¢ S(t+1)ITrL(t) (30)
1
S{N) = Q0

Then the minimum of J say V(xb) could be written

N-1
Vixg) = xpS(0)xg + I or Ry(e)s(een)

‘ m~1 T T . :
+ min E ] (utLx) (Q,+r"SI)(u+lx) +
U(O),o.-,U(m“j) 0 :.,

r

N-1
¥ (u+Lx)T(Q7+PTSP)(u+Lx)}}

+ min El )
ul(m), ... u(N=1) | m

where m~1 is the first time the whole state space is ob~
servable. But as in [1] with the control u(t) = - L(t)-
« x(t|t-1), m ¢t g N-1,

N-1 T T
min E|l ) (u+lx) (Qu+T178T)(utlx) | =
u{m),...,u(N=-1) | m

N-1
Y tr P(t)LT(Q2+FTSF)L
m

13

where Q(tlt—1) is the linear minimum variance estimate
and P(t) its covariance. During the first m steps, how-
ever, it is not possible to estimate the state, only its
component in the observable subspace. Mest’'of the statis-
tics is thus eliminated.



19.

N=-1
T
V(xo) = xOS(O)xo + g tr R1(t)8(t+1) +

N

=
+ ]
m

tr P(t)ET<t)[Q2 5 ITS(E+ ) TILCE) +

m= 1 T
+ min E 7 (ult) + L{t)x(t))
uf8),.. . ulm=17 0

- {Q, + rls(t+1) 1) (ult) + LE)x(t))

- Only the last term remains. In order to eliminate the
remaining statistics rewrite x(t) using the results in
Section 2.

x(£) = x,(£) + x,(1) = xp(£[t=1) + X C£]t=1) +

poa (ele=1) ¢ 3 Ctle=1) + v, 00 (T-MMxg

Introduce
P(t) = w(t,000T - MT¢0,tIM(0,t)] (31)
Thus
) m=1 N N - N
min i) EBE{||u + Lx; + Lx, + Lz + Lz +
It 1 m m
ul0),e 0 u(m=1) 0
b LEx 120 Tannd =
0 (Q2+r syl
ATy 2
= min E u + Ex_ + Lz_ + LFx + T +



20,

m=1 T
+ 7 tr[(n(t) + () (Q, + 1 S(t+1)r)] =
0,
=z min mi1 llﬁ(t) + L'(t)x0[|?Q +PTSF) &
u(o),--o,u(m_1) 0 2

m-1- T
+ ) tr{(n(t) + 2(£))(Q, + T S(t«1)r)}
0

The first equality follows after some manipulations from
h[x (t]t- 1)|Y 41 =0, E[Z_ qlthe= 1)!Y = 0, Ez oCElt=1) =
E% (“It 1)x1(t|t 1) =0 and the Remark 5 of Sectlon 2. The
second equality is a reformulation using the definitions

w(E) = uCt) + LOE)(x, el t=1) + z (] t-1)) (32)
L'(t) = L(t)F(t) (33)
It now remains the minimization of

m=-1

2 :
% [ ut) + L'(t)xoll(Q2+r18(t+1)P)

with respect to u(t), 0 ¢ t 5 m-1.
Every u(t) could be written
w(t) = L' (tlal(t) + b(t)

where b(t) is perpendicular to the range space of L'(t)
in the scalar product induced by (Q2 + PTS(t+1)f). Thus
for each term

e 2 -
[IL'(t)a(t) + b(t) + L‘(t)xOII(Q2+PTS(t+1)r) =

. 2 . . | 2
[latt) + XU!|L'(t)T(QQ+PTS(t+1)P)L'(t) PO g,

0

T

k]

Sr)



27.

and the choice a(t) = 0, b(t) = 0 or u(t) = 0 means a

min max choice. Any other choice would make:  the sum larger
for some Xge

Summarize:

Theorem 4,1: The loss function J, (27}, is minimized for
the system (28) by

(= LeoIxg (e e=1) + 2z (£[£=1)]
u(t) =

- L(t);(tlt—1)

with L(t) from (29), x,(t|t-1) from (3) and z (t|t=1) from
(22), giving the loss

-1
T ke T
Vixg) = x38(0)xg + | xg

LT (0, + ITS(e+1I)L (t)xy +
5

N=1 N=1 | T
+ § tr Ry (£)S(t+1) + Y tr P(t}[Q2 + T S(t+1)r)
0 0

e

with S(t) from (30), L'(t) from (31) and (33) and P(t)

n¢t) + £(t). Minimization is done for the worst possible
xg. (|



22.

