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Preface

This discussion of dimensional analysis was stimulated by my giving lectures at Lund
University. As is widely recognised, dimensional analysis can be regarded as a formal,
powerful tool, but there are aspects seen by some as a magic art. Monographs and text books
which discuss dimensional analysis tend to deal only with the formal aspects, but here these
receive less attention than some of those aspects which, while still having a formal aspect, are

too often seen at best as art, at worst as guesswork.

The examples taken for discussion and comment are all from the fire literature. There are no
new results but there are perhaps new ways of deriving of some topics that are discussed in

the literature but deserving further comments.
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1 Introduction

The relevance and application of dimensional analysis to fire problems has been discussed in
general terms by Hottel [1] and by Williams [2]. They identified many dimensionless ratios
but the main problem is deciding which ones to omit: in any particular application they
usually make up a majority! Kanury [3] following Spalding [4] discussed a number of
particular problems, and recently Quintiere [5] has extended the discussion of the application

of dimensional analysis to fire problems.

The purpose of this paper is to take this exploration further, to discuss certain examples
critically and to comment on the question of the analysis of experimental data in the context
of dimensional analysis. However, we begin with a general discussion, emphasising some less

well publicised points.



2 Theory of dimensional analysis

Classical treatments of dimensional analysis include "The Method of Dimensions” [6] a 1933
monograph by Professor A W Porter, who described it as "the first treatise (small though it
iS) upon this subject to be published in Gt. Britain”, "Dimensional Analysis and Theory of

Models” [7] by Professor H L Langhaar; and "Dimensional Analysis and Scale Factors” [8]

by RC Pankhurst who gives over 30 references. We do not deal here with the many
formalities discussed by Langhaar, with Buckingham’s Theorem nor with any examples other
than those taken from studies of fire behaviour. This is a topic which draws heavily on heat
transfer and fluid dynamics, the historic developments of which owe much to dimensional

analysis.

2.1 Units, scaling and dimensional analysis

One must first distinguish between dimensionless numbers derived from physics and others
expressing some arithmetic relationship, e.g. a fraction or a percentage. Although
dimensionless, these are not to be confused with ratios such as the Reynolds number although
they may appear together - as may an index in a power law formula expressing, e.g. the

relationship between heat transfer coefficient and velocity in turbulent flow. Consider

Ny, = A Ng, (1)
Here
Nnu IS the Nusselt number a dimensionless heat transfer coeffibfent
Nre IS the Reynolds number, which can be regarded as a dimensionless velocity
orasa dimensionless length or scale (see below)
A adimensionless coefficient
and n an index also dimensionless.

Nnu and Nge have a physical basigy and n an arithmetic one and they depend on the

particular problem being discussed, e.g. a flat plate or a Hipdas defined byr:?. Disa

characteristic dimension (usually the same as in the definitibiagathich isUD/v.



2.11 The combination of dimensionless variables

It is possible to combine dimensionless numbers to maximize the convenience to the user or

the analyst.

Here, we could use the quotieﬁl\fi"\'—u as the dependent variable. This remoiesand
Re

produces a new and useful dimensionless number
Ny, _ hv

Nge KU
or more usually the quotient of this and the ratio of the terms controlling molecular processes,
thermal diffisivity i.e.”k” divided by the kinematic viscosity”(Prandtl No) i.e.

Ny k _ h
Nee 0 Upc

(aStantonNumber)
p

Consider the classic conduction problem of a semi-infinite solid at uniform temperature with
thermal conductivityK, density < and specific heat, (all constant) heated on the surface in
such a way that the surface is instantaneously raised by a steadyfyalle seek the
temperature risé’ at a depthx at timet; a familiar text book problem. The first question to
ask is whether reference is madealb the necessary physical quantities. This requires a
physical (or chemical) judgement. This is no less a judgement than is any analysis requiring
confirmation by experiment. We assume that we have concluded that

8(x,t)= Function(eo,x,t,K,p,cp)

We now turn to a dimensional analysis of a familiar problem which can be described by a

differential equation, initial and boundary conditions.

2.1.2 Differential equations, heat and energy

The conventional procedure consequent on writing equation (2) is to put indices on each term,
and to equate the powers of the basic independent dimension, e.dMasgthL, time T

and in this example temperature and heat. Leaving aside philosophical questions, we must in



an equation have the same units and dimensions on each side. Heat is energy, and some
authors advocate not using the term "heat”, but to expose its true nature by referring to it as
energy - or perhaps thermal energy. This, in practice, is not consistent with the fact that often

in dimensional analysis in fire matters we must treat heat as a separate dimeisiohds

energy which irM, L, T terms isML?/T?2.

Why?

Briefly, because if - but only if - there is no exchange between heat and mechanical energy

one treats heat agL?/T? so thatk has dimensions

b @)
one has from equation

6 a6 Xt K p° (3)
for the power of temperature

1= |-—f 4)
the power of mass

0=—+0 ©))
the power of length

0=B+A-3c+2f (6)
and of time 0=y —-34- 2f (7
4 f

Hence ;)GEK;f g EpcKptxz E (8)

a andf are "unknown” but another pair could be chosen and the two sets of terms exchanged

for any other pair formed by combination of the two in equation (8). The latter group of

L . : K@t -
quantities is the familiar Fourier number but-°,— or any term containing, formed from
X

this and the Fourier number e.g,8,t*/x* is included only if ML*/T?is used for heat.

