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A comparison of splittings and integral equation solvers
for a nonseparable elliptic equation *

Jonas Englund and Johan Helsing?
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May 6, 2004

Abstract

Iterative numerical schemes for solving the electrostatic partial differential equa-
tion with variable conductivity, using fast and high-order accurate direct methods for
preconditioning, are compared. Two integral method schemes of this type, based on pre-
viously suggested splittings of the equation, are proposed, analyzed, and implemented.
The schemes are tested for large problems on a square. Particular emphasis is paid to
convergence as a function of geometric complexity in the conductivity. Differences in
performance of the schemes are predicted and observed in a striking manner.

Key words: Nonseparable elliptic PDE, variable coefficients, Fredholm integral equation,
fast multipole method

1 Introduction

For the Poisson, Helmholtz, and modified Helmholtz equations on a rectangle or a circle
there exist fast direct solvers which may be considerably more rapid and stable than gen-
eral purpose iterative solvers based on the finite element and finite difference methods. Two
such fast direct solver classes are fast Fourier transform (FFT) or cyclic reduction accel-
erated finite difference methods and fast multipole accelerated integral methods. While
FFT accelerated finite difference solvers is the classic choice, Ethridge and Greengard [12]
and Huang, Cheng, and Leiterman [23] recently showed that these can be outperformed by
integral method solvers. The work per grid point for the solver classes is comparable, at
least for moderate precision arithmetic. Since integral method solvers more easily allow for
adaptive refinement and high-order accuracy, than do FFT solvers, the former win.

The usefulness of fast solvers goes beyond the simple equations and geometries men-
tioned above. Fast and adaptive direct solvers have shown to be competitive with general
purpose methods, such as finite element- and finite difference methods in combination with
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multigrid, also for more general separable variable-coefficient elliptic problems [22]. As
for complex geometries, there exist fast direct solvers for the Poisson equation [26, 36].
Schemes for more difficult equations often apply a fast solver in an iterative fashion. Exam-
ples range from the challenging task of solving the incompressible Navier-Stokes equations
inside a circular cylinder [13] to formally simpler setups with linear nonseparable elliptic
equations [2, 6, 8, 10, 18, 28, 29, 30, 35, 38]. In this paper we consider a problem of this
latter type; the electrostatic equation with Dirichlet boundary conditions

V-oVu=s, in{, (1)

u=f, onl, (2)

where u is an unknown potential, o is a variable conductivity, s is a source term (negative
current source density), {2 is a simply connected domain with boundary I'; and f is boundary
data. Our purpose is to investigate what integral methods can do for (1,2) with emphasis
on the performance of various fast and high-order accurate schemes as a function of o. In
the numerical examples we restrict our attention to the special case of €2 being a square.
The paper is organized as follows: Section 2 gives a review of previous work on iterative
schemes and fast solvers for (1,2). Interestingly, integral methods have been discussed
to some extent but, seemingly, never been tested. Section 3 discusses possible integral
equation formulations and two of them are singled out for further study. Section 4 derives
efficient quadratures for the Laplace equation on polygonal domains. Section 5 discusses
discretization of area integrals and the evaluation of layer potentials close to their sources.
Numerical examples, including comparison with previous results for simple setups as well
as more challenging problems, are presented in Section 6. Our main conclusions are that

- integral methods for (1,2) can be stably implemented on rectangular domains with
high-order accuracy also for reformulations that involve the convolution with the gra-
dient of the logarithmic kernel;

- different reformulations of (1,2) can lead to algorithms with very different convergence
properties for rapidly varying o. This seems not to have been noticed by earlier
investigators.

2 Review of previous work

Constructing a fast direct solver for the entire problem (1,2), that is, a rapidly computable
inverse or Greens’ function, is difficult when o is nonseparable. Fast schemes for this problem
typically rely on a splitting of the operator into a supposedly dominant part which is used
as a left- or right preconditioner and can be inverted with a fast solver, and a remaining
part which can be viewed as a perturbation. After discretization the resulting system of
linear equations is solved iteratively. The composition of the fast solver with the dominant
operator may be evaluated analytically.



2.1 Splittings

Possible splittings of (1), where the dominant operator appears on the left hand side, include

puo YT VU s 5
o o
A(ru) = uAr+ ; ; 4)
A(ou) =V - (uVo) + 5. (5)
Here the quantity r is given by
r— o2,

Introducing the vector K

(%)

where angular brackets denote some kind of averaging, the equation (3) can be shifted and
rewritten

(A+K.v)u:<zz_@>.vu+f. (©)
o o
The equation (4) can also be shifted and rewritten as
(A—K)w:(h—K)uH—;. (7)

Here

w=ru,

h = Ar/r,

K = (h) .

If the gradient of the solution to (1,2) is split up into the curl-free part of oVu and the
divergence-free part of Vu as
Vu=0"1Vep+V 1,

where ¢ and 9 are scalar potentials and where the operator V|, in a cartesian coordinate
system, should be interpreted as (0/0y, —9/0x), then one can get the system

Ap=s+V .0-Vip, )
A =-V, o1 Vo,

with boundary conditions given in terms of directional derivatives of ¢, v, and f, see [2].

The splittings (3,4,5,8) all have the Laplacian as dominant operator. This operator is
easy to deal with. It is hard to say which of the split equations has the smallest remaining
operator but, as we shall see in Section 3, rewriting them as Fredholm second kind integral
equations discloses more of their properties. The splitting (6) may have a constant- or
separable coefficient operator as dominant operator. The splitting (7) has the Helmholtz,
or modified Helmholtz, operator as dominant operator. An advantage with (6,7) is that
K and K can be chosen as to optimize the rate of convergence of the iterative solver. An
advantage with (8), in the context fast Poisson solvers, is that a splitting along these lines
easily can handle more general self-adjoint extensions of (1).



