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1. THTRODUCTION

The maximum likelihood method for parameter estimation
has many desirable properties. It is thus a useful Lool forr
systems modelliny. Iiven if the alporithm is motivated using
rather strict assumptions like normality of disturbances
etc it has a much larrer area of applications when estima-
ting parameters in dynamical systems because the method can
be interpreted as a modelling of a system in such o wny
that the prediction error is minimal [1].

This paper describes an alrorithm and a computer mrorrat:
for LlIncar System Param-ter Ihentification (LISPTD), nodine
ML-estimation. The propram has been implemented on "t rvag
1108 and IBM 360. It is flexible and allows for a wide va-
riety of model structures. The model can be rmiven in copr-
tinuous or discrete time form. Difrferent descriptions ot
process and measurement noise are permitted. Tho'mode} can
also be time varying. The sampling can be uniform or vanry -
ing and different types of measurements 1ike instantaneous
or intepgratine are permitted. The model may be parametor-
ized in an arbitrary manner.

The possibility to fit parameters in a continuous time
model representation is sometimes advantarcous becailco an
applicaticn of the basic physical laws rmives often a nodel
in this form. Tn this wavy it is also caay to handle non-

uniform sampling and missine measurements.



Calculation of maximum likelihood estimates is basically
an optimization problem. The sclection ol a proper optimi-
zation procedure is an important problem. In this case two
algorithms which only use function evaluation were chosen.
This is convenient because it allows a preat flexibility
in the description of the model and its parameterization. Tt
is also possible to use other optimization procedures which
require evaluation of prradients and hesslans.

There are several clever techniques based on sensitivity
derivatives and Lagrange nmultipliers which can be exploited
to compute the derivatives of the likelihcod function in
special cases [2],[3]. The calculation of derivatives re-
quires, however, analytical computation of the partial de-
rivatives of the difference or differential equations which
describe the system. These can be very cumbersome in many
cases. For special paramefcrications the calculation can,
however, be done simply and etfficiently leading to efficient
numerical algorithms like the one presented in (2). A dis-
cussion of some trade-c(fs are given in [H]. In the parti-
cular alporithm discussed in this paper a flexible moidnrl
structure is allowed at the cxpense of increcasel computa-
tions. Because of its f{lexibility the prorram i suitahle
as a meneral identifier for linear gsysteme., For spa2cial ap-
plications with a larre amount of data it may be mere ofof-

cient to write a special purrose propram.

2. "ODEL STRUCTURES

"

The program LISPID admits many different model struc-
tures. The basic model is a process poverned by the sto-

chastic differential equation [5]
dx = Axdt + Budt + dw (2.1

where the state vector x(t) has dimension n_ and the con-
trol vector u(t) has dimension n,.- The process disturbance
{(w(t), bt st <w} is an nx—dimcnsional stochastic process

with uncorrelated increments which have zero mean values and



the incremental covariance Hldt. The initiul state of (2.1)
is assumed to have mean value m and covariance By« It is
also assumed that the initial state is uncorrelated with the
process noise {w(t)}.

The program LISPID aimits several diffevcnt models forp
the measuring process. In all cases it 15 assumed thal the

measurements are obtained at discrete Yimes {.

1:0, l,.‘.,"f"!—ll

Interratiner- measurements

The measurement device can be characterized by

dz = Cxdt + Dudt + de
t

k+1 2.2)
y(tk) = dz k = 0,1,...,N=1
k
where y(tk) is an ny-dimensional vector of measurements an
{e(t), bgst <=} is the mecasurement errors which are assumed
to be a stochastic process with uncorrelated increments
2(1t . The

incremental cross covariance between W and e ig denoted

having zero mean values and incremental covariance R

Rl2dt. A discussion of the integratinr measurement procedure
s miven in [9].

bl

Instantaneous measurements

The program LISPID also admits instantaneous measurements
characterized by

y(tk) = Cx(tk) + Du(tk) + e(tk) k=0,1,...,'-1 (2.3%)

where the measurement errors {g(tk)} are assumed to be a
stochastic process of second order with zero mean and cova~
riance ﬁ2. It is furthermore assumed that the measurement

errors are independent of w and of the initial state.

Sampling
If the model (2.1),(2.2) or (2.1),(2.3) is sampled and
the input signal is constant during the sampling interval,

then the following model is cbtained (sece [5]):



x(tk+1) = A x(tk) + B u(Lk) + w(tk)
y(tk) = C X(tk) + D u(tk) + e(tk) (2.4)
k = 0,1,...,N=1

where {W(tk)] is a second order stochastic process wilh
zero mean and covariance ﬁl‘ The cross covariance between
v and € is denoted ﬁlJ' The initial state is uncorrelated
with w. Algorithms to perform the sampling are described in
[6] and [7].

