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DESIGN OF DIGITAL CONTROLLERS - THE SERVO PROBLEM

Bjdrn Wittenmark
Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

ABSTRACT

In this paper the regulator and servo problems are discussed for discrete
time systems. The servo problem is defined as to follow reference signals.
This includes how to introduce models and integrators into the closed loop
system, The purpose is to consider the case when the system is known to be
able to derive structures for controllers that later can be used for instance in

adaptive controllers to intreduce integrators and reference values.



DESIGN OF DIGITAL CONTROLLERS - THE SERVO PROBLEM

1. INTRODUCTION

Linear quadratic (LQ) control and pole placement through state feedback are
primarily used to solve the requlator problem. l.e. how to eliminate
disturbances due to {nitial values. Additional control signals are then
introduced to make it possible for the system to follow reference values. l.e.
to solve the servo problem. This includes how to introduce reference models
and integrators into the system. These problems are only to some extent
discussed in text books on linear quadratic control, see for instance Anderson
and Moore (1971) and Kwakernaak and Sivan (1972). Model matching for
multivariable continuous time systems is discussed in Hikita (1981). The servo
problem for multivariable systems is also discussed in the PhD thesis by
Bengtsson (1973). In Anderson and Moore (1971 p 247) the following definitions

are glven:

"If the plants outputs are to follow a class of desired trajectories,
e.g. all polynomials up to a certaln order, the problem is referred to
as a gervo (servomechanism) problem; if the desired trajectory is a
particular prescribed function of time, the problem is called a
tracking problem. When the outputs of the plant are to follow the
response of another plant (or model) to either a specific command

input or class of command inputs, the problem is referred to as the

model-following problem,"

These problems are here discussed for single-input-single-output discrete
time systems. We will not make any hard distinctions between the different
cases defined above, but will simple refer to them as the servo problem. The
purpose is to glve suitable structures for the controller which makes it
possible to solve the servo problem when the system is known. The goals of
the paper are to investigate the problems for known systems and to discuss
how the solutions can handle input and output disturbances and errors in the
model of the process. The problems are formulated in state space form. The
input-output relations are, however, of primary interest since one goal is to

derive structures that can be used in adaptive controllers to solve the servo



problem. In the literature several ways to introduce Integrators in
self-tuning regulators are discussed, see for instance Astrtm (1980), Modén
(1981), Allidina and Hughes (1982) and Wittenmark and Astrdm (1983).

The paper is organized in the following way. In Section 2 the problem ls
defined and different specifications are given. The regulator problem is
solved in Section 3. The model-following and tracking problems are solved in
Sections 4 and 5. Introduction of integrators is discussed in Section 6.
Section 7 gives some examples. Conclusions are given in Section 8 and

references in Section 9.

2, PROBLEM FORMULATION

The regulator and servo problems are discussed for discrete time systems.

The same approaches can also be used for continuous time systems.

The process

Let the process be described by

k(k+1l) = &x(k) + Plulk) + v(k))

y(k) = C x(k) + e(k) (2. 1)

where the matrices ¢, I' and C are known. The signals v(k) and e(k) are input
and output disturbances that are not measurable. The system is of n:th order.
It is assumed that the system is reachable and observable. Further only
single-input-single-output systems are treated. The input-output description

of the system is defined by the pulse transfer operator

Ciql - & " Ircutk) + vik)) + e(k)

y(k)

= Bla) (k) ¢+ vik)) + e(k)
Alqg)

H(g) (u(k) + v(k)) + e(k) (2.2)

where q is the forward shift operator and deg A =n and d =deg A - deg B.
The polynomials A and B are defined as



AlqQ)

B(q)

q" + alq“'1+ RN (2.3)
n-d n—d—l+

boq + blq n-d

The pole excess, d, is the same as the time delay of the process.

Specifications

The speclfications for the regulator case are:

Requlator case: Influence of initlal values should be eliminated following the

dynamics specified by the characteristic polynomial Ar(q).

For the servo case we will give two different Ltypes of specifications:

Servo case 1:

Servo case 2:

The response of the system from the reference signal, uc, to
the output, y, should be given by

Bm(q)
y (k) = H (g)u_(k) = ———— u (k) (2.3
m m o

Am(q) c
where the known polynomials Bm and Am don’t have any

common factors. It is agssumed that

deg Am= no

< - =
d ¢ deg Am deg Bm dm {2.6)

Further Am is a stable polynomial, i.e. all its zeros are

inslde the unit circle.

In this case it is required that the output of the process
should be ’close’ to the output, ym, of the model (2.5). The

reference signal, uc, is restricted to be a step.

T'he problems are specified by the polynomials Ar' Bm, and Am. Since the

system is assumed to be reachable and observable then there are no

restrictions on Ar' The assumption (2.6) implies that the model has a time

delay that is at least as long as that of the process. Different restrictions on

Am and Bm are discussed in connection with the solutions.



In the terminology given in Anderson and Moore (1971) Servo case 1
corresponds to model-following while Servo case 2 corresponds to the

tracking problem.