The performance of an algorithm relying on any of the splittings (3-8) for solving (1,2)
will depend on many things. Five aspects have been particularly studied in the literature:
The performance as a function of the fast solver used, the iterative scheme used, the choices
of K and K, variations in the source term s, and variations in the conductivity c. We have a
particular interest in the last point of this list. To simplify the discussion we characterize o
with two labels — a property called conductivity ratio and denoted k which is the maximum
value to the minimum value of o over the domain, and a property called geometric complexity
loosely defined by how rapidly ¢ varies.

2.2 Choices and conclusions of earlier investigators

Some authors choose the splitting (3). Zhao and Yedlin [38] use it for problems with
low geometric complexity and x < 3. The Laplacian is inverted with a direct Chebychev
pseudo-spectral solver and fixed-point iteration is used for the preconditioned linear system.
Comparison with a method which combines multigrid concepts with the iterative solutions
of spectral equations shows that the fixed-point iteration is most efficient. Pares-Sierra and
Vallis [29] use (3) in combination with finite differences and a fast Poisson solver. They try
various iterative schemes for problems with large x in a polygonal domain. Gauss-Seidel
type iterations are reported to be most efficient, though the question of accuracy in the
solution is not addressed. In [32] Rokhlin derives an integral equation for a PDE which has
the form (3) as a special case.

Nielsen and Janssen [28] consider the splitting (4) in three dimensions for a conductivity
that is chiefly constant but contains sharp transition zones and with x = 80 and f = 0. The
authors compare several iterative solvers. Their algorithms are pseudo-spectral and use a
fast sine transform to invert the Laplacian. The authors conclude that most iterative solves
are comparable with a slight advantage for the stabilized biconjugate gradient algorithm
BiCGstab(l). We will return to [28] in Subsection 6.3.

Simkin and Trowbridge [34], Mayo [25], and Mikhailov [27] all discuss integral equations
which, in a sense described in Section 3, are related to the splitting (5). Neither Mayo [25]
nor Mikhailov [27] do actually solve any equations. Simkin and Trowbridge [34] only use
integral equations to solve problems with piece-wise constant o. The focus of Simkin’s
and Trowbridge’s work is on comparing various formulations for electromagnetic problems,
where different choices of potentials lead to partial differential equations of the form (1).
The focus of Mayo’s work is on how to avoid computing area integrals explicitly. The focus
of Mikhailov’s paper is on how to avoid a full system matrix when discretizing the integral
equations. The tool for this is a domain splitting technique involving local parametrixes for
the operator in (1). A related, simplified method, has been tested numerically in [39].

Elman and Shultz [10] and Strain [35] study rather general, not necessarily self-adjoint,
variable-coefficient second-order linear elliptic equations and choose a splitting which re-
duces to (6) for the problem (1). Strain chooses a constant K while Elman and Shultz
choose a spatially varying K. Elman and Shultz [10] study nonperiodic problems. They
derive bounds on convergence rates for iterative methods that are independent of mesh-size
for a given problem. Strain [35] studies periodic problems and uses fast direct spectral
solvers in combination with multigrid ideas. Strain’s interest lies in the performance of his
algorithm as a function of the variations in coefficients and in the source term. He con-



cludes, from experiments, that the performance depends strongly on the variations in the
source term and weakly on the variation in the coefficients. See Subsection 6.2 for a few
more details.

Several authors choose the splitting (7). Concus and Golub [6] use it to construct a pro-
cedure based on second order accurate finite differences, a fast direct Helmholtz solver, and
Chebychev iteration. They achieve rapid convergence in terms of iterations for reasonably
smooth o and with x < 10 on a square. Pickering and Harley [30] extend this work. They
choose a K that varies in one space direction and use a second order accurate fast direct
Helmholtz solver. Improved convergence rates were found in some examples. Guillard and
Désidéri [18] go further and choose a spatially varying K that corresponds to a separable
approximation of ¢. With a minimum residual iterative solver preconditioned by a spec-
tral Helmholtz solver they set out to solve a set of periodic problems on the square. The
performance, in terms of iterations, is similar to that depicted by the stars in our Figure 3,
left image, below. Drawbacks with the scheme include a fair amount of precomputation
and a performance that seem to degrade with resolution. Dimitropoulos and Beris [8] also
try spectral methods for (7). They use the BiCGstab(l) iterative solver with two Concus-
and Golub-type iterations as preconditioner. A fast direct spectral Helmholtz solver can
be employed due to the particular choice of boundary conditions. The authors conclude
that their method is much more efficient than the original iterative scheme of Concus and
Golub [6] and much cheaper than that of Guillard and Désidéri [18]. The precise value of
K need not always be optimal for fast convergence. See, further, Subsection 6.1. Some
experiments with the splitting (7) are also reported by Pares-Sierra and Vallis [29]. These
authors saw rapid convergence when K was nearly constant and no convergence in other
cases.

Bernhardt and Brackbill [2] test a scheme relying on the splitting (8), finite differences,
and fast direct Poisson solver using the transport equations for a plasma cloud in the
presence of a neutral wind. Solving (1), where o corresponds to an electron concentration,
is a part of this problem. The preconditioned linear system is solved with fixed-point
iteration. The authors report rapid convergence for their test case, but warn that a better
iterative procedure may be necessary to insure convergence for other problems. June-Yub
Lee (private communication) reaches a similar conclusion for (8) from tests on an equation
that will be presented in Subsection 6.2.

