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1. INTRODUCTION

The word identify is defined as: "to recognize or es-
tablish as being a particular person or thing" or "to
determine to what group a given specimen belongs",

These definitions cover reasonably well the way in which
identification is used in the control engineering field.
In this context identification usually covers some for-
malized aspects of modeling of dynamical systems based

on experimental data.

Since modeling of dynamical systems dppears in many dif-
ferent fields, it is natural that contributions

are widely spread in the literature. Apart from
engineering systens identification is discussed in physics,
biology, medicine and eéconomy. The purpose of this paper
is an effort to give the status of the field with particul

emphasis on problems related to process control.

System identification pPlayed a predominant role in clas-~
sical control theory. The fact that the transfer function
of a system can be determined by frequency or transient
r'esponse analysis was an important factor which substan-
tially contributed to the success of classical control
theory. With the advent of the so-called modern control
theory it quickly became apparent that efficient methods
to determine the appropriate models were lacking. The
search for such methods has been a strong motivation for
much of the recent work in system identification,

There is a substantial literature on system identification.
IFAC has sponsored a Sequence of symposia devoted to the
problem. Good source of references are the preprints

from the first three which were held in Prague 1967 and 1970
and in the Hague 1973. TIn 1974 a special issue devoted to
system identification was published by IEEE. There are

also several survev papers e.g. Astrém



and Eykhoff (1970), Bekey (1970) and Nieman (1971). 1t
is thus of little use to attempt a survey of the field.
It is instead attempted to make a personal evaluation of
the field with respect to the needs and uses of process
control.

‘ The »
The paper is organized as follows.(/formulation of iden-
tification problems is discussed in Section 2. Some no-
tation is also introduced in that section. & brief re-
view of some aspects of the theoretical developments is
given in Section 3. The emphasis is on recent develop-
ments and on results that are of interest to applications.
A reader who wants a more complete review of identifica-
tion theory is recommended also tc consult Astrém-Eykhoff
(1971). The use of System identification techniques when
modeling dynamical Systems is discussed in Section 4, and
the application of System identification to on-line con-
trol is covered in Section 5. Particu-
lar emphasis has been given to on-1line identification
methods and their use in self-tuning requlators. The con-
clusions are given in Section 6 where the importance of
interactive computing techniques for modeling is empha-
sized.



2. FORMULATION OF IDENTIFICATION PROBLEMS

Systeém identification includes the following steps

- Experimental planning
Selection of Model Structure
Parameter Estimation

. Validation

W

Experimental planning includes selection of input sig-

nals and sampling rates but also many practical problems
that are concerned with performing experiments in an in-
dustrial environment. The experiment results in records

of input - output data from the process.,

The model structures usually considered involves the

usual models used in automatic control.

State models of the form

= f(x(t), u(t), v(t))

(2.1)
y(t) = g(x(t), u(t), e(t))

where u is the input, y the output, x the state and e, Vv

disturbances are commonly used. Linear systems where

]

f(x, u, v) AX + Bu + v

(2.2)

Cx + Du + e

g(xl u, e)

have been given particular attention.

For linear systems input - output descriptions in terms

of impulse responses or the transfer function model



y(t) = G(p) u(t) + H(p) e(t) (2.3)

are also common. In (2.3) u denotes the input, e the
white noise, y the output, p = d/dt is a differential
operator and G and H are matrices of rational functions in pP.

A transfer function matrix is sometimes repre-

sented by the differential relation

n n-1 n-1
Y 42, & ¥y, Ay =p, 94 + ... + B.u (2.4)
ah 1 dtn—l n 1 dtn—l n

Discrete time versions of the models given above are
also commonly used. More general modelstructures,

which include transport delays and distributed parameter
systems, and Rosenbrock’'s system matrices are also used.