In some sltuations it is useful to have the model (2.5) described in terms of a
minima) order state space model
® (k+l) = & x (k) + ' u_(k)
m mom mc

(2.7)
y (k) = C x_(k) :
m m m

The purpose of the control is to follow Yo' Depending on the knowledge of the
properties of ke and the process different solutions will be obtained. The
solutions will also depend on how the disturbances are taken care of in the

problem formulation.

3. THE REGULATOR PROBLEM

The system (2.1) ls reachable and observable. If all states are measurable

then the regulator problem is solved by the state feedback regulator
u(k) = - L x(k) + uc(k) (3. 1)

In the regulator case us 0, but will be used later to solve the servo problem.

The feedback vector L is chosen such that

det (zI -(¢& - I'L)) = Ar(z) (3.2)

This gives the closed loop system

lrﬁc(k) = B(q) ;c(k) (3.3)

y(k) = Clql - (& - TL)} A (q)

The reachability condition implies that the poles of the closed loop system

can be placed arbitrarily. The zeros are, however, not changed.

If all the states are not measurable then they can be estimated using an
observer since the system (2.1) is observable. Let the dynamics of the
observer be Ao. The characteristic polynomial of the closed loop system wl:h
an observer is then Aer. The observer dynamics is not controllable from u,

which implies that the input-output relation still is given by (3.3).



The regulator problem can also be solved using linear quadratic control. The
feedback vector L is then chosen in order to minimize a loss function. The
loss function is here restricted to be of the form
]
Je) = £ [y(k)2 + @ utk)?) (3. 4)
k=1

The vector L that minimizes (3.4) is

T -1]..'1'

L = (e + 'S S¢

The characteristic polynomial of closed loop system, Ar(Z)’ is given by

rAr(z)Ar(z-l) = eatzaiz Yy + BzyB(z™h) (3.5)

where

r = FTS r +e
and S is the solution to the steady state Riccatl equation

S =654+ @, - eTsrce +rism irT

1 S¢ (3.6)

where

_ ~T
QI-CC

See for instance Astrdm and Wittenmark (1984), or any standard text book on

linear quadratic control.

4. THE MODEL-FOLLOWING PROBLEM

The solution to the regulator problem results in a state feedback controller
that shifts the poles of the closed loop system into desired locations. The
servo problem is solved by determining a feedforward system from the
reference signal U, to the signal ;c in (3.1). Depending on the specifications
there are several solutions to the servo problem. Servo case 1 or the
model-following problem is first considered. It is now desired that the closed
loop system from u, to y Is given by the model Hm’ i.e. perfect
model-following is desired. To achieve this it is necessary to have, compare
(3.3,



Feed-
forward
Ue B Ar
B Am L]
Ue
o d Process bl

X

Fig 4.1 Control of the process using the controller {3.1) and (4.1).

. B_(q)A_(q)

uc(k) = B(q)Am(q) uc(k) (4. 1)

see Fig 4.1. The order of the feedforward system is

n+n -d
m

if there are no common factors between BAm and BmAr' Notice that the orders
of the polynomials Ar and Am are not necessarily the same. Also notice that
(4.1) contains the inverse of the process when it is controlled by (3.1), i.e.

Ar/B. There are three propertles of the controller (4.1) that are required.

% Causality
%  Stability

% Robustness against disturbances and modelling errors

The controller (4.1) is causal if and only Lf condition (2.6) is fulfilled. This
implies that the time delay in the model ls at least as long as that of the

process.

The feedforward controller is stable if Am(q) and B(q) have their zeros inside
the unit circle. If B has zeros outside the unit circle it is necessary that
those also are zeros of Bm. This implies that only stable process zeros are
allowed to be cancelled. A thorough discussion of this is given in Astrdm and

Wittenmark (1984). Also there may be common factors in the stable



polynomials Ar and Am' which should be cancelled before (4.1) |is

implemented.

The feedforward controller (4.1) contains both exact information (the model)
and information that may be uncertain (the process). It is desired that the
total system is robust against small errors In the process model. Also it
should be possible to eliminate the different types of disturbances acting on
the system, see (2.1) or (2.2). This will be analyzed in the end of this section.

State-space formulation

The controller (4.1) can be implemented in different ways depending on the
process and the model. A couple of different cases will be considered. Assume

that a realization of the feedforward system is

xf(k+1> = ¢fxf(k) + Ffuc(k)

~ (4.2)
uc(k) =

-fof(k) + xcuc(k)
A general linear controller that uses the states of the process and the

feedforward system is

u(k) = -L xtk) - L x_(k) + & u_ (k) (4. 3)
£ cc

f

We will now analyze the properties of the closed loop system. The
disturbances are disregarded for the moment. Using (4.3) to control (2.1)

x(k+l) $-T'L -T‘Lf x(k) l"!.c
= + uc(k)
xf(k+1) 0 ¢f xf(k) I"f

The input-output relation ls now

glves

-1
qI-(é-TL) l"Lf l"l.c
y(k) = [C 01 uc(k)

0 qI—¢f Ff



[q1-<¢—rL>1'1 -tq1—<¢-rL>1“1rLftq1—¢f3'l ra

= [C 0] .y u_ (k)
o [qI-4] T

We thus get the pulse transfer function

_ e -1 _ _ -1
y(k) = Clql-(¢-TL)]1 T [kc Lf(qI ¢f> Ffl uc(k)
or
B_(q)
_ Btg) | _f
y({k) = Ar(q) Af(q) uc(k) (4. 4)

The polynomial Af {s assumed to be monic. The first part of the pulse transfer
function is the pole shifting due to the solution of the regulator problem. The
denominator of the second part Is the characteristic polynomial of ‘bf in (4.2).
The numerator of the second part has the same order as the denominator. The

controller has the structure shown in Fig 4.2.