Putting heat asML¥T? in this context causes confusion unless the exchange between
mechanical and thermal energy is a significant contribution to the process of heat transfer. If
we start from the supposedly exact differential equation, we have



= K - 9
ey 5 5 9)
>0
020"
with the boundary conditions
0=0 x=0
= OH S O

These can be rearranged as
o(e/e,) _o°(6/6,)

= s (10)
55 Kt H
Hecs
6/6,=0att= 0 x>0
6/6, =1latt >0 x=0
It formally follows that
/6, = function %Lz% (11)
HPC X" H

This can be confirmed by inserting equation (11) into equation (10), from which one obtains

an equation involvind- (the function) and its first and second differentials in terms only of

Z=Kt/pc, X .
This function is not a power law but it can be expressed as a series of po»%é(FtS@f
X
p

In general, one can obtain dimensionless groups from the complete set of equations (not
necessarily differential) and, where appropriate, the initial and boundary correlations. One
part of a chapter on dimensional analysis in a text by a well known specialist does not refer to

the initial and boundary conditions and is not as helpful as the author intended!

x defines a position and



Kt is a distance that is the "scale” of the thermal penetration.
| PCp

The temperature distribution is continuous and a very simple model of the thermal process

shows p}f:t is a measure of the penetration. Thuifs the effective penetration then
p
K8,/dis a measure of the rate at which heat enters the solid. The heat content is thus of order
6,0
K(Qo/é)t and this must approximately b%cpz—o Henced = plf:t , neglecting a
p

coefficient of order 1. We must expect
9 - 0 for x>> Kt .
o, Jo o

What happens if the solid is not semi-infinite but is a slab of thickod2rovisionally we

take a simple condition atL, e.g.6=0. Clearly one can define the position EL(yto produce

another variable.

O ad
i.e. 6 = function [«)K—tz,ém (12)
6, PcoX” LA
ad O
or ﬂ :functionBK—tz,ED (13)
8, Foc,L” LE

More formally one can multiply both sides of equation (10Lbgnd thereby definep%
p

and (x/ L)2 as dimensionless variables: this leads directly to equation (13).

22 Physical meaning and implications

We have already illustrated by a simple model the physical and geometric significance of the

, Kt
ratios > and

PCpX p

B in a thermal conditions problems.



Clearly if )L( << 1 we cannot expect the thermal wave to have reached the rear surface. Hence,

L is not then relevant and must be removed.

2
pcKtL2+>|i2 i.e. p(ljtz is the relevant variable.
X
P

P
After a long heating time the "steady state” solution does not deperttiibthére is cooling

but the existence of a "steady state” depends on the condition at the second surface as well as
on x/L. Order of magnitude discussions of terms in differential equations so as to simplify
them was commonplace before CFD permitted numerical solutions of complex equations with

or without sensitivity analyses!

In this connection one recognises that the physical significance of a Reynolds number is that

of a ratio of a characteristic inertial forpe)® to a characteristic viscous forgdJ /A where

U/A is representative of the gradient. This ratieHsé%z UVAEand we ought to expect that if

H/p
the terms are representative of the forces the importance of this Reynolds number depends on

whether it isc< 1 or >> 1.

The reason for critical Reynolds numbers which defines the transition from laminar to
turbulent flow being of order 010" is that the length usually employed in Reynolds
numbers is a physical length, e. g. a distance from a leading edge or diamstelst A is

physically a boundary layer often being orders of magnitude smalleDthan

In its various forms, the Froude numidgy is the basis of much modelling in fire studies. It is
defined as the ratio of inertial to buoyancy forces and a common definition is
pu?
gApHg

whereAp is the difference in density producing the buoyancy fquti expresses the inertial

force andHg is, in principle a height over which there is a buoyancy effect. Qfterp

appears a®)/T, which expresses the buoyancy caused by thermal expansion. Occasionally

one see:U/A/gB Hg /T, the square root of this expression for Froude number.



It is importantnot to treat this as simply the square root of the former because it is not only
the square root of the ratio of forces but, as a ratio of velocities, it can be related to a ratio of
volumetric quantities, which in turn is related to air/fuel ratios and entrainment. This

arithmetic translation is physically ambiguous.

Anticipating a discussion yet to come below, one notes that physicallgssociated with a
vertical height; its appearance with a horizontal distance must require an answer to the
guestion it raises. In brief, the answer anticipated is akin to that involved in the Reynolds
number where the physically importasependentquantity is replaced by andependent

geometric parameter.

A third point: if a temperature rise, say, is being correlated with a Froude number, the
temperature rise in the buoyancy may be omitted when correlating data with a formula based

only on dimensionless variable: if

y = F1 (Xly)

then y =F; (X)



3. Other examples

3.1 Self-heating and thermal explosion

The classical Semenov [9] self-heating theory equates the heat loss from the Sirbdee
uniformly heated object, i.e.

hS(T-T)
to the rate of generation of haatg™ whereq™ refers to the heat generation per unit volume

throughout the volum¥ by a zero order reaction obeying the Arrhenius Law
qm - Q fp-E/RT (14)

whereQ is the heat release for unit mass.
Hence hS(T-F)=QfpV e T (15)

ObviouslyRT/Eis a dimensionless temperature but this is not always the most useful one. We

E/RT
gt

discuss the behaviour of the quanity- T) in the above equation.