Notice that a significant trend in the recent development
is to attempt to model both the process dynamics and the
disturbances. This is of course in close agreement with
the needs of the control engineer because without distur-
bances there is no control problem.

physical.
The models are usually obtained from the fundamental (laws
governing the process., They will contain unknown parame-
ters and functions. The class of models may for example
be such that it includes descriptions like (2.1) where
the differential equations have different order,

The identification problem can be formalized as follows:

“Given a class of models (M), records of input -
output data from a process obtained
under certain experimental conditions (E), and a
criterion (C). Find a model in the class which
fits the experimental data in the sense of the
criterion". (2.5)



The criterion is often stated as an optimization crite-
rion, for example to minimize a measure of the devia-
tion of the model output and the measured output. If

the disturbances appearing in the model (2.1) are
stochastic processes, the parameter estimation problem
can also be stated in statistical terms. The maximum
likelihood method is a popular method for parameter esti-
mation which again reduces to an optimization problem.
The parameter estimation problem thus frequently reduces

to an optimization problem.

When choosing the experimental conditions, the model
structure and the criterion, several assumptions on the
properties of the process have to be made. These assump-
tions can only rarely be verified. By a careful checking
of the results it is, however, possible to see that the
measured results at least do not violate the assumptions
made. This is the purpose of the validation step. It
consists of application of common sense and some-
times also statistics. It is of course never possible to
guarantee that the assumptions made are true. Therefore
the results must often be crosschecked by repeating the
process using new experiments. Serious modelers and
identifiers therefore never consider the final model as
true, but rath&® a reasonable candidate which c¢an be used un-

til it is rejected by further experiments.



3. PROGRESS IN THEORY

The identification problem has received much attention
from theoretical researchers over the past decades. The
reason has partly been the availability of a set of new
problems that are amenable to analysis, Ph.D. theses and
appropriate publications. In some cases the problems
have been motivated by the desire to obtain models like
(2.1), (2.2) for an industrial process, in order to apply
modern control theory. The theory developed has undoub t-
edly given a significant insight and understanding of
many problems even if no totally coherent picture is yet
available. An attempt has been made here to give an
overview of some important results. To avoid dupli-
cation of already published material it is recommended
that the interested reader also consults the survey pa-
per Astrdm-Eykhoff (1971).

System Theory

The very active research in System theory has given very
important results on the properties of dynamical systems
and their different descriptions. A typical example is

the decomposition theorem given by Kalman (1963) which says
that a linear time invariant system.

dx(t)
dt

= Ax(t) + Bu(t)
(3.1)
y(t) = Cx(t) + Du(t)

can be decomposed into four subsystems and that the trans-
fer function is uniquely given by the subsystem which is
completely reachable (controllable) and completely observ-

able.



This result clearly gives a limit to what can be deter-
mined by analysing input - output records. Together with
the criteria for observability and reachability Kalman's
results also provide useful hints as to the selection of
suitable sensors and actuators that are needed
to obtain relevant information about a system. Kalman's

results, however, only apply to linear systems.

Realization Theory

The special case of the identification problem which is
obtained when the model is linear, given by (3.1), and

the measurements noise free is called the realization prob-

lem, Ho and Kalman (1965). Even if this problem is highly simp-

lified, its solution provides important insight. A pros-

pective user should however be warned that many specific

results, for example the methods to determine the order of

the system b¥ determining the rank of the Hankel matrix,
.@3\11 to use.

are in practlce because of the very restrictive as-

sumptions made when neglecting disturbances both in the

process and in the measurements.

Parametrization of the Models

By defining the criterion (C) in the identification prob-
lem (2.5) as an optimization criterion, the identification
problem becomes an optimization problem. If the experi-
mental data is gathered digitally, the experiment results
in a finite data set. If a non-parametric model is used
€.9. an impulse response, then there are roughly speaking
an infinite number of parameters to satisfy finitely many
constraints and it is not unlikely that a perfect fit can

escription
be obtained. The penalty is that the modellobtained is



highly irregular. An ad hoc smoothing is then introduced

to obtain a smooth result. Typical examples are estima-

tion of spectral densities and determination of transfer
functions and impulse responses by correlation methods. In these
cases the smoothing appears as truncation of series and
selection of spectral or lag windows. By introducing a
parametric model, the smoothing is instead done with re-

spect to the structure of the particular model which hope-

fully is based on sound physical knowledge. The selection

of the class of models and the parametrization of a dyna-

mical system are thus important problems.

