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ON CONSISTENCY AND IDENTIFIABILITY *

Lennart Ljung &

ABSTRACT

The convergence, with probability one, of the parameter estimates ob-
tained from prediction erxror identification methods, such as the maxi-
mum likelihood wmethod, is analysed in this paper. 1t is shown that
under quite weak assumptions on the actual :system,-.that has generated
the data, the expected value of the identification criterion ‘can be
used for the asymptotic analysis of the estimates, In particular, does
not the true system have to belong to the set of models over which the
search for optimum is made, The implications of this result for consis-
tency analysis and for questions of identifiabiiity, as well as for

other related problems are discussed,
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1. INTRODUCTION

The identification problem is to determine & dynamic model that
(according to some criterion) as well as possible describes the imput-
output data meazured from some process, Once a certain method to solve
this problem has been deviced it is natural to test its performance in
various ways. The tests can be numerical, like when the method is ap-
plied to data simulated on a computer. A particularly'common analytical
test is to study the asymptotic behaviour of the method (and of the
estimates that it produces) as the number of measured data tends to
infinity. Since the data often are considered to be random processes,
such analysis has to be performed using probabilistic wmethods. The
concepts of coasistency and identifiability are closely related to
such analysis and to the limits of the estimates (if they exist), as

is further explained in Section 3.

The class of identification methods to be studied here are defined
a2s procedures that minimize the prediction errox of the model,-when
zpplied to the recorded data. This class contains min-max entropy
methods, and under certain assumptions on the statistics, the Maximum-
likelihood method. These methods have attracfed much interest and have

shown good performance in practical applications, [1], [7],

In Section 2 we shall define the class of identification methods
and the set of models formally, while in Section 3 the concepts of
identifiability and consistency are discussed. Section 4 reviews some
results on consistency of these methods and in Section 5 a general result
on the asymptotic behaviour of them is proved, The implications of

this result are discussed in Section 6.



2. MODELS AND IDENTIFICATION CRITERION

Loosely speaking, the identification setup is entirely determined
by three entities: the data, the set of models, and the identification
criterion. The identification procedure, them, is to determine that
(those) element in the set of models that gives the best fit to the
measured data according to the chosen criterion. In this section we shall
discuss some different set of models to be used throughout the paper

and also define a class of identification criteria.

2.1 Models

We shall generally denote a specific model by M(8) where 0 is soue
parameter vector belonging to a given set Dy As @ varies aver Dy »
M{8) describes a set of models, which will be denated by M:

In this paper we shall only consider linear models, Some results valid

for more general models are given in [2] and [3].

Example 1, - Lineax Models in State Space Representation,.

The.state space repwvesentation is a common and convenient way of desc-
ribing linear, tiwe-varying systems. The input-output relation for the

model N(3) is then defined by

xe(t+l) = Fe(t) xe(t) + Ga(t) u(t) + e(t)

y(t) = He(t) xe(t) + v(t)

wvhere e(.) and v{-) are random processes with zero means and covariances

E e(t)e'(s)

it

Qe(t) B, 5 E e()v'(s) = RG(t) 8y

E v(t)v'(s)

]

Ry(t) By .
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¥We shall have reason to be interested in the linear least squares esti-
mate of y(t+l) given y(s), u(s) , s=0,...,t and some initial estimate
ﬁ(oje) with error covariance P(0|6), and given that the model M(8), (1),
is a true description of the data., This estimate will be denoted by

§(t+1|6) and is obtained from standard Kalman filtering,

g(t+1l o) = Hy(t+1) ﬁ(t;1ie) (2a)
where

%(t+1]/@) = F (1) R(t|6) + Go(t) ult) + Ko(t) [y(8) - H(t) 2tle] 2w
Ke(t) is the Kalman gain matrix, determined as

B (t) = [F ()P(|HL(E) + Rg(m [He(t)P(tIG)H’e(t) + Recm’l (2c)

P(t41{9) = F()PCE|OF(E) - K (1) [H (0P(t]|D)BL(E) + Re(t)]“l Ky(t) +
+ Qe(t) (24)