Equation (15) can be rewritten as

-E(T-Tp)
(T_T)eE/R'E, e T = Qfv
° hS
_ 6
RT
i.e fe T Qv e ®Ro g E
hS RT,?
_ E
where 0 RTZ(T_T")

This dimensionless temperatwldference becomes important for the low valuesRT,/E

-0/ + Rlo g0

typical in many problemsde E "B has a critical value



o= Riz (T-T,)=1 for RETO «<1
(0]
hSRTS . ]
Qe [?] = fVeE/RTo
= Qo

i _n2
The "error” is a term of ordeg ® R©/E

, a few per cent.
Becaused € has a maximum value &= 1 the Semenov criterion for the existence of a
stable solution is

EQofV o E/RTo o 1

RTZSh e

Frank-Kamenetskii [10] initially allowed for gradients within the material (assumed rigid) but

assumed an infinite value far This results irh being replaced by KVS wherea is 0(1).

2
EQpfV e EIRL _ 5 (16)

i.e.
RTZKS

wheredis 0(1).

o depends on the geometry and shape of the material, and there is an extensive mathematical
: . . . . . hv .
literature on this topic. It follows from dimensional analysis that for akﬁg( uniform

boundary conditions the equilibrium conditions are given by

EQof eRE e ChV
R %\ég e F/Rb = functlon%;—sé (17)

and, from the preceding arguments, that for
x — 0, function (x)J x
and for X - oo, function (x)— constant

which depends on the shape of the body.



RT? . -
is characteristic of the heat

Q p f V e¥RT%s characteristic of the heat release whﬂ§{

loss. :l\é is proportional to the ratio of the external to the internal conductance. If there is no

solution to the equation because

iz Qpf %g e E/Ro > maximum of functior%wg
RT? K Os KS

there can be no equilibrium: the material heats up indefinitely unless some limiting process is
introduced, e.g. reactant consumption or diffusion. Consider again the approximation that led

to the introduction of the alternative dimensionless temperature -

E(T-To)

_ _ 2
e E/RT - g EIRL o R

This approximation can be used even when there laige temperature differences
PROVIDED T, is chosen not as an ambient temperature but as some datum near to the
maximum temperature, e.g. &g when a slab is heated on one side friyrto T; and the
temperature inside the solid is able to rise only slightly aleva@he fractional error in the

role of chemical heating on the cool side of the slab is enormous but the actual and the
approximate expressions for the heat generation in the cool region are sumthhagay be

negligible in the heat balance.

The choice of dimensionless temperature or temperature rise is helped by a physical analysis.

3.2 Ignition (external heating)

Ignition studies after WW2 concentrated on ignition by radiation and it was recognised that
cellulosic materials ignited because they produced flammable decomposition products which
could be ignited in air by an auxiliary ignition source e.g. a spark or a small flame. Such fuel
could only be produced by thermal heating causing decomposition.

The incident heat flux in effect raises the surface temperature by conventional heat transfer

processes until the temperature is high enough for any chemical heating to cause thermal



instability; subsequent chemical decomposition produces flammable gaseous products rapidly

enough.

Dimensional analysis of the problem arose naturally because the main component of the
induction period, i.e. the delay time, was the thermal capacity of the material. Sauer [11], in
the USA, developed the procedure which was exploited by Martin [12] and by Simms [13].
Martin and his colleagues omitted surface cooling as a secondary factor. This was a
simplification and was perhaps appropriate so long as one is concerned with ignition times
under severe exposure. If one is concerned with whether ignition occurs - a matter of
importance in civil defence, then (and now too, to judge by the attention paid to evaluating a
critical condition in opposed flow spread of flame) - cooling is important. Simms included

cooling but treated it as a Newtonian linear simplification (see Appendix 1).

In general the thermal conduction solution is

Kt h’r Kr O

ho(x
( ) 21 ’ ZD
pe, L™ Kpe, pegl |

n

(18)

Ik
—functlonéi,

where L is the slab thickness
g” a characteristic incident flux
and T a time controlling the variation of the imposed heat flux with time (assuming the

initial values of heat flux and temperatures are zero)

For 8 = 8y - the effective ignition temperature risexat O,

t_ |:| 2 n |:|
- = function%h—r, 9 kzg
T Kpc, hg, L

where k = K/pCp

For a thick solid. >> plit andL is removable from equation 18.
P

ho. 0 2: [
ie. 9= function[ﬁ, hT O
q r Kec,O

" There is much contemporary discussion of ignition and critical temperature which could benefit from a reading
of early literature.



If there is nor as wherg” = q”s = constant

t_ K |:| " D
then 4 fcp = functioan—S,mD (19)
h he, KO

and if additionally cooling is negligible (i.b.is omitted) andhe solid is thick( is omitted).
t., Kpc, 62
'9(';)0,2"'9 =congan t

viz. the conventional square law.

Sauer & Simms also introduced a chemical component using the dimensionless temperature

F:ET and a nominal chemical heat rele@fp kW/ni.

This leads to the inclusion of dimensionless terms, one of which is similar ®itheelf

heating theory (see above). This approach seems to depend too much on chemical terms of

uncertain value and form to be practical and of value.

Kanury [14] describes how Martin used equation [19] in his ignition studies

n t
1 I — q
Fig. 1 y' = 3
Fp
n
| B q L
Tk
-
- E-::_*_'-'.leuE P |
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y”andx’ are not dimensionless. They would be if divided by the supposedly constant ignition
temperature rise. This procedure was used todinftom experimental data from which Fig.

1 was derived.