Divo and Kassab [9] avoid splittings completely. They derive a boundary integral equa-
tion for (1,2) based on a generalized Green’s function which is difficult to construct for
general o. Numerical examples for simple o are given.

To sum up, the splitting (7) is a frequent choice by investigators working with FF'T and
cyclic reduction methods. The splitting (5) has been discussed by investigators interested in
integral methods. The question of which splitting is most efficient for a given o still seems
open. Many authors, interested in high-order accuracy, work on the unit square and prefer
problems that have periodic solutions, at least in one space dimension. The reason for this
may be that fast direct high-order accurate solvers for the Poisson and Helmholtz equations
are easier to construct in these settings than for more general boundary conditions [1, 4].



3 Integral equations

A popular starting point when deriving integral equations for elliptic problems on a bounded
domain € with boundary I' and outward normal v is the integral representation formula
for any twice continuously differentiable function U(x) which can be derived from Green’s
first two identities, see chapter 8-3 in [17],

U(x) = oG —(x,y)U /G X y y)dl'y —l—/ﬂG(x,y)AU(y) dQy. (9)

r Ovy

Here a shorthand notation for the directional derivative with respect to v is used and G is
the free-space Green’s function for the Laplacian which in two dimensions is

1
G(x,y) = 5 log|x —y]. (10)

Integral equations for u of (1,2) could now be derived as follows: first let U in (9) be u, ru,
or ou and replace AU in (9) with the right hand side of the splittings (3), (4), or (5). Then
insert the known boundary values of w on I' from (2) in the first integral on the right hand
side of (9) and also on the left hand side of (9) for x on I'. The equation derived from (5)
can be simplified by use of Green’s first identity and the relation V4G (x,y) = -V, G(x,y).
See, for example, [27, 34] for explicit expressions in 2D and 3D, and [25] for an example
involving an unbounded region 2.

Let us briefly examine the integral equations derived in the manner just described.
If (3) is chosen the equation will be of integro-differential type. If (4) is chosen and if the
normal derivative of v on I' is considered unknown, then the integral equation will be of
Fredholm’s second kind on € and of Fredholm’s first kind on I. The kernels involve G(x,y).
Alternatively, the normal derivative of u on I' can be computed numerically and the result
is an integro-differential equation on 2 only. The same possibilities hold if (5) is chosen [27],
the difference being that the kernel of the area integral now involves VxG(x,y).

The representation formula (9) is not the only possible starting point for transforming
an elliptic second-order partial differential equation into an integral equation. Another
approach, common for constant-coefficient equations, is based on a representation of the
solution in terms of abstract layer potentials. See [32] for examples in a variable-coefficient
setting.

3.1 Our equations

To avoid possible numerical difficulties associated with first kind- and integro-differential
equations we shall not rely solely on (9) for the construction of integral equations for (1,2).
Rather, we use modified representation formulas which lead directly to Fredholm second
kind equations. We use the purely abstract layer representation

u(x) = gfi( y)dr, /Gx y)oly) 2y (1)

for the splitting (3), where p is an unknown double layer and p an unknown area density.
We use the mixed abstract layer- and primitive variable representations

oG s
rux) = [ ) dny + [ Goxy) (udr+ 2 () doy (12

r Ovy
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for the splitting (4), and

ou) = [ 2% x yyuly)dry + [ 9sGxy) - wvoty)any + [ Gxysyany. (3

T 81/y
for the splitting (5).

One can easily check that (12,13) satisfy (4,5). The representation (11) can be inserted
into (3) as to eliminate u. Enforcement of the boundary condition (2) leads to three systems
of coupled Fredholm second kind integral equations for the unknowns p and p or p and wu.
Further, the unknown density p can be eliminated and the three systems reduce to three
single equations for p or for u. These read

! (s = (Vo - V)MDF) ), xeQ. (14

g

(I + v v - MlmMo)) p(x)

([ - %(1 - MlD)MOAr> u(x) = % (([ - MlD)Moé + MlDrf) (x), xeQ, (15)

and

1

0<(I—M1D)M08+M1Daf>(x), xe€Q. (16)

(I - %(I — M1 D)V M, - VJ) u(x)
Here I is the identity operator. The notation My is used for the integral operator
MoA() = [ Gxy)A()d0y, xeQuT,
the notation V. My is used for the integral operator
VM - A(x) = /vac:(x,y) CA(y)dQy, x€QUT,

and notation Mj is used for the integral operator

Mia(x) =2 8—G(x,y)a(y) dl'y, xeQurl, (17)
T 8I/y

where A and A are scalar- and vector valued functions on €2 and a is a scalar valued function
on I'. The inverse D is defined on I' as

Da(x) = (I+ M) la(x), xel. (18)

This inverse, which only involves the boundary, can be computed rapidly by an iterative
numerical scheme, see Section 4. Alternatively, on the square, it can be computed directly,
see [12].

We remark that, in addition to (14,15,16), yet two second kind integral equations
for (1,2) can be obtained by inserting the abstract representation (11) into (4) or (5) and
enforcing (2). The first of these equations is very similar to (15). The second equation is
more complicated and contains operators appearing in (14) and (15).