The polynomials Ar' Af, and Bf can be arbitrarily chosen through L, L‘p and
zc. Perfect model-following is obtained if

- 1
Feed-
u X
€ | ol torwardl— e -L¢ z
system e
-L x u Process -
X

Fig 4.2 The control scheme obtained when the controller (4.3) is used.



Bf(q) Ar(q)Bm(q)/b

0
Af(q)

Am(q)B(q)/bo

The assumption (2.6) implies that Bf/A{ Is causal. The order of the controller
is then

n +n-d
m

which is the same as that of (4.1).

Notlce that {t is possible to rewrite (4.1} as

= Bm(q)Artq)
uc(k) = B(q)Am(q) uc(k)
B _(q) B (q)LA_(q) - B(qg)1l
=ﬁu(k>+ m 3 9 : u (k) (4.5)
Am(q) c Am(q)B(q) c

The first term is b and contains only known parts while the second term also
contains parts that are dependent of the possibly uncertain process. If A

and B don’t have any common factors it (s easy to show that the feedforward
system (4.2) can be implemented as a block diagonal system of order
n+ n d with two output signals that corresponds to the two terms in (4.5),
see Appendix. The importance of this separation will be apparent in Section 6

when integrators are introduced.

In the next case It {s assumed that the process (2.1) and the model (2.7) are

‘compatible’. Without giving a formal definition this means that:

* The orders of the system and the model are the same and that the states
have the same physical interpretation.

* The model dynamics can be obtained from the process through feedback,
l.e.

$ = ¢ - TI'L
m

It is then meaningful to look at the difference between the states of the

process and the model. Further assume that

Ar(q) = Am(q)

The system can now be implemented as shown in Fig 4.3. Notice that the



10

Ym Inverse Um

X

Fig 4.3 The control structure for solving the regulator and servo problems
when the states of the process and the model are compatible.

system contains an inverse of the process which may be noncausal. The model
together with the Inverse can, however, be implemented as a causal system,
see above. The advantage with the implementation is that some nonlinearities

of the process can be taken care of.

Bengtsson (1973) has proposed a method for model-following for multivariable

systems. Consider Fig 4.4. The controller contains four parts

% A model of the form (2.7). The order of the model is arbitrary.
% An inverse of the process
¥ A process model

% A state feedback regulator

The desired output, Yo is obtalned by applying the signal u to the process.
The signal Ym is generated by the model and u- by the inverse of the
process. Let the process model be described by

x (k+1) = (& - KC) x__(k) + I' u (k) + Ky (k) (4.6)
pm pm m m



11

u y u
c m Inverse m
" Model process
Process
model
'K m

~-L aé—. Processhz—

X

Fig 4.4 Bengtsson’s method to implement a model-following controller.

The process model looks like an observer. The reason for the structure is the
following: The process model and the inverse process are used to generate
reference trajectories for the states of the process. The signal u_ can be
regarded as an input to the process which should give the output Y The
signals v and Y, are thus regarded as the desired input and output of the
process and are used to generate the states of the process model. These
states are then used as reference states for the process. The process model
(4.6) can be interpreted as an observer which generates the reference
trajectory for the states of the process using the signals us and Y The
vector K can be chosen such that the observer gets arbitrary eigenvalues if

the process (2.1) {s observable,

Seen from Ym to y we have a unit pulse transfer operator when using the
controller in Fig 4.4. The advantage with the method is that some types of
nonlinearities can be taken care of. Bengtsson (1973) has also shown that it is
possible to generate the reference values of the states directly from the

inverse of the process. The method require that B(z) has all zeros inside the
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unlt circle. If this is not the case the inverse has to be approximated. The

order of the feedforward controller with the inverse and the process model is

2n + n_ - d
m

Input-output formulation

One way to solve the servo problem when the process is glven in input-output
form is shown in Fig 4.5. The controller is now
®n [A S

- A, S -8
utk) = = + ] ugtk) - g vtk (4.7)

B R

This glves the closed loop system

B BABm SB Bm
y(k) = A u(k) = BAA uc(k) ~ RA y(k) - e uc<k)
m m
or
o A | Ym
B
Ye | Bm 5 S u_| B y
A y ) i
m m R A
T

Fig 4.5 Input-output form to achieve model-following.
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B B
. .m B(AR + BS) __m
y(k) = Am B(AR * BS) uctk) = Am uc(k)

The cancelled factors contain the observer dynamics, the regulator dynamics,

and the cancelled process zeros, l.e.