Fig. 2 Theoretical correlation

y =y718q
X = X164

Neglecting cooling one has forin materials in Fig. 2

a’L -0iey-1

g'L . - hL
so that for K 0 and B . the Biot Nimber in Fig. 2, equal t% =0
one has A =1

pCpLeig

For a thick solid, theory shows as in Fig. 2

-1
qn tig unL |:|

—= = where A=/ 4

PC, Leig %Keig%

From the data underlying Fig. 1
6 =121C¢ ie6, = 1000K



The reason whyl, appears to be over 100(C or F?) is unclear. 600K above ambient was
what Martin actually reported. Simms gave a lower figure°6686CFC claiming he had

made various corrections which were essential to analysing experimental data. Leaving aside
the arithmetic we have demonstrated how the variables can be presented in various ways and
used to estimate a parameter not measured directly.

3.3 Vertical plumes

Axi-symmetric, and to a lesser extent two-dimensional plumes, have received considerable

attention in the fluid mechanics and fire literature.

Early studies were based on total similarityaththorizontal sections above the source. Early
works, e.g. that by Sir Geoffrey Taylor [15] who developed the work of Schmidt [16], Rouse,
Yih and Hyphreys [17] and Yokoi [18] whose study of plumes emerging from openings is a

classic, assumed an eddy diffusivity to determine the bell-shaped cross sectional distribution.

After the introduction of the alternative presumption - local similarity - with a constant
entrainment coefficient - most analyses were still based on assumed horizontal distributions of

velocity and temperature, Gaussian or ‘Top Hat'.

However, the only independent variables considered in any of these developments were -

(a) initial mass and momentum flux (or one of these and orifice size),

(b) thermal or buoyancy constancy.

The dependent variables which were chosen were the plume width, velocity and temperature
rise. Turbulent eddy diffusivities were described in term of these variables. Entrainment
coefficients are usually taken as constant, but are otherwise (19) dependent on temperature

rise, itself a dependent variable.

" The following arguments if applied to plumes with radiation loss, become sufficiently complicated to warrant
resorting to CFD calculations.



Dimensional analysis does not have to make assumptions about Gaussian or Top Hat
distributions, nor about the constancy of the entrainment coefficient E. These are internal

dependent variables.

For an axi-symmetric plume which remains a plume rising in a still and uniform atmosphere.
One presupposes one is considering a cross section, bounded by a region or regions with no
flow parallel to the plume axis and over which one can define a massMlbwOne obtains

for the mass flowM at a heighZ
O O

U
MT,c 0 gz%  M,Tc 53
— 2P = functiorn 92 0loCp  O% M, H

where Q is the constant convected heat flux avig is the initial mass flow. Molecular
diffusion is included as it is necessarily implied when allowance is made for differing velocity

and temperature rise profiles. The sufiigdenotes initial and ambient conditions.

If detailed analysis is based on the balances of mass flow, momentum force and buoyancy
consideration etc. then for a constant entrainment coefficient_and coasi@gntdentical

shapes of velocity and temperature distributions across the plume one obtains in the far field

where the initial conditions are no longer an influence

0 -
MTocpa%ZSB D gQ D %

Q H 00,6, 10§

ie. M a g¥3Q*3z%3

i.e. the conventional proportionality with proportional toQ*® and 2. The same general

result is equation (20) will be true for a plume with a given inclined source, the angle being
dimensionless. However in the discussion of an inclined plume the velocity and temperature
vary about a trajectory defined by their peak values. The same arguments - and assumptions

as lead to equation (20) lead to an equation for the trajectory
M.T c
Z_ functionD(D e 2Py, M, ﬂg%
S 5 Q by ok SO




Q d°
where Di
DpocpToJB

Yo is the inclination of the source amxdthe horizontal projection of the trajectory. This

discussion may seem trivial, adding nothing to the conventional and more detailed theories.

This is not so. Experimental da#(ZQ) is better analysed a% versusZ”3/Q?2 than a

versus Z°3/Q*3if only because the near field data are weighted quite differently. Similar

arguments apply to line plumes.

3.3.1 The Bent over Plume

Line sources with a constant entrainment velocity in still air have a constant vertical velocity

in the far field

w o=
[PgC, T

whereQ’ is the heat release per unit width of the plume.

It is presumed that the two dimensional line plume can be bent over by a side wind in excess

of the entrainment velocity (15).

Dimensional analysis for such a turbulent plume in a turbulent side Wirsdipports a

solution
2
, 0 .
g—ea& functlon%g% )S,ED (21i)
T Z (o w; w0

where  w_ = (QQ'/OPCpR)

For the far field of a weak plume there is a maxin@yix) asZ varies from 0 to 00 so that

2 . g O N
%a& functloan—)z( ,HD (21ii)
X B9 W

o] c Cc



If we write this as a power law and identify the length of flalpdy thex at which8y(x) is a

particularé defining the flame length, whe#, is a constant, we obtain

wga(u Jw,) (22)

where a is an unknown index. The power law cannot apply {@alk): for a vertical flame

is zero and the left hand side is a constant and the well known relationships obtains

ol a (9Q/0eC, )

For flow fully dependent on forced convectiagi must be absenta=-1) so that

%awc

w? U

ie. a9 oy (22i)
pQCPTO

a linear relationship betwedérand Q' . In a mixed system we expeet’to lie between 0 and

-1.0 depending on the value Wfcw.