3.2 Comparison of equations

When comparing (14,15,16) we see that (15) is the simplest equation in the sense that it
only contains the two integral operators My and M;. The equation (16) contains the three
integral operators My, V.My, and M;. The operator VM is quite similar to M;. Its domain
of integration differs. The equation (14) is the most difficult equation to implement. It
contains the four operators My, V My, M, and VM;. We speculate that the equations (14)
and (16) have similar numerical properties. Their leading operators, Vo -V My and —V M -
Vo, are each others adjoints. Therefore, in the following sections, we will chiefly consider
the equations (15,16).

To highlight the connection between our equations (14,15,16) and Poisson solvers, and
for later reference, we formally introduce P(s, f) as an operator which solves the Pois-
son equation with source term s and Dirichlet boundary conditions f. One can now ex-
press (14,15,16) of the more translucent forms

o) + (Vo - V)P(p,0)(x) = = (s — (Vo V)P0, )(x), x€Q,  (19)
u(x) — %P(uAr, 0)(x) = %P(s/r,rf)(x), xe, (20)
u(x) — %P(V  (uV o), 0)(x) = %P(s,a ), xeq. (21)

Alternatively, equations (20,21) can be derived directly from (4,5) and (2).

The efficiency of a Fredholm equation as a computational tool depends, among other
things, on the spectrum of the compact integral operator. This spectrum will, for our
equations, depend on o. It is interesting to study the forms which (15,16) assume in the
limit of a bimaterial where the source term s is zero and o is a step function oy which
takes on the value o9 in certain simply connected regions, called inclusions, and the value
o1 in the rest of the plane. Such a study could give insight into the behavior of (15,16) for
geometrically complex o. It is known that Fredholm boundary integral equations involving
the double layer kernel or its adjoint perform well for bimaterial problems of the type (1,2) in
the sense that the number of iterations needed to solve the discretized equations is virtually
independent of the number of inclusions (but sensitive to how closely spaced they are and
to the conductivity ratio k). Solution for bimaterials with a huge number of inclusions can
be obtained [15, 19]. An example of an efficient boundary integral equation for an infinite
bimaterial is ( ) 5

02 — 01 o1
<I — WM1> u(x) = m(e -x), xely. (22)
where the uniform far field boundary condition Vu = e is applied at infinity, where Iy
denotes the inclusion boundaries, and where I' is replaced by I'g in the definition (17) of
M. The derivation of (22) uses the representation (9) and Green’s second identity, see [15]
and references therein. For reasonably smooth boundaries I'g, the potential u is infinitely
differentiable in the bimaterial except for at I'g where it is merely continuous.

One can show, using distribution theory, that (16) in the bimaterial limit assumes a

form very similar to (22). Consider the leading part of (16) for a setup with s = 0, with o



being a smooth approximation of oy, and with a boundary condition f = (e - x) applied
far away from the inclusions

([ - %wwo : w) u(x) = %(e - x). (23)

The integral operator in (23) has, in the bimaterial limit ¢ — o, only support on the

inclusion interfaces. If we first multiply (23) with 20/(02 + 01) from the left and then take

the bimaterial limit, we end up with an equation which for x on Iy is identical to (22). This

indicates that (16) should work well for a material with geometrically complex o.
Similarly, if we, for the same setup, consider the leading part of (15)

1 r
<I - —M()AT> u(x) = —1(e X)), (24)
r r
multiply it from the left with 2r/(rq + r1), take the bimaterial limit, and allow for u to
develop a discontinuity in its normal derivative over I'y at the same rate as that with which
o becomes discontinuous, we end up with an equation for x on I'g

(ro —r1) (r2 — 1) 9 _ % oo x
(1= Gt =2 v () ) oo = e xemo @)

Here angular brackets denote the mean of the value on the positive and the negative side of
Ty, M is as in (22), and My is now a boundary integral with support on I'yg. The limiting
form (25) is more complicated than (22). It contains, in addition to terms similar to those
in (22), a composition of a compact operator with a differential operator which for the
bimaterial problem can be interpreted as a set of Dirichlet-Neumann maps for Laplace’s
equation. It has been noted that such maps are ill-conditioned on multiply connected
domains in the sense that iterative methods for Fredholm second kind equations based on
single- and double layer potentials tend to scale “appreciably worse than linear” as the
number of closed boundaries increase [36]. One can therefore speculate that (15) should
perform worse than (16) for a material with geometrically complex o.

4 Double layers on polygonal domains

We shall now investigate the solution to the Laplace equation on a polygon 2 as obtained
with the double layer ansatz

) = | 2% y)uty)dry .

This problem has relevance for the efficient implementation of the operator D of (18). We
assume that the Dirichlet boundary data f is the limiting value of a smooth function in Q.
The corresponding boundary integral equation is simply

(I+Mp)p(x)=2f(x), xeT. (26)

This equation is of Fredholm’s second for smooth boundaries I'.



In order to construct an economic quadrature for the integral in (26) we need to inves-
tigate the asymptotic behavior of p close to the corners. Cormack and Rosen [7] suggest
an approach involving gauge conditions as a general tool for this type of problem. We shall
proceed more conventional way. An equation with a similar structure as (26) is (22) for
a single inclusion. In the limit of vanishing os the two equations have the same left hand
sides, with u corresponding to p. Assume now that the inclusion geometry involves corners.
The asymptotic shape of u in a bimaterial corner of opening angle 23 can be found by
applying variable separation to the electrostatic PDE on a bimaterial wedge using ansatzes
in polar coordinates of the type u(r, ¢) = r7 cos (y¢) and u(r, ¢) = r7 sin (y¢) with v > 0 to
guarantee continuity, see [20]. The analysis leads to systems of trigonometric equations. For
a corner of a square, where 23 = 7/2, and in the limit of a vanishing o5 one can show that
possible values for the exponents 7 are all positive integer multiples of 2/3. We conclude
that if composite quadrature is used to discretize (26), an efficient N-point quadrature rule

1 N
/ F(s)ds =3 fsom,
- n=1

for a quadrature segment having a corner as its starting point should be exact for the first
few basis functions (s +1)**/3, n=0,1,2.. ..