AR + BS = A_A

or
This polynomial equation has a solution if A and B don’t have any comman
factors and if
> -

deg Ao_ n 1

deg S < n

deg R = deg Ao
Using (4.7) it is possible to make a separation between the regulator and the

servo problems. This solutlon corresponds to the structure given in Flg 4.2,

but with an observer included in the loop. The total controller has the order
2n + n_ - d ~- 1
m

The order is n - 1 higher than that of (4.1). This corresponds to the degree of

the observer.

If we restrict the problem to the case Am= Ar then (4.7) can be simplified to

R(gqlulk) = -S(gqly(k) + T(q)uc(k) (4.8)
where
T = B A
m o
AR + BS = BA_ A
m o

The polynomial equation has a solution if A and B don’t have any common

factors and if
deg A 2 n - n +d -1
o m
deg S < n
deg R = deg A°+ n_- d

This solution corresponds to the structure in Fig 4.3, but with an observer

included.
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The pole placement method base on polynomials is thoroughly discussed in
Astrém and Wittenmark (1984).

Disturbance rejection

We will now analyze how the input and output disturbances in (2.1) will

influence the closed loop system.

The output disturbance will not be eliminated in the state space formulation
since y is not used in the controller. A step disturbance on any of the
measured states can, however, be eliminated if there is an integrator in the
system. Consider the control structure in Fig 4.5. A step in the output
disturbance can be eliminated only if there {s an integrator in the process or

in the controller, i.e. if

A(1)R(1) = O

The signal ;C is a feedforward signal. As in all cases where feedforward is
used it is important to have exact knowledge of the process or to combine the
feedforward controller with a feedback controller. In the state space case,
Fig 4.1, modelling errors will cause an error in :c' This will have the same
effect as an input disturbance. This implies that both lnput disturbances and
modelling errors will give errors in the closed loop system, mainly due to the

lack of integrators in the controller.

In the input output formulation, Fig 4.5, there is a combination of feedforward
and feedback. An integrator in the regulator will make it possible to
elimlnate input step disturbances. This Integrator will also make it possible
to tolerate errors in the inverse of the process model. The control system
will then integrate the error between the desired output, Y’ and the true
output. Notice that 4 is generated without any knowledge about the process,
compare (4.5). The structure of the controller used in Fig 4,5 is thus robust

agalnst both disturbances and modelling errors.
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5. THE TRACKING PROBLEM

When Servo case 2 or the tracking problem is considered it ls not required to
have perfect model-following. It is instead desired that the outputs of the
process and the model are close. Let the clogseness of y and ym be measured

by the performance index
= 2 2
J(g) = Z [(y(k) - y (k))™ + @ u(k)™] {5.1)
k=1 b

where Y is the output of (2.7) when u, is a step. Introduce a new state which

generates the step. The model can now be described by

¢m Iqm X

X' (k+l) = [m] = &’ x’'(k)

m u m°m
8] 1l c

y (k) (c 01 x’'(k) C’ %’ (k)
m m m m om

The optimal controller can now be determined by converting the problem to a

standard linear quadratic problem. Introduce

‘- [:,;,]

This gives the new system

_[e o r
z(k+1) = [0 ¢,] z(k) + [b] utk)
m
= & z(k) + ' utk) (5.2)

and the performance index is transformed to

w 4
J=2¢ tz(k)Tﬂlz(k) v e ulk)?)
k=1
where

. cTe  -cTer
Q, = N

1 -c'Tc¢  cTer

m m

m

The steady state Riccati equation is now
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5 .35+ 8,- ST + TTem TSR

The loss function will be finite only if the unstable elgenvalues of ¢'m also
are eigenvalues of ¢, see Anderson and Moore (1971). For instance if uc is a
step then ¢'m has one eigenvalue in 1. The process must then contain an
integrator if the loss function should be finite. This s natural since u
otherwise will not be zero in steady state. To get a finite loss function the
penalty on the control signal could be changed to glu - um)z, where U is the

input level in steady state which gives Yo'

To analyze the result partition S as

. [s. s
s=1gT s
12 S22

then we get

c = oTse + cTc - ¢Tsrie + rism 'rise
= &7 A L M
512 = ¢ 512¢m C Cm L'r 512°m
P , JTeo _ a0 Tg T T -1.T '
522 = ¢m 522¢m + Cm Cm °m Slzr‘(e + TS T 512¢m
where
L= (e + rtsm irise
The optimal feedback vector fs now
g -1 .T T .
L = (g # SN "(rse r 512¢m]
and the control law is
ulk) = —E z{k) = ~-L x(k) - L"nx"n(k) (5.3)
where
. T -1.T i
Lm = (g + 'S T SlZ‘m

Notice that the same L is obtalned as when only the regulator problem is
solved, see Section 3. Also notice that the control law is independent of 522

and that 512 is obtained from
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(¢ - T‘L)TS ¢’ = CTC' + S
m m 1

12 2

This linear matrix equation has a unique solution if and only {f

A (O-TLIN (') % 1 v i, J
i m

J

where ?\i(¢) denotes the elgenvalues of the matrix ¢.