The initial values §(0]6) and P(O!e) can either be known ar parameteri-
zed in zn arbitrary way by 6. We shall not be much concerned with the
way in which the matrices ¥,G,H,Q,R,R®, £(0!6) and P(0|8) are determined
from 3, but we shall assume that the matrix-elements are continuously
differentiable functions of 9, Apart from this assumption, the unknown
elements may enter quite arbitrarily in the matrices. Some elements

may be known from basic physical laws, or a priori fixed like in cano-
nical representations. Other elements may be related to each other etc,
The important thing iz thet 8 is a finite dimensional, time-invariant

parameter that determines all the matrices for all t20,



Example 2, ~ General Linear, Time-~Invariant Models

A linear time~-invariant wodel can be described as’
-1 -1 ]
y(t41) = ge(q ) u(t) + Ka(q ) e{t+l) {3)

where q_I is the backward shift aperator: qf1>u(t) = u(t-1) and @e(z)
and He(z) are matrix functionsz of z (2 replaces qml). The variables
e(:) are assumed to be independent random variables with zero mean va-
lues and covariance matrices E e(t)e'(t) = AB {(which actually may be
time~varying). It will be assumed that Qe(z) and He(z) are matrices
with rational functions of z as entries and that KQ(O} = I. The lgtter
assumption implies that e(t) has the same dimension as y(t), but this

is no loss of generality,

To find the linear least squares estimate 9(t+1|9) from (3) requires
sone caution regarding the initial values, In general the filter
determining the estimate ?(t+1[9) will be time-varying, even though
{3) is time-invariant, In such a case z state space representation can
be used, A simpler approach is to assume that information s equivalent
To kunowing all previous y(t), u(t),t<0 , is available and that hence
the prediction filter has reached stationarity. It will follow from the
analysis in the following sections that .this assumption is quite rele-

vant for identification problems.

From (3) we have

A}

Ho'(a D) y(es) = 30NEH 8@ u(e) + e(ten)
and
-1, -1 -1, -1 -1
y(t+l) = [T - Ky (a3 ] y(t41) + 1(9 a ™) Qe(q ) udt) + e(t+1), (4

Since H;l(o) = I, the right hand side of (4) contains y(s) and u(s) only

up to time t. The term o(t+l) is independent of these variables, also

4



in the case u(t) is determined from output feedback, Hence, if we assume

that all previous y(s) and u(s) are known, we have

-1 _ -1 -1, -1 -1
§leerle) = [1 - Ko (@ ] y(t41) +H (e ) § (a7 u(e) (5)
which in this case also equals the conditional mean,
Now, lipear systems are often not modelled directly in terms of the im-
pulse response functions Qa(z) and Re(z). A frequently used represen-
tation is the vector difference equation (VDE):

Astq"l) y(t41) = B(a7) u(t) + c @) e(ta). (6)

Another common representation is the state space form (in the time-

invariant innovations representation form),

F.x.(t) + ¢ u(t) + Ke e(t)

x (t+l) = X,

9 V] I 9 (7)

y(t) = H, x,(t) + e(t)

It is easily seen that these two represemtations corregpond to

6.(2) = A7M(2) B (2) ; Ko (=) = A7 (z) C () | (8)

e 2] ! 8 e [
and
. -1 -1

Qe(z) = HGEI - zF ] G, He(z) = Z HB[I - ZFG] Ko+ I (9
respectively,
Inserting (8) into (5) it is seen that $(t+1]6) is found as the so-
lution of

TS A -1 -1 -1
Cola ™) F(t41]0) = [ce(q ) - A )] y(eHl) + Bo(a ™) u(t) (10)



for the case of a VDE-model. For the state space model (7), §(t+i|e)
is found Ffrom

t+1l) = F
ﬁa( 4+1) = F

ﬁe(t) + Gy u(t) + Ke[y(t) - H ﬁe(t)]

@ e

(11)
Py )

t+1{8) = H t-
F(t+1,0) o XS( +1)

We shall also in this case assume that the matrix elements of 99 and
He (and Aa(z), Be(z), CQ(Z)’ FS’ G@’ H, and Ke) are continuously
differentiable with respect to 8, but mpart from that the parameter
vector § may enter arbitrarily in the matrices, o
Remark. From (10) and (11) it is seen that certain initial information
is required to start up the algorithms, namely for (1O)fY(0)’ ceey Y(-N),

u(0),..., w(-N), §lo), ... , $(-X|o)}and for (11) 2,(0). In many
cases it is not feasible to assume that these are known. Therefore

they should be parametrized by the parameter vector 9, However, nothing
prevents us from taking trivial parametrizations, like 26(0) = 0 for
2il & € Dy, ste,, since we shall not introduce the requirement that

e
& & in Dy that corresponds to a "true" description of the data.

v

there 1
We shall often, for notational convenience, also suppress the initial
e

values in explicit formulas (i.e, suppose that we have the above "trivial

parameterizetion),

In these two examples the predicted value ?(t+1|6) 1s obtained by

linear filtering operations on y(.) and u(.),
t.
Feralo) = > [h, (O y(s) + £, (&) uls) I. 12
s=op °7° ’8

Since the coefficients of this filter are continuously differentiable

with respect to the system matrix’ parameterg, we have

o
- ft,s(e) u(s) } 3>

d L d
@ el = > [ oh (@ ye) + o

& dt t,s



We shall be particularly interested in the case where the linear filters
(12) as well as (13) are exponentially stable. The set of those 6 yiel-
ding this property will be denoted by DSCHD. It is easy to gsee that
for models described by (5)

Dg(M) = {6 | det Cylz) = 0 => [z|>1 ! (14)
and for models described by (7}, .