The preceding analysis is only asymptotic. We therefore add monomial functions s, n =
0,1,2,... as to better capture the actual behavior of . We settle for a 16-point generalized
Gaussian quadrature rule and take s”, n =0,1,2,...,27 and (s+ 1)2"/3, n=1,2,4,5 as the
32 basis functions for which the quadrature should be exact. The nodes s; and the weights
w; are computed with a homotopy method suggested by Yarvin and Rokhlin [37]. We
remark that other corner singularities than those discussed here can occur in the context
of solving the Poisson or electrostatic equation on a polygonal domain. For example, it
may happen, even when o, f, and s in (1,2) are smooth, that the fields which M;D acts
on in (15,16) contain terms involving logarithms. Including more types of singular basis
functions in the generalized quadrature could resolve the operator D in these cases too. We
refrain from doing this. We shall see in Section 6 that the present quadrature resolves our
numerical examples sufficiently well.

5 Discretizing and solving integral equations

This section discusses numerical details in discretization and solution process of the equa-
tions (15,16). We shall use a Nystrom scheme with uniform refinement and compisite
quadrature. The computational domain 2 is a square and it will be divided into N? equi-
sized smaller squares €2;. The outer boundary I" will be divided into 4N equisized straight
segments [';. The segments I'; are placed in such a way that they coincide with boundaries
of squares €; which have sides on I'. On each square §); a tensor product grid with m?
discretization points are placed corresponding to a total of m2N? interior discretization
points. On each segment I'; a number n of discretization points are placed, corresponding
to a total of 4nN boundary points. The discretization points will be referred to as source
points when they are associated with the variable of integration y = (y1,y2) and as target
points when they are associated with the variable of evaluation x = (z1,x2).
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5.1 General strategy

The following quadratures will be our main tools: We use a Cartesian product rule for
source points on squares {2;. Aiming at high-order accuracy we choose m = 12 and use
12-point Gauss-Legendre quadrature in each direction. We take n = 16 and use 16-point
Gauss-Legendre quadrature for source points on segments I'; which do not contain a corner
of the computational domain 2. We use the 16-point generalized Gaussian quadrature as
described in Section 4 on the eight segments I'; which do contain a corner of €.

An example of a discretized area integral, from (15), is

12 12
/ G(x,y)ulr(y) dQiy = > Y wj,w), G(X, ¥, AT (Y15,) (27)
@ J1=1j2=1
where w;, and wj, are scaled one-dimensional Gaussian weights, y;,j, = (¥j1,¥j.), and y;,

and y;, are one-dimensional Gaussian nodes that are scaled and translated into the square
Q.

5.2 Singular kernels and precomputation

Two major problems follow from the strategy of Subsection 5.1. First, the logarithmic kernel
and its derivative in the area integrals in (15,16) are not smooth. Therefore a Cartesian
product rule on a square €2; becomes very inexact when target points are close to or on that
square. Second, neither the kernel of the double-layer potential is everywhere smooth. The
kernel of the layer potential has sharp peaks for interior target points close to its sources. A
similar behavior holds for source points and target points on neighboring segments located
on opposite sides of a corner. An interpolatory rule takes care of these situations. An
example for an area integral is

12 12
| Gloxy)udrx)atty, = 3o 30 W (oubr(vi,), (28)
s j1=1j2=1
where Wj, j,(x) are 144 weights that must be precomputed for each target point x that is
close to or in a square {); prior to running the main program. Fortunately, since we are
using a uniform mesh, only one set of weights W}, j,(x) need to be computed. These weights
are independent of the refinement level up to some mesh dependent constants. One can
show
Wi ja (%) = Woji g (x)/d* — wjwy, log d/2m
where Wy, ,(x) are weights on a square with unit side-length and where d is the side-length
of the square ;.
The interpolating functions are taken as follows: On a square §2; we interpolate quantities
such as uAr(y) at the 144 source points with 144 basis functions of the type

yitys?, 0<mg,mg <11.

On a segment I'; that does not contain a corner of I' and is parameterized with a local
parameter s we interpolate the double layer at the 16 source points with the 16 monomial
basis functions

s, 0<n<15.
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On a segment I'; that does contain a corner of I' we interpolate the double layer at the 16
source points with the 16 basis functions

s", n=0,1,...,11,
(s+ 123 n=1,2,4,5.

Having thus described how we perform quadrature for source- and target points that are
close to each other we need to define what we mean by ’closeness’. We adopt the following;:
a target point x is close to a square €); if it is located in §2;, in one of the up to eight possible
nearest neighbor squares of 2;, or on a boundary of 2;. Further, a target point x is close to
a segment I'; if it is located in a square €2; which has a side that coincides with or neighbors
to I';, or if it is located on another segment which neighbors to I'; on the opposite side of a
corner. With this definition of closeness we can evaluate all integrals appearing in (15,16)
with double precision accuracy for sufficiently resolved layer densities.

We shall not detail how all sets of precomputed weights were computed. We just note
that many of them can be evaluated analytically, though the primitive functions for integrals
containing basis functions of higher degrees are rather complicated. We have chosen an
adaptive numeric approach. The number of precomputed real numbers needed for the
weights in (15) is on the order of 13 - 1442 and about three times as much for (16). This
number can be reduced if symmetry is taken more into account.