The Liapunov equation for S 2 has no unique solution if ¢m’ has ati_y

2
eigenvalue equal to one.

The closed loop system

We will now analyze the closed loop system when (5.3) is used on the system

(5.2). Partition Lm’ as

L = [L =21
m m Tc

The structure of the controller is thus the same as (4.3) and the closed loop

system is
¢ 0 0 ®x(k)
z{k+l) = 0] 4 r x (k)| +
m m m
O o) 1 u_ (k)
c
r
+ J0|¢(-Lx(k)-L_x (K)+& u_(k))
mm cc
8]

y(tky = [ C O 01 z(k)
Computations analogous to those leading to (4.4) gives now the input output

relation

B(qg) ;<1)
= . u (k)
Ata) A (q) ¢

y (k)

The poles of the closed loop system are thus given by the roots of Ar and Am’

i.e. the closed loop system is of order



18

wWhat can be said about A(q)? Calculation of a couple of examples gives the

following indlcations

* If B(g) has all zeros inside the unit circle and if e = 0 then Ar= qd B(q)
and A(q) will have dm roots in the origin and the rest at the roots of Bm-‘
This is true e:en if Bm has zeros outside the unit circle.

x If @ » w then A(Q) » Am. .

% There does not seem to be any simple relation that characterizes A, see

Example 7.3 In Section 7.

The controller has in this case the same structure as the state space
controllers in Section 4. The closed loop system will then also have the same
properties with respect to disturbances and modelling errors. The only way
Lo take care of the disturbances is to glve a model for them and to include
that into the total system. The resulting optimal controller will then contain
a feedback from the disturbance. If the disturbance is not measurable it has

to be estimated. This will be discussed in the next section.

6. INTRODUCTION OF INTEGRATORS

In the previous section it was indicated that the loss function (5.1) withe # 0
is finite only if the process (2.1) contalns an integrator. If the process does
not have an integrator one must be introduced and {t is necessary to change
the loss function to get a finite loss. Also from classical control design we
know that integrators will make it possible to eliminate steady state errors.
The integrator will also make the closed loop system less sensitive to
modelling errors. There are several ways to introduce Integrators. We will
only discuss how to solve the model-foliowing problem. The tracking problem

is solved in an analogous way.
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Differentiating the input

One way to get an integrator into the system ls to introduce a new control

signal by taking the difference of the control signal, i.e. to let
Vu(k) = u(k) - utk-1)

be the control signal. The old control signal utk-1) will then become a new

state of the system. The augmented control system ls

¢ r 0 x(k) I
z(k+1) = (O 1 0 ulk=-1)| + |1 |Vu(k)
0 o 4>f xf(k) 0

A general linear controller has the form

Vu(k) = -Lx(k) - & ul(k~-1) - L _x_(k) + & u (k) (6.1)
u f£f c c

The structure of the controller {s given in Fig 6.1.

If ku* O then the integrator will be eliminated and there may still be steady
state errors if there are unmodelled disturbances acting on the system. If
xu= 0 then is the choice of the poles of the closed loop system limited. This

implies that this way of introducing an integrator is inflexible.

Integrating the output

Another method to get an integrator is to integrate the difference between
the desired output and the output of the process i.e. to introduce the new

state

X (k+l1) = x

el nep (K + y (k) = y(k)

From (4.5) and Appendix it is seen that Y €30 be generated on the form

Yo k) = Cox (k)

for a suitable Cf. The augmented system now becomes
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Feed- 7
u u
—C forward B
system
Vu 1 u
' 1-q"=f Process Y
X
"‘lu restg— q-1
-L

Fig 6.1 The controller structure (6.1) when an integrator Is introduced by
differentiating the input signal.

$ 0 0 x{k) r
z(k+l) = |-C 1 Cf xn+l(k) + 0] utk)
8] 0 ¢f xf(k) 0]

This leads to a controller of the form, see Fig 6.2,

u(k) = -Lx(k) - & (k) -L_x_(k) + Lcuc(k) (6.2)

n+1%n+1 £

Assume that

uc= _fof * xcuc

is given by (4.1). Using (6.2) gives the closed loop system

B I(q-1)A - & Bl BA_ B_
ey = A Ga-DA -2 B7 ° BA_ ug (ky = A YR
where
A_(q) = detlql - (& - T'L)J

The closed loop system will behave as the model. The cancelled factor
(q-l)Ar—’”nﬂB can be given arbitrary roots. In Section 4 it was shown that Ym
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can be generated from Bm/Am only. This implies that the closed loop system
will be robust against modelling errors. Further can step disturbances in both
the input and the output be eliminated since the error Y™ ¥ {s integrated.

This way to introduce an integrator can thus be recommended.