Ds(jn) =10 | Fe - K, has all eigenvalues in |z|< 1 . (15)

Moreover, for the general time-~varying model (1), the well known sta-
bility properties of the Kalman filter, see, e.g., Jazwinski[4,Thm 7.4},
implies that

Ds(ﬂl) = 4g | [Fe('), Qe(-), He(-)] is completely uniformly
controllable and obsarvable} . (16>

Furthermore, it follows that over compact subgets of these DS’ the

base of the exponential decay of the filter coefficients, is uniformly

bounded by a constaﬁt strictly less than 1,

2.2 A Class of Identification Criteria

From the linear least squares predictions ?(t+1l6) and the data we can
form the following matrix
N

Qe = 5 2 [y - §C DIy - §(t[o)]" 1)
==

1 e

This matrix is a measure of how well the model M(Q) is able to describe

the recorded data,



Remark, In some cases there might be reason to study a weighted’¥arsion

of (17),

p

G (o) = % [ VRGO (r(t) - §Ce]an}] JR(E) (p(t) - §Ct]o)) )" (18)

where R(-) is a sequence of positive semidefinite matrices, However,

t=1

this can also be seen as a rescaling of the ocutput, and we shall confine

ourselves, for reasons of notational convenience, to the case (17).

It is reasonable to take as the identification criterion some continuous

function h(-) of QN(G) ]
V(8 = n{a (6] ' (19)

The parameler estimate based on N measurements, @(N), is thus taken as
the @ tkat npinimizes Vﬁ(a) over Dﬁl’ and the corresponding model is

taken as W(Z(¥)).

¥or the mininization to make sense, some simple properties of h{s)
should bs required, essentially that h(:) retains an ordering property

agong tihe metrices, see [3],

The identification criterion (19) has in itself a good physical inter-
pretation: To choose that model that has the best prediction performance
when appiied to the data, Moreover, cf, [28], if the innovations of

the models in Examples 1 and 2 are Gaussian with covariances A{.), then

it is well known that the log likelihood function for the problem is

l N' ) "'1 _ ~ | : N »
-3 2 r® 9elor 4w [y - felo] - Niogan-
1=1
1 N
e = Z& log det A(t) (20)
2 =

This holds even if there is non-linear output feedback present in the

system, If A(-) are known, then mzximizing (20) with respect to 8

8



is squivalent to minimizing tr é&(e) [R(E) =.A-1(t)]. If A does
not depend on t, but is unknown, then the maximization of (20) with
respect to A can be performed analytically, see Eaton [5], and 0 is

found by minimizing
det QN(G). (21)

In case the distribution of the innovations is unknown, (21) is the

6~dependent term in

max Hy(.) - §(-| 6]

where H is the entropy of the prediction error and where the maximi-
zation is over all possible distributions, with the constraint that

the covariance equals the sample covariance (6), see, a.g,, Rissanen [6],
£ s 3

Consequently, the class of prediction error identification methods,
defined by wminimization of (19), contains the maximum~likelihood
method as well as min-max entropy methods. The criterion (19) was
first suggested and applied to system identification problems in [71,
and has after that successfully been applied to numerocus practical

identification problems.



3. IDENTIFIABILITY AND CONSISTENCY

The concept of identifiability has been given several different
definitions in the literature,and we shall here briefly discuss a few

of them,

We may distinguish two major approaches, The apparently most common app-
roach is to relate the identifiability property to consistency of the
parameter estimate @N. We shall label this approach as "consistency-orien-
ted identifiability definitioms', The "true' parameter 6, is then said

to be identifiable if the sequence of estimates @N converges to 90

in some stochastic sense, This is the path followed e,g, in Rstrém-
Bohlin [7] (convergence with probability one), Staley-Yue [8] (con-
vergence in the nean square'sense) and in Tse-Anton [9] (convergence
in probability). A somewhat djfferent definition is used in Ljung
et.al, [10] and in Ljung [3]. There a set

1

D4, = {“ S €Dy, FimR [§ctls) - geelod] =0

2

for all vounded inputs un(-) } (22)

15 defimed, where §(t|4) is the true prediction of the system é ., Then

4 is szid to be System Identifiable if @N —aD&(JJﬂ) with probability

one as N -» & and to be Paraweter Identifiable if, in addition, QT(J;ﬂD
consists of only one point, Although this definition makes no reference

to any "true" parameter value 6., it should be regarded as "consistency-

03
oriented”, since the requirement that DT(J,ﬂD is non-empty implies that
there is a "very good model" available among the set of modeis M,
Indeed, if Dy contains a "true” parameter 8,, then this definition of