When the models are derived from physical laws, there are
often natural parametrizations. When the parametrization

is given, another important problem is to dec1de if there
va ues_of the.,

are several¥parameters which give the same input - output
properties. . This is the problem of parameter

identifiability. Mathematically this problem reduces to

determine if a nonlinear equation has a unique solution.
There are several local results, but (naturally) very few
global results. In the particular cases where solutions can
be found, very valuable information can be extracted from
them. For example, it can be decided which parameters can

be determined from a particular experiment. The analysis

may also suggest changes in the experimental procedure which
will result in parameter identifiability. For example

introduction of more sensors - and more actuators.

Notice, however, that if the aim of the modeling is to de-
sign a control law, then parameter identifiability is of
less importance because any input - output description

will suffice for the control design.

In some cases, for example when strongly simplified models
are made for complex phenomena, it may be difficult to

have a parametrization with a natural physical interpreta-~
tion. A model may for example simply be a n:th order linear
Stochastic system. It may then be asked if Ehere are

parameter identifiable representations of such systems and
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moreover if there are such representations with the small-

est number of parameters, so-called canonical representa-

tions.

Canonical representations of linear, time invariant stoch-
astic systems are known if the systems have one output or
one input only. For multivariable systems, however, no

such parametrization can be given unless the observability

and reachability indices are known. See e.g. Rosenbrock (1970)

Several methods have been proposed to determine the structural

indices (Kronecker invariants). The techniques depend, however,
on judicious choice of test quantities, and they do not work
well on noisy data. An interesting alternative to estimate the
structural indices simultaneously with the parameters has

recently been proposed by Ljung and Rissanen (1975).

Another problem which also faces the modeler is the fol-
lowing. A parametric model has been obtained. It is quickly
realized that all parameters cannot be determined uniquely.
Very poor fit to the experimental data is obtained when
attempting to vary a subset of the parameters until the "right"
subset is found. The problem is clearly related to sensitivity
theory. Physical insight is often a good guide but it would

be highly desirable to have systematic tools.

Finally a few comments on discrete time models. Since the in-
put - output data is frequently sampled, it is tempting to fit
discrete time models discretly. This usually I%Sgs to simpler
calculations. Another advantage is that sampling¥a linear
system consisting of a time delay and a rational transfer
function will always yield a rational pulse transfer function.
Hence there are no problems of pure time delays. A serious
drawback is, however, that the natural physical parametriza-
tion is usually expressed in continuous time models. It is
therefore useful to have techniques and software available

that admits fitting a continuous time model. See Killstrdm et.al.

(1975).
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Criteria

The first formulation, solution and application of an iden-
tification problem was given by Gauss (1809) in his famous
determination of the orbit of the planet Ceres. Gauss for-
mulated the identification problem as an optimization problem
and introduced the principle of least squares in the following

way:

"Therefore, that will be the most probable sys-
tem of values of the unknown quantities p, q,
r, s, etc., in which the sum of the squares of
the differences between the observed and com-
puted values of the functions Vv, V', v'', etc.

is a minimum".

Ever since, the least squares criterion has been used ex-
tensively. Nowadays the least squares method (LS) commonly
refers to a method where not only the criterion is quadra-
tic but also the model is such that the errors (i.e. the
differences between the observed and computed values) are

linear in the parameters. The solution of the problem can

then be given in closed form. It should, however, always
be remembered that least squares is often chosen for mathe-

matical convenience. This was clearly pointed out by Gauss.

"Denoting the differences between observation

and calculation by 4a, A', A'', etc., the first
condition will be satisfied not only if AA +

A'A' 4+ A''A'' + etc., is a minimum (which is

our principle), but also if A4 + A'4 + A"4 + etc.,
or A6 + A'6 + A"6 + etc., or in general, if

the sum of any of the powers with an even ex-
ponent becomes a minimum. But of all these
principles ours is the most simply; by the

others we should be led into the most complica-

ted calculations".

Because of the simplicity of the least squares problem

it is always tempting to use this formulation. There is
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also a whole collection of methods available which con-
sists of iterative uses of least squares, repeated

teast squares (2LS, 3Ls,... etc.), generalized least
squares, instrumental variables. It is, however, useful
to remember that many of these methods were introduced

before the time when digital computers were easily accessable.