Estimatlng the dlsturbgnce

A third way to eliminate the influence of disturbances is to estimate the
disturbance and compensate for it. Consider the case when e = 0 and when v
is a unknown level in (2.1). Further assume that all the states can be

measured. The system can now be augmented with a new state
vik+l) = v(k)

which should be estimated. Let the augmented system be

z(k+l) = [° r] z(k) + [g:’ ulk) = @ 2(k) + I*u(k)

0 1
yz<k) = [I 01 z(k) = C’z(k)
where
G
Feed-
-Ll‘i- forward Ym = I;_": u Process Y
system

T

-1

Fig 6.2 The controller structure when the (ntegrator is introduced by
integrating the error of the output of the process, (6.2).
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x(k)]

By & [v(k)

An observer that gives the estimates of z(k) given data up to and including
time k is

A A
z(k) = &’z(k-1) + I'"ulk-1)

A
+ K[yz(k) - C'(&'2(k-1) + Mu(k-1))1]

]

[I - KC’'1[é’z(k-1) + T’u(k-1)7 + Ky_ (k)

Since all the states of the process (2.1) are measured it is possible to use a
first order Luenberger observer to estimate the only unknown state, v. This

Is obtained by choosing K such that

C’'K = I

<= [k,

The observer now becomes

or

A
x(k) = x(k)

A A
vik) = (1 - Kvl')v(k-l) + Kv[x(k) - ®x(k-1) -~ Tu(k-1)1
(6.3)

Lod A
The error v = v - v is described by
vik) = (1 - Kvl‘)v(k-l)

The measured states are estimated exactly. The gain Kv ls a row vector of
order n. By choosing Kv it is possible to decide how fast the estimator will

be. For instance

Kr =1
\

gives a dead beat observer.

A
The estimated level v can now be used to compensate for v. The state
feedback controller is now
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x(k)]

z(k) = [v(k)

An observer that gives the estimates of z(k) given data up to and including
time k is

A A
2(k) " z(k-1) + I'*ulk-1)

A
+ K[yz(k) - C'(¢'2(k-1) + Iu(k-1))]

i

[T - KC’I0®’2(k-1) + F'ulk-1)7 + Ky_ (k)

Since all the states of the process (2.1) are measured it is possible to use a
first order Luenberger observer to estimate the only unknown state, v. This

is obtained by choosing K such that

C’'K = I

< [k,

The observer now becomes

or

A
x(k) x(k)

A
v(k)

A
(1 - Kvl")v(k-l) + Kv[x(k) = $x(k-1) - Tu(k-1)1
(6.3

o A
The error v = v - v is described by
v(k) = (1 - Kvl‘)v<k-1)

The measured states are estimated exactly. The gain Kv is a row vector of
order n. By choosing Kv it is possible to decide how fast the estimator will

be. For instance
Kr =1
v

gives a dead beat observer.

A
The estimated level v can now be used to compensate for v. The state

feedback controller is now
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UCk) = -Lx(k) - vik) - L_x_(k) + g u (k)
£f c c

If we instead of an input disturbance have an output disturbance,

e, it is
obvious that thisg disturbance can be estimated as

A
e(k) = y(k) - Cx(k)

i{f all the states still can be measured.

7. EXAMPLES

The methods described in the pPrevious sections will no

w be demonstrated in
some examples.

Example 7.1 - State space formulation
Consider the second order system

0.2 0o 1
x(k+1) = x(k) + [utk) + v(k)3
0 0.8 1

Y(kY = [l 13x(k)

The pulse transfer operator s

_ 2g-1
H(q) = (q-0.2)(q-0. 8)

Let the desired model be

Hm(q) - < 0. 3Sq
qQ - g+ 0.35

The regulator problem is solved by choosing

L =1[-1 161715

The feedforward system, which solves the model-following problem is



“ 0.175 g°

uc(k) = >
(q-0.5)(gq"-g+0. 35)

One state space representation of the feedforward system is

24

b2 -0.5 0 1
xf(k+1) = |1 o o xf(k) + 10 uc(k)
0 0 0.5 1
uc(k> = -fof(k) + &cuc(k)
= [0.253 0.525 1.25]xf(k) + 0.175uc(k) (7.1)

Fig 7.1 shows the output and the control slgnal when the controller (7.1) is

used. The inftial value of the first state of the process is | and the reference

value Is changed from 0 to 1 at t = 30 and a disturbance of magnitude -0.25 is

added to the input at t = 60. The controller will not give the correct steady

state value If the steady state gain of the process Is changed. Also a step

disturbance at the input as well as at the output will give an error, since

\ -
0.75: ’J
0.‘
g - =0 7S 100.
—o.%- . 25, ' 50. ' 7S, 100.

Fig 7.1 Output, reference value, and control signal when
control the process in Example 7.1.

(7.1) is used to
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neither the process nor the controller contain an integrator.