Parameter Identifiability is equivalent to the one first given,

These definitions require that the trie system allows an exact descrin
tion within the model set. In practice this. is usualliy not a very rea-
listic assumption, since almost any real-life process is more complex

than we would allow our model to be, However, even if the set of models

io



does not contain the true system, questdons of identifiability of the
model parameters are still relevant, One could think of a state space
model like (1) where all the matrices are filled with parameters, Even
if the data are furnished by an infinitely complex system, it will not
be possible to identify the parameters of the model, simply because se-
veral models give exactly the same £it, i.e;, the identification crite-

rion Vﬁ(a) does not have a unique minimum,

This leads us to "uniquemess-oriented identifiability definitions™, like
in Bellman-Astrdm [11], where a wodel set is said to be (globally) identi-
fiable, if the identification criterion used as a unique giobal minimum,

A complication in the pregent context is that the identification erite~
rion is & random function and a bit awkward to handle. We would be

mich better off if Vﬁ(e) converges (with probability one) to a deter—
ministic function (or asymptotically behaves like one), Let us already

here remark that such convergence must be uniform in @ , in ordexr to

enable us to relate minima of Vﬁ(e) to minima of the deterministic

function. We shail have occasion to return to this point below,

In addition to' the references mentioned above, interesting results can

also.be fourd in, e.g., [29], [30] and [31].

11



4, SOME CONSISTENCY RESULTS

The consistency problem for the maximum likelihood method has bheen
quite widely studied, For independent observations the consistency hes
been studied by, e.g,, Cramer [12], Wald [13] and Kendall-Stuart [14].
The application of the maximum likelihood method to system identification
(for single input -~ single output models on a difference equation foxm)
was introduced in Astrdm-Bohlin [7], where it also is shown how the
assumption on independent observations can be relaxed, Applicaticns to
other (linear) model choices have been considered in, e.g., Caines [15],
Aoki-Yue [16], Balakrishnan [17), Spain [18], Tse-Anton [9] and Caines-

Rissanen {19],

However, it should be remarked that several of the proofs on strong
consistency {(convergence with probability one to the true parameter
value) are not complete, a fact that can be traced back to a short-

coming in the proof in [14]., The first complete strong consistency proofs

for applications to system identification seemto be given in [2] and [20].

Let us cite, for future discussion, the followiang consistency result

from [3] (Theorem 4.2 and lemma 5.1),

Theorem 1, Consider the set of models described in Example 1. Assume
that Dﬂl’ over whiéh the search in & is performed, is a compact subset
of D (M) (ef. (16)), and is such that D,(4,W defined by (22) is non~
empty. Assume that the actual system (with possible feedback terms) is
exponentially stable and that the immovations of its output haﬁe bounded

variance and are of full ramk, Then, the identification estimate ?

N
that minimizes the criterion (19) converges into
g | 1 E ~ 2
D =10 [feDy limint T > E |§(t[8) - 9t|ol” = o
I 17 N
N—y 00 t=1 -
for the actual input to the process } (23}

with probability one as N tends to infinity,

12



This result is rather general and is not based on any ergodicity assump-

tions,.

To ensure parameter consistency, it should be required first that the
actual input during the identification experiment was sufficiently

general so that

D, C DT(.s,m)
holds (which implies "System Identifiability”),and secondly, that the

model is suitably paramterized so that
Dy(d,M = {6¥|
holds, 1t is convenient to study these conditions separately.

The restrictive assumption in the theorem apparently is that DT(J;"D be
non-empty. This requires the true system to be "not too complex" and is
rarely met for vreal life processes, However, the philosophy of consi-
stency results.should be viewed as 2 tost of the method: If the method
is unable to recognize the true system in a family of models, then it
is probably not a good method. The saume philcosophy clearly lies behind

testing identification methods on simulated data,

It should however be noted, that from such consistency results, stricly
speaking nothing can bhe stated about the performance of the method when
applied to a system that. does not have en exact description within the

set of models,

13



5, A LIMIT RESULT FOR THE CRITERION FUNCTION

In this section we shall give results for determining the asymptotic
behaviour of the estimates @N that minimize the criterion function (19),
YN(G), also in the case where the true system is more complex than can
be described within the set of models. We shall do that by giving con-

ditions under which
VN(G) . h[EQN(G) ]

can be used for the asymptotic analysis. Thereby "'the stochastic part
of the problem'" is removed and the analysis can-proceed with the defer-

ministic loss function Vi (8).