When the disturbances of a process are described as stochastic
processes, t~h(iedentification problem can be formulated as

a statistical parameter estimation problem and the whole
artillery of statistical estimation methods becomes available.
The maximum likelihood method is a popular technique which
has many attractive statistical properties. See e.g. Astrém
and Bohlin (1965), Balakrishnan (1969) and Mehra (1969). This
method can also be interpreted as a least squares
Criterion if the quantity to be minimized is taken as the sum
of squares of the prediction errors or more precisely in the
case of discrete time observations at times to’ tl,...tN the

criterion is given by

V(8) = N/2 log det R + %

™

T -1 Np
€ (ti)R e(ti) + 5~ log 2n (3.2)
where e(ti) are the prediction errors

e(ty) = y(t;) - y(tylty ) (3.3)

Using such an interpretation it is not necessary to have
assumptions on normality of the residuals. Many of the nice
properties of the ML technique can also be extended to this
case. See Ljung (1975).
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Sampling Rates

When the maximum likelihood method is applied to deter-
mine the parameters of a dynamical system, the dynamics

of the model is thus only judged by its ability to pre-
dict the output over intervals corresponding to the spacing
of the sampling points. This means that the selection of
sampling rates is crucial. It also explains why the models
obtained from ML calculation frequently give a bad repre-
sentation of low frequency dynamics. The discussion also
immediately suggests using non-uniform sampling where the
spacing between the sampling points cover the time interval
of interest. It also emphasizes the desirability to look
closer to the criteria used in stating identification problems

and if possible relate them to the ultimate use of the model.

Optimization Algorithms

It has already been mentioned that identification problems
lead to a nonlinear optimization problem., In the identifi-
cation problems a function evaluation involves simulation

of a dynamical system. Such calculations can easily become
excessive. Much effort and ingenuity has therefore gone into
the development of suitable computer algorithms. The evalua-
tion of gradients of the loss function can, for example be
done either by sensitivity finctions or by using the adjoint
variables associated with the differential equations which

also appear in optimal control problems.

The problems may often be subject to the inherent diffi-

culty of noniinear optimization, namely existence of

multiple minima. These problems are closely related to the
problem of identifiability. In special cases when the

problem can be formulated in such a way that the crite-

rion is a quadratic function of the parameters, a closed

form solution is thus possible. Due to the simplicity of

such problems many efforts have been made to invent algorithms
which consists of an iterative sequence of least squares

problems. Typical examples are the generalized least squares
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and the iterative least squares methods which originated

in econometrics. See e.g. Wold (1964)

Let it suffice to mention here that there are many opti-
mization schemeé and many computational tricks available,
but that the numerical calculations are far from trivial
and rarely investigated. See Astrdm and Bohlin (1965),
Astrém (1969) and Gupta and Mehra (1974)

Statistical Analysis

When the identification problem is formulated as a sta-
tistical parameter estimation problem, there are many
ideas and results from statistics that can be exploited.
Such an approach will, however, require that certain
assumptions are made on the mechanism which generated the
data i.e. the real process. This is most unpleasant be-
cause the real process is often nonlinear time varying,
and infinite dimensional and little is known about it. It
is also frequently logically inconsistent bacause it leads
to "circular proofs". A typical case is that it is assumed
that the data was in fact‘generated by a dynamical system

which belongs to the class of models considered.

Great care should therefore be used when the results of
statistical analyses are interpreted. It has been found
empirically that many methods work very well on simulated

data but very poorly on real data. This reflects that cer-
tain results are sensitive to variations in the data genera-
tion and it indicates tha needs for research into the problem
of mismatch between the model structure and the datageneration.

Some results in this area have been obtained by Ljung (1975).