Example 7.2 - Motor, Input-output formulation
A model of a continuous time motor is in this example controlled by a digital
controller. The continuous time transfer function is '

b

G(s) = s(s + 1)

Sampling the system with the sampling interval h = 0.5 gives the pulse

transfer operator

0.11(g + 0.85)
(q - 1)(gq - 0.61)

H(q)

The sampled open loop system has a zero on the negative real axis. The
contro!l signal will {ntroduce a ringing In the system if this 2Zero is cancelled.
To avold this it 1s assumed that the model has the same zero. It is assumed
that the mode! has poles that corresponds to damping ¢ = 0.7 and a natural

frequency w = 1 rad/s. The mode! ig then

H (q) = Bm(q) = K q + 0.85
m Am(q) 2+ q
q P4 Po
where
py= -2e 59001 - £% wh) = -1.32
Py= e-2c°h= 0.50

K = (1 + p1+ p2)/(1 + 0.85) = 0.10

Further we assume that the desired regulator response has a damping ¢ =1

and a natural frequency w = 2, This gives
2
Ar(q) =q - 0.736g + 0.135

Using the regulator structure in Fig 4.5 gives the regulator

Bm(l)A(q) Sta)
u(k) = W uc(k) + R_-B—-(q) [ym(k) - y(k)1l (7. 2)



Assume that the observer polynomial i3

Ao(q) = q

and determine R and S from

AR + BS = A A

or
where deg R = deg S = 1. This glves
R(q) = q + 0.381
S(q) = 4.395q - 2.564

26

Fig 7.2 shows the output and the control signal when (7.2) is used. The initial

values of the output and of the output velocity are both 1. The reference

value is zero untll t = 10 when {t is changed to 1. An input disturbance, -0.5,

fs applied at t = 20. The figure shows that the servo and regulator designs

can be separated. The unmodelled input disturbance will not be eliminated

since there is no Integrator in the regulator. An Integrator can be introduced

by solving the polynomial equation above, but with

1. e
0.5_{
0.
0. - 7.5 ' 15. 225 30.
0. -L‘— rLL"\_._
|
-2.5
- -
0. 7.5 ' 15, 225 30.

Fig 7.2 Output, reference value, and control signal when the controller (7.2)

is used to control the motor process in Example 7.2.
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2
A(Q) = (q - 0.3)

R(q) = (q-1)(q+r)
and deg S = 2, The solution is
R(q) = (q-1)(q+0. 46)
Stq) = 7.669% - 9.87q + 3. 20

The output and the reference signal when (1.3) is used are shown in Fig 73
The input step disturbance is now effectively eliminated.

o. ' 7.5 ' 15, ) z22.5 30.

Fig 7.3 Output and reference value when the controller (7.3) is used to
control the motor process in Example 7.2,
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Example 7.3 - Integrator, servo case 2
Consider an {ntegrator

x(k+l) = xn(k) + utk)

y(k) = x(k)
or
- 1
H(q) = q -1

Let the desired model be described by
x_(k+1l) = 0.75x_(k) + 0.25u (k)
m m c

ym(k) = xm(k)

or

0. 25
Hpta) = ==76.95

Assume that the loss function is given by (5.1) and that Servo case 2 should
be solved.

The stationary Riccati equation is

2
8 -8 = ¢

which has the golution

8 = 0.5 + /g + 0.25

This gives
=]
z=e+a
.= ¢ - ML = —8—
c e + 8

Ar(q) = q - ¢c

We cen now compute the matrix 512

8128 [s1 82]

where
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8,5 —— and s=cms
1 P i@ 1 2 1 - 0 1
This gives
¢ 8 Y.8, + 8
_ m_ 1 _oom1 2
xm- e+ & and £c= e + 8

The controller (5.3) is thus

utk) = -ax(k) -2 x (k) + L u (k)
mm cc
The polynomial A is

Alg) = lcq = (£c¢m+ kmym) = zc(q - a)

Fig 7.4 Shows how xc, @ and a vary for different values of g. For ¢ = 1 we

get

-0-2 L L L Ld L] Ll
-5, -2.5 0. 2.5

o)

Fig 7.4 .Q.c, ¢ and a as a function of e for the system in Example 7.3.
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o
1]

0.22

0. 38

€
"

0.29

The controller is now
(q-0.73)u(k) = -(0.618q-0. 464)y(k)+(0.217q-0.062)uc(k) (7.4)
Fig 7.5 shows the output and the control signal when the controller (7.4) is

used. The initial value of x is 1. The reference signal is zero untll t = 30 when

it is changed to 1. An input disturbance, -0.25, is added at t = 60.

0.5 ll“
0.
0. ) 2%, ' 50, ' 7S, ' 100,
1. |
0. [
I d
-" LJ L L s v Ll L]
0. 25, s0. 75, 100,

Fig 7.5 Output, reference value, and control signal when the controller (7.4)
is used to control the process in Example 7.3.
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Example 7.4 - Single time constant, introduction of integrator
In this example we wil] introduce an integrator in the controller when the

process is

X(k+1) = ¢ x(k) + ¥ utk)
Yk} = (k)

or

qa - ¢

where ¢ = 0.9 and Yy =1,

The first method in Section 6 with differentlating the control signal and using
(6.1) gives the closed loop system
Y (q-p+yR)[q-1+2 I+yR(1-2
- 2 2o u (k)
(q—¢m) (q-¢+y£)[q-l+£ul+7£(1-zu) c

y(k) =

The input output model is the desired one. The pParameters & and ”u are used

to choose the cancelled Poles. Placing these in the origin gives
= ey

2 .o=1
u

~ LI
uc= (g-¢ ) uc
Y{g-¢ LS
Fig 7.6 shows the behavior of the closed loop system. The proposed method
€an not eliminate the input disturbance unless £u= 0. This choice will,

however, severely limit where the poles may be placed.