In order to make the analysis as general as possible, we would like to
impose as weak conditions as possible upon the actual system, The im-
portant property we need is a stability property, but in order to state

it, we shall azssume that the true system with (possibly adaptive) feed-

o

back admits s description as follows,

x(t+1) = £lt;x(t),u(t),e(t)]
y(t) = glt;x(t),e(t)] . (24)
ult) = kit;x{(t), ... ,x(0), uR(t)]

where y(*) is the output, u(.) the actual input to the process, uR(-)
a reference (extra) input, or noise in the feedback and e(+) is a se-
quence of independent random variables. The over-all stability proper-

ty which we shall require is the following,

Define yZ(-) and ug(') through

x0(t41) = 2[5 x0(8) ,u(8), e(t)]
yo(t) = glt;xo(t),e(t)] . (252)
0 0 0
us(t) = h[t;xs(t), —ole xs(s),O, W | uH(t)]
0 |
x (s) = 0 (or any value independent of e(r), r<s)

14



Then the property is

0, . 4 - 0, . 14 t-
E |y(t) - y (0] < ca L, B Juw - u ] <cn S, A<1, t<s (25b)

o

and _
E |y(t)|4< c , E ]u(t)|4< C (25¢)

All expectations are over e(-.)}.

The assumptions (24) and (25) are quite weak, in particular as we shall

not need to specify the description (24).
We now have the following result.

Lemma. Let the set of models be defined by (1) or (3) (which includes -
in particular (8) and (7)), and assume that the actual process is subject
to (24) and (25), Then

sup Q. (3) - E QN(G)I — 0 with probability one s N — « (26)

where D_ is a compact subset of D (M) (ef, (14)-(16)), and Q (6) is
defined bty (17). The expectation is over e(.) in (24).

The proof of the lemma is given in the appendizx,

The lemma implies that, if h(-) is continuous, then Vi (8) = h[EQ(8)]
will be arbitrarily close to Vk(e) in the sup-norm, w,p.l , and hence
that the local and global minima of VN(G) are arbitrarily close to
those of Vk(e). In particular will the globally minimizing points of
Vﬁ(e) and Vﬁ(e) be arbitrarily close, and if

V(o) = 1lim 'w‘rN(e> (27)
No oo

exists, then QN will converge w.p.l to the globally minimizing point(s)
of V(8).

15



It is important to notice that these properties follow only since
{26) holds uniformly in 8, If it is known only'that QN(G) ~ E QN(G) -0
w.p.l as N - «» for all GEEDS {(as has been proved by several authors,
although under more restrictive assumptions on the system), then the

minimizing points of Vﬁ(e) and 5&(9) do not have to be close,

Moreover, in the lemma no assumptions on stationarity neither on the
system nor on the model are introduced and E QN(G) does not have to con-
verge. However, if it does converge, then the asymptotic analysis can

most conveniently be performed on V(8),

As the following simple example shows, the 1emﬁa does not hold without

some kind of stability assumption on the true system,
Exanple 3. Consider the system

v{t=1} = b u(t) + e(t+l) where b<1l and e(t)e N(O,1)

"1 + sign y(1) ] y(t) ; u(0) =0,

ol =

Let the model be
y(t+1) = B u(t) + e(t+l)
and the criterion is
v® = % Sly(es) - 6 u))?

Then

2
1 1 +6° -2p B
EVN(6)=-§[1+ _ ]

1 - b2

16



However, for realizations such that y(1) >0

0
1+B°-20b8

1 - b2

VN(B) - w.p.l as N = &

and

VN(B) - 1 w.p.l as N 5

for y(1)<O0.

Clearly, this adaptive regulator does not yield the over-all stability
property (25), since the effect of y(1) lingers forever, This simple
example could of course easily be handled by conditioning with respect
to y(1), but it illustrates the difficulties that may arise with adap-
tive regulators. For such applications it is sometimes helpful to avoid
taking the expectation of the criterion function, cf, Ljung [3]., "

17



6. SOME APPLICATIONS OF THE LEMMA

We may consider the lemma of Section 5 as a basic tool for the con-
vergence analysis of the estimates 9(-), and we shall in this section

point out some potential applications of it,

6.1 Properties of the asymptotic estimates,

For the sake of definiteness, let us take ﬁ[-] = tr and assume that

AP

N
Ty =% tzl £ |y - §ctlo]?

converges to V(8) as N tends to infinity, It then folows that the esti-~
mate(s) Qw that globally minimizes VN(G), will w.,p.l temd to

D ={e . V(3) = inf v(a*)}
8*€Dyy
if DHIC:BE' Moreover, let
F(t+1'8) = Ef y(f+l) | ‘yt] N wherej ‘yt= {y(s), us); s’gt}
be the true prediction (which of cotrse may be non-linear in @t). Then
FCE+1) = F(t+14d) + V(t+1)
where v{.) are the innovations, ocbeying
E[ v(t+1) | ¥, ] = 0