A set of experiments on small flames (19) from cribs were correlated by

I, a Q%™ y 2 =-0.2)

Whether a weak plume relationship can be used with a flame temperature hypothesis - as it
can for vertical flames - may be questioned but the above discussion suggests that the linear
approximation betweelhandQ” may be less of an approximation for forced than for natural

connections.



3.4 Flames

Before any work was done on the size of flames from fires, there was a considerable literature

on forced jet flames (see Fig. 3) because of their industrial relevance.

Turbulent jet (momentum driven)

Fig. 3
A
[FT E:I'.II'\H:\: mxig
Eroporiional Lo W
1_".- !r b s " ]
Y

The essence of the physical theory for a given fuel, is as follows. The velocity of the flow of

oxygenated air into the flame is given by -
Y. Y

O-o g O-
d I
where [Jis the turbulent diffusivity
Yox the oxygen concentration
and d is a mean radial distance proportional to

Is the flame height

Only becausd/D is generally large (see Fig. 3) doésdetermine the mean gradient for the

diffusion. [J is dependent on a length and a velocity and there are no others in turbulent flow

than respectivell andW.



Buoyancy forces are considered negligible or secondary. The fuel¥lasvproportional to
WD? so that assuming (i) a particular degree of combustion independ®ntnfil; and (ii)

that the flame surface over which there was diffusion is proportionaltteen withda 1
O Oy d
12 W1, B Ho W D?
'S "B B

i.e. Y, J2a W D?

i.e. for a givenYyy and a given fudiaD.

Note that

EaW

It

in essence describes the entrainment velocity as proportional to the flow velocity.

I _ . . .
The resulté = constants the classic result for turbulent jets (20), detailed combustion and

flow analysis determining the constant. It is interesting to compare this to laminar jets where

[ is replaced by a viscosity Then

Y
Q |:I]fz a quel

Iy

l.e.l; a Q the classic result for laminar jets.

Introducing buoyancy instead of momentum simply replaces {@1py./gl (the ratio

Ap/p the fractional density deficiency being assumed nearly constant in the flame zone).

Hence
Oa L./gl,
e 1 Q
and dal

so that i o Q%°



More generally (because the above is based on a conical combustion zone and a surface of

arbitrary shape) the surface area is Writtenléﬁmction(lf/D) where D is the base

dimension, so that

12 00
¢ Ufunction BBHX

gl

f

aQ;

2 2
ie I—“DfunctionElf H !
A D? oot D2 gl

NB, g cannot physically be combined with anything except a vertical dimension but algebraic
manipulation of the above gives
I

é = function(Q/ Ii/gD)
Note we have treate@; as volume per sec and the ra@/ D?0/gD is dimensionless. To

interpretQ as heat is appropriate beyond the end of the process of combustion but not within

the combustion zone.

Plume and flame theories can be integrated because

pfueIQftheat(a mass Of abr

and the independent variable is then

Qheat
pc,T,D%./gD

Above we have quoted the plume theory result for axi-symmetric plumes.

Ma QF3z33

l.e. O mean @ ?/If a Q73793

Yokoi used this and similar plume formulae to define flame lemgtlty the locus of a

particular value ofGneani.€.
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Thomas and Karlsson [22] have recently used the same argument to augment a few direct

measurements of flame length by plume data for flow under the ceiling of a well ventilated

compartment.
3.5 Flame spread
351 Opposed flow flame spread

There are few points at which dimensional analysis is helpful in analysing problems in flame
spread, but at least one is fundamental. If a plane heat source at constant tem@erature
moves at velocity, through an infinite medium of constant thermal properties at a lower
uniform temperature, then the temperature rise in the medium a distahead of the source

is

0=0,""" x=0
=8, x 0

There is conduction ahead of the source, its value at the source being -

2]
LR

which is the heat energy required to raise the medium to the temperature of the source.
Conduction occurs even though the right hand side does not céftalh there was no
conduction there could not be a gradient, only a step change in temperature. There is at best
some ambiguity in the literature on this topic. It is to be noted that there is no fixed dimension
in this idealisation of the problem other thafv, the characteristic scale length in a moving
medium. This is also necessarily the value for a semi-infinite plane source moving through a
semi-infinite medium on one side of a cold surface (see Fig. 5). The only distance in the

statement of this problem ikg/va. When Parker [23] dealt with flame spread on a thin

material (see Fig. 4) he wrote the heat flux from the flghéo the pyrolysing surface &

as



Kg(@fI —ep)

di = >

whilst the heating of the thin material of thickn&sequires

q;4=p,c,0 VD

(24)
i.e. w =DV
pscpa
(25)

A andd were measured by Parkes /v, is the scale distance in all directions including that

at right angles to the motion in those situations e.g. as in Fig. 5 where there is no temperature
gradient on the cold boundary. This of course presumes that the cold boundary is on a body of
effectively infinite conductivity or capacity. If the movement of the thin material is assumed

to have no influence on the gas phase nearby then the dimensionless fat@mdomust be
considered as independent of. Each might depend on the combustion kinetics (not
considered by simple thermal models but a factor defining Aatind & and perhaps their

ratio).

Fig. 4 Downward spread of flame on a thin sheet moving front (heat source)
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Fig. 5 A uniform heat source moving over a cold surface

moving front [ heal source )
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The lack of dependence &f on v, is qualified. v, cannot be zero: heat transfer into a
stationary semi-infinite gas is like that into a solid: there is no steady state!