The second method in Section 6 glves a better result, Using (6.2) glves the
closed loop system
Y (q-¢+y£)(q—1)-ykn+l

y(k) = - . = e u_ (k)
(q-¢_) (q-p+y2) (g-1) Y£n+1 c

Placing the cancelled poles in the origin gives
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1‘ .
|
0.
-1. L L ¥ v L LA L o
0. 25, 50. 7S, 100,
2.
O.“J = U
_2- . T T v T 2 aaa T L
Q. 2S. S0. 7S. 100.

Fig 7.6 Output, reference value, and control signal when the controller (6.1)
is used to control the process in Example 7.4.

2 = (1+@)/y = 1.9

xn+1= ~i/y = -1
: - _0.25(g+1) u
c q-0.75 c

Fig 7.7 shows the output and the control signal when (6.2) is used. The
controller can now eliminate the output disturbance.

Using the third method in Section 6 gives the controller

ulk) = -&x(k) - v(k) + ;c(k) (7.5)
where

A
vik)

A
(l-kvy)v(k-l) + kv[x(k) - ex(k-1) - yutk-1)1

Dead beat response for the regulator case is obtained for

2= o/y

This gives
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1. iy
i}
0.
-'. L] Ll Ll T LJ L}
0. 25, 0. 75. 100.
2'-1
-2l LE L) Ll i LS Ls
0. 25, =50, 75, ' 100.

Fig 7,7 Output, reference value, and control signal when the controller (6.2)
is used to control the process in Example 7.4.

~ L
u_= u
c y(q-¢ml c

Fig 7.8 shows the output, the reference signal and the output when (7.5) s

used with kv= 1/v.
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0. ' 25, 50, ' 75, ' 100.

0. ' 25, ' 50. 75. ' 100.

Fig 7.8 Output, reference value, and control slgnal when the controller (7.5)
is used to control the process in Example 7.4.

8. CONCLUSIONS

These notes have discussed the regulator and servo problems for discrete
time systems. The purpose has been to derive structures for input output

controllers that later can be used in adaptive controllers.

It should be noticed that the servo problem in is solved using feedforward.
The feedforward controller is, however, implemented such that uncertainties
In the process model and unmodelled disturbances can be taken care of. This

is done by introducing integrators into the system.

Three ways of Introducing integrators have been discussed, but only two of
them solve the problem with unmodelled disturbances and uncertain process
models. The conclusion is thus that it is recommended to use the regulator
structure given in Fig 6.1 or to estimate the disturbance if the problem is

formulated in state space form. If only the input output form is used can the
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controller be implemented as in Fig 4.5. The integrator is then introduced in

the controller polynomial R,
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APPENDIX

Consider the feedforward controller (4.5)

~ Bm(q)Ar(q>
u_(k) = BlarA (@) u_ (k)
B_(q) B_(q)[A_(g) - B(q)]
_ m m s
- A (q) ug (k) + A (q)B(q) ug (k)

Y (KY * uy (k)

The first term is equal to Vi It will now be shown that the controller can be
realized on the form (4.2) such that Yy ©an be generated based only on the

exactly known model Hm.

Consider the block diagonal realization
¢ o r
X (k+l) = | ™ x (k) + | Mlu (k) (A.1)
£f c
b

where ¢m and l"m are obtained from (2.7) and where

det(qIl - ¢ ) = B(q)/b

b 0

Without loss of generality we may assume that ¢m and ¢b are on controllable

canonical form. This implies that

T _

I"m = [10... 01
and

T ..

rb"[loouo 0]

Further the first rows of ¢m and ¢b are the coefficlents with reversed signs
of the characteristic polynomials of ¢m and d’b respectively. This implies

that the model output now can be written as

b 0 ...0)x_(k)

y (k) = [0... 0Ob _... _
m mO mnm dm £



37

f.e. a linear combination of the states that are known exactly.

The signal u, can also be generated from the realization (A.1). Rewrite u, as

= BmAr me D
U = = u_ = —= 4y —
c BAm c bo c AmB/bO c

where me and b0 are the leading coefficients in Bm and B respectively.
Further

deg D < deg B + deg Am

Now if B and Am don’t have any common factors then we way write

B g L, 2
AnB/By ~ A" B7bg

where D1 and D2 are given from the Diophantine equation
AmDZ + DIB/bO =D

This equation has a solution {f and only if A and B don’t have any common
factors, see Astrdm and Wittenmark (1984) The signal U, can now be

genarated as

mO
(k) + — c(l-c)

d
By

d d

u (k) = d L

5 3 . Ix
11 2 n. dm f
It ¢ and ‘bb are not on controllable form then the system (A.1) can be

transformod into the desired form with the transformation matrix

T 0
0 Tb

where Tm and ’I‘b are such that

T ¢ T 1
mmm

and

-1

T b

b¥p7T

are on controllable canonical from.,