All system and covariance matrices may be time varying
in LISPID. It is also possible to estimate parancters of
the discrete model (2.h) directly. The program also admits

an arbitrary paramcterication of the matricos of the modely

Ao

3. CRITERIA

The program LISPID admits optimization of different ecypi-
teria. Assuming that all random variables are normal then
the likelihood function L, which is the joint probabllity
density of the outputs {y(to), y(t]),...,y(tN_l)], is also
normal. It is well-known [®] that the loparithm of the
likelihood function can be written as

L L e 8 ) ece
- log L =35 ) log det R(t,) + = e (t) )R (k) et 2+
° k=0 kD23, & ‘ K
1 \
t 5 ny N lor 27 (3.1)
where ¢ are the innovations
e(t,) = y(e) - y(t /e, 1) ' (3.2)

and §(tk/tk_1) the one step predictions of the reasure-

ments.
The conditional mean j(ty/tr_]) and the condlitional -o-
variance of residuals H(Lk) can be determined recursively

Chrourh the Kalman-Bucy riltering theory (see e ; [5]):



&(tk/tk_l) = i(tk/tk_l) + D u(tk)

(b1 /) = WX /6 )+ Tule) « Kb el)

ﬁ(to/t_l) =m

k(b ) = LR (e /e 0+ 1 R7Ne))

P(t,,,/t,) = APt /e, )& + ) - (5.3)
- K(6 )R Pt /o, ) ot ﬁ12]T

P(ty/t_y) = Ry

R(E,) = T P(t, /6, ) B + 0,

k = 0,1,0--,“‘1

It is possible to minimize the followinr simplified loss
function instead of (3.1), if the system and covariance ma-
trices are time-invariant and if the sampling rate 1s con-
stant (see [8]):

V, = = det [Nfl ety ) el (t )] (3.1)

1 N k=0 k Kk
The parameter values obtained are then the same as if (3.1)
is minimized.

The loss function corvesponding to (3.1) used in LISPID
is normalized:

v, = - % log L (7.9)

The maximum likelihood estimates of the unknown pariame-
ters are obtained, il W and & are sequences of independent
normal random vectors and if V2 is minimum. However, if the
Fgaussian assumptions are not tullfilled, the loss f'unctions
Vl and V2 may be suitable to use nevertheless.

A modification of the loss function (3.5) can also be
used in LISPID to obtain a model that not minimizes the
one-step prediction errors enly as in the maximum lileli-
hood method, but the p-step predictieon errors:

1

VB(P) A ']F‘—:-]- lor L(p) (,"i.(.‘)
where
MN~1 N~1
-lor L(p) = % Lo delt S(L,)-r% Z vT(t )
& e I (5 s Ik
k=p-1 k=p-1

AT v (e ) ¢ S ng (N-p+1) Lo Zv o (5.7)



and

V(b pan) T ) - )
I ap1/Becn) = T R a7t ) ¢ Bute )
i(ti+l/tk_l) =R i(ti/tk_l) + 8 ull, ), E21GKel, o, kep=2
P(ti+l/tk—l) = K P(ti/tk~1) T ﬁl’ izley bl iy k4p=2
S(by4pay) = T P(by o /4 LR N

I = 0,1,.00,N=p (3.2)
;(tk/tk_l) and P(t, /t, _,) are obtained from (3.3). Netice

that (3.6) is equivalent to (3.5) when p=1. The same modifi-
cation of the loss function (3.%) becomes

Y -1 .
V)(p) = pbip det [1<=3»-1 206, VT ] (3.9)

It is possible to use furthermore peneralized loss func-
tions (3.9) and (3.6) by computing an average loss over an
interval (pl,pz) of prediction steps:

N+pl—p2-l 24p5=py

Vi(py,p,) = o dot *—J;—~

171272 N-p.,+1 P5Dy+1

v(tk) vT(tl)
1 0 <

£:pl-1 l{:l (”‘ . 10)

WDy Py=l Lpymy

= )
Va(pyspy) 2(p,, +1)0) 1) § j; []O” 488 S

ﬂ)—l =t

...'L(

< 1 2
Teos T v ]+ 3 ny tor 20 (1)

o

The previous criteria are obviously special cases of the re-
neral loss function (3.10) and (3.11). The ordinary "i.-csti-
mate of the parameters of a dynamical system fréquently
leads to models which are inaccurate in the low frequency
repion. The reneralized loss functions can mive medels with
better low frequency properties.