5.3 Fast multipole method and other speedups

We shall solve the discretized systems (15,16) with the GMRES iterative solver [33]. Each
iterative step requires several large matrix vector multiplications and corresponds to solving
the Poisson equation with homogeneous boundary conditions once, see (20,21). We use the
fast multipole method [5, 16, 31] to achieve linear complexity. In the present code, and
for all kernels, we use a non-adaptive implementation based on the original scheme of [16]
but which includes some ideas of [21]. See [11] for details. We set the requested tolerance
very high, often to 5- 10716, as to test the stability of our code. In a typical example of a
matrix-vector multiplication we first evaluate MouAr(x) using the fast multipole method
and the formula (27) for all source and target points irrespective of whether they are close
to each other or not. Then we add the sum of all integrals (28) minus a correction, which
is the part of (27) which should not have been included. This correction is translationally
invariant over the squares 2; and can, in fact, be included into the weights W; ;,.

We remark, again, that Ethridge and Greengard [12] have constructed an extremely fast
direct Poisson solver on the square based on the integral operator My. This solver includes
features such as adaptive refinement on a quad-tree, diagonal forms of translation operators,
the method of images, the use of fewer basis functions in each square §2; in combination
with singular value splitting and fast cosine transforms for computing local interactions,
and multipole expansions of entire area integrals (rather than of kernels) for computing
far-field interactions. We expect that huge speedups would result if this solver was used for
our equations (15,16). The solver can be applied directly to (15) by using the equivalent
form (20). It can also be used for (21). But, although mathematically equivalent to (16),
this equation may not be as good for numerics as (16). In (21), derivatives of the unknown
quantity u need to be computed. In (16), this numerical differentiation is bypassed at the
cost of introducing the operator VM.
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Convergence of solution to the original DiBe problem Convergence of solution to the modified DiBe problem
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Figure 1: Convergence of solution to the Dimitropoulos and Beris problem. Left: original
problem with & as in (29) and solution w given by (31). Equation (30) is used for numerics.
Right: modified problem with & as in (33). Equations (15) and (16) are compared.

6 Numerical examples

This section compares the performance of algorithms based on (15) and on (16) for a variety
of previously defined and new problems. Our computational domain 2 is always the square
[—1/2,1/2] x[—1/2,1/2]. Previous problems defined on other squares have been shifted and
scaled. Comparing performance, in terms of speed and achievable accuracy, with algorithms
of other investigators is indeed difficult. For example, the cost of an “iteration” depends
strongly on how many fast solver calls are involved and how rapidly they are executed.
Some authors, using FFT based solvers, measure speed in terms of how many FFT calls
are needed for a given tolerance. When such solvers are used, one fast Poisson call typically
corresponds to two or three FFT calls???

The GMRES iterative solver is used twice in our algorithms. It is used to solve the main
equations. It is also used inside each iterative step to compute the inverse D of (18). This
latter computation only involves points on I'. The time it consumes for large systems is
vanishingly small compared to the total computational time. Unless otherwise stated, the
numbers of GMRES iterations reported below refers to the main equation.

6.1 The Dimitropoulos and Beris problem

We start out by testing our algorithms on two problems which have analytical solutions.
Dimitropoulos and Beris [8], see Subsection 2.2, suggest a problem where the function h
of (7), called g2 in [8], is taken as

87 sin [4m(z1 + 22)]

"5+ sin A (21 + 29)] (29)

h(x) =

This function h fluctuates around zero in the unit cell. A constant shift K in (7) is therefore
small compared to the amplitude of h. An algorithm relying on (7), such as the one in [8],
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should perhaps then perform similarly to an algorithm relying on (4) such as our algorithm
for (15).

Unfortunately, the function h of (29) does not correspond to any function o. Therefore
we can not apply any of the equations (15,16) as they stand. It is, however, simple to
change (15) as to solve for the unknown w = ru

(I — (I — MiD)Mph)w(x) = (I — M1D)Mys*(x) + MiDf*(x), xe€, (30)

where f* is the limiting value of w on I' and s* is a new source term. When it comes to
choosing s* we follow [8] and take the function s* which corresponds to a solution w given
by (Ps in their paper)
423 —1)(220 — 1
?,U(X) _ ( 232 )( Z2 ) )
4x35 cos [8mx] + 2.2

(31)

This solution is constructed so that it is periodic in the xq-direction and zero on the bound-
aries in the xo direction.

The convergence of the relative L., error and the relative Lo error in w is shown in
Figure 1, left image. The convergence rate is almost the same as the one obtained by
Dimitropoulos and Beris with their spectral algorithm. Compare with their Figure 9. Our
achievable accuracy may be better. It is hard to tell since Dimitropoulos and Beris do
not display data beyond 16,512 discretization points. The number of GMRES iterations
needed to achieve a relative residual of 5- 10716 in the main equation was 14 for all mesh
sizes. This behavior is typical for Fredholm equations of the second kind — the distribution of
eigenvalues of the system matrix does not change with refined discretization. Dimitropoulos
and Beris report a number of at most 9 iterations for their scheme, but it is unclear how
many fast solver calls actually are made. A number of 3 — 18 calls per iteration is hinted
at. Thus it seems as if our scheme requires a smaller number of calls for convergence.