Fig. 4 and equations (22) and (25) imglys at right angles t@ and one can be puzzled by

the references in the literature tobeing associated with forward conduction but this

confusion arises becaudg /v, is the characteristic dimension in all directions: there is no

other on the thermally thin material. In the discussion of spread at veélboitythick solids,

D is replaced by\gT /k\S/A and equation (24) gives

8= s o)

"2
A
i.e. v=2 % .
T Kspscp(e p—9 0)

qg-/A varies from one material to another but is taken as indepéndantThat gq /A is a

constant for a material is a hypothesis to the justified and tested by experiment!

! Tests of materials measure V for various initial conditions as assesség aylatermined by external radiation varying

along the length of a heated specimen. This tests the hypothesﬂ;ﬂhﬁ is a constant



Whilst the dimensioA is forward in the sense of being parallel to the spread the relevant

conduction into the solid is at right angles to this. Remogpgives

KZ(8y-8,) 2

32K e 6 ,-6 )

_4
T

and de Ris’s [24] result impIiegAEalli:

giving the result sometimes seen

V=u, KyCePy Egﬂ —ng
Ko 060,-6,0

Were we to include the effects of finite kinetics we could, of course, readily construct a

dimensionless ratio by incorporatin@ into the dimensionless chemical heat release terms
U

a

(see above) including

Di
RT? K nl)

g

E Q"p,f o ERT Lk, @2

a

where the reaction rate temperature datum is taken at a nominal flame temperature. One

would then be able to discuss extinction.

3.5.2 Concurrent flame spread

3.5.2.1 Flame spread and the Delichatsios-Saito length scale

The essence of a quasi-steady thermal theory of concurrent flame spread is (25)

o =20 T (26)

where Xp is the distance advanced by the pyrolysis zone (Fig. 6),
Xq iIs the distance advanced by the flame lip



tis time
and tig is the time for ignition under the exposure to flame

Fig. 6 Flame spread up a thick solid

One can defingg by

Likewise the advance of the locus of the burnt out front (25) is given by

dXR:Xp_XR

27
dt t, @7

whereXg is the locus of burn out (25) amglis the time between ignition and burn out. We

have the flame length relationship (26)

Xg =X = K?"’I qfl t_ e qfl Xyog (28)

where Kn is a constant (known from experiments)
Xoo IS Xp at time zero.
and Q; is the burner strengtkW/m

and n an index, usually 2/3 or unity.

Complete algebraic solutions (27) are available only wheri



For the flames in whiclXq - X, >> X, - Xz we expect i” to be 2/3 for natural convection
and vertical spread. Whexy - X, << X, - Xz there are reasons for supposing the same
relationship holds but there are few data for this condition. Section 3.5.2.1 gives some

justification for the linear approximation= 1.
K, is a constant depending on the value.dforn = 1 the value is roughly 0.017w.

It is acknowledged that the approximatior= 1 is in one respect fundamentally different
fromn #Z 1 even if it is close to unity. Care is necessary in the interpretation of theorsy. If
indefinite spread is one possibility if # 1 even if is close to 1 but <1, spread is always

limited.

The heat release rate per unit area produced by pyrolysis from the fuel is characterised by an
initial value Q, which is proportional to the mass rate per unit area of pyrolygisi e
Q, = gM, is a characteristic pyrolysis rate gtnet/AHv. g’net is an effectively mean net

heat transfer rate from the flame adHlv is a characteristic heat of pyrolysis. For non-
charring materials one has

Q = G AHGAHY

Dimensional analysis permits us to write

gi = functionD po (29)
¢ %pg Cp of ¢ %

where 7 is a dimension characteristic of the fire.

Delichatsios and Saito [28] showed that

/= %netAHc/A HvEf

30
0 PC, @D (30)

Hence /£ = M(xy,/¢)" (31)



whereM is here a dimensionless constant.

The development of theory using the 2/3 power instead of the linear law defines a

dimensionless parameter (see Appendix 2)

E=Qy(1+t,/t) / K2y(ami)’ (32)

which with t/tiy defines the behaviour of flame on a thick solid with the 2/3 power flame
length law.

It can be shown that

E=Qy(1+t,/t) (£a/)*

. 2
where  /,= (QB/ X o0 gcpToﬁg)
is analogous td but is characteristic of the burner and the initial pyrolysis length.

In summary, whichever power law applies to flame length we have, following Delichatsios

and Saito,

L functionDXIOO fg t /e =
/ %7%5 "ty B%
If the width of the spreading zone was finite and of wi@ththen D is a dimension

characteristic of the source aiiD is an additional ratio on the right hand side.

If there is preheating ahead of the flame it is represented by an additional distance which can

be expressed to a first approximation as having two components - one a constant and another

proportional to the appropriate scale length. This can be effesr /. Since their ratio is
already included in the set of independent ratios in the functional equation we can write the

heating as taking place over the distamzen (% - X,) instead of ovekKs - X,, so introducing

two additional termsrzn andn.



The form of this functional relation is, in principle, independent of geometry, e.g. a corner,
unless this is characterised by a relevant dimen$n ”

3.6. The upper gas layer temperature

The McCaffrey, Quintiere, Harkleroad (MQH) regression [29]

0,8 o gg m ¢ (33)
T, “Ho,c.T.A[gHE Co,c, A gHD

determines a mean temperature of the upper gas layer in terms of the rate of heat release and
various room parameters where the symbols are as defined by McCaffrey, Quintiere and

Harkleroad ananis given as 2/3 andlas -1/3.