Due to its flexible structure it is also easy to incorpe-

rate an arbitrary uscr deflfined loss function into LISPID.



ho LIsPID

The program LISPID which is written in TFORTRAN consistea
of 52 subroutines. Includinr comments the program sise is
9 200 statements. The proeran without any data storare pe-
quires a core of 64 k cells on the UNIVAC 1108, if ro ner-
mentation is used. Using sepmentation and overlays the core
required can te reduced to 25 k. Additional memory =space 1o
required to store data.

The parameters, which are to be estimated, can enter the
system and covariance matrices in an arbltrary way. The
mean value m and the covariance RO of the initial state
x(to) can be reparded as parameters to be estimated. A pure
time delay of the input siprnals can also be included and
determined. Bias terms of the state and observation equa-
tions are easily estimated by introducing an artificiel
unit step input signal. The dependence of the uhinown nara-
meters must be supplied by the user in a special FORVTA;
subroutine.

The minimum of the loss function is found by an optimi-
zation routine. Since it is extremely tedious to compute
the gradient analytically, cptimization techniques which
only use the values of the loss function have been tried.
Two different algorithms are included in LISPID. Tn the
first one the prradient is computed numerically using fi-
nite differences. Then a quasi-newton method is appiied to
find the optimum (see [9]). The other alporithm does not
use numerical pradients, but rets information about the
loss function by a special search pattern (see (1o01).

In the general case with time varying matrices and non-
-uniform sampling the execution times often become rather
long. However, if constant matrices ani constant samplin-
interval are used, the sampling of the contimious i1 . (-
cl and the comoatation 0 the Filber easn B in (4,3) a0
only needed once f{or cach parameter set. The executlion
time then decreases. In this case the filter rain K can
also be estimated directly. If some meixsurements are migs-

ing of an experiment with uniform sampling rate, LTSPTD



admits the possihility to snve comuting Lime by uaine the
advantapes of constant sampline inwerval and by sliippine
the contributions from the miszsine measuremonts Le Lhn Jaogs
function.

The execution times i1e 9130 decreaged I the nroeens
noise of the model is omitted. The identicication technigque
is then equivalent to an ontput ecrror nebhol, i (e aombe

of prediction steps p is equal to one,

The propgram LISPID automatically prints and plota the

la
=
1

put sirnals, the measureronte, the moilel outputs and the
residuals. The latter ciea have in practice proved {o be
extremely valuahle to checel mensured {at. By annlyaing the
autocorrelation functions of vesidunls and the cross GO
lation lfunctions betweon inputs ant residuals, which are com-
puted and plotted by LIID, it can be Jjudped if the rednl
obtained is rcasonable.,

The appearance of tLhe loss function close to the noint
proposed as minimum by the optimization alporlithm jo shown
by plotting the loss function, when the estlmator paratiotern
are changed one at a time. A possihility of Judpine ic a
local minimum point actually has heen reiched 1s provides Ly
these plots. TFinally, ecstinated standard deviations of tlo
parameter values obtainei can be acmputed.

r~

D. AUPLTCATIONS

The program LTIAPID has heen applied to data from wory
different processes for over o neriod coverine sovopad voara,
It has alsc been modified ag a result of the expericrices
rpained from these applications. An early version of ILTONID
was used to determine drum bhoiler dynamics (11], nuclear
power reactor dynamics [1.0] and the dynamics ol a povoe e -
nerator [13]. The procram has Loen extonsively useldl to doe-
termine ship steering dyramics. This is reported in (147,
[15], [16) and [17). An application Lo pharmacokinet ics was
described in [13] and ancther biolofFieal application in dqo-

scribed below. otimation o necerocceononia moedels [10] 4n



another area of application aind an excerpt o7 such nroappli-

cation is also miven helow.

Plasma “inetics a0 insulin

Compartment models npc froquently uned as models rop

physiolorical systems. “he madel

dxl
IR S SR P S
dx., (
2 N X 5.1)
gt T Moy xg 7 (kg + b)) xg
y T Xy te

was used to describe the plasma kinetics of insulin in mMAan.
See [20]. The cxperiment wasg performed by injecting insulin
at a constant rate for 2.5 minutes. Samples of the hlood
were then taken at irrepular intervala and the inaulin con-
centration was measured in the samples. An analygic of the
measuring procedure also rFave the errors of each reasuremont:,
The experiment thus rrave a sequence of time ty and concentra=~
tion measurcments y(tj) with associated estimaten of meg-
surement errors.

fince the model (5.1) iz one of the gtandard TLISTID me -
els it is straichtforward to use the program to estimate thio
parameters kl2’ k21 and kﬁc. The number of prediction atong
was equal to one. In this particular case it was alno of
particular interest to estimate the parameter

Kap.' Kgp

el k12 + k32
which represents the total elimination rate. The uncertainty
of Kk

k 4

e1 Can easily be obtnined from the covariance matrix of
the oririnal parameters. To nee if the data could cqually
well be explained by a simpler model a first order maodel
(k12 = 0) was also estimated. The program vas appline! to n
large number of measurements. One example is illustratel in
Table T.