We now have

E |y(t+1l) - 9;(t+1|9)|2 = E o'(tu) V(t+1) + E 20 ($+1)[§F(t+1]8) - §(t+1]8)]

+ E |§(t+1i8) - $(e+1|or) 2.

i8



The second term of the right hand side obviously is zero, and hence the

global minima of V(6) are also the global minima of

N-1
W(g) = lim % z E |§(t1l8) - 9cea1]on)” (28)
Now t=0

Consequently we have proved that @N will tend to the global minimum
of W(O), no matter if this is unique or not. In other words, the limi-

ting estimate will give a model that is the best approximation of the

true system (in the sense of (28) ) for the particular input used in the
identification experiment, This is by no means a surprising result,

hut it has here been established under quite general conditions,

It can be remarked that it is this property that makes the identifica-
tion method powerful in applications, rather than the consistency pro-

perties,

While these resulis do notfollow from consistency analysis, it is of
course possibie to deduce consistency properties from the lemma, Hence,
if DT(é'Wﬁ is non-empty, then W(8) assumes the value O for some &%,
which has %o be its global minimum, and from this the theorem of Sec-

’

tion 4 follows,

6.2 Identifiability Properties,

The limit function V(@) or W(8) of the previous subsection can be used .
for determining the identifiability properties of a certain model set
{parameterization) without reference to any true parameter values, Hence,

a model parameterization,/M , can be said to be Parameter Idemtiflable,

under given experimental conditions (input signal properties), for a .~

given system 4, i1f V() [or W(0)] has a unique global minimum,

it is clear that this concept is appropriate andthat the parameteriza~
tion problem for multi-cutput structures 1s equally important even i

the true system is ''very complex’.
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The same holds for the identifiability properties under output feedback,
cf.,e.g., Ljung et. a1, [10] and S3derstrdm et. al. [21], as is indi-
cated in this simple example,
Example 4, Consider the model

y(£41) + 8 y(t) = B ult) + e(t+l) (29)
with output feedback

u(t) = g y(t) (30)

and the criterion

V&(a

‘4!»—1

o -2
Z Fy(t+1) + & y(t) - B u(t)]

It is clear tzat, regardless of the true system,

-t
A~
‘e
Y
g
i

_:C:\z('§+k.g,ﬁ+k) ~x< k<

and conseguentiy V (8) cannot have a unique minlmum. Hence, the model

set (29) under the experimental condition (30) is never Parameter Identl-

fiable, no matier what the true system might be,

6.2 Local Minima of the Criterion Function.

If the numerical minimization of Vﬁ(e) is performed using a gradient
method, the "false" loecal minima of VN(B) are potential traps for the
algorithm,and it is a most interesting problem to analyse the condi-
tions under which such local minima may or may not exist, Since Vﬁ(e)
converges uniformly to V(8), it follows that a loeal minimum of v(8)
will, w,p.1l, for sufficiently large X correspond to a local minimum of
VN(B) and vice versa, Therefore the anélysis for local minima can be

performed in terms of V(8) instead of v&(a), which of course is a great

20



simplification, In [22] and [23] several interesting results of this

kind are given.

6.4 Certain Difficulties With Adaptive Regulators,

When the true system cannot be modelled exactly, the identification methbd
will still make the best possible out of the situation by minimizing

(28), as explained in Section 6.1, However, it should be realized that

the minimum of'VN(e) in general depends on the actual input during the
jdentfication experiment. If the input is determined as output feedback,
the minimizing element QN will depend on the feedback law, If now the
regulator is adaptive, and the feedback law is determined from the .current
estimate, cf, [24], the analysis of the loss function ﬁk(e} becomes

cumbersome, Let us consider the following simple example,
Exawmple . Let the system be given by
v(t+13) + 2 y{t) = u(t) + e(t+l) + ¢ e(¥) - (31)

where 2(.) iz 2 sequence of independent random variables with unit vari-

ance, and let the model set be giVen by
y(t41) + & y(t) = ult) + v(t+l)

where v(+)} are assumed to be independent, Then the model set does not
contain a true description of the system (31), Let the identification
criterion be:as in Example 3, The input to the system is determined

as

u(t) = 2¢t) y() {(32)

where A(t) is the wvalue that mininizes Vf(ﬁ), With a constant feedback

(20), we would have as the asymptotic estimate

c [1 -~ (a-g)°]
1+ c2 - 2(a~g)c

o .
a = a -



which clearly depends on the actual feedback coefficient g. When taking
into account the adaptive feedhack (32), the determination of E”Vﬁ(ﬁ)
becomes difficult, and it is even impossible to easily decide whether

E Vﬁ(ﬁ) will converge or not as N increases, In fact, for adaptive re-
gulators of this kind, E v&(e) may really fail to converge (without
tending to infinity), cf. [24].