This was used to correlate mean temperatures in upper gas layers in rooms with’ Jength
breadth b” and height 8" with a vertical opening of areé,, and heighH. In this situation

one assumes thétdepends off,, Q, Py, G, Ar, A, g, H, h, and one presumes @n s andb as

well. We includeT, in the set of variables because physical arguments recognise the role of

buoyancy for which we includdp/p i e 0/T,.

The ratiosi, 9 H A

2
, H—, are purely geometric and we only need one of the terms to
s's' A'A

discuss the formation of dimensionless groups so long as we remember to add the others in a

functional description fof. We pickA,. (It does not matter which at this stage).
Hence we write

6=02 [roﬁ(pgcp)y KK d function%,:,g, etc%

N.B. we are assuming a power laws. If not, we express the function as an infinite series of
powers. We recognise that onpyand c, contain the dimension of mass so we use their

product to remove mass.

Comparing indices of



"heat” gives a+e+y=0

"length” gives U-3y+24-2=0
"time” gives -a-¢-2u=0
and "temperature” gives B-y-¢£=1

These give four of the six indices and we arbitrarily picknde as given so that

B=1-a
y =-|a+g]
p=-(a-¢g)2=y/2
_Toa €
4 4

Hence

The indiced, f etc. express only tha? may depend on any of the ratios of lengths.

[o]

These groups in equation (34) can be multiplied and divided without restriction provided the

remaining groups are independent and no variable is lost.

Arguing physically we expect h to be associated witithat "g” is associated with a vertical

dimension andd/T, is the dependent variable on the left-hand side of the equation. We pick

gH instead ofgA’?. Hence instead of equation (34) we write without loss of generality

0 Q hA; A, H? O
- :f t ’ [N t
T, T O A GH pyc,A aR A A, S

We have reduced the 9 variables (plus extra geometric ones) to 2 (plus the extra ones).

There is no formal justification for omitting any of these variables. So how did MQH do so?



For convenience in this discussion we omit from the data any variations andlb (other

than inA,, At andH i e our hypothesis is

o 0 q g0 na doadfowd
T, “Boc ToAOHH Eoyc, A, [gHE DA O A, 1

We accommodate the experimental variatio®j\, H, Ar and write6 a Q° A° H' A,

With 4 variables we are able to identify valuesmh, p, q with a, B, yandA. The hypothesis
in MQH'’s regression is that -

p=9q=0
We have for
Q, m=a
A, -m-n+p=0
m n
H, - +p=
5 5 p=Yy
AT, n=A
Therefore
p=a+p+a
and -a t4 +Y
4 2

From the statistical analysis of the data McCaffery, Quintiere and Harkleroad presumably
found that any values op andqg were not significant. More data would be required to make

more sensitive tests. A more physically based approach is possible.

A crude energy balance is

Q=ahAb+ Ip, G Awb

where 'a” and "b” are unknown but constant coefficients)"is a mean velocity which might

be characterised by either



3
-JgHO/T, or ép%év
g-p o

In principle, w depends on the depth of the hot layer for it extends below the top of a
doorway, the gas temperature etc. These are accommodated in the functional relationship.
This can be represented generally as

= function%1T Dﬁﬂ /r —X etq%
B i

gH
Hence

Q i A Hoo A
hAT funCtIOEi’ngpAbr DPngToD @,Hz et

oo

Rearranging, we have

nN|

9. = functlor% Q Di
T, AT AT %pgc THE [gHE R

eta]
H

The third variable can be replaced by the first #&p0H* and so is redundant.

The above discussion shows a little of the relationship between dimensional analysis and
physical argument. Important for this and other examples is the recognition of the limitation
of power laws: a power law as in equation (33) is nonsensé, for 0, but one can often
produce approximations over a limited range between linear and power laws especially for
this problem [30].

Thus, if the second term on the right hand side of equation (33) is writ¥r{’ait can be
+Xg?3
replaced byﬁ%% matched to be exact A1 and 4% less &=2 andX=1/2 an error of

+2% over a range of 4 to 1 K Without a detailed analysis of the actual data one cannot "a

priori” say that a correlation based on

1+ A
Ape,[gH



with A a disposable constant would be superior to the power law. Additional "error” may be

acceptable in view of the removal of the singularity whgg — O.



4 The analysis of data

Analysing data statistically is fast becoming routine, but the principles underlying such
analyses are, it seems, slowly being forgotten by many practitioners. Once such lack of
understanding will be described below. Consider the two equations

Z = alWr B8 Oy (35i)

where Z, W, x and y are measurements.

and va - b%ﬁ%ﬁ (35ii)

Wherevzv,v):/ and Y are dimensionless is a hypothesis

X

The advantage of dimensionless analysis is the grouping of quantities which necessarily

reduces the three indices 3 andyto two, in other example$ ande to one.

This does not alter the fact that error is attached to_the measuresoettiat statistical
analysis should be undertaken on equation (35i) not equation (35ii). It is a hypothesis that
equation (35i) can be rewritten as equation (35ii), a hypothesis which, if possible, has to be

justified or not contradicted by the data.

Comparing the indices
B=A-¢
y=¢€
a=1-A

one requires
a+B+y-1=0

This constraint is implied by the reduction of one in the number of degrees of freedom.



There are, as we shall see, more complex situations where more than one constraint can be
derived. Since the original statistical analysis defiag$ and y and their covariances and
variances, one can establish the varianae ®f3 + y to see ifa + §+ y differs significantly

from one.

Alternatively one could analyse
w= e BEw
W

or some extra non-dimensionless variable to s@exists.