The parameter estimates chtained were

] 0.25 0.0

kel

for the first order model and

Ln.
21



ki, = 0.003 & 0.00% by = 0.30 & 0,05
kg, = 0.0 £ 0,07 oy = 0.25 & 0,05

for the second order modol. Akailke’s ctiterioen for docidin.:
upon a suitable model order was 06.5 and 63 reupeoctively,
This indicates that the second order model theuld De pre--
ferred. Notice that tlo coetlicient kel which ia of prima-
ry biolorical interest is comparative well deterrited even
if several of the other paramelerc are very uncertain, plec
notice that estimation of the narameter in a firet order
model only may rive mirlondin~ estimates of the mmeoertainty

of the estimatoe.

Table I. IlMeasured output y, outputs of rirst
and second ordetr wmodels (§1,§2) residuals (ry,
c2) and standard devintien of measurement
errors a.

& y &l &2 £y €5 g
I 109 103.0  109.4 6.0 -0.h d.0
5 77 80,4 Q2.2 -3.,4 -5.2 Yo 7
6 66 62.3 (2.1 3.0 .C 5]
7 52 ha.,o b7 .3 3.0 b7 .o
8 57 WA AGLs =1L 1L
9 27 20,00 6.2 -2.9  -1. L0

10 20 23.% 22,2 =3.% =D, 2.7

12 14 1h.?2 1.5 -0.2  =0.3 2N

14 Q B.7 9.9 0.3 -0.9 20

16 0 S 7.4 3.7 1.7 T

o0 5 oL (e h.n il & D0

25 2.5 0.0 5.5 1.2 ~1.,0 1.0




Leconometric model for monetary sector

The program LISPID has been applied to determine macro-
economic models. See [19]. The following model was propose:d

for the monetary sector

Mt) = a)M(t-1) + a ¥(t) + agi(t) + a,/P(6) + W (t-1)
(RS-RD) (t) = aS(RS—RD)(t-l) tagt(t) + aYM(t) tag + ﬁz(t-l) (5.2)
RL(t) = ag RL(t-1) + a1 (RE-1) () + a,; RD(L) + B, * WB(t~1)

where M is real stock of money, Y real GNP, B real monetary
base, P GNP-inflator (1968=100), RS and RI short and lTon
term interest rates and "D discount rate. All prices are in
mill 1968 Skr.

~ ~ ~ ~ T . .
The vector w = [wl Wa w3] consists ol process disturban-

ces with covariance matrix

. |a13I 0 0
By = | 0 Jay,| o
0 0 |ald

The three states M, RS-RD and RL are all measured, and the
covariance matrix of measurement errors is
|a16| 0 0
Ry = | o laj,] O
0 0 0.0001

The variables Y, B, 1/F and RD are inputs. An extra artiri-
cial unit step input sirnal was introduced to estimate the
bias terms ag and aqy5.

When rewriting the model (5.2) in standard state space
form (cf (2.4)), the parameters above enter the system and
covariance matrices in a rather complicated way. This 1is
however easily handled in LIAPTD. The result of the identji-
fication of the model (5.2) to quarterly data about the
Swedish economy over the period 1963 to 1972 is shown in
Fig 1. The number of prediction steps used in LISPID is
equal to one. The parameter estimates obtained are j;iven in
Table 17,



Table II. Parameter estimales obtained from identiri-
cation of the model (5.2) to quarterly data about the
Swedish economy.

0.81 ¢ 0.05 ag 1.0 £ 0,1

0.00075 ¢ 0.00115 811 1.2 =+ 0,2
a3 1.3 £+ 0.3 aj, 0.53 ¢ 0.006
a, -5100 & 1200 a5 87 ¢ 7600
A 0.97 + 0.06 ayy 0.0021 ¢ 0,00U3
ag 0.000016 ¢ 0.00001H ayg 0.0062 £ 0,0130
8, | ~0.00026 + 0,0004 a1 _o.ooozu t 0.6h000
ag -0.22 £ 0.17 aqq 0.0019 * 0.0035
a9 0.011 £ 0.100

6. CONCLUSION

The program LISIID has now been in operation for several
years. It has been applied to several parameter estimation
problems. Because of the flexibility of the prorram it hes
been found to be a very useful tool for estimatine parame-
ters in linear dynamical systems.
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Fig 1. Result of identification of the model (5.2) to quar-
terly data about the Swedish economy.