Provided that assumptions on the data generation can be made
many useful results can be obtained. For example it is some-
times possible to determine the statistical properties of the

estimates for.large data sets. Assuming that the mechanism
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which generated the data is known it is also possible

to analyse if the estimates converge with increasing data
sets. In particular if the model structure is flexible
enough to include the data generating mechanism it is then
also possible to obtain conditions such that the estimates
will converge to their "true values". Statistical methods
can also be used to decide between models having different
structures. For example, the choice between the models
having a different number of parameters can be formulated

as a hypothesis test using the test quantity

v, =V N -p
2
t = 21 2, : Py > Py (3.4)

2 Py

where Vi is the loss function (e.g. the negative loga-
rithm of the likelihood function) of the model having Py
parameters and N the number of sampling points. The model
with more (p2) parameters is preferred if the value t is

sufficiently large.

An interesting approach to this problem has recently
been given by Akaike (1973) who suggests using the cri-

terion
AIC = - 2 log (ML) + 2p (3.5)

where ML is the maximum likelihood and p is the number of
parameters. Akaike's criterion, which is based on
information theoretic considerations, is equivalent to
(3.4) if Vl is close to V2. It does, however, dispense
with the arbitrary selection of a risk level associated

with the hypothesis testing.
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Experimental Conditions

It is always difficult and costly to perform experiments
on real industrial processes. Many of the recently de-
veloped methods for system identification have broadly
speaking reduced the constraints on the experiments at
the expense of increased computations. For example it is
no longer necessary to have input signals with a precisely
prescribed form like sinusoids or pulses having special

shapes,

There is a substantial literature on planning of statistical
experiments. See e.g. Cox (1958) and Federov (1972). These
results have been extended to estimation of parameters in
models of dynamical systems. See €.g. Goodwin et.al. (1974)
and Mehra (1974).

All results on optimal input design are, however, based on
the assumption that a model of the process is known. This
means that the results can only be used when a reasonably
good apriori knowledge of the dynamics of the process and its
environment is available. Good applications are known. The
results may, however, also be strongly missleading if the
process dynamics differs from the apriori assumptions. The
results on design of optimal inputs are also restricted be-
cause it is frequently assumed that the process is open loop
during the experiment. The possibility to base system identi-
fication on data obtained under closed loop control of proces-
ses have been explored. The presence of the feedback may
result in lack of identifiability. If the feedback is
sufficiently complex €.g. linear of high order, nonlinear

or timevarying, then identifiability may still be retained
even if data is gathered during closed loop operation. There
are in fact situations where the closed loop experiments

will give better results then open loop experiments. A de-

tailed discussion of this is given in S&derstrdm et.al. (1975).
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4, THE ROLE OF SYSTEM IDENTIFICATION IN MODELING

Models and Modeling

The major results of control theory are based on the
assumption that a model for the dynamics of the process

and its environment is available. The lack of such a

model is thus a severe obstacle towards a more widespread
use of control. Many difficult control problems are created
by neglect of dynamics in the process design. The avail-
ability of models will also offer the potential of design-
ing an efficient process with a control system as an
integral part. Modeling is thus an important task that

will gain in importance in all areas of process control.

Before discussing how identification fits into this, I
will give a few personal opinions om modeling of dynamical
systems. First it is important to realize that there is

no such thing as the model of an industrial process. It

is much more useful to think in terms of a hierarchy of

models, ranging from very detailed and complex simula-
tion models of whole processes to the 'back of an en-
velop model' which is easily to manipulate analytically.
The simple models are used for exploratory purposes to
obtain orders of magnitude, the gross features of the
system behaviour and to judge if proposed control schemes
are reasonable etc. The very complicated simulation mo-
dels, which may also contain pieces of the real process,
are used for a detailed check of the control system to
make sure that no details have been neglected. The com-
plicated models take a long time to develop and they are
costly to maintain. They do, however, reproduce the pro-
perties of the real system with high fidelity and they

are a necessity for design of critical processes.
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Between the two extremes there may be many different
types of models which are used for design of control
systems. A characteristic feature of a successful
control engineer is that he has a very well developed
intuition which allows him to choose the right model
for a particular problem. The crucial problem is of
course to steer between oversimplification with the
danger of disaster and overcomplication which requires

too many resources.

Black Boxes, Grey Boxes and White Boxes.