These treatments of the data cannot do more than demonstrate consistency. They cannot prove
anything except that either because of a shortage of data or too great a variability in a data one
cannot justify a re-arrangement in dimensionless form from the data, whatever theory

suggests.

One common error arises from recognising thak andy can be made dimensionless by

incorporating saw, etc., e.g.

2 BrE R H

wherea, . n, m, p are coefficients. However, if there are no variationsi,iwv or y,, the
reformulation cannot add any confidence that the original data can be part of dimensionless

correlation as physically there should be.

A recently published paper correlated one dimensionless variable y against three energy
flows: E;, E; andEs. What is suggested above requires a regression of y aggiistandEs

say,

ya B}, E7, B

Instead the authors correlated



and so lost the possibility of checking whetl{erp) exists and whethea+ -2 exists.

Perhaps they did justify their correlation, but if so they left it out of their paper.

Clearly if the checks were not satisfied it would demonstrate either that the data were not
consistent with the simpler reformation or that there were insufficient data. If they were
satisfied, constancy over the range of the data is demonstrated; but consistency is just that, not
proof.



5 Conclusions

Various fire safety engineering questions have been discussed from the point of view of a

dimensional analysis and in the course of this examples have been given of

0] the use of dimensional analysis (as apposed to non-dimensional numbers,
fractions etc.)

(i) the combination of dimensionless groups as a result of physical arguments

(i) their use in the formulation of a solution of a differential equation with its

boundary or initial conditions

(iv) choosing one of two alternative formulations of a dimensionless variable
RT E
— or T-T.
E RT? (T-7)
(v) the consequences of the difference between dependent and independent variables
(vi) their use in evaluating a quantit§)
(vii) determining the structure of a formula as a result of physical considerations (bent

over plumes and flame lengths)
(viii) the choice and significance of a characteristic length for inclusion in a

dimensionless variablky /v, in V4 X/ kg and Zin the Delichatsios-Saito length)

(ix) the analysis of measurements of quantities claimed to be a part of a dimensionless

variable.

These matters have been mentioned as they have arisen in the examples discussed in the hope

that the reader feels the art is not such a mystery as perhaps once thought.
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Appendix |

The constancy of the heat transfer coefficient

If in a dimensional analysisis to be treated as depending on the surface temperature then we

first make use of the ratio of the last two terms in equation (18) which defifeso that

eqguation (18) can be rewritten with h present in only one term, v.i.z.

7K6(X)=functionmx Kt hr Kt
q'L %t’pchz 'Kpce, ’pchzg

0 2 C
Hence K?FO = function%pckt 5 hr , kT 2%
q'L oL Kpc, pc Ll

If now we write as

h=h,1(6/6,)

by introducingh, a constant characteristic value lofand a characteristic temperature rise

6,equation (18) becomes

0 2
K?(X): function%é, Ktz, Nt , KTZ,KHQOQ
q'L L pc, L Kpc, pc,L” g'L

If radiation is included iri(6/6,) then the absolute surface temperature has to be

. : : , : KT, ,
incorporated, i.e. a new dimensionless varlable,%% must be included.
q



Appendix 2

We consider equations (26) and (27)
M"=M, t<t,
=0 t>4

and a modification of equation (28) viz

Xy = % = K[ Q+aM( %+ )]

i.e. we use the simplest form of the pyrolysis or heat release rate but employ the 2/3 power

law.
_ tt
With 1= 9
1+t /tg
3
and Y= (X” _ XR)(1+ tig/tB)
K3(gM")?
we obtain
av_ (E+YV)*°-Y
dr
3
1+t /t
where E= Q( tgl/l B)



Notation

ZBV%XWI%:TD—“mCDUQ_QU;Dm

=]

NRre

NPr
NFr

a constant

area, A - ventilation area, Aenvelope surface area, a constant
breadth or radius

specific heat

a distance, an index

a distance = burner diameter (g2b

an index

energy, activation energy, a dimensionless parameter
an index, frequency factor

acceleration due to gravity

heat transfer coefficient

chemical heat quantity, ef§H. - calorific value AH, - heat vaporisation
height of opening, k- buoyancy height

thermal diffusivity, Kpc,

thermal conductivity, K- flame length constant

a length, 4- flame length

a distance, thickness

an index

mass flux, a dimensionless constant

an index

Reynolds number

Nusselt number

Prandtl number

Froude number

an index

heat quantity,q" is rate of heat release per unit volumi:é, or q"rate of heat
transfer per unit area
convection heat flux, rate of heat release from chemical energy

universal gas constant



S compartment height

S surface area o(rQ/ pocpTofg)z5

time

—

temperature
a variable

velocity

c C & -

a variable

Ua velocity of air

volume, rate of flame spread
velocity

a variable

distance, a variable

distance to a moving front, a variable

< X x g g <

distance, a variable
Yox concentration of oxygen - a variable
z height

z &2 a variable
PC, X

an index
an index
an index

a depth, distance, dimensionless thermal explosion or self heating parameter

D <X W 9

an index, a distance

an index, eddy diffusivity
temperature difference - an index
a constant

viscosity, an index, a variable

<T T > o ™

kinematic viscosity/p

density

©

Ap density difference

T a characteristic time



Suffices and affices

o initial, ambient

B burner

ig ignition

f flame

ff far field

g gas

c characteristic value
D pyrolysis

surface, solid

(%]

maximum

per unit volume

per unit area

O O o 3

per unit length/width