5. ONLY SOME PART OF THE INITIAL VALUE TOTALLY UNKNOWN.

It is possible to prove analogous theorems for the gene-
ralisation that the initial state has a known statistic
in a subspace, while it is totally unknown in the rest

of the state space

1

where xg has mean value m and covariance RO and where xg
is restricted to a subspace V but otherwise totally un-
known. Let V be spanned by the row vectors of N.

Split up the system (1) by

N

[ xq (t+1) = ¢xy (£ + v(t) x1(0) = x4
(9a)
1 y1(t) = ex1(t) + e(t)
2
Xo (t41) = $x, () %,(0) = X
(10a)

yo(t) = 8x,(t)

Let the starting values of x, and I be
xn(0|~1) = m
mo) = R

0
and thus for =z
2
0

2(0) = x° = N'E

Then the minimum variance estimate of 2z(0), with minimal

norm, is given by



23.

2C0[t-1) = NT(NMCo,tINT ) TNaC-1,1) (22a)
and
xCt[t=1) = x (t|t=1) + p(t,t=1)2(0]t-1) (16a)

When V is observable

cov E(t]t=1) = £(t) = plt,0NT (NM(O,tIN) 1quf(t,m

The recursive equations for this case suffer from the
same complication as in the multioutput case. It must

be decided, whether a certain measurement decreases the
dimension of the intersection between V and the unobserv-
able subspace, or not, in order to calculate the correct
filter gain. It is therefore easier to solve (22a) in
each time-step until the whole V becomes obsgrvable. Then
the usual Kalman filter should be started with P(t) =

= (t) + £(t).
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6. CONCLUSIONS.

To start a Kalman filter the initial state is usually as-
sumed to have a known statistic. This is, however, often
unrealistic. It was here shown how the discrete time fil-
ter should be started, when the initial state, or part of
it, is totally unknown.

Two filters are needed for t < n

RCe+1]£) = x (E41]1) + 2(t+1] ) (15)
( %n(t+1|t) = ¢;H(tlt-1) + K(e)[v(t) - B;H(t|tm1)] =

1 z w(t+1,t)in(tlt-1} + K(t)y(t)

[ % €0[=1) = 0 (3)

[ 2(t+1|t) = w(t+1|t)£(t1t—1) + Ko () [y(t) - ein(tlt—1) -

4 - e;(tlt-1)]

L z(0]-1) = 0 (23)
where

plt+1,t) = ¢(t+1,t) - K(t)e (6)

and the gains K and K, 'are obtained from two different

Riccati equations:

-1

K(t) = ¢T(t)el[en(t)er + R, ] (%)

: _ T, T =1
Ka(t) = wPa(t)B lePs(t)e ] (24)



( TCE+1) = ¢nCe)sT + Ry = K(X)om(t)e’ (5)
[n(o) =0
Po(t41) = yPo(t)y = K ()P, (t)y" (25)
P8(O) = I

while a usual Xalman filter could be started from t = n
with

%(n|n-1) = ;H(n|n—1) + z(n|n-1)
P(n) = n(n) + £(n)

where

-1

-1
-1
2(n) = w(n,O){ 7 yTes,008 (R, + om(s)e”) w(s,O)] vT(n,0)
0

t

Note also that P3(n) = 0.

In the multioutput case and in the case with the initial
value restricted to a subspace ‘of the state space, the
recursions (23) and (25) are more complicated and it is
better to solve z(t+1]t) directly from

zCt+1]t) = y(t+1,1)2(0]t)

and



nll] =

7. REFERENCES.

(11 Astrdm, K.J.: Introduction to Stochastic Control
Theory, Academic Press, New York, 1370.

[2] Hagander, P.: Linear Filtering with Unknown Initial
Values. Report 7219 (B), Lund Institute of Tech~
nology, Division of Automatic Control .(Aug. 1972).

[3] Astrdm, K.J.: Lectures on the Identification Prob-
lem - The Least Squares Method. Report 6806, Lund
Institute of Technology, Division of Automatic
Control (Sept. 1968).

[4] S¢derstrém, T.: Notes on Pseudoinverses. Application
to Identification. Report 7003, Lund Institute of
Technology, Division of Automatic Control (July
1870).

[51] Luenberger, D.G.: Optimization by Vector Space Me-
thods, John Wiley, New York, 13869,

[6] Cline, R.E.: Representation for the Generalized In-
verse of Sums of Matrices. SIAM. J. Numer. Anal.,
Serie B, 2 (1965), 99 ~ 11,