We now proceed to modify the Dimitropoulos and Beris problem by introducing the
function

o(x) = (1.5 + sin [dn(z; + 22)])? | (32)

which corresponds to
h(x) = — 3272 si.n [Am(x1 + x2)] 7
1.5 + sin [47(z1 + z2)]

and differs from h in (29) by being a factor of 47 larger. The source term s is modified so
that the solution is the same as in the previous problem. With these modifications we apply
our equations (15,16) and solve for u = w/r. The problem now has a maximum conductivity
ratio of kK = 25. Convergence plots for these equations are displayed in Figure 1, right image.
We see that the solution converges stably for both equations. For (16) there are a few points
close to the domain corners where pointwise convergence is slow once the L, error reaches
a value of about 107, This is so since the field which M; D acts on in the corners contains
minor logarithmic parts which are not properly taken into account by the quadrature, see
Section 4. The number of GMRES iterations needed in the main equation for a relative
residual less than 5 - 10716 was virtually independent of the resolution. A number of 40
iterations were needed for (15) and a number of 38 iterations were needed for (16).

In conclusion, this example shows that integral methods can compete with spectral FFT
based methods in terms of convergence, that is, in the number of discretization points and

(33)
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Convergence of solution to the Lee problem

o GMRES iteration history for the Lee problem
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Figure 2: Left: Convergence of the quantity o of (37), computed from the solution to the Lee
problem with o and s as in (34) and (35) and boundary conditions given by (36). A conductivity
ratio of x = 256 and a wavelength of A = 2/3 are chosen. The reference value of the solution
is taken as oo = 0.71301409870461. Right: A GMRES iteration history.

in the number of fast solver calls needed to achieve a given accuracy in the solution. This
is interesting since the problem was tailor-made to fit a fast direct spectral solver and since
the earlier investigators relied on a splitting (7) which allows for more fine-tuning than the
splittings (4) and (5), which form the basis of our algorithms.

6.2 A problem with large and rapid variations in the conductivity

June-Yub Lee suggested a problem (private communication) with conductivity in the unit

square given by
1 1 27
o(x,K,A) = <1 + ;) + <1 - ;) cos [T(xl - 332)} ) (34)

where A is a wavelength which describes the geometric complexity and & is the ratio of the
largest to the smallest value of o. The source term s is given by

5(x) = m1aa(1 — 42?2)* (1 — 423)*, (35)

and the boundary conditions are
u(x) =x2, onl. (36)
In absence of an analytical solution we study the convergence of the quantity o.g given by
oet = (Vu-oVu) , (37)

where angular brackets denote area average. The gradients of the solution are computed
numerically.
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Convergence in GMRES as a function of k for the Lee problem

Convergence in GMRES as a function of 1/A for the Lee problem
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Figure 3: Number of GMRES iterations per digit as defined in (38) with o and s as in (34)
and (35) and boundary conditions given by (36). Left: The wavelength is held fixed at A = 1,
while the conductivity ratio x varies. Right: The conductivity ratio is held fixed at x = 2, while
the wavelength A, which describes the geometric complexity, varies.

First we compare (15,16) in terms of achievable accuracy. It turns out that the results
produced by the two equations are very similar. Figure 2 shows a convergence study of oeg
for k = 256 and A = 2/3 with up to 1,838,736 interior discretization points on 2. The
number of GMRES iterations needed for the relative residual to be less than 5- 1076 was
46 for (15) and 49 for (16). A full GMRES iteration history is shown in Figure 2.

Then we compare the convergence properties of (15,16) with respect to how many iter-
ations in the GMRES iterative solver that are needed to reduce the relative residual to a
given value, as a function of kK when A = 1. The problem gets harder as x grows. The num-
ber of GMRES iterations for a given k is, thanks to the Fredholm property, approximately
independent of the number of discretization points. For large x and severe underresolution,
the number of iterations may vary a little, but as soon as the solution is resolved to ap-
proximately three digits, the number stays constant. Figure 3, left image, shows that the
two equations have essentially the same properties. The quantity displayed, iterations per
digit, is computed as .

iter
logy (res)’

where res is the first relative residual appearing that is less than a given number, here taken
as 10713, and iter is the number of iteration required to reach this residual.

We now compare the number of GMRES iterations that are needed to reduce the relative
residual to a given value as a function of 1/\ when k = 2. A decreasing wavelength
corresponds to a more complex geometry, but not necessarily to a harder problem. Figure 3,
right image, shows a dramatic difference in performance between the two equations. The
number of iterations per digit for (15) grows approximately linearly with 1/), while for (16)
it is approximately constant. This suggest that algorithms relying on the splitting (4) (and
perhaps also on its shifted form (7), which is a frequent choice by previous investigators,
see Subsection 2.2) can be very bad. A similar study of how the computing time scales with

iterations per digit = — (38)
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Convergence in GMRES as a function of k for the t-zone problem

Convergence in GMRES as a function of k for the t-zone problem
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Figure 4: Number of GMRES iterations per digit as defined in (38) with o asin (39), s =0, and
and boundary conditions given by (36). Left: The iterations are terminated when the relative
residual is less than 10713, Right: The termination criterion is changed to 5-107".

the variation in the coefficients of a second-order elliptic PDE is included in the paper by
Strain [35], mentioned in Subsection 2.2. Due to the more general nature of Strain’s PDE it
is difficult to make a comparison with our findings. Anyhow, Strain, in his Figure 1, observes
a computing time which grows approximately linearly with the coeflicient wavenumbers,
everything else held constant.

In conclusion, this example shows that the algorithm for (16) relying on the splitting (5)
drastically outperformed the algorithm for (15) relying on the splitting (4) for a problem
with rapid spatial variation in o. See Subsection 3.2 for a possible explanation of this
difference.