Process models can be obtained from basic physical laws
(the White Box approach) or by fitting a linear transfer
function or time series model to input-output data (the
Black Box approach). There is sometimes a controversy

among modelers concerning the appropriate approach.

The Black Box approach can be done fairly quickly. Experi-
ence has shown that it usually leads to fairly simple
models. A disadvantage is that the approach leads to a
linear model for a particular operating condition. The
models derived from physical laws are usually valid over
a wide operating range. They also provide good insight
into the behaviour of the system. A drawback with white
box modeling is that the physical knowledge is not always
easily available. The models tend to be complex and they

take a long time to develop.

Recognizing the advantages and disadvantages of modeling
from physical laws and from input-output experiments, it
seems highly desirable to try to exploit both methods in
order to solve a particular modeling problem (the Grey Box
approach). The examples given later in this section illu-

strate this approach.
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Identification as a Modeling Tool

System identification techniques proved useful tools
for several aspects of the modeling process. It can

be used in exploratory phases when little is known
about t@ﬁeprocess. The order testing procedures can
suggest!{model complexity needed to explain the meas-
ured data. Identification procedures can also be very
valuable 1in those cases when a lot of a priori know-
ledge is available and the problem is to determine pre-
cisely the values of certain coefficients. These as-
pects are illustrated below by examples from specific

applications.

Power Boilers

A detailed presentation of this work is given in Eklund
(1971). The goal was to arrive at a reasonably simple
model for design of controls for a drum boiler. The

basic physics is fairly well understood although the
phenomena are complicated. Key questions are related

to choice of suitable approximations and lumping of the
distributed system. The basis of the work was a set of
experiments performed by removing all regulators and
perturbing fule flow, steam flow and feedwater. In this
modeling exercise, identification was used in the follow-
ing way. Simple transfer function models were fitted
using the maximum likelihood method. The application of
statistical methods for order test gave an indication

of the model complexity required to explain the measured
data. The results indicated clearly that low order mo-
dels were sufficient. Using these results it was attempted
to derive physical models having the appropriate complexity.
The major problem was to decide when to describe a con-
servation law by a static or a dynamic model and to de-
termine a suitable lumping of distributed phenomena,
Guided by the results of the identification many possi-

bilities could be eliminated. A few alternative models
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remained. The parameters of these were estimated. Based
on analysis of these model it was finally possible to

make the final selection.

Ship Steering Dynamics

A detailed presentation of this work is given in Astrdm
and Kdllstr&m (1975). The basic physical laws were
available. A key problem was to determine if extra

state variables had to be included to model disturbances.
Another important problem was to determine if certain
physical parameters (the so-called hydrodynamic deriva-
tives) which appear in the equations of motion can be
determined from an experiment where the rudder is perturbed
and the resulting motion observed. An analysis of the con-
ditions for parameter identifiability showed directly

that the parameters could not be determined from heading
measurements only. I was necessary also to measure a
velocity component in order to achieve identifiability.

By fitting models of the form (2.3) and testing for the
appropriate order it was found that in the particular

case a marginal improvement could be obtained by intro-
ducing an extra state variable for modeling disturbances.
A careful analysis of the model, however, revealed

that these dynamics could be attributed to quantization
errors in the measurement and not to disturbances

generated by wind and waves.

Estimation of Thermal Diffusivity

This work is described in Leden (1974). The process is

a copper rod with Peltier effgct elements for heating
«0of the rod..

and cooling each end“, The key problem is to determine

if the process can be modeled by an equation of the

form
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2
U - a2 8y by, y(t) = u(t,x) + e(t) (4.1)

ot 8x2

to characterize the measurement noise and to determine

the parameters accurately. The parameters a and b were
determined as maximum likelihood estimates. A careful
analysis of the residuals revealed that the avaiiable
measurements did not contradict the assumption that the
process was governed by (4.1). Accurate parameter estimates
were also obtained.

Interactive Computing

Interactive computing is an indispensible tool for sys-
tem identification. It allows a problem solver to com-
bine his intuition and insight with extensive numerical
calculation. It also provedes a direct link between

the user and numerical calculations without needing
programmers as intermediaries. An interactive program
package IDPAC, Wieslander (1975), has been in operation
for several years at the Department of Automatic Control
at Lund Institute of Technology. The program runs on a

process computer PDP 15/35.