Our conclusion of fhis example is that although the lemma provides the
tool for analysing the asymptotic behaviour of the estimate (regardless
of convergence of E Vﬁ(@) ) even for these more complex problems, it

may not be so easy to use,

An idea that, for these problems, seems more appropriate than to deter-

uine E Vﬁ(é), is to consider the conditional change in the criterion

"v‘ = — . »
E [V, (D) - V(&) | i()]
since this guantity reflects the significance of the present control
action for futurs estimates, By instead considering the expected chiamge
in the minimizing point B of VN(S); given QN’ it is possible to track
the estimate and analyse its asymptotic properties. This is, essentially,

the apprcach that has been taken in [26], [25] and [24].
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7. CONCLUSIONS

A particular aspect of the asymptotic analysis of the estimates ob-
tained by minimization of the prediction error identification criterion
(19) is the question of identifiability., By this can be meant that the
identification wmethod has the ability of recovering the true parameter
values if they belong to the set over which the criterion is mininmized,
(or to yield a model that has an equivalent input-output mapping,
"System Identifiability”, see Section 3). It can also be meant that the
estimate will converge (w.p.l, say) to a unique value, which, however,
does not have to be related to any "true system”", We have labeled these
approaches as ''consistency-oriented" and "uniqueness-oriented”, respec-

tively, and given some general results for eithey approach,

The lemma of section § should be regarded as the main contribution
of this paper., It states that, under quite weak assumptions on the true
system, the expected value of the loss function, which is a deterministic
function, can be used for the asymptotic analysis, We have also indica-
+ad how tais result can be used for identifiability and convergence stu-

dies, as well as for analysis of other related problems,
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APPEKDIX: PROOF OF THE LEMMA OF SECTION 5.

The ides of the proof is to show that
1 3 ' : .
sup % t; [y(©)-Feele)] [y()-§Ce|a) ], - E(y(t)-§t|6) ], [y(0)-FCt|o) ],

taken over a "small' open set, is arbitrarily small for large N, and then

to extend this result to Ds , using the Heine-Borel theorem. We shall
need some properties of ?i(tle) [ "i" denotes the i;th component], and

let us state these results as a lemma,
Lemma A, Let B = B(8%,p) = { 8] ‘9~6*F<D }. Then

. 2 '
Esup lgz F,(c]@] < (8% (A1)

Let

s a -A 'l _/\.
ny (573 sup [y, (t) yi(tle),[yj(t) yj(tle)]

~
(a3
e
|
v
L
A
i

A -~ : =8 { -
: églfa [y, (® yi(t.e)][yj(t) 9j(t|9)]

N
ji_ [:ij(t,é*,g) - E nij(t,e*,p)] —0 w.p.1 as N - x» for all &%
t=1 B

znd P such that B(&%,p) C ’ﬁs .

[That is, for all 9*} @ and €, there exists a Nl(e*,p,E,w) such that

2|
gt

n,.(t,0%;0,0) - E q . (t,0%,0,0)| < € for N>N (6%,p,€,w) for
all weQ(6%), where PLR(8%)1=1. ]

and similarly for Qij(t,a*,p).

Proof of lemma A: We shall throughout the proof use C and A\ for constants,

where A<l , that do not need to be the same. We shall also allow ourselves
to supgress arguments and subscripts freely, when there is no risk of con-

fusion.
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Let the linear filter determining §$(t|6) be given by (12). For B(e*,p)c'ﬁs

we then have

t-k

sup [ Iny @1+ l2, (@1 <cn | (A33)

and
d t-k

sip [ l?l-éht,k(e” + lde :, k<e)[ 1< CA (A3D)
Hence t

sup | g5 9Ct[O)] = sup 2 Soh, L(6) YO + G5t (6) u(x)

t d .

£ 2 = lgghe @1 vl ~ sup| S5, (O] Rl < € 2 2y ol + jugl]
and

2 L e
E Sup]%@ F(t|] «<c j{ s E[ |yt +Hu |10 es) +uts)1 <

k,s=0

: o
<c S aZEE el «JE e JE o « Bl <
k, s=0 ‘
t x \ 2
<c (\_ i ) < c. (A4)
20 .
which proves (&1).

Let the variables yg(-) and ug(‘) be defined as in (25a) and let the

prediction based on these variables be denoted by

0 & 0 0,,
§>s<t|a) = 2 [nt’k(e) yL(x) + ft,k(e) qs(k)]
The components of ?Z(tfe) will be denoted by ?g.s(tie). Let us also intro-

duce

0 © A0 -0 0
Ni5:6(8 8% p) = Zg [yi (t), - 9i:s(t|e)]£yj:s(t) . 9j:s(t|e)].