6.3 A problem with a sharp transition zone

Nielsen and Janssen [28], see also Subsection 2.2, treat a three dimensional problem where
the conductivity o is essentially piecewise constant in different regions of the material.
Between these regions ¢ has sharp transition zones.

Here we construct a similar problem in 2D. The purpose is to study the convergence
properties of (15,16) as a function of the conductivity ratio x. The problem gets harder
as k increases, at least initially. Its difficulty also depends on the requested accuracy. If
the requested accuracy is low, say in Ly norm, the transitions are sharp, and the regions
where o is large are reasonably separated, then o could be viewed as a step function.
The problem should be simple to solve, at least with equation (16) which according to
Subsection 3.2 resembles a double-layer boundary integral equation in this situation. As
the requested accuracy is increased the need to resolve the potential u well in the transition
zones increases and the problem gets progressively harder.

We choose a conductivity

o(x)=(k—1)&x)+1, (39)
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where £ is a smooth approximation of a step function with a transition from one to zero at
|x| = 0.25 and given by

£(x) = go(g"(91(%))) , (40)
where ¢" = g o ¢"~ !, and where ¢y, g, and g; are functions defined by
go(z) = 0.5z, (41)
g(x) = 1.52% — 0.523 (42)
7 (X) — 21—16(:(:%4-90%) ) (43)

The function £ thus constructed differs from one or zero with a quantity larger than machine
epsilon in double precision arithmetic only in the interval 0.18 < |x| < 0.32. (Nevertheless,
o diverges everywhere as Kk — 00.) The source term s is set to zero and the boundary
conditions are the same as in (36).

Figure 4 shows the number of iterations per digits, defined in (38), as a function of
for the two equations (15) and (16). In the left image we iterate until the relative residual
is less than 1073 while in the right image we terminate at 5-1077. Up to 3,686,400
interior discretization points were used in these calculations. One sees that the problem
gets harder as « is increased and also progressively harder as higher accuracy is requested.
The algorithms for (15) and (16) behave similarly. As a benchmark for o4 we present
numerical results for k = 8192. Here we get convergence to g = 1.69113014 with both
equations.

While this example in many respects differs from the example of Nielsen and Janssen [28]
we still summarize some of their numerical findings. The authors consider several three
dimensional problems with conductivities that always involved 16 spherical regions with
transition zones and a function ¢ with two compositions of the function g of (42) and a
% = 80. The number of FFT calls needed for a relative residual less than 107'? was around
125. The authors state, without numeric evidence, that the computational cost of their
algorithm scales as O(N logy N) where N increases linearly with the number of spherical
regions.

In conclusion, we have demonstrated that our integral method can solve a simple elec-
trostatic problem with very high conductivity ratio x in a moderate number of iterations.
For the most extreme problem, with x ~ 10° in Figure 4, we needed 16 GMRES iterations
to get an estimated relative error in o.g of at least 1076, Naturally, adaptive discretization
would lead to enormous savings in this particular example.

7 Conclusions and extensions

We have solved the nonseparable partial differential equation (1,2) by an approach based
on a splitting. Roughly speaking, the split equation is solved iteratively with the dominant
operator acting as preconditioner. Its inverse is applied with an integral method. Drawbacks
with integral methods for (1,2) at present, compared with FFT-based methods, are that the
dominant operator has to be the Laplacian or the Helmholtz operator, and that the most
efficient fast multipole codes are not publicly available. Their advantages include that they
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are less restricted to rectangles and circles and that they more easily allow for adaptive
refinement and high-order accuracy,

Our paper contains the following new material: we have actually implemented integral
methods for the problem at hand; our numerical examples are larger and more difficult
than those of previous investigators; we have compared the performance of algorithms
based on differents splittings for geometrically complex ¢. In particular, we have compared
an algorithm implemented from (15) and relying on the splitting (4), which is a special
case of a classic choice [6], with an algorithm implemented from (16) and relying on the
splitting (5), which has been discussed in the integral equation community. A difference
between the two schemes is revealed by studying the limit in which o is a step function.
In this limit (16) essentially assumes the form of the identity plus a double layer operator,
while (15) contains an extra operator which adds ill-conditioning. Numerical experiments
with geometrically complex o supports the conclusion that (16) is superior to (15). We
speculate that this difference reflects properties of the underlying splittings themselves, and
that it should be visible also in algorithms using FFT-based techniques.

Our computational domain is a square. The extension to general boundaries is extremely
important if integral methods are to become a serious competitor to alternative techniques
such as the finite element method in combination with multigrid. The problem boils down to
finding a fast and high-order accurate Poisson solver on irregular regions. There are several
options. McKenney, Greengard, and Mayo [26] have constructed a fast Poisson solver on
irregular regions that, for the free-space problem, uses a combination of potential theory and
classic fast solvers. The adaptive Poisson solver of [22] may also be used. Another approach,
without FFTs, is suggested in [14]. Here the solution is represented as a sum of polynomials
that satisfies the Poisson equation locally and harmonic parts which are generated by the
boundary values of the polynomials. This omits the need of evaluating convolutions with
logarithmic kernels over areas, which is associated with pure integral methods. Instead one
has to find the local polynomial, which is a non-standard task. For problems with source
terms that admit smooth extrapolation, one could solve an extended Poisson equation with
any standard technique on a larger, more regular, domain. See Mammoli [24] and Biros,
Ying, and Zorin [3] for attempts in this direction.
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