The program has facilities for input - output, editing
and display of data. It includes several estimation
procedures like correlation and spectral analysis, least
squares and maximum likelihood estimation. It has
facilities for simulation and model analysis. The pro-
gram is command driven, which means that the user ini-
tiates the different operations by typing commands on

a terminal. The program also has a MACRO facility, which
means that a user can combine several commands. In this
way it is possible both to have a large flexibility for
the experienced user and to allow for a simple use of

standardized procedures for an inexperienced user.
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An example of the use of the program is given below

1. MOVE DK WORK <« DT DATA (1 3)
2. PLOT WORK

3. TREND + WORK (2) 1

4. ML PAR1 <« WORK 1

5. ML PAR2 <« WORK 2

6. ML PAR3 < WORK 3

The first command simply moves the columns 1 and 3

on the data file DATA from magnetic tape to a work

area on the disc, The second command plots the data on
the graphical display. The third command removes a first
order trend from the second column in the file WORK.

The commands 4, 5 and 6 perform Maximum Likelihood esti-
mation of the parameters in the discrete time analog

of the model (2.4) using the data in the file WORK.

The estimated parametefSE?hSEggeg{les PAR1, PAR2 and
PAR3.

To analyse the models we can for example proceed as fol-

lows.
7. RESID RES <~ PAR2 WRK 20

This means that the residuals of the model with para-
meters PARZ2 are + computed and stored in the file
RES. In this computation the covariance function of
the residuals and the cross covariance function between
the input and the residuals are also computed and

automatically displayed. The commands

8. DETER DET <+~ PAR2 WORK (1)

computes the deterministic output of the model with
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pacaneters PAR2 when the input is the process input
WORK (1) and the disturbances neglected. The command

9. PLOT NL WORK (2) DET

finally plots the process output WORK (2) as separate
points and the output of the simulated model.

The experiences with the interactive package IDPAC

have been very good. In practically oriented research
projects it has been possible to analyse industrial

data quickly and at reasonable cost. With the aid of the
program it has been easy to teach students and industrial
workers to master many techniques of system identifica-
tion. The computer used gives naturally a limit to the
size of problems that can be handled and the complexity
of the identification algorithms that can be used.
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5. ROLE OF IDENTIFICATION FOR ON~LINE CONTROL

Design of Control Algorithms

In some cases the problem facing a control engineer is
simply to design a control algorithm for an existing
process using sensors and actuators that are currently
available. Many problems of this type are solved simp-
ly by installing a three term controller and tuning its
parameters. In some cases, for example when the vari-
able to be controlled has a significant effect on pro-
duct quality, it may be justified to be a little more
ambitious and attempt to minimize the standard devia-
tion of the fluctuations. For linear stochastic systems
this can be done with a simple stochastic input - output
model like (2.3) without having deeper insight into

the system dynamics. The problem solver then has to go
through the following steps

l. Plan experiments

2. System identification
3. Design of control laws
4

. Implementation.

For safety's sake it is sometimes advisable to go through
the steps 1 and 2 twice to make sure that the process
does not change too much. System identification clearly
plays an important role in this procedure. It has been

my experience based on several applications spread out
over the past 10 years that the procedure can be conveni-
ently done in a week or two provided that suitable soft-
ware for the steps 2 and 3, as well as an on-line compu-
ter with flexible control software are available. A typi-
cal case is reported in Astrdm (1967). The procedure also
gives valuable insight in the sense that it tells the best
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result that can possibly be obtained under the given
circumstances. The major obstacle often consists of
finding suitable conditions when plant experiments can
be performed. The technical problems associated with
the system identification are selection of sampling
intervals and determination of a suitable model complex-
ity. The particular method used for system identifi-
cation is not crucial as long as it allows for determi-
nation of both process dynamics and the spectral den-

sity of the disturbances.