Notice that qz(t) is by definition independent of n(r) for r<s.
Consider

0
B (1) = n(t) - ns(t).

After elementary calculations we find
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in

2
Ep () £

A D 0 04 -
4[}3 sup [y—?F-E E sup Iy—yo + E sup [§-§| ] +Esuply ~§ |~ <[ E sup ,!y°~'y‘

+ E sup[§~?0]4]J ' (A5)

0!4

As above, (A4), we readily find that

E sup|y- y| < C and Esuply "'0!4 (A8)

. - 4 ~
and by (25b) we have E ly(t)—yg(t)l <c lt 9 . Consider now, (A7)

(for subscript i or j)

S
sup [§¢t[6) - §o(t1)| = swp | S [n b, k(@)y(k) + 2, (Ou] +
k=0

t
+ z (b

k(B){y(k)—y (k)] + f (9)[u(k)—u (k)]]
k=s+1

t,

Using (A3a), we find after some straighforward algebra, and use of

Schwarz' inequality (a detailed account is given in [2;pp94-95]),
E sup {8(t 5) - f}g(ﬂa) |4 <cat® | (A8)
Collecting (A3),(A6), (A7) and (AS) we find,

E p‘s(t)Z <c s, ' (A9)
Consider now for t>s,
Cov ( n{t), 7n(s) ) = Cov | n:(t) + p.s(t), n(8)] = Cov [}Ls(t),n(s)] <
g(erm? . & h(s)z) /2 < gt (A10)

where the second equality follows since ng(t) is independent of {e(r),r< 5 },
and hence of mn(s). Boundedness of E n(s)? follows as above, (A4),

In [27], the following convergence theorem is given ; Let fi be a

sequence of random variables, with zero mean values and with

P P
LENEN cx i _tJ 0g2p<q<l (A11)
B 1 +i-317
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Then

% fi - 0 w.,p,1 as N 35 o (A12)

|
%

We can now apply this result to
1 N
N 2y [hag(6os® - By, (c,000]
since (Al10) well implies (Al1l). This concludes the proof of lemma A,

Proof of Main Lemma: Let

z (t,6) =y

y (t) - yj(t|9)

J

and consider

N
r(8)= QN(_ij’(e) - E ngij)(a,*): £ [2,(,8)z,(£,0) = B 2, (t, 60z (t,60)],
: : t=1 )

8 1
sup[rA(Q)_é = gisup[zitff,a)zj(tfe)] - E zi(t,e*)zj(t,s*) =

g9¢€B (A13)
1

- ' 1
=% ['}ij(t,c* Q) - Enij(t,e*,p)] R z E[nij{t,e*,p)—zj<t,9*)zi(t,6*)]

Using the mean vzlue theorem and (Al), we readily obtain (cf, p.85-86 in [2]),

E Iqid(t,e*,p) - 2, (t,6%)z (t,6%)| < p.C(o*) (Al4)

J
Similarly,
E !zi(t,sr*)zj(t,e*) - z,(t,0)z,(t, g < p+C(6¥%) for O€ B(6%,p),

which implies

2[00 (o) - £ o{* ) (om<p-c(om  tor 6 w(or,0). (A15)

Collecting (A13), (Al4) and (Al5), we obtain

. . N -
sup [0 (o) - £ Qi) < & }‘1 [1y(8,0%,0) = En, (£,6%,0)] +200(0%)
0eB L S = : (A15)
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Now choose an € >0, and take for_every 6% € -ﬁs » the radius p= p¥ = p(O%)
to be the minimum of €/4C(gP*) and the distance from 6% to the boundary
of DS. Then for N>Nl(9*,p*, €/2,w), the first term in the wright hand
side of (Al5) is less than €/2 according to (A2), and hence

(i3 ' (ij)
sup | () - E (1<e (A16)
9€B(9*,o*?N QN '

We shall now extend (20) to hold over _ﬁs, by applying Heine-Borel's
theorem, Clearly, {B(6*,0%), 6% ¢ Bs} is a family of open sets covering
D, . Select a finite family of sets {B(9,,0,) , i=l, ... , M} that

also covers Bs and let

N (&,0) = max N (8,,p(8,),¢/2,w)

1< i
Then )
(13) ., (13 o =
Csw [0 - E QU ()] <€ for NN, (€,w)
&<
] M
for all w £ OF = {:\] Q(8,) , where P(R') = 1,
Similarily,

sup [EQé.ij)(Q) - Qéi'j)(e)'] <e¢ for N>ﬁ2(e,w)

which concludes the proof of the main lemma,
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