Performance Evaluation of Existing Control Loops

Another problem that occurs in process control is to
decide if existing control loops are performing reason-
ably well or if there is a need to adjust the controller
settings. System identification technigues can be very
useful for this problem. The idea is very simple. Per-
form an experiment to determine the dynamics of the pro-
cess and the disturbances., Carry out the system iden-
tification. Evaluate the optimum performance and com-

pare with actual results.

In some cases where the conditions for identifiability
under closed loop conditions are satisfied the experi-
ment simply consists of recording the control variable
and the system output under normal operating conditions.
In other cases it is necessary to introduce perturba-
tions by changing the set point or by changing the regu-

lator settings as was discussed in Section 2.

In the special case of minimum variance control for a
minimum phase system it is known that the covariance
function will vanish for lags greater than the sum of the
transport delay of the system. See Astrém (1970). It
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is then sufficient to record the system output only

and compute its covariance function.

Applications of system identification techniques to per-
formance evaluation of control loops both during normal
operation and in connection with commissioning of computer
control systems in the paper industry have been tried ex-
tensively in the Swedish paper industry, see e.g. Higg-
man (1975). |

Self-tuning Regulators

The procedure consisting of on-line experiments and off-
line computations can be time consuming and costly, par-
ticularly if the off-line computing facilities are not
available at the plant. It has also been my experience
that the transfer of data between different locations

and different computers often involves trivial but un-
pleasant problems. From a practical point of view it is
therefore meaningful to ask if it is not possible to pro-
vide the on-1line conérol algorithm with a real-time

parameter estimator.

In this way it would be possible both to evaluate the
performance of control loops on-line and also to provide
on-line tuning. The confiquration of the control loop

would then be as shown in Fig. 5.1.
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Fig. 5.1. Structure of control loop with on-line
tuning.

Control loops of this type have been proposed for a
long time. Recently developed analysis has provided
valuable insight into the properties of some simple
control loops of this type. Simple algorithms of this
type, like those based on least squares identification
and minimum variance control, have been shown to have
some unexpectedly nice properties like ability to sta-
bilize any minimum phase system and convergence toward
the minimum variance regulator that could be designed
if the process and distrubance dynamics were known.-,
(The self-tuning regulators are also very easy to im-
plement requiring only about 35 lines of FORTRAN pro-
gramming. Their feasibility in use in the process in-
dustry has also been demonstrated. A review of the results

are given in Astrém et.al. (1975).
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6. CONCLUSIONS

There has been substantial progress in the field of
system identification over the past 20 years. The re-
search has given valuable insight as well as new algo-
rithms for estimating parameters in models of dynami-
cal systems. Broadly speaking the new methods have made
if possible to solve new identification problems. The
techniques have also relaxed the requirements on the
experimental conditions in return for increased com-

putations.

Many important theoretical issues like convergence of

the estimates, design of experiments, etc. have been
partly resolved at least for linear stochastic systems.
There are, however, important questions still unsolved,
like estimation of structural indices of multivariable
systems, parametrization of descriptions of dynamical
systems, numerical properties of identification algorithms
etc. The available results, together with well-known
classical methods, provide very effective tools for systems
modeling. Many techniques have been tried in special
industrial applications. In a few cases they are also
being applied in a routine fashion. There is, however,
still a long way to go before the methods are part of
engineering practice. This is partly a matter of cost. It
is a substantial effort to develop the software needed

to be able to use the techniques economically. The availa-
bility of interactive software for computer aided modeling
cannot be overemphasized. Apart from modeling, system
identification methods can also be very useful for process
diagnostics, trouble shooting and performance evaluation

of contral systems for industrial processes.

System identification methods are also useful for online
control, Particularly the recursive estimation methods can

be applied to design self-tuning and adaptive control algorithms.
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It is admittedly very difficult to give useful advise
on future research needs. Since this is a major purpose
of this meeting, I would like to give the following
suggestions.

o Establish groups that can build
up and maintain expertise in system identification

within the framwork of modelling of industrial processes.
Make sure that they have access to real processes,

[o) Develop interactive software for system identification.

o Explore possibilities of using system identification

for process diagnostics.

o Continue work on using recursive identification for

self-tuning and adaptive control.

o Study fundamental theoretical problems.